JPH0713711B2 - High speed optical modulator - Google Patents

High speed optical modulator

Info

Publication number
JPH0713711B2
JPH0713711B2 JP24815387A JP24815387A JPH0713711B2 JP H0713711 B2 JPH0713711 B2 JP H0713711B2 JP 24815387 A JP24815387 A JP 24815387A JP 24815387 A JP24815387 A JP 24815387A JP H0713711 B2 JPH0713711 B2 JP H0713711B2
Authority
JP
Japan
Prior art keywords
substrate
modulation electrode
modulation
optical modulator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24815387A
Other languages
Japanese (ja)
Other versions
JPS6491111A (en
Inventor
修 三冨
勤 鬼頭
健治 河野
俊雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24815387A priority Critical patent/JPH0713711B2/en
Publication of JPS6491111A publication Critical patent/JPS6491111A/en
Publication of JPH0713711B2 publication Critical patent/JPH0713711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に動作速度が速く、しかも駆動電圧が小さ
い光変調器に関するものである。
TECHNICAL FIELD The present invention relates to an optical modulator having a high operating speed and a low driving voltage.

(従来の技術) 高速・大容量の光ファイバ通信システム、特にコヒーレ
ント光ファイバ通信システムにおいては、高速で駆動電
圧が小さい高性能な外部光変調器が有用である。この種
の外部光変調器としては、光強度変調器、光位相変調
器、光周波数変調器等がある。
(Prior Art) In a high-speed and large-capacity optical fiber communication system, particularly in a coherent optical fiber communication system, a high-performance external optical modulator with high speed and small driving voltage is useful. Examples of this type of external optical modulator include a light intensity modulator, an optical phase modulator, and an optical frequency modulator.

従来の外部光変調器の例としては、方向性結合器形光強
度変調器の基本構成を第14図に示す。
As an example of a conventional external optical modulator, the basic configuration of a directional coupler type optical intensity modulator is shown in FIG.

第14図は、中心導体と接地導体とからなる変調電極1,2
を分布定数回路として構成した場合である。この場合、
例えばニオブ酸リチウム(LiNbO3以下LNと記す)等の電
気光学効果を持つ基板3に、光導波路4,5が方向性結合
器として形成されている。光導波路4,5は、例えばチタ
ン(Ti)熱拡散法やプロトン交換法等により形成され
る。6は変調電極1,2による光導波路の光伝搬損失を低
減させるためのバッファ層であり、二酸化シリコン(Si
O2)や、アルミナ(Al2O3)等により構成される。そし
て、強度が一定の入射光7を光導波路4に入射させ、信
号源8から変調電極1,2の間に信号を入力すると、その
信号に応じて強度変調された光9が、光導波路4もしく
は光導波路5より出射される。
FIG. 14 shows modulation electrodes 1 and 2 consisting of a center conductor and a ground conductor.
Is a distributed constant circuit. in this case,
For example, optical waveguides 4 and 5 are formed as directional couplers on a substrate 3 having an electro-optical effect such as lithium niobate (hereinafter referred to as LNbO 3 and referred to as LN). The optical waveguides 4 and 5 are formed by, for example, a titanium (Ti) thermal diffusion method or a proton exchange method. Reference numeral 6 is a buffer layer for reducing the optical propagation loss of the optical waveguide due to the modulation electrodes 1 and 2, and is made of silicon dioxide (Si
O 2 ), alumina (Al 2 O 3) and the like. Then, when incident light 7 having a constant intensity is made incident on the optical waveguide 4 and a signal is input from the signal source 8 between the modulation electrodes 1 and 2, the light 9 whose intensity is modulated according to the signal is generated. Alternatively, the light is emitted from the optical waveguide 5.

この光変調器の場合、変調電極1,2は分布定数回路とし
て構成されているので、理想的には電気回路的な帯域幅
の制限はない。また、変調電極1,2の間を伝搬する信号
波と光の伝搬速度が一致する限りは、入射光7が光導波
路4,5を走行する時間の影響による帯域幅の制限もない
ので、一般に高速動作用の光変調器に使用される。
In the case of this optical modulator, since the modulation electrodes 1 and 2 are configured as a distributed constant circuit, ideally there is no limitation on the bandwidth of an electric circuit. Also, as long as the signal wave propagating between the modulation electrodes 1 and 2 and the propagation speed of light match, there is no limitation on the bandwidth due to the influence of the time that the incident light 7 travels in the optical waveguides 4 and 5, so Used in high speed optical modulators.

しかし、実際には信号波と光の速度差があり、これによ
って帯域幅が制限される。信号波に対する基板3の実効
的な屈折率をnm、光に対する光導波路4,5の実効的な屈
折率をno、電極の長さをlと表わすと、この速度差によ
って生じる帯域幅BWは、 BW=1.4c/(πl|nm−no|) ……(1) ただし、cは光束となる〔参考文献:信学論(c),J64
−C,4,P264−271,1981〕。上記屈折率nmは基板3の実効
誘電率εeffに対して、 で与えられる。
However, in reality, there is a speed difference between the signal wave and the light, which limits the bandwidth. When the effective refractive index of the substrate 3 with respect to the signal wave is n m , the effective refractive index of the optical waveguides 4 and 5 with respect to light is n o , and the electrode length is l, the bandwidth BW caused by this speed difference is Is BW = 1.4c / (πl | n m −n o |) (1) However, c is the luminous flux [Reference: Theological theory (c), J64
-C, 4, P264-271,1981]. The refractive index n m is relative to the effective dielectric constant ε eff of the substrate 3, Given in.

