JPH05241115A - Waveguide type optical device - Google Patents

Waveguide type optical device

Info

Publication number
JPH05241115A
JPH05241115A JP4146092A JP4146092A JPH05241115A JP H05241115 A JPH05241115 A JP H05241115A JP 4146092 A JP4146092 A JP 4146092A JP 4146092 A JP4146092 A JP 4146092A JP H05241115 A JPH05241115 A JP H05241115A
Authority
JP
Japan
Prior art keywords
waveguide
substrate
waveguide substrate
type optical
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4146092A
Other languages
Japanese (ja)
Inventor
Atsushi Toyohara
篤志 豊原
Yuji Izeki
雄二 伊関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4146092A priority Critical patent/JPH05241115A/en
Publication of JPH05241115A publication Critical patent/JPH05241115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To enable wide-band modulation by simple constitution by forming a groove in the opposite surface of a waveguide substrate from its electrode formed surface along an electrode. CONSTITUTION:A waveguide 11 is formed on the waveguide substrate 10 and a couple of electrodes 12 and 13 for applying an electric field to the waveguide 11 are formed on the waveguide 11. A lithium niobate substrate which has relatively high electrooptic effect among ferroelectric materials is employed as the waveguide substrate 10. In the opposite surface 15 of the waveguide substrate 10 from the electrode formed surface 14, one groove 15 is formed locally. The modulation band of a Mach-Zehnder type optical modulator which has the groove 16 formed at a part of the waveguide substrate 10 is measured and thin piece formation is performed by using constitution whose modulation band is 6GHz when the thickness (t) of the waveguide substrate is 0.8mm to obtain a 20GHz modulation band when the thickness (t) is 0.3mm, thereby greatly widening the modulation band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路形光デバイスに
係わり、特に広帯域導波路形光変調器として採用して好
適な導波路形光デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical device, and more particularly to a waveguide type optical device suitable for use as a broadband waveguide type optical modulator.

【0002】[0002]

【従来の技術】一般に、光に変化を起こさせる物理現象
としては、電気光学効果、磁気光学効果、音響光学効果
等がある。このうち電気光学効果とは電界の変化によっ
て媒体の屈折率あるいは誘電率を変化させる現象であ
る。
2. Description of the Related Art Generally, there are an electro-optical effect, a magneto-optical effect, an acousto-optical effect, etc. as a physical phenomenon that causes a change in light. Among them, the electro-optic effect is a phenomenon in which the refractive index or the dielectric constant of the medium is changed by changing the electric field.

【0003】電気光学効果を有する基板を用いた導波路
形光デバイスは、基板中に、光導波路として屈折率の高
い部分が形成されており、この導波路の上部または近傍
に電圧を印加するための電極が形成されている。そし
て、この電極に電界を印加してその屈折率を変化させる
ことにより、光の位相や強度を変調したり、あるいは光
路を切り換えたりすることができるようになっている。
In a waveguide type optical device using a substrate having an electro-optical effect, a portion having a high refractive index is formed as an optical waveguide in the substrate, and a voltage is applied to the upper portion or the vicinity of this waveguide. Electrodes are formed. By applying an electric field to this electrode and changing its refractive index, the phase and intensity of light can be modulated, or the optical path can be switched.

【0004】基板には強誘電体材料の中で比較的高い電
気光学効果を示すニオブ酸リチウム基板が一般的に用い
られている。このニオブ酸リチウムを用いた導波路形光
デバイスは、基板にチタン膜を成膜し、所望の導波路パ
ターンにパターニングした後、1000°C前後の高温
で数時間熱拡散して導波路を形成し、この上部に二酸化
シリコンバッファ層を成膜し、さらにその上部に金属膜
により電極を形成することにより作製されている。この
ような導波路形光デバイスは、基板上に光を変調する機
能や光路の切り換えを行う機能を集積化することが可能
である。また、上記の機能は高速なため、大容量光通信
用の外部変調器やOTDR(OpticalTime Domain Refle
ctometer )における光路切り換え用スイッチとして開
発が進められている。
Among ferroelectric materials, a lithium niobate substrate which exhibits a relatively high electro-optical effect is generally used as a substrate. In this waveguide type optical device using lithium niobate, a titanium film is formed on a substrate, patterned into a desired waveguide pattern, and then thermally diffused at a high temperature of about 1000 ° C. for several hours to form a waveguide. Then, a silicon dioxide buffer layer is formed on the upper portion, and an electrode is formed on the upper portion with a metal film. Such a waveguide type optical device can integrate a function of modulating light and a function of switching an optical path on a substrate. Moreover, since the above-mentioned function is high-speed, an external modulator for large-capacity optical communication or OTDR (Optical Time Domain Refle
Development is in progress as a switch for switching the optical path in a ctometer).

