WO2022249313A1 - Optical component - Google Patents

Optical component Download PDF

Info

Publication number
WO2022249313A1
WO2022249313A1 PCT/JP2021/019925 JP2021019925W WO2022249313A1 WO 2022249313 A1 WO2022249313 A1 WO 2022249313A1 JP 2021019925 W JP2021019925 W JP 2021019925W WO 2022249313 A1 WO2022249313 A1 WO 2022249313A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
optical component
connection end
face
Prior art date
Application number
PCT/JP2021/019925
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 田中
光太 鹿間
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/019925 priority Critical patent/WO2022249313A1/en
Priority to JP2023523787A priority patent/JPWO2022249313A1/ja
Publication of WO2022249313A1 publication Critical patent/WO2022249313A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to an optical component for connecting an optical fiber and a waveguide type optical device.
  • an optical fiber is connected to the waveguide chip.
  • the waveguide chip made of silica-based glass (SiO2) has a refractive index of about 1.45, which is the same as the refractive index of the optical fiber, the fiber block is used to directly connect the optical fiber (butt joint connection). be done.
  • the space between the fiber block and the SiO2-based waveguide chip is filled with an optical adhesive having a refractive index of about 1.45. Reflection of the guided light between the and the optical fiber is suppressed.
  • silica-based glass waveguide (Planar Lightwave Circuit, PLC) devices have been used in communication networks as practical devices in the near-infrared wavelength band with wavelengths of 1.3 ⁇ m to 1.6 ⁇ m.
  • an optical fiber is connected to the PLC chip via a fiber block, and a connector is formed in which the input/output end of the device is connected to the optical fiber.
  • This connector connects the PLC device to another optical device (for example, a receiver), and the optical signal output from the PLC device is finally subjected to signal processing in an electrical stage.
  • a fiber block 31 is used to connect an optical fiber 33 to a PLC chip 32 with an interferometric circuit 37, as shown in FIGS.
  • the optical fiber 33 has a core 33_1 and a clad 33_2, is mounted on the V-groove component 34, and is fixed by the restraining lid 35.
  • a waveguide core 32_1 and a waveguide clad 32_2 are formed on a Si substrate 32_3, and a glass plate 36 is arranged above the connecting portion with the fiber block 31.
  • the glass plate 36 is fixed to the upper surface of the PLC chip 32 .
  • connection end faces the fiber block 31, the glass plate 36, and the PLC chip 32 are mirror-polished on the end faces (hereinafter referred to as "connection end faces") facing each other when connecting.
  • connection end faces the smoothness of the mirror-polished surface is usually 1/100 or less of the wavelength of the guided light.
  • the optical fiber 33 of the fiber block 31 is aligned with the input waveguide of the interference circuit 37, the ultraviolet curable adhesive 38 is applied, and the adhesive 38 is cured by irradiating ultraviolet rays.
  • the input waveguide alignment method of the optical fiber 33 and the interference circuit 37 may be performed by using a dummy port such as an optical fiber for monitoring or a monitor waveguide instead of the port actually used.
  • the optical component according to the present invention includes a fiber block in which an optical fiber is mounted between a V-groove component and a restraining lid, and a waveguide whose input and output ends are made of SiO2. and a glass plate disposed on a connection end surface of the waveguide type optical component and an upper surface in the vicinity of the connection end surface, at least a part of the connection end surface of the fiber block having unevenness, and the waveguide type optical component. At least a part of the connection end face of the waveguide type optical component has irregularities, and the fiber block and the waveguide type optical component are fixed with an adhesive filled between the respective connection end faces.
  • a compact optical component can be provided without reducing the adhesive strength between the fiber block and the PLC chip.
  • FIG. 1 is a schematic diagram showing the configuration of an optical component according to the first embodiment of the invention.
  • FIG. 2 is an enlarged schematic diagram of a connecting portion in the optical component according to the first embodiment of the present invention.