電気光学効果を持つ基板材料では、信号波に対する屈折
率nmは、通常、光に対する屈折率noより大きな値にな
る。基板3の実効誘電率εeffは、主に基板材料の誘電
率ε、電極の間隔g、幅w1,w2、基板の厚さd等によ
って決まる。基板の厚さdは、通常、光変調器製作時に
おける基板の取扱い易さの制限から、0.5〜数mmの厚さ
である。また電極間隔gは、光導波路4,5の幅の数倍の
大きさが選ばれ、5〜10μm程度である。また電極1,2
の厚さtは、電極材料の導電率の大きさやマイクロ波表
皮効果による抵抗の大きさ等を考慮して2〜3μm程度
が選ばれる。従って、通常は電極間隔gの大きさが基板
厚さdより充分小さく、また電極の厚さtがgより小さ
いので、実効誘電率は近似値として、 εeff≒(ε+1)/2 ……(3) になる。例えば、基板3がLNの場合、基板材料の誘電率
ε≒35であり、屈折率nm≒4.2,no≒2.2で、屈折率nm
は屈折率noの約2倍の大きさになるので、5GHz動作の
時、電極の長さlとしては、10mm前後が選ばれる〔上記
(1)式参照〕。
In a substrate material having an electro-optical effect, the refractive index n m for signal waves is usually larger than the refractive index n o for light. The effective permittivity ε eff of the substrate 3 is mainly determined by the permittivity ε s of the substrate material, the electrode spacing g, the widths w 1 and w 2 , the substrate thickness d, and the like. The thickness d of the substrate is usually 0.5 to several mm due to the limitation of the ease of handling the substrate when manufacturing the optical modulator. The electrode gap g is selected to be several times the width of the optical waveguides 4 and 5, and is about 5 to 10 μm. Also electrodes 1, 2
The thickness t is selected to be about 2 to 3 μm in consideration of the conductivity of the electrode material and the resistance due to the microwave skin effect. Therefore, since the size of the electrode gap g is usually sufficiently smaller than the substrate thickness d, and the electrode thickness t is smaller than g, the effective permittivity is approximately ε eff ≈ (ε s +1) / 2. … (3). For example, when the substrate 3 is LN, the dielectric constant ε s of the substrate material ε 35, the refractive index n m ≈4.2, n o ≈2.2, and the refractive index nm
Since approximately doubles the size of the refractive index n o, when the 5GHz operation, the length l of the electrodes, the front and rear 10mm selected [the above equation (1) refer to Fig.

(発明が解決しようとする問題点) 上述した第14図の光変調器を光束動作化するには、
(1)式からわかるように、動作周波数に応じて、電極
1,2の長さlを短くする必要がある。しかし電極長lを
短くすると、光変調器の駆動電圧が大きく成るので、変
調効率が低下する欠点がある。
(Problems to be Solved by the Invention) In order to make the optical modulator of FIG.
As can be seen from equation (1), the electrode
It is necessary to shorten the length l of 1,2. However, when the electrode length l is shortened, the driving voltage of the optical modulator increases, so that the modulation efficiency decreases.

本発明は、このような背景の下になされたもので、高
速、かつ低駆動電圧の光変調を提供することにある。
The present invention has been made under such a background, and an object thereof is to provide optical modulation with high speed and low driving voltage.

(問題点を解決するための手段) 本発明は、基板表面付近に光導波路を形成し、かつ該光
導波路を形成した面に変調電極を備えた光変調器におい
て、前記光導波路を形成した面上に構成された変調電極
の実効的な厚さを変調電極の間隔と同程度、もしくはそ
の大きさより厚くする。
(Means for Solving the Problems) The present invention relates to an optical modulator having an optical waveguide formed near the surface of a substrate, and a modulation electrode provided on the surface on which the optical waveguide is formed. The effective thickness of the above-configured modulation electrode is set to be equal to or larger than the distance between the modulation electrodes.

本発明によると、変調電極の実効的な厚さを厚くしてあ
るので、変調電極の変調信号波に対する実効誘電率ε
effを小さくできる。これにより、変調信号波に対する
実効屈折率を従来の構成品より小さくできるので、変調
信号波と光との位相速度の差が小さくなり、低駆動電圧
で高速動作の光変調器を実現できる。
According to the present invention, since the effective thickness of the modulation electrode is increased, the effective dielectric constant ε of the modulation electrode with respect to the modulation signal wave is ε.
eff can be reduced. As a result, the effective refractive index for the modulated signal wave can be made smaller than that of the conventional component, and the difference in the phase velocities between the modulated signal wave and the light is reduced, and an optical modulator that operates at high speed with a low driving voltage can be realized.

(実施例) 第1図(a),(b)は、変調電極として対称コプレー
ナストリップ線路を適用した本発明の一実施例の構成図
であり、(a)は中央部断面図、(b)は平面図であ
る。なお、従来例と同一構成部分は同一符号で表してい
る。
(Embodiment) FIGS. 1A and 1B are configuration diagrams of an embodiment of the present invention in which a symmetrical coplanar strip line is applied as a modulation electrode, wherein FIG. 1A is a sectional view of a central portion, and FIG. Is a plan view. The same components as those in the conventional example are represented by the same reference numerals.

第1図において、11,12は対称コプレーナストリップ線
路であり、幅がw、間隔がg、厚さがt、長さがlであ
る。この実施例によると、従来の光変調器と比較して、
信号波と光の速度差による帯域幅制限効果が緩和され
る。以下、その原理を第2図(a),(b)を用いて説
明する。
In FIG. 1, reference numerals 11 and 12 are symmetrical coplanar strip lines having a width w, a gap g, a thickness t and a length l. According to this embodiment, as compared with the conventional optical modulator,
The bandwidth limitation effect due to the speed difference between the signal wave and the light is alleviated. The principle will be described below with reference to FIGS. 2 (a) and 2 (b).