【0005】図4は従来から広く研究・開発され、実用
化のため検討が進められているマッハツェンダ型光変調
器である。本図を用いて簡単に構造と動作原理を説明す
る。導波路基板1はニオブ酸リチウム基板から成り、こ
の導波路基板1には2箇所の分岐部と中央の2本の平行
な導波路2から成るマッハツェンダ型光干渉器が形成さ
れている。導波路基板1の表面全体に成膜された二酸化
シリコンバッファ層3(図5参照)を介して、2本の平
行な部分の導波路2の上部にはクロム・金から成る金属
層の電極4と電極5が形成されている。この導波路2お
よび電極4と電極5を有する導波路基板1の両端面に
は、それぞれ入力側光ファイバ6と出力側光ファイバ7
が光学的に結合されている。さらに、電極4、5には電
圧を印加し信号を入力するための駆動回路8の出力端が
接続されている。
FIG. 4 shows a Mach-Zehnder type optical modulator which has been widely researched and developed, and is being studied for practical use. The structure and operation principle will be briefly described with reference to this drawing. The waveguide substrate 1 is made of a lithium niobate substrate, and a Mach-Zehnder type optical interferometer consisting of two branch portions and two central parallel waveguides 2 is formed on the waveguide substrate 1. A silicon dioxide buffer layer 3 (see FIG. 5) formed on the entire surface of the waveguide substrate 1 is used to form an electrode 4 of a metal layer made of chromium and gold on the waveguide 2 in two parallel portions. And the electrode 5 is formed. An input side optical fiber 6 and an output side optical fiber 7 are provided on both end faces of the waveguide substrate 1 having the waveguide 2 and the electrodes 4 and 5, respectively.
Are optically coupled. Further, the output ends of the drive circuit 8 for applying a voltage and inputting a signal are connected to the electrodes 4 and 5.

【0006】今、電極4、5に外部から電圧を印加する
と、図6に示すように導波路基板1中に形成された導波
路2に縦方向の電界(矢印Aで表示)が発生し、ニオブ
酸リチウムのもつ電気光学効果により導波路2の屈折率
が変化する。符号9は電気力線を示す。
When a voltage is externally applied to the electrodes 4 and 5, a vertical electric field (indicated by an arrow A) is generated in the waveguide 2 formed in the waveguide substrate 1 as shown in FIG. The refractive index of the waveguide 2 changes due to the electro-optic effect of lithium niobate. Reference numeral 9 indicates a line of electric force.

【0007】印加した電圧と光出力の関係を図7に示
す。電極4、5に電圧を印加しない状態では光は一旦分
岐され、再び合流する。マッハツェンダ型光干渉器中の
2つのアームの構造が等しい場合、分岐した2つの光の
間には位相差が無いため伝搬損や分岐損を除き、再び光
が出力側光ファイバ7から出力される。しかし、印加電
圧を増加させると分岐した光の位相が互いに異なり、あ
る電圧において位相差がπとなる。このような2つの分
岐光が再度合流した場合には干渉により光の出力が観測
されなくなる。このように電圧印加の有無により光を変
調するのがマッハツェンダ型光変調器である。本光変調
器は変調帯域が非常に高いため(数十GH 2 以上)、大
容量伝送の実現のため現在研究が盛んに進められてい
る。
The relationship between the applied voltage and the light output is shown in FIG.
You When voltage is not applied to the electrodes 4 and 5, the light is
It is diverted and joins again. In the Mach-Zehnder type optical interferometer
If the two arms have the same structure,
Since there is no phase difference between the
Is output from the output side optical fiber 7. However, the applied voltage
When the pressure is increased, the phases of the branched lights differ from each other,
The phase difference becomes π at a certain voltage. Two minutes like this
When divergence merges again, light output is observed due to interference
It will not be done. In this way, light is changed depending on the presence or absence of voltage application.
It is a Mach-Zehnder type optical modulator that adjusts. This light modulation
The modulator has a very high modulation band (tens of GH 2Above), large
Currently, research is actively underway to realize capacity transmission.
It