  • FIG. 3A is a schematic diagram of a fiber block in the optical component according to the first embodiment of the invention;
  • FIG. 3B is a schematic diagram of a PLC chip and a glass plate in the optical component according to the first embodiment of the present invention;
  • FIG. 4A is a schematic diagram of a fiber block in an optical component according to a second embodiment of the invention;
  • FIG. 4B is a schematic diagram of a PLC chip and a glass plate in the optical component according to the second embodiment of the present invention;
  • FIG. 5 is a schematic diagram showing the configuration of a conventional optical component.
  • FIG. 6 is an enlarged schematic diagram of a connecting portion in a conventional optical component.
  • An optical component 1 includes a fiber block 11 and a PLC chip 12 connected to the fiber block 11, as shown in FIG.
  • the optical fiber 13 has a core 13_1 and a clad 13_2, is mounted on the V-groove component 14, and is fixed by the restraining lid 15. Thus, the optical fiber 13 is mounted between the V-groove part 14 and the holding lid 15 .
  • an interference circuit 17 is formed on the Si substrate 12_3.
  • a waveguide in the interference circuit 17 is composed of a waveguide core 12_1 and a waveguide clad 12_2.
  • the light input to the optical component 1 is guided through the core 13_1 of the optical fiber 13 and the waveguide core 12_1 of the PLC chip 12 .
  • a glass plate 16 is arranged on the upper surface near the connection end face including the end face (connection end face) connected to the fiber block 11 .
  • the glass plate 16 is arranged so that its connecting end surface is substantially on the same plane including the connecting end surface of the PLC chip 12 .
  • the end face of the fiber block 11 faces the end faces of the PLC chip 12 and the glass plate 16, and an adhesive 18 is filled and connected (fixed) between the end faces.
  • an ultraviolet curable adhesive is used as the adhesive 18, but other adhesives may be used.
  • connection end faces of the fiber block 11 and the PLC chip 12 are uneven without being mirror-polished.
  • connection end face refers to each end face facing each other when connecting the fiber block 11 and the PLC chip 12 .
  • Arithmetic mean roughness Ra of unevenness on the connection end surface of the fiber block 11 and the PLC chip 12 will be explained.
  • the arithmetic mean roughness Ra is obtained by integrating the absolute value of the deviation from the average value of unevenness over the reference length and dividing the integrated value by the reference length, and corresponds to the average height of unevenness.
  • the spacing of the irregularities is of the same order as the height of the irregularities.
  • the distance between the end face of the optical fiber 13 in the fiber block 11 and the end face of the optical waveguide in the PLC chip 12 is 1 ⁇ m or more and 10 ⁇ m or less, and is appropriately determined according to the properties of the adhesive that is filled between the respective end faces.
  • the interval between the end faces is determined to be 1 to 10 times the wavelength of the guided light, and is 1 to 10 ⁇ m if the wavelength of the guided light is about 1 ⁇ m.
  • the unevenness Ra is made larger than 10 times the wavelength of the guided light, it becomes longer than the interval between the end faces, and there is a possibility that the filling adhesive will be insufficient.
  • curing shrinkage of the adhesive may cause stress in the connecting portion, which may reduce long-term reliability.
  • the unevenness Ra be 1/10 or more and 10 or less times the wavelength of the guided light. Further, when the wavelength of guided light is about 1 ⁇ m, it is desirable that the unevenness Ra be 0.1 or more and 10 ⁇ m or less.
  • the height of the unevenness does not need to be uniform, and may be non-uniform.
  • connection efficiency is the square of the absolute value of the overlap integral of the electric field of the incident light and the propagation mode of the waveguide.
  • connection loss is reduced.
  • substantially the same refractive index includes the same refractive index, and includes a refractive index to the extent that distortion of the amplitude and phase of light guided through the connection is suppressed.
  • connection interface between the optical fiber 13 and the PLC chip 12 has unevenness
  • the difference between the refractive index of the optical fiber 13 and the optical waveguide made of silica glass and the refractive index of the adhesive 18 causes Diffuse reflection occurs on the connection end face having unevenness.
  • the diffusely reflected light enters the optical fiber 13 and becomes return light.