第2図は、変調電極部の電気力線および容量分布を表し
ており、(a)は従来例の場合、(b)は本発明の実施
例の場合を示している。
FIG. 2 shows the lines of electric force and the capacitance distribution of the modulation electrode portion, where (a) shows the case of the conventional example and (b) shows the case of the embodiment of the present invention.

すなわち従来例の場合、第14図に示すバッファ層6の厚
さや電極1,2の厚さtが電極間隔gより充分小さいの
で、電極1,2の間の容量Cは、電極上面側の間の容量Ca
と、電極下面(基板)側の間の容量Csで構成される。容
量Caの間隙部の誘電体は空気からなり、その比誘電率ε
は約1.0である。容量Csの間は基板材料が満たされて
おり、その比誘電率は基板材料3の比誘電率εにな
る。そして変調電極1,2間に信号波が入力すると、信号
波に応じて変調電極間に電気力線が発生する。基板3内
に発生する電気力線13の量と基板3外に発生する電気力
線14の量との割合は、容量CsとCaとの大きさの割合に対
応する。この場合、変調電極の実効誘電率εeffは、そ
れぞれ電気力線13,14の量に応じてεとεの間の値
になり、(3)式で与えられる。従って、基板材料が決
まると、εeffの大きさは一義的に決まる。
That is, in the case of the conventional example, since the thickness of the buffer layer 6 and the thickness t of the electrodes 1 and 2 shown in FIG. 14 are sufficiently smaller than the electrode gap g, the capacitance C between the electrodes 1 and 2 is Capacity of Ca
And the capacitance Cs between the electrode lower surface (substrate) side. The dielectric in the gap of the capacitance Ca consists of air, and its relative permittivity ε
a is about 1.0. The substrate material is filled between the capacitors Cs, and the relative permittivity thereof is the relative permittivity ε s of the substrate material 3. When a signal wave is input between the modulation electrodes 1 and 2, electric lines of force are generated between the modulation electrodes according to the signal wave. The ratio of the amount of electric force lines 13 generated inside the substrate 3 to the amount of electric force lines 14 generated outside the substrate 3 corresponds to the ratio of the magnitudes of the capacitances Cs and Ca. In this case, the effective permittivity ε eff of the modulation electrode is a value between ε a and ε s depending on the amount of the lines of electric force 13 and 14, and is given by the equation (3). Therefore, when the substrate material is determined, the magnitude of ε eff is uniquely determined.

一方、本発明の実施例の場合、電極の厚さtが間隔gの
大きさに対して同程度もしくはそれより大きくしてある
ので、電極11,12の間の容量Cは、容量Ca,Csと電極の間
隙部の容量Cgで構成される。このため、基板3内の電気
力線13の量に対して、基板外の電気力線14の量が相対的
に増加し、基板外での誘電体(空気)比誘電率εは基
板3の比誘電率εより小さいので、変調電極11,12の
実効誘電率ε′effは前記のεeffより小さくなる。この
ことは、基板外の電気力線14の量のしめる割合が大きく
なる程、ε′effは小さくなる。
On the other hand, in the case of the embodiment of the present invention, since the thickness t of the electrodes is set to be equal to or larger than the size of the gap g, the capacitance C between the electrodes 11 and 12 is equal to the capacitances Ca and Cs. And the capacitance Cg in the gap between the electrodes. Therefore, the amount of electric lines of force 14 outside the substrate increases relative to the amount of electric lines of force 13 inside the substrate 3, and the dielectric (air) relative permittivity ε a outside the substrate is Since the relative permittivity ε s is smaller than the relative permittivity ε s , the effective permittivity ε ′ eff of the modulation electrodes 11 and 12 is smaller than the above ε eff . This means that ε ′ eff decreases as the ratio of the amount of electric flux lines 14 outside the substrate increases.

第3図は、第1図の実施例において、基板3をLNで構成
した場合、電極の幅wと間隔gの比w/gを横軸に、縦軸
に近似計算による電極の実効屈折率nmと変調帯幅BWを表
している。ここで電極の厚さtと間隔gの比t/gをパラ
メータにしている。なお、計算ではε=35であり、バッ
ファ層6はないものとしている。また容量Cgの大きさ
は、LN基板3による容量成分を無視して算出している。
第3図からわかるように、w/gが小さく、t/gが大きくな
る程、実効屈折率nmの大きさは小さくなる傾向があり、
さらに光に対する屈折率No(約2.2)と完全に一致させ
ることができる。
FIG. 3 shows, in the embodiment of FIG. 1, when the substrate 3 is made of LN, the ratio w / g of the width w of the electrode and the distance g is on the horizontal axis and the effective refractive index of the electrode on the vertical axis is calculated by approximation. It represents nm and the modulation bandwidth BW. Here, the ratio t / g of the thickness t of the electrode and the interval g is used as a parameter. In the calculation, ε = 35, and the buffer layer 6 is absent. The size of the capacitance Cg is calculated by ignoring the capacitance component of the LN substrate 3.
As it can be seen from Figure 3, small w / g, greater the t / g increases, the size of the effective refractive index n m has a small tendency
It can be further completely coincide refractive index N o (about 2.2) to light.