【0008】光変調器の性能を表わす指標の1つとして
変調帯域がある。この変調帯域の広帯域化を制限する要
素としては、(1)マイクロ波が導波路基板と共振し、
低周波域(5〜10GH2 )でディップを発生、(2)
マイクロ波と導波光の進行速度のズレ、(3)電極中を
伝搬するマイクロ波の損失の大きさ、等が挙げられる。
上記の3つの問題についての対策はそれぞれ(i)、ニ
オブ酸リチウム基板の形状を薄片化する方法(例えば、
「Ti:LiNbO3 変調器の高周波特性改善」:清野
他、1990年信学会春全大C227)、(ii)、電極
上部をシールド電極で覆う方法(例えば、「シールド型
速度整合Ti:LiNbO3 光変調器の設計と試作」:
河野他、信学会論文誌1991年/11Vol.J74
−C NO.11)、(iii )、基板上に形成されてい
る電極の厚さを厚くする方法(例えば、M.Seino
et al,:Technical Digest of ECOC 199
0,p999−1002)により報告されている。
The modulation band is one of the indexes indicating the performance of the optical modulator. As a factor for limiting the widening of the modulation band, (1) the microwave resonates with the waveguide substrate,
Generating a dip in the low frequency range (5~10GH 2), (2)
Examples include the difference between the traveling speeds of the microwave and the guided light, and (3) the size of the loss of the microwave propagating in the electrode.
Countermeasures for the above three problems are (i), and a method of thinning the shape of the lithium niobate substrate (for example,
"Ti: LiNbO 3 modulator frequency characteristic improvement": Kiyono other, IEICE Spring Zendai C227 1990 years), (ii), a method of the electrode top covered with the shield electrode (e.g., "shield velocity matching Ti: LiNbO 3 Optical Modulator Design and Prototyping ":
Kono et al., IEEJ Transactions 1991/11 Vol. J74
-C NO. 11), (iii), a method of increasing the thickness of the electrode formed on the substrate (for example, M. Seino).
et al ,: Technical Digest of ECOC 199
0, p999-1002).

【0009】[0009]

【発明が解決しようとする課題】しかし、上述した3つ
の方法にはそれぞれ次のような問題があった。すなわ
ち、(i)については薄片化のため、作製が容易でな
く、かつ、取扱いの上でも問題があった。また、(ii)
については構成が複雑になっており、さらに(iii )の
電極の厚膜化については作製上、安定性上上限があっ
た。
However, each of the above-mentioned three methods has the following problems. That is, with regard to (i), since it is thin, it is not easy to manufacture, and there is a problem in handling. Also, (ii)
For example, the structure is complicated, and regarding the thickening of the electrode in (iii), there is an upper limit in terms of production and stability.

【0010】本発明の目的は上述した問題に鑑みなされ
たもので、広帯域の光変調器を容易に実現することので
きる導波路形光デバイスを提供するにある。
An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a waveguide type optical device which can easily realize a wide band optical modulator.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
表面近傍に導波路が形成されかつ電気光学効果を有する
導波路基板と、導波路に電界を印加させる少なくとも一
対の電極と、導波路基板の裏面に電極に沿って形成され
た少なくとも1本の溝とから構成されたものである。
The invention according to claim 1 is
A waveguide substrate having a waveguide formed near the surface and having an electro-optical effect, at least a pair of electrodes for applying an electric field to the waveguide, and at least one groove formed along the electrodes on the back surface of the waveguide substrate. It is composed of and.

【0012】請求項2記載の発明は、導波路基板が、ニ
オブ酸リチウム基板により作製されて成ることを特徴と
する。
The invention according to claim 2 is characterized in that the waveguide substrate is made of a lithium niobate substrate.