  • This return light can be suppressed by inclining the end face of the optical fiber 13 or the optical waveguide with respect to a plane perpendicular to the traveling direction of the guided light.
  • the inclination angle of the slanted end surface may be set to such an angle that most of the diffusely reflected light is not coupled to the mode of the optical fiber 13 . Since the angle of inclination of the end face of an angled physical connector (APC) that assumes mirror polishing is 8°, it is desirable that the angle of inclination is within 10° with respect to the plane perpendicular to the traveling direction of guided light.
  • the fiber block 11 is produced by fixing and mounting the optical fiber 13 between the V-groove component 14 and the holding lid 15 .
  • a liquid mixture of abrasive grains (polishing liquid) is poured onto the polishing surface plate, and the fiber block 11 is supported by a jig and pressed against the polishing surface plate for polishing.
  • the optical fiber 13, the V-groove component 14, and the end face (area P in the figure) of the holding lid 15 are polished so that they are flush with each other.
  • flush means that there are no steps between a plurality of surfaces and the surfaces are flat.
  • the polishing liquid is replaced to reduce the grain size of the abrasive grains.
  • the polishing of the fiber block 11 is stopped when the Ra of the surface becomes approximately the wavelength of the guided light (approximately 1 ⁇ m).
  • the glass plate 16 is attached to the connection end surface of the PLC chip 12 and the upper surface in the vicinity thereof.
  • the PLC chip 12 and the glass plate 16 are polished so that they are flush with each other. region).
  • the optical fiber 13 of the fiber block 11 is aligned with the waveguide of the PLC chip 12, and the connection end surface of the fiber block 11 and the connection end surface of the PLC chip 12 and the glass plate 16 are connected with an ultraviolet curing adhesive 18. (stick).
  • polishing is stopped before the mirror surface is obtained, so the fiber block 11 can be connected to the PLC chip 12 in a simpler process than the conventional polishing process.
  • the optical component according to this embodiment can be produced without using additional steps.
  • each can be miniaturized without reducing the bonding strength between the fiber block and the PLC chip.
  • connection end surfaces of the fiber block, PLC chip, and glass plate are uneven
  • the present invention is not limited to this. If at least a part of the connecting end faces of the fiber block, PLC chip, and glass plate has unevenness, the bonding strength can be improved compared to the case where the entire connecting end face is mirror-polished.
  • the area of the uneven portion is 1/4 or more of the total area of the connecting end face.
  • the optical component according to the present embodiment differs from that of the first embodiment in the irregularities on the connection end surface between the fiber block and the PLC chip. Other configurations are the same as those of the first embodiment.
  • the core and clad of the optical fiber 23 and the end faces in the vicinity thereof are mirror-polished (region R in the figure).
  • the end face (area P1 in the drawing) and the lower portion of the end face of the V-groove component 24 (area P2 in the drawing) have irregularities.
  • the end face of the portion of the waveguide core 22_1 and the waveguide clad 22_2 is mirror-polished (region S in the drawing), and the end face of the glass plate 26 (region Q1 in the drawing).
  • the end face (Q2 region in the figure) of the Si substrate 22_3 has unevenness.
  • the connection loss does not increase even if the refractive index of the optical adhesive filled between the fiber block 21 and the PLC chip 22 is not set to about the refractive index of SiO2 (1.45).
  • the selection range of adhesives that can be applied to connections in optical components can be expanded.
  • an adhesive having a refractive index different from 1.45 and having excellent adhesion strength and adhesion reliability can be applied.
  • a fiber block 21 is produced in the same manner as in the first embodiment. Further, in the quartz-based PLC chip 22, a glass plate 26 is attached to the connection end surface of the PLC chip 22 and the upper surface in the vicinity thereof.
  • the end faces of the optical fiber 23, the V-groove part 24, and the holding lid 25 in the fiber block 21 are mirror-polished. Also, the end surfaces of the PLC chip 22 and the glass plate 26 are mirror-polished.
  • the areas where the mirror-polished state remains are masked.
  • the core and the clad of the optical fiber 23 and the end face of the vicinity thereof are masked.