この場合、変調信号波と光の位相速度を整合でき、
(1)式によれば無限大の変調帯域幅BWを実現すること
ができる。また所望の変調帯域BWは、変調電極の構造w/
g、t/gと基板材料の誘電率εの大きさの組合せによ
り、同様に(1)式の関係により実現できる。
In this case, the modulated signal wave and the phase velocity of the light can be matched,
According to the equation (1), an infinite modulation bandwidth BW can be realized. Also, the desired modulation band BW is the structure w /
By combining g and t / g and the magnitude of the dielectric constant ε s of the substrate material, it can be similarly realized by the relationship of the equation (1).

なお第3図に示す、nmとw/g、t/gとの関係は概算による
結果であり、構造設計の目安を与えるものであるが、例
えば有限要素法等の構造解析法により、厳密な構造設計
が可能である。
Note that the relationship between nm and w / g, t / g shown in FIG. 3 is an approximate result and gives a guideline for structural design. Various structural designs are possible.

以上のことから、この実施例によると、従来の光変調器
と比較して、信号波と光の速度差による帯域幅制限効果
が緩和される。従って、例えば電極長lを従来と同じに
すると、(1)式により、帯域幅は大きくなり、駆動電
圧を大きくすることなしに高速動作化が可能になる。
From the above, according to this embodiment, as compared with the conventional optical modulator, the bandwidth limiting effect due to the speed difference between the signal wave and the light is alleviated. Therefore, for example, if the electrode length 1 is the same as the conventional one, the bandwidth is increased by the equation (1), and the high speed operation can be realized without increasing the driving voltage.

また帯域幅を従来と同じにすると、電極長lを長くでき
るので、駆動電圧を小さくすることができ、変調効率を
向上させた高性能な光変調器を実現できる。
Further, if the bandwidth is the same as the conventional one, the electrode length 1 can be increased, so that the driving voltage can be reduced and a high-performance optical modulator with improved modulation efficiency can be realized.

この実施例の光変調器は、例えば以下の方法で製作でき
る。
The optical modulator of this embodiment can be manufactured, for example, by the following method.

基板3の表面付近に形成される光導波路(方向性結合
器)4,5およびバッファ層6は、第14図の従来例と同様
の方法で製作できる。このバッファ層6の形成された基
板3上に、蒸着等により、例えばNiCr等のバッファ用の
金属膜を必要に応じて数100Åから数1000Å付着させ、
さらにAu等の導電性の良い金属膜を数100Åから数1000
Å付着させる。
The optical waveguides (directional couplers) 4 and 5 and the buffer layer 6 formed near the surface of the substrate 3 can be manufactured by the same method as in the conventional example shown in FIG. On the substrate 3 on which the buffer layer 6 is formed, a metal film for buffer such as NiCr is adhered as needed by several hundred liters to several thousand liters by vapor deposition or the like,
Furthermore, a metal film with good conductivity such as Au can be used from several hundred Å to several thousand.
Å Attach it.

次にフォトレジストをこの金属面上に、例えばスピナー
等により塗布する。この時、例えばスピナーを用いる場
合、回転速度と時間を適当に設定する等の操作により、
フォトレジストの厚さを数μmから数10μm程度まで任
意に形成できるので、形成する電極の厚さtと同程度
か、もしくは数μm以上tより厚く、フォトレジストを
形成する。さらに電極11,12のパターンと同じ形状のフ
ォトマスクを通して、フォトレジスト露光し、現象する
ことによって、電極11,12を形成する部分のみレジスト
を除去し、電極パターンと同じ形状のレジストパターン
を形成する。その後、例えば電界メッキ法等の方法によ
り、Au等の金属を厚さtだけ形成させる。
Next, a photoresist is applied to this metal surface by, for example, a spinner. At this time, for example, when using a spinner, by appropriately setting the rotation speed and time,
Since the thickness of the photoresist can be arbitrarily formed from several μm to several tens of μm, the photoresist is formed so as to have the same thickness as the electrode t to be formed or several μm or more and more than t. Further, a photoresist is exposed through a photomask having the same shape as the pattern of the electrodes 11 and 12, and by the phenomenon, the resist is removed only at the portions where the electrodes 11 and 12 are formed, and a resist pattern having the same shape as the electrode pattern is formed. . After that, a metal such as Au is formed to a thickness t by a method such as an electroplating method.

さらにレジストを除去した後、化学エッチング法やイオ
ンビームエッチング法により、最初に形成したNiCr,Au
等の金属膜を除去することにより、任意の厚さの変調電
極を形成できる。
After removing the resist, the first NiCr, Au formed by chemical etching or ion beam etching.
By removing the metal film such as, a modulation electrode having an arbitrary thickness can be formed.

第4図(a),(b)は本発明の他の実施例の断面図お
よび平面図であって、光導波路としてマッハツエンダ形
干渉器15,16を、変調電極として非対称コプレーナスト
リップ線路17,18を適用した場合を示す。ここで非対称
コプレーナストリップ線路17の中心導体の幅をw、中心
導体と非対称コプレーナストリップ線18の接地導体の間
隔をg、線路の厚さをtとしている。
4A and 4B are a sectional view and a plan view of another embodiment of the present invention, in which Mach-Zehnder interferometers 15 and 16 are used as optical waveguides and asymmetric coplanar strip lines 17 and 18 are used as modulation electrodes. Is applied. Here, the width of the center conductor of the asymmetric coplanar strip line 17 is w, the distance between the center conductor and the ground conductor of the asymmetric coplanar strip line 18 is g, and the thickness of the line is t.