【0013】[0013]

【作用】本発明によれば、電気光学効果を有する導波路
基板の電極形成面の反対面に電極に沿うように溝を形成
したので、簡単な構成で広帯域変調が容易に可能になっ
た。また、電極下部付近の基板の厚さのみを薄くし、そ
のほかの部分の基板は厚いため、導波路基板の作製およ
び取扱いが容易となる。
According to the present invention, since the groove is formed on the surface of the waveguide substrate having the electro-optic effect opposite to the surface on which the electrode is formed, the groove can be easily formed with a simple structure. Further, since only the thickness of the substrate near the lower portion of the electrode is reduced and the thickness of the other portions is thick, the waveguide substrate can be easily manufactured and handled.

【0014】[0014]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明に係わる導波路形光デバイスの一実施
例であるマッハツェンダ型光変調器の斜視図である。導
波路基板10上には導波路11が形成されており、この
導波路11の上部に、導波路11に電界を印加させる一
対の電極12、13が形成されている。なお、導波路基
板10には強誘電体材料の中で比較的高い電気光学効果
を示すニオブ酸リチウム基板が採用されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a Mach-Zehnder type optical modulator which is an example of a waveguide type optical device according to the present invention. A waveguide 11 is formed on the waveguide substrate 10, and a pair of electrodes 12 and 13 for applying an electric field to the waveguide 11 are formed on the waveguide 11. The waveguide substrate 10 is a lithium niobate substrate that exhibits a relatively high electro-optical effect among ferroelectric materials.

【0015】導波路基板10の電極形成面14の反対面
15には電極12、13に沿って局部的に1本の溝16
が形成されている。なお、局部的に溝16を形成する1
つの方法として、図2に示すように、エキシマレーザ加
工機を用い、レーザ光17の光路途中に、薄片化する形
状所望のエッチングパターンと相似のパターンを有する
マスク18を配置する。そして、このマスク18を通過
したレーザ光を集光レンズ19で導波路基板10上に縮
小投影してアブレーションエッチングを行う(例えば、
「レーザプロセシング」pp.506〜511,日経技
術図書(株)参照)。このような方法により、導波路基
板10に任意の形状の溝16を形成することができる。
なお、電極12、13には駆動回路20の出力端が接続
されている。
A groove 16 is locally formed along the electrodes 12 and 13 on the surface 15 of the waveguide substrate 10 opposite to the electrode formation surface 14.
Are formed. In addition, the groove 16 is locally formed 1
As one method, as shown in FIG. 2, an excimer laser beam machine is used and a mask 18 having a pattern similar to the desired etching pattern to be thinned is arranged in the optical path of the laser beam 17. Then, the laser light that has passed through the mask 18 is reduced and projected onto the waveguide substrate 10 by the condenser lens 19 to perform ablation etching (for example,
"Laser Processing" pp. 506-511, Nikkei Technical Book Co., Ltd.). By such a method, the groove 16 having an arbitrary shape can be formed in the waveguide substrate 10.
The output ends of the drive circuit 20 are connected to the electrodes 12 and 13.

【0016】上述した構成および工法により、電極1
2、13の直下の導波路基板10の厚みを従来の0.8
mmから0.3mmへと薄くすることが可能となった。
また、導波路基板10の幅寸法は5mmであり、溝16
の幅寸法は2mmとなっている。
The electrode 1 having the above-described structure and construction method is used.
The thickness of the waveguide substrate 10 directly below 2 and 13 is 0.8
It has become possible to reduce the thickness from mm to 0.3 mm.
The width dimension of the waveguide substrate 10 is 5 mm, and the groove 16
Has a width of 2 mm.

【0017】このように、導波路基板10の一部に溝1
6を形成したマッハツェンダ型光変調器の変調帯域を測
定し、導波路基板の厚みtが0.8mmのとき変調帯域
が6GHZとなる構成を用いて薄片化を施すと、tが
0.3mmのとき変調帯域は20GHZとなり、変調帯
域の大幅な広帯域化が実現できた。
As described above, the groove 1 is formed in a part of the waveguide substrate 10.
When the modulation band of the Mach-Zehnder type optical modulator formed with No. 6 is measured and thinning is performed using a configuration in which the modulation band is 6 GHZ when the thickness t of the waveguide substrate is 0.8 mm, t is 0.3 mm. At that time, the modulation band became 20 GHz, and a wide band of the modulation band could be realized.