  • the end faces (region S in FIG. 4B) of the waveguide core 22_1 and waveguide clad 22_2 of the PLC chip 22 are masked.
  • the part where the unevenness is formed is processed and formed after mirror-polishing the entire surface, so it is recessed from the mirror-polished part.
  • optical fiber 23 of the fiber block 21 is aligned with the waveguide of the PLC chip 22, and the connection end surface of the fiber block 21 and the connection end surface of the PLC chip 22 and the glass plate 26 are connected with an ultraviolet curable adhesive ( stick).
  • a selective polishing method can be used in the step of forming unevenness on the end face of the PLC chip 22 .
  • Si is selectively polished by polishing using a polishing liquid that does not react with SiO2 but reacts with Si.
  • a polishing liquid that does not react with SiO2 but reacts with Si.
  • unevenness can be selectively formed on the connection end face of the fiber block 21 and the connection end face of the PLC chip 22 and the glass plate 26 by a simple process, and the fiber block 21 can be connected to the PLC chip 22. Can connect.
  • the height HR of the mirror-polished portion (R area in FIG. 4A) on the end face of the fiber block 21 is about 100 ⁇ m.
  • the height HS of the mirror-polished portion (region S in FIG. 4B) of the end surfaces of the PLC chip 22 and the glass plate 26 is also about 100 ⁇ m.
  • the heights HP1 and HP2 of the uneven portions are each about 1 mm.
  • the heights HQ1 and HQ2 of the uneven portions (regions Q1 and Q2 in FIG. 4B) on the end surfaces of the PLC chip 22 and the glass plate 26 are about 1 mm, respectively.
  • each can be miniaturized without reducing the bonding strength between the fiber block and the PLC chip.
  • the embodiment of the present invention shows an example of connecting a PLC chip to a fiber block, it is not limited to this.
  • a silicon photonics (SiPh) chip may be used. Silicon photonics is configured using Si for the waveguide core and silica glass (SiO2) for the waveguide clad, etc., and the waveguide mode of the guided light is expanded by a tapered Si waveguide (SSC: Spot Size Converter). , is finally output from an input/output end made of SiO2 (there is no Si waveguide).
  • the components connected to the fiber block may be waveguide type optical components whose input and output ends are made of SiO2.
  • the end surface of the restraining lid 25 (area P1 in the drawing), the lower portion of the end surface of the V-groove component 24 (area P2 in the drawing), and the PLC chip 22 are connected to the connection end surface of the fiber block 21.
  • An example in which the end surface of the glass plate 26 (area Q1 in the figure) and the edge surface of the Si substrate 22_3 (area Q2 in the figure) have unevenness has been shown, but the present invention is not limited to this.
  • connection end surfaces of the core and the clad of the optical fiber 23 and the waveguide core 22_1 and the waveguide clad 22_2 of the PLC chip 22 are mirror-polished. If there is unevenness, the bonding strength can be improved as compared with the case where the entire connection end surface is mirror-polished. Here, it is desirable that the area of the uneven portion is 1/4 or more of the total area of the connecting end face.
  • the PLC chip is not limited to this, and may be provided with an optical circuit with other functions.
  • the present invention can be applied to the connection of optical devices, especially optical parts, used in the fields of optical communication and sensing.
  • optical component 11 fiber block 12
  • PLC chip 13 optical fiber 14

Abstract

An optical component (1) according to present invention comprises: a fiber block (11), in which an optical fiber (13) is mounted between a V-groove component (14) and a press cover (15); a waveguide type optical component (12), an input-output end of which is made of SiO2; and a glass plate (16) which is disposed at a connection end surface of the waveguide type optical component (12) and on the upper surface in the vicinity of the connection end surface, wherein at least a portion of a connection end surface of the fiber block (11) has protrusions and recesses, at least a portion of the connection end surface of the waveguide type optical component (12) has protrusions and recesses, and the fiber block (11) and the waveguide type optical component (12) are fixed to each other by an adhesive (18) that fills a gap between the respective connection end surfaces. The present invention thus can provide a small optical component without reducing adhesive strength between a fiber block and a waveguide type optical component.