第5図に、この実施例において、同様に基板としてLNを
用いた場合、変調信号波に対する実効屈折率nmに関し
て、第3図と同様の方法で計算した結果を示す。第5図
から、この実施においても変調信号波の実効屈折率nm
光の実効屈折率noに近づけ、さらには完全に整合をとる
ことも可能なことがわかる。
In FIG. 5, in this embodiment, similarly in the case of using the LN as the substrate, with respect to the effective refractive index n m for the modulated signal wave, shows the result of calculation in Fig. 3 the same way. From FIG. 5, even closer to the effective refractive index n m of the modulated signal wave in the effective refractive index n o of the light in this embodiment, furthermore seen also possible that taking perfectly matched.

第6図(a),(b)は本発明の他の実施例の断面図お
よび平面図であって、変調電極としてコプレーナ線路1
9,18を適用した場合を示す。第7図は、この実施例にお
いて同様にLN基板を用いた時の変調信号波に対する実効
屈折率nmの計算結果を示す。第7図から、この実施例に
おいても、前記の実施例と同様な効果を得ることができ
ることがわかる。
6 (a) and 6 (b) are a sectional view and a plan view of another embodiment of the present invention, in which the coplanar line 1 is used as a modulation electrode.
The case where 9,18 is applied is shown. FIG. 7 shows the calculation result of the effective refractive index n m for the modulated signal wave when the LN substrate is used in this embodiment as well. It can be seen from FIG. 7 that the same effects as those of the above-described embodiment can be obtained in this embodiment as well.

第8図は、変調電極11,12の表面付近にオーバハング部
分21を形成した本発明の他の実施例の断面図てある。こ
の場合、変調電極のオーバハング部21間の容量がさらに
付加され、この部分における電気力線の量が相対的に増
加するので、電極の厚さtが比較的薄くても前記の実施
例で説明した場合より実効屈折率nmを小さくすることが
可能である。
FIG. 8 is a sectional view of another embodiment of the present invention in which an overhang portion 21 is formed near the surfaces of the modulation electrodes 11 and 12. In this case, the capacitance between the overhang portions 21 of the modulation electrode is further added, and the amount of the lines of electric force in this portion is relatively increased. Therefore, even if the thickness t of the electrode is relatively thin, it will be described in the above embodiment. It is possible to make the effective refractive index nm smaller than that in the case.

第9図は、変調電極11,12の光導波路4,5に接する端部を
鋭角θになるように構成した本発明の他の実施例の断面
図である。電極端部の角度θが小さくなる程、この端部
に電気力線が集中し、端部付近の電界強度が強くなる傾
向がある。従って、この端部付近に光導波路4,5を配置
させることにより、電界強度の増大効果によって駆動電
圧を小さくできる利点がある。角度θが小さい程、その
効果は著しくなる。
FIG. 9 is a cross-sectional view of another embodiment of the present invention in which the end portions of the modulation electrodes 11 and 12 in contact with the optical waveguides 4 and 5 are configured to have an acute angle θ. As the angle θ of the electrode end becomes smaller, the lines of electric force tend to concentrate at this end, and the electric field strength near the end tends to become stronger. Therefore, by arranging the optical waveguides 4 and 5 near this end, there is an advantage that the driving voltage can be reduced by the effect of increasing the electric field strength. The smaller the angle θ, the more remarkable the effect.

第10図は、本発明の他の実施例の断面図である。この場
合、変調電圧11,12は、電極間隔gより充分小さい厚さ
t′の変調電極用金属膜22と変調電極用金属11′,12′
より構成されており、変調電極11,12の厚さはtであ
る。金属膜22の厚さt′はgより充分小さく構成してい
るので、この端部付近では、第9図の実施例と同様に、
電界強度の増大効果を得ることができ、駆動電圧を小さ
くできる利点がある。また金属11′,12′では、第8図
の実施例と同様に、オーバハング部が形成されているの
で、変調電極の厚さtが薄くても実効屈折率nmを小さく
することが可能である。
FIG. 10 is a sectional view of another embodiment of the present invention. In this case, the modulation voltages 11 and 12 are the modulation electrode metal film 22 and the modulation electrode metals 11 ′ and 12 ′ having a thickness t ′ sufficiently smaller than the electrode gap g.
And the thickness of the modulation electrodes 11 and 12 is t. Since the thickness t'of the metal film 22 is sufficiently smaller than g, in the vicinity of this end, as in the embodiment of FIG.
There is an advantage that the effect of increasing the electric field strength can be obtained and the drive voltage can be reduced. Further, in the metals 11 'and 12', as in the embodiment of FIG. 8, since the overhang portion is formed, the effective refractive index nm can be reduced even if the thickness t of the modulation electrode is thin. is there.

第11図は、本発明の他の実施例の断面図であり、変調電
極11,12間の基板3の表面付近に溝23を形成させてい
る。この溝23部分の比誘電率は空気の比誘電率(ε
1)になり、基板の比誘電率より小さいので、第2図に
示す基板3側の容量Csは、第1図の実施例の溝23がない
場合のCsより小さくなり、実効屈折率nmがより小さくな
る。溝23の深さdgが大きくなる程、nmは小さくなる傾向
がある。(参考文献:IEEE J.QE−22,6,P902−906,198
6、特公昭60−11326)。従って、この実施例によって、
電極厚さtが比較的小さくても、nmを小さくできる利点
がある。
FIG. 11 is a sectional view of another embodiment of the present invention, in which a groove 23 is formed near the surface of the substrate 3 between the modulation electrodes 11 and 12. The relative permittivity of the groove 23 is the relative permittivity of air (ε a ~
Becomes 1), is smaller than the dielectric constant of the substrate, the capacitance C s of the substrate 3 shown in FIG. 2 is smaller than the C s when no groove 23 in the embodiment of FIG. 1 is the effective refractive index n m becomes smaller. As the depth dg of the groove 23 increases, nm tends to decrease. (Reference: IEEE J.QE-22,6, P902-906,198
6, Japanese Patent Publication 60-11326). Therefore, according to this embodiment,
Even if the electrode thickness t is relatively small, there is an advantage that n m can be made small.