【0018】図3に導波路基板10の厚さを可変したと
きの変調帯域の変化例を示す。図3から明らかなよう
に、導波路基板10の厚みを薄くすることより変調帯域
が広がることがわかる。
FIG. 3 shows an example of changes in the modulation band when the thickness of the waveguide substrate 10 is changed. As is clear from FIG. 3, the modulation band is widened by reducing the thickness of the waveguide substrate 10.

【0019】なお、本実施例では溝16の形成手法とし
てエキシマレーザによるアブレーションエッチングを採
用しているが、別にこれに限定されるものではなく、ダ
イシングソー等を利用した機械的な溝の形成方法も適用
できる。
In the present embodiment, the ablation etching using the excimer laser is adopted as the method for forming the groove 16, but the method is not limited to this, and a mechanical groove forming method using a dicing saw or the like is used. Can also be applied.

【0020】[0020]

【発明の効果】以上説明したように本発明に係わる導波
路形光デバイスによれば、導波路基板の電極形成面の反
対面に、電極に沿うように溝を形成したことにより、簡
単な構成で広帯域変調が可能となり、しかも取扱いも容
易になった。加えて、複雑な製造プロセスを必要としな
いため、生産性も飛躍的に向上した。
As described above, the waveguide type optical device according to the present invention has a simple structure because the groove is formed along the electrode on the surface opposite to the electrode forming surface of the waveguide substrate. Wideband modulation is now possible and easy to handle. In addition, productivity is dramatically improved because no complicated manufacturing process is required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる導波路形光デバイスの一実施例
であるマッハツェンダ型光変調器の斜視図である。
FIG. 1 is a perspective view of a Mach-Zehnder type optical modulator which is an embodiment of a waveguide type optical device according to the present invention.

【図2】エキシマレーザによる溝の形成方法を示す説明
図である。
FIG. 2 is an explanatory diagram showing a method of forming a groove by an excimer laser.

【図3】導波路基板の厚みと変調帯域の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a thickness of a waveguide substrate and a modulation band.

【図4】従来のマッハツェンダ型光変調器の一例を示す
斜視図である。
FIG. 4 is a perspective view showing an example of a conventional Mach-Zehnder interferometer type optical modulator.

【図5】従来のマッハツェンダ型光変調器の断面図であ
る。
FIG. 5 is a sectional view of a conventional Mach-Zehnder interferometer type optical modulator.

【図6】従来のマッハツェンダ型光変調器の電界分布図
である。
FIG. 6 is an electric field distribution diagram of a conventional Mach-Zehnder type optical modulator.

【図7】印加電圧と光出力との関係を示す図である。FIG. 7 is a diagram showing the relationship between applied voltage and optical output.

【符号の説明】[Explanation of symbols]

10 導波路基板 11 導波路 12、13 電極 14 電極形成面 16 溝 10 Waveguide Substrate 11 Waveguide 12, 13 Electrode 14 Electrode Forming Surface 16 Groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面近傍に導波路が形成されかつ電気光
学効果を有する導波路基板と、 前記導波路に電界を印加させる少なくとも一対の電極
と、前記導波路基板の裏面に電極に沿って形成された少
なくとも1本の溝とを具備することを特徴とする導波路
形光デバイス。
1. A waveguide substrate having a waveguide formed near the surface and having an electro-optical effect, at least a pair of electrodes for applying an electric field to the waveguide, and a waveguide substrate formed on the back surface of the waveguide substrate along the electrodes. And at least one groove formed therein.
【請求項2】 導波路基板はニオブ酸リチウム基板によ
り作製されてなることを特徴とする請求項1記載の導波
路形光デバイス。
2. The waveguide type optical device according to claim 1, wherein the waveguide substrate is made of a lithium niobate substrate.
JP4146092A 1992-02-27 1992-02-27 Waveguide type optical device Pending JPH05241115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146092A JPH05241115A (en) 1992-02-27 1992-02-27 Waveguide type optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146092A JPH05241115A (en) 1992-02-27 1992-02-27 Waveguide type optical device