Description

光部品optical parts
 本発明は、光ファイバと導波路型光デバイスとが接続される光部品に関する。 The present invention relates to an optical component for connecting an optical fiber and a waveguide type optical device.
 近年、光通信分野やセンシング分野において、光デバイスが搭載される装置内での高密度配置や、装置自体の省スペース化により、光デバイスの小型化が要望されている。例えば、光トランシーバーのサイズは、QSFP56-DDとかOSFP等のフォームファクターが適用され、より小型化が要望されている。 In recent years, in the field of optical communication and sensing, there has been a demand for miniaturization of optical devices due to high-density placement in equipment in which optical devices are mounted and space saving of the equipment itself. For example, as for the size of the optical transceiver, form factors such as QSFP56-DD and OSFP are applied, and further miniaturization is desired.
 光デバイスとして導波路型光デバイスが用いられる場合、導波路チップに光ファイバが接続される。ここで、石英系ガラス(SiO2)の導波路チップは、材料の屈折率が1.45程度で光ファイバの屈折率と同じなので、ファイバブロックを用いて、直接光ファイバが接続(バットジョイント接続)される。 When a waveguide type optical device is used as the optical device, an optical fiber is connected to the waveguide chip. Here, since the waveguide chip made of silica-based glass (SiO2) has a refractive index of about 1.45, which is the same as the refractive index of the optical fiber, the fiber block is used to directly connect the optical fiber (butt joint connection). be done.
 この接続において、ファイバブロックとSiO2系の導波路チップの間は、屈折率が1.45程度の屈折率を有する光学接着剤で充填され、導波路チップと光学接着剤との間および光学接着剤と光ファイバとの間での導波光の反射は抑制される。 In this connection, the space between the fiber block and the SiO2-based waveguide chip is filled with an optical adhesive having a refractive index of about 1.45. Reflection of the guided light between the and the optical fiber is suppressed.
 例えば、石英系ガラス導波路(Planar Lightwave Circuit、PLC)デバイスは波長1.3μmから1.6μmの近赤外波長帯で実用的なデバイスとして通信ネットワークで用いられてきた。 For example, silica-based glass waveguide (Planar Lightwave Circuit, PLC) devices have been used in communication networks as practical devices in the near-infrared wavelength band with wavelengths of 1.3 μm to 1.6 μm.
 PLCデバイスでは、PLCチップにファイバブロックを介して光ファイバが接続され、デバイスの入出力端が光ファイバに接続されたコネクタが形成される。このコネクタによりPLCデバイスは他の光デバイス(例えば受信機等)に接続され、PLCデバイスから出力された光信号は最終的に電気段で信号処理される。 In the PLC device, an optical fiber is connected to the PLC chip via a fiber block, and a connector is formed in which the input/output end of the device is connected to the optical fiber. This connector connects the PLC device to another optical device (for example, a receiver), and the optical signal output from the PLC device is finally subjected to signal processing in an electrical stage.
 従来のPLCデバイスでは、図5、6に示すように、ファイバブロック31を用いて、光ファイバ33が、干渉回路37を備えるPLCチップ32に接続される。 In a conventional PLC device, a fiber block 31 is used to connect an optical fiber 33 to a PLC chip 32 with an interferometric circuit 37, as shown in FIGS.
 ファイバブロック31において、光ファイバ33はコア33_1とクラッド33_2とを有し、V溝部品34に搭載され、抑え蓋35により固定される。 In the fiber block 31, the optical fiber 33 has a core 33_1 and a clad 33_2, is mounted on the V-groove component 34, and is fixed by the restraining lid 35.
 PLCチップ32において、Si基板32_3上に導波路コア32_1と導波路クラッド32_2が形成され、ファイバブロック31との接続部の上方にガラス板36が配置される。 In the PLC chip 32, a waveguide core 32_1 and a waveguide clad 32_2 are formed on a Si substrate 32_3, and a glass plate 36 is arranged above the connecting portion with the fiber block 31.