第12図は、本発明の他の実施例の断面図であり、光導波
路4,5が形成されている近傍の基板3の上に、基板3の
誘電率εより小さい誘電率の絶縁体24を形成し、さら
に変調電極11,12を絶縁体24を覆うように形成してい
る。この場合、絶縁体24の厚さはtの大きさになってい
るので、電極自体の厚さは、上記実施例より薄くても、
同様の効果を得ることができる。また第12図に示すよう
に変調電極11,12が絶縁体上を覆うように形成すること
により、第8図の実施例と同様に、tが比較的薄くて
も、実効屈折率nmを小さくすることが可能である。この
実施例において、絶縁体24の材質としては、基板3にLN
を使用する場合、例えばSiO2やAl2O3等を用いれば本発
明の効果を得ることができる。
FIG. 12 is a sectional view of another embodiment of the present invention, in which an insulator having a dielectric constant smaller than the dielectric constant ε s of the substrate 3 is provided on the substrate 3 in the vicinity where the optical waveguides 4 and 5 are formed. 24, and the modulation electrodes 11 and 12 are formed so as to cover the insulator 24. In this case, since the thickness of the insulator 24 is t, even if the thickness of the electrode itself is smaller than that in the above embodiment,
The same effect can be obtained. Further, by forming the modulation electrodes 11 and 12 so as to cover the insulator as shown in FIG. 12, even if t is relatively thin, the effective refractive index n m can be reduced as in the embodiment of FIG. It can be reduced. In this embodiment, the material of the insulator 24 is LN on the substrate 3.
When using, the effect of the present invention can be obtained by using, for example, SiO 2 or Al 2 O 3 .

第13図(a),(b)は、本発明の他の実施例の断面図
である。一般に、LNのような電気光学効果を有する材料
では、その電気光学定数は結晶軸に対する異方性があ
り、LNの場合、Z(c)軸方向の電気光学定数が、X,Y
軸方向より大きい。従って、基板として例えばZ−cut
のLN基板を用いる場合、基板のZ方向の電界は、変調電
極端部の真下付近が最大の大きさになることから、前記
実施例の第1,4,6,8,9,10,11,12図に示す構成が、駆動電
圧をできる限り小さくする観点から有利になる。一方こ
の実施例のようにX−cutもしくY−cutのLN基板25を用
いる場合、第13図(a),(b)に示すように、変調電
極19,20のほぼ中間の位置に光導波路15,16を配置する方
が有利になる。第13図(a),(b)は変調電極19,20
としてコプレーナ線路を用いた場合であり、また前記の
実施例に対して、変調電極19,20と光導波路15,16が、直
接、接していないので、変調電極による光導波路の伝搬
損失の問題がなくなり、前記実施例におけるバッファ層
6が不要になる。
13 (a) and 13 (b) are sectional views of another embodiment of the present invention. Generally, in a material having an electro-optic effect such as LN, the electro-optic constant has anisotropy with respect to the crystal axis, and in the case of LN, the electro-optic constant in the Z (c) axis direction is X, Y.
Greater than axial. Therefore, as a substrate, for example, Z-cut
When the LN substrate of No. 1 is used, the electric field in the Z direction of the substrate has the maximum magnitude in the vicinity of directly below the end of the modulation electrode. Therefore, the first, fourth, sixth, eighth, ninth, tenth, eleventh of the above-described embodiment is The configuration shown in FIGS. 12 and 12 is advantageous from the viewpoint of minimizing the drive voltage. On the other hand, when the X-cut or Y-cut LN substrate 25 is used as in this embodiment, as shown in FIGS. 13 (a) and 13 (b), light is guided to a position substantially in the middle of the modulation electrodes 19 and 20. It is advantageous to arrange the waveguides 15 and 16. 13 (a) and 13 (b) are modulation electrodes 19 and 20.
As a case where a coplanar line is used as the above, and the modulation electrodes 19 and 20 and the optical waveguides 15 and 16 are not directly in contact with each other in the above-described embodiment, the problem of the propagation loss of the optical waveguide due to the modulation electrode is caused. Therefore, the buffer layer 6 in the above embodiment is unnecessary.

本発明の効果は、以上で説明した実施例以外に、変調電
極として、スロット線路やマイクロストリップ線路等の
各種マイクロ波平面回路を適用しても、同様に得ること
ができる。また光強度変調器だけでなく、光周波数変調
器、光位相変調器、さらには例えば光スイッチ等、電気
光学効果を利用した光と動作信号の位相速度を整合させ
ることが有効な光デバイスには本発明を適用できる。光
導波路を形成する基板としてLNを例に説明したが、電気
光学効果を有するその他の誘電体基板または半導体基板
等を用いてもよい。また光導波路としてTi熱拡散導波路
の場合も説明したが、プロトン交換導波路やリッジ形導
波路等を用いても同様の効果を得ることができるのは自
明である。電極形成方法については、以上ではメッキ法
による場合を説明したが、蒸着法やスパッタ法等の通常
の金属電極形成法を利用してもよい。
The effects of the present invention can be similarly obtained by applying various microwave planar circuits such as a slot line and a microstrip line as the modulation electrode, in addition to the embodiments described above. Further, not only the optical intensity modulator, but also an optical frequency modulator, an optical phase modulator, and an optical device such as an optical switch for which it is effective to match the phase velocities of the light and the operation signal using the electro-optical effect The present invention can be applied. Although LN has been described as an example of the substrate forming the optical waveguide, other dielectric substrates or semiconductor substrates having an electro-optical effect may be used. Although the case of using the Ti thermal diffusion waveguide as the optical waveguide has been described, it is obvious that the same effect can be obtained by using a proton exchange waveguide or a ridge waveguide. As for the electrode forming method, the case of using the plating method has been described above, but a normal metal electrode forming method such as a vapor deposition method or a sputtering method may be used.