Publications (1)

Publication Number Publication Date
JPH05241115A true JPH05241115A (en) 1993-09-21

Family

ID=12608988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146092A Pending JPH05241115A (en) 1992-02-27 1992-02-27 Waveguide type optical device

Country Status (1)

Country Link
JP (1) JPH05241115A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219469B1 (en) * 1996-09-06 2001-04-17 Ngk Insulators, Ltd. Optical waveguide devices, traveling-wave light modulators, and process for producing optical waveguide devices
JP2001174766A (en) * 1999-12-21 2001-06-29 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
US6400494B1 (en) 1999-08-27 2002-06-04 Ngk Insulators, Ltd. Traveling wave optical modulator
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US6873748B2 (en) 2002-02-07 2005-03-29 Fujitsu Limited Optical modulator module and optical modulator
US6950580B2 (en) 2002-08-08 2005-09-27 Ngk Insulators, Ltd. Optical waveguide devices and travelling wave type optical modulators
US7068863B2 (en) 2001-09-05 2006-06-27 Ngk Insulators, Ltd. Optical waveguide device, an optical modulator, a mounting structure for an optical waveguide device and a supporting member for an optical waveguide substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP4137322B2 (en) * 1999-11-04 2008-08-20 シチズンホールディングス株式会社 Printer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP4137322B2 (en) * 1999-11-04 2008-08-20 シチズンホールディングス株式会社 Printer device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219469B1 (en) * 1996-09-06 2001-04-17 Ngk Insulators, Ltd. Optical waveguide devices, traveling-wave light modulators, and process for producing optical waveguide devices
US6400494B1 (en) 1999-08-27 2002-06-04 Ngk Insulators, Ltd. Traveling wave optical modulator
JP2001174766A (en) * 1999-12-21 2001-06-29 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JP4587509B2 (en) * 1999-12-21 2010-11-24 住友大阪セメント株式会社 Waveguide type optical modulator
WO2003012533A1 (en) * 2001-08-01 2003-02-13 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US7068863B2 (en) 2001-09-05 2006-06-27 Ngk Insulators, Ltd. Optical waveguide device, an optical modulator, a mounting structure for an optical waveguide device and a supporting member for an optical waveguide substrate
US6873748B2 (en) 2002-02-07 2005-03-29 Fujitsu Limited Optical modulator module and optical modulator
EP1995624A1 (en) 2002-02-07 2008-11-26 Fujitsu Limited Optical modulator module
US6950580B2 (en) 2002-08-08 2005-09-27 Ngk Insulators, Ltd. Optical waveguide devices and travelling wave type optical modulators

Similar Documents

Publication Publication Date Title
US4984861A (en) Low-loss proton exchanged waveguides for active integrated optic devices and method of making same
JP2002169133A (en) Optical modulator of traveling wave form
JPWO2005019913A1 (en) Optical waveguide device and traveling wave optical modulator
US20110262071A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
EP1258772A1 (en) Electro-optic modulator having high bandwith and low drive voltage
JP2001066561A (en) Traveling-wave optical modulator
JPH07234391A (en) Device for controlling light
JP5166450B2 (en) Optical waveguide device
JP3570735B2 (en) Optical waveguide device
JPH05241115A (en) Waveguide type optical device
JP3250712B2 (en) Polarization independent light control element
JPH05196972A (en) Waveguide type optical directional coupler
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP2946630B2 (en) Light modulator
US7373025B2 (en) Waveguide-type optical device
JP2001004967A (en) Optical waveguide element
JPH04172316A (en) Wave guide type light control device
JPH01201609A (en) Optical device
JPH05297332A (en) Optical modulator
JPH05297333A (en) Optical modulator
JP2739405B2 (en) Electric field sensor
JP2800339B2 (en) Method of manufacturing optical modulator
JP2817295B2 (en) Light modulator
JPH09185025A (en) Optical control element
WO2004015470A1 (en) Optical device