 ファイバブロック31とPLCチップ32とを接続する場合、初めに、ガラス板36をPLCチップ32の上面に固着させる。 When connecting the fiber block 31 and the PLC chip 32 , first, the glass plate 36 is fixed to the upper surface of the PLC chip 32 .
 次に、ファイバブロック31と、ガラス板36とPLCチップ32それぞれを接続するときに対向する端面(以下、「接続端面」という。)を鏡面研磨する。ここで、通常、鏡面研磨された面の平滑度は導波光の波長の100分の1以下である。 Next, the fiber block 31, the glass plate 36, and the PLC chip 32 are mirror-polished on the end faces (hereinafter referred to as "connection end faces") facing each other when connecting. Here, the smoothness of the mirror-polished surface is usually 1/100 or less of the wavelength of the guided light.
 最後に、ファイバブロック31の光ファイバ33を干渉回路37の入力導波路に調芯して、紫外線硬化型接着剤38を塗布し、紫外線を照射して接着剤38を硬化させる。ここで、光ファイバ33と干渉回路37の入力導波路調芯方法は、実際に使うポートではなく、モニタ用の光ファイバやモニタ導波路等のダミーポートを用いて調芯してもよい。 Finally, the optical fiber 33 of the fiber block 31 is aligned with the input waveguide of the interference circuit 37, the ultraviolet curable adhesive 38 is applied, and the adhesive 38 is cured by irradiating ultraviolet rays. Here, the input waveguide alignment method of the optical fiber 33 and the interference circuit 37 may be performed by using a dummy port such as an optical fiber for monitoring or a monitor waveguide instead of the port actually used.
 上述のPLCデバイスを小型化する場合、ファイバブロック及びPLCチップを小型化する必要がある。 When miniaturizing the above PLC device, it is necessary to miniaturize the fiber block and the PLC chip.
特開平8-313744号公報JP-A-8-313744
 しかしながら、ファイバブロック及びPLCチップを小型化すると、ファイバブロック及びPLCチップの接着面積が低減し、ファイバブロックへの光ファイバからの張力が残存するため、ファイバブロックとPLCチップとの接着強度が低減するので問題となる。 However, when the fiber block and the PLC chip are miniaturized, the bonding area between the fiber block and the PLC chip is reduced, and the tension from the optical fiber remains on the fiber block, so the bonding strength between the fiber block and the PLC chip is reduced. So it becomes a problem.
 上述したような課題を解決するために、本発明に係る光部品は、V溝部品と抑え蓋との間に光ファイバが搭載されるファイバブロックと、入出力端がSiO2により構成される導波路型光部品と、前記導波路型光部品の接続端面および当該接続端面近傍の上面に配置されるガラス板とを備え、前記ファイバブロックの接続端面の少なくとも一部が凹凸を有し、前記導波路型光部品の接続端面の少なくとも一部が凹凸を有し、前記ファイバブロックと前記導波路型光部品とがそれぞれの接続端面の間に充填される接着剤により固着されることを特徴とする。 In order to solve the above-described problems, the optical component according to the present invention includes a fiber block in which an optical fiber is mounted between a V-groove component and a restraining lid, and a waveguide whose input and output ends are made of SiO2. and a glass plate disposed on a connection end surface of the waveguide type optical component and an upper surface in the vicinity of the connection end surface, at least a part of the connection end surface of the fiber block having unevenness, and the waveguide type optical component. At least a part of the connection end face of the waveguide type optical component has irregularities, and the fiber block and the waveguide type optical component are fixed with an adhesive filled between the respective connection end faces.
 本発明によれば、ファイバブロックとPLCチップとの接着強度を低減することなく、小型の光部品を提供できる。 According to the present invention, a compact optical component can be provided without reducing the adhesive strength between the fiber block and the PLC chip.