(発明の効果) 以上説明したように、本発明の高速光変調器は、変調電
極を厚く形成し、変調信号波の実効屈折率を光の実効屈
折率に近い大きさにできるので、駆動電圧を大きくする
ことなしに、高速で、かつ極めて広い変調帯域の光変調
器を実現できる。
(Effects of the Invention) As described above, in the high-speed optical modulator of the present invention, since the modulation electrode is formed thick and the effective refractive index of the modulated signal wave can be made close to the effective refractive index of light, the driving voltage It is possible to realize an optical modulator having a high speed and an extremely wide modulation band without increasing the value.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は本発明の光変調器の一実施例の
断面図および平面図、 第2図(a),(b)および第3図は第1図の実施例に
おける本発明の原理を説明するための図、 第4図(a),(b)は本発明の光変調器の他の実施例
の断面図および平面図、 第5図は第4図に示す実施例における本発明の原理の説
明図、 第6図(a),(b)は本発明の光変調器の他の実施例
の断面図および平面図、 第7図は第6図に示す実施例における本発明の原理の説
明図、 第8図、第9図、第10図、第11図、第12図は本発明の光
変調器の他の実施例の断面図、 第13図(a),(b)は本発明の光変調器の他の実施例
の断面図および平面図、 第14図は従来の光変調器の構成例を示す斜視図である。 1…変調電極、2…変調電極 3…電気光学効果を有する基板 4…光導波路(方向性結合器) 5…光導波路(方向性結合器) 6…バッファ層、7…入射光 8…信号源、9…出射光 10…終端抵抗 11…変調電極(対称コプレーナストリップ線路) 11′…変調電極用金属 12…変調電極(対称コプレーナストリップ線路) 12′…変調電極用金属、13…基板内の電気力線 14…基板外の電気力線 15…光導波路(マッハツェンダー形干渉器) 16…光導波路(マッハツェンダー形干渉器) 17…変調電極(非対称コプレーナストリップ線路) 18…変調電極(非対称コプレーナストリップ線路) 19…変調電極(コプレーナス線路) 20…変調電極(コプレーナス線路) 21…変調電極のオーバハング部分 22…変調電極用金属膜、23…基板に形成した溝 24…絶縁体または半導体層 25…電気光学効果を有する基板
1 (a) and 1 (b) are sectional views and plan views of an embodiment of the optical modulator of the present invention, and FIGS. 2 (a), 2 (b) and 3 are related to the embodiment of FIG. FIGS. 4 (a) and 4 (b) are sectional views and a plan view of another embodiment of the optical modulator of the present invention, and FIG. 5 is an embodiment shown in FIG. FIG. 6 (a) and FIG. 6 (b) are sectional views and plan views of another embodiment of the optical modulator of the present invention, and FIG. 7 is an embodiment shown in FIG. FIG. 8, FIG. 9, FIG. 9, FIG. 10, FIG. 11 and FIG. 12 are cross-sectional views of another embodiment of the optical modulator of the present invention, and FIG. 13 (a). , (B) are a sectional view and a plan view of another embodiment of the optical modulator of the present invention, and FIG. 14 is a perspective view showing a configuration example of a conventional optical modulator. DESCRIPTION OF SYMBOLS 1 ... Modulation electrode 2 ... Modulation electrode 3 ... Substrate having an electro-optic effect 4 ... Optical waveguide (directional coupler) 5 ... Optical waveguide (directional coupler) 6 ... Buffer layer, 7 ... Incident light 8 ... Signal source , 9 ... Emitted light 10 ... Termination resistor 11 ... Modulation electrode (symmetrical coplanar strip line) 11 '... Modulation electrode metal 12 ... Modulation electrode (symmetrical coplanar strip line) 12' ... Modulation electrode metal, 13 ... Electricity in substrate Lines of force 14 ... Electric lines of force outside the substrate 15 ... Optical waveguide (Mach-Zehnder interferometer) 16 ... Optical waveguide (Mach-Zehnder interferometer) 17 ... Modulation electrode (asymmetric coplanar strip line) 18 ... Modulation electrode (asymmetric coplanar strip) Line) 19 ... Modulation electrode (coplanar line) 20 ... Modulation electrode (coplanar line) 21 ... Modulation electrode overhang portion 22 ... Modulation electrode metal film, 23 ... Groove formed on substrate 24 ... Insulator or Substrate having a conductive layer 25 ... electro-optical effect

フロントページの続き (72)発明者 鈴木 俊雄 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (56)参考文献 特開 昭63−49732(JP,A)Front Page Continuation (72) Inventor Toshio Suzuki 1-6, Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (56) Reference JP-A-63-49732 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板の一方の表面付近に光導波路を有し、
かつ該光導波路を形成した面上に、中心導体と接地導体
で構成される変調電極を少なくとも備えた光変調器にお
いて、該変調電極の信号波によって発生する、該基板内
の電気力線の量と、該基板外の電気力線の量との比の大
きさによって、該変調電極の信号波に対する実効屈折率
の大きさを、該光導波路の光に対する実効屈折率の大き
さに近づけるように、該変調電極の厚さを形成したこと
を特徴とする高速光変調器。
1. An optical waveguide is provided near one surface of a substrate,
Also, in an optical modulator having at least a modulation electrode composed of a central conductor and a ground conductor on the surface on which the optical waveguide is formed, the amount of electric force lines in the substrate generated by the signal wave of the modulation electrode. And the magnitude of the ratio to the amount of electric force lines outside the substrate, the magnitude of the effective refractive index of the modulation electrode for the signal wave is made close to the magnitude of the effective refractive index of the optical waveguide for the light. A high-speed optical modulator characterized in that the thickness of the modulation electrode is formed.
【請求項2】一方の表面付近に光導波路を有する基板の
該光導波路が形成された部分、もしくはその近傍の面上
に、絶縁体層を形成し、該絶縁体層を覆うように形成し
た中心導体と接地導体で構成される変調電極を少なくと
も備えた光変調器において、該変調電極の信号波によっ
て発生する、該基板内の電気力線の量と、該基板外の電
気力線の量との比の大きさによって、該変調電極の信号
波に対する実効屈折率の大きさを、該光導波路の光に対
する実効屈折率の大きさに近づけるように、該絶縁体層
の厚さを形成したことを特徴とする高速光変調器。
2. An insulating layer is formed on a portion of the substrate having an optical waveguide near one surface thereof, or on a surface in the vicinity thereof, and the insulating layer is formed so as to cover the insulating layer. In an optical modulator including at least a modulation electrode composed of a central conductor and a ground conductor, the amount of electric force lines inside the substrate and the amount of electric force lines outside the substrate generated by a signal wave of the modulation electrode. The thickness of the insulating layer is formed so that the magnitude of the effective refractive index of the modulation electrode with respect to the signal wave approaches the magnitude of the effective refractive index of the optical waveguide with respect to the light according to the magnitude of the ratio of A high-speed optical modulator characterized by the above.
【請求項3】前記変調電極の前記中心導体と前記接地導
体が相対向する側の該中心導体の側面と該接地導体の側
面において、前記基板に接する面の端部、または前記基
板と接する面と反対側の端部、またはその両端部の角度
を鋭角に構成したことを特徴とする特許請求の範囲第1
項または第2項記載の高速光変調器。
3. A side surface of the center conductor and a side surface of the ground conductor on a side where the center conductor and the ground conductor of the modulation electrode face each other, and an end portion of a surface in contact with the substrate or a surface in contact with the substrate. The end portion on the opposite side to the side, or the angle of both end portions thereof is configured to be an acute angle.
A high-speed optical modulator according to item 2 or item 3.
【請求項4】前記変調電極の前記中心導体と前記接地導
体が相対向する中間において、前記基板の表面付近に溝
を形成したことを特徴とする特許請求の範囲第1項〜第
3項のいずれか1項記載の高速光変調器。
4. A groove is formed in the vicinity of the surface of the substrate at an intermediate position where the center conductor and the ground conductor of the modulation electrode face each other. The high-speed optical modulator according to claim 1.
JP24815387A 1987-10-02 1987-10-02 High speed optical modulator Expired - Lifetime JPH0713711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815387A JPH0713711B2 (en) 1987-10-02 1987-10-02 High speed optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815387A JPH0713711B2 (en) 1987-10-02 1987-10-02 High speed optical modulator

Publications (2)

Publication Number Publication Date
JPS6491111A JPS6491111A (en) 1989-04-10
JPH0713711B2 true JPH0713711B2 (en) 1995-02-15

Family

ID=17174008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815387A Expired - Lifetime JPH0713711B2 (en) 1987-10-02 1987-10-02 High speed optical modulator

Country Status (1)

Country Link
JP (1) JPH0713711B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204020A (en) * 1988-02-09 1989-08-16 Fujitsu Ltd Formation of optical waveguide traveling wave electrode
JPH02289821A (en) * 1989-02-17 1990-11-29 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JP2612948B2 (en) * 1990-02-02 1997-05-21 日本電信電話株式会社 Light modulation element
JP2713087B2 (en) * 1993-04-13 1998-02-16 日本電気株式会社 Waveguide optical device
US8204344B2 (en) 2008-05-27 2012-06-19 Anritsu Corporation Optical modulator
JP2016071250A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Circuit board with electrode
JP6561383B2 (en) 2017-03-31 2019-08-21 住友大阪セメント株式会社 Light modulation element
WO2019039215A1 (en) * 2017-08-24 2019-02-28 Tdk株式会社 Optical modulator

Also Published As

Publication number Publication date
JPS6491111A (en) 1989-04-10

Similar Documents

Publication Publication Date Title
US5005932A (en) Electro-optic modulator
JP2713087B2 (en) Waveguide optical device
JPH02289821A (en) Optical control element
JPH1090638A (en) Optical control element
JPH1039266A (en) Optical control device
JP2806425B2 (en) Waveguide type optical device
WO2007058366A1 (en) Optical waveguide device
JPH0713711B2 (en) High speed optical modulator
JP4771451B2 (en) Traveling wave type optical modulator
JP3043614B2 (en) Waveguide type optical device
JP2006317550A (en) Optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP4926423B2 (en) Light modulator
JPS63234219A (en) Optical modulator
JPH05173099A (en) Optical control element
US6950218B2 (en) Optical modulator
JP2871645B2 (en) Waveguide type optical device
JPH05158003A (en) Ultra wide band optical modulator
JPH10142567A (en) Waveguide type optical device
JPH05264937A (en) Light control device
JPWO2002097521A1 (en) Optical modulation device having excellent electrical characteristics by effectively suppressing thermal drift and method of manufacturing the same
JP2692715B2 (en) Light switch
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP4227595B2 (en) Light modulator
JP2848455B2 (en) Waveguide type optical device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13