図1は、本発明の第1の実施の形態に係る光部品の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of an optical component according to the first embodiment of the invention. 図2は、本発明の第1の実施の形態に係る光部品における接続部分の拡大概略図である。FIG. 2 is an enlarged schematic diagram of a connecting portion in the optical component according to the first embodiment of the present invention. 図3Aは、本発明の第1の実施の形態に係る光部品におけるファイバブロックの概略図である。FIG. 3A is a schematic diagram of a fiber block in the optical component according to the first embodiment of the invention; 図3Bは、本発明の第1の実施の形態に係る光部品におけるPLCチップとガラス板の概略図である。FIG. 3B is a schematic diagram of a PLC chip and a glass plate in the optical component according to the first embodiment of the present invention; 図4Aは、本発明の第2の実施の形態に係る光部品におけるファイバブロックの概略図である。FIG. 4A is a schematic diagram of a fiber block in an optical component according to a second embodiment of the invention; 図4Bは、本発明の第2の実施の形態に係る光部品におけるPLCチップとガラス板の概略図である。FIG. 4B is a schematic diagram of a PLC chip and a glass plate in the optical component according to the second embodiment of the present invention; 図5は、従来の光部品の構成を示す概略図である。FIG. 5 is a schematic diagram showing the configuration of a conventional optical component. 図6は、従来の光部品における接続部分の拡大概略図である。FIG. 6 is an enlarged schematic diagram of a connecting portion in a conventional optical component.
<第1の実施の形態>
 本発明の第1の実施の形態に係る光部品について、図1~図3Bを参照して説明する。
<First Embodiment>
An optical component according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3B.
<光部品の構成>
 本実施の形態に係る光部品1は、図1に示すように、ファイバブロック11と、ファイバブロック11と接続するPLCチップ12とを備える。
<Configuration of optical components>
An optical component 1 according to this embodiment includes a fiber block 11 and a PLC chip 12 connected to the fiber block 11, as shown in FIG.
 ファイバブロック11において、光ファイバ13はコア13_1とクラッド13_2とを有し、V溝部品14に搭載され、抑え蓋15により固定される。このように、V溝部品14と抑え蓋15との間に光ファイバ13が搭載される。 In the fiber block 11, the optical fiber 13 has a core 13_1 and a clad 13_2, is mounted on the V-groove component 14, and is fixed by the restraining lid 15. Thus, the optical fiber 13 is mounted between the V-groove part 14 and the holding lid 15 .
 PLCチップ12において、Si基板12_3上に干渉回路17が形成される。干渉回路17における導波路は、導波路コア12_1と導波路クラッド12_2からなる。 In the PLC chip 12, an interference circuit 17 is formed on the Si substrate 12_3. A waveguide in the interference circuit 17 is composed of a waveguide core 12_1 and a waveguide clad 12_2.
 光部品1に入力した光は、光ファイバ13のコア13_1とPLCチップ12の導波路コア12_1を導波する。 The light input to the optical component 1 is guided through the core 13_1 of the optical fiber 13 and the waveguide core 12_1 of the PLC chip 12 .
 また、ファイバブロック11と接続する端面(接続端面)を含む接続端面近傍の上面にガラス板16が配置される。詳細には、ガラス板16は、その接続端面がPLCチップ12の接続端面と同一面を含む略同一面上になるように配置される。 Also, a glass plate 16 is arranged on the upper surface near the connection end face including the end face (connection end face) connected to the fiber block 11 . Specifically, the glass plate 16 is arranged so that its connecting end surface is substantially on the same plane including the connecting end surface of the PLC chip 12 .
 図2に示すように、ファイバブロック11の端面と、PLCチップ12とガラス板16の端面とが対向して、それぞれの端面の間に接着剤18が充填され接続(固着)される。ここで、接着剤18に紫外線硬化型接着剤を用いるが、他の接着剤でもよい。 As shown in FIG. 2, the end face of the fiber block 11 faces the end faces of the PLC chip 12 and the glass plate 16, and an adhesive 18 is filled and connected (fixed) between the end faces. Here, an ultraviolet curable adhesive is used as the adhesive 18, but other adhesives may be used.
 ここで、ファイバブロック11とPLCチップ12それぞれの接続端面は、鏡面研磨されることなく、凹凸を有する。ここで、「接続端面」とは、ファイバブロック11とPLCチップ12とを接続するときに対向するそれぞれの端面をいう。 Here, the connection end faces of the fiber block 11 and the PLC chip 12 are uneven without being mirror-polished. Here, the “connection end face” refers to each end face facing each other when connecting the fiber block 11 and the PLC chip 12 .
 ファイバブロック11とPLCチップ12の接続端面における凹凸の算術平均粗さRaについて説明する。算術平均粗さRaは、基準長さにおいて凹凸の平均値からの偏差の絶対値を積分し、この積分値を基準長さで除したものであり、凹凸の高さの平均に相当する。ここで、凹凸の間隔は、凹凸の高さと同じオーダーである。 Arithmetic mean roughness Ra of unevenness on the connection end surface of the fiber block 11 and the PLC chip 12 will be explained. The arithmetic mean roughness Ra is obtained by integrating the absolute value of the deviation from the average value of unevenness over the reference length and dividing the integrated value by the reference length, and corresponds to the average height of unevenness. Here, the spacing of the irregularities is of the same order as the height of the irregularities.
 まず、ファイバブロック11における光ファイバ13の端面とPLCチップ12における光導波路の端面との間隔は1μm以上10μm以下であり、それぞれの端面の間に充填する接着剤の特性によって適宜決定される。例えば、それぞれの端面の間隔は導波光の波長の1~10倍の長さに決定され、導波光の波長を1μm程度と仮定すると1~10μmである。 First, the distance between the end face of the optical fiber 13 in the fiber block 11 and the end face of the optical waveguide in the PLC chip 12 is 1 μm or more and 10 μm or less, and is appropriately determined according to the properties of the adhesive that is filled between the respective end faces. For example, the interval between the end faces is determined to be 1 to 10 times the wavelength of the guided light, and is 1 to 10 μm if the wavelength of the guided light is about 1 μm.
 凹凸のRaを導波光の波長の1/10より小さくすると、端面の平滑度は鏡面研磨した場合と同等になる。したがって、凹凸が小さく接着面積が増大する効果が低下する。 When the unevenness Ra is made smaller than 1/10 of the wavelength of the guided light, the smoothness of the end surface becomes equivalent to that of mirror polishing. Therefore, the effect of increasing the adhesion area due to small irregularities is reduced.
 一方、凹凸のRaを導波光の波長の10倍より大きくすると、上記の端面の間隔に比べて長くなり、充填される接着剤が不足する可能性がある。また、接着剤の硬化収縮により接続部分に応力が発生して長期信頼性を低下させる可能性がある。 On the other hand, if the unevenness Ra is made larger than 10 times the wavelength of the guided light, it becomes longer than the interval between the end faces, and there is a possibility that the filling adhesive will be insufficient. In addition, curing shrinkage of the adhesive may cause stress in the connecting portion, which may reduce long-term reliability.
 したがって、凹凸のRaは導波光の波長の1/10以上10倍以下であることが望ましい。また、導波光の波長が1μm程度の場合、凹凸のRaは0.1以上10μm以下であることが望ましい。ここで、凹凸の高さは均一である必要はなく、不均一でもよい。 Therefore, it is desirable that the unevenness Ra be 1/10 or more and 10 or less times the wavelength of the guided light. Further, when the wavelength of guided light is about 1 μm, it is desirable that the unevenness Ra be 0.1 or more and 10 μm or less. Here, the height of the unevenness does not need to be uniform, and may be non-uniform.
 光ファイバ13とPLCチップ12との接続における導波光の損失について説明する。 The loss of guided light in the connection between the optical fiber 13 and the PLC chip 12 will be explained.
 通常の光ファイバ13とPLCチップ12との接続において、光ファイバ13とPLCチップ12それぞれの接続端面の少なくとも一部に凹凸を有し、それぞれの接続端面の間に接着剤が充填される場合、光ファイバ13から接着剤に入射する導波光および接着剤から光導波路に入射する導波光の振幅や位相が歪む。このとき、接続効率は、入射光の電界と導波路の伝搬モードの重なり積分の絶対値の2乗である。 In the ordinary connection between the optical fiber 13 and the PLC chip 12, when at least a part of the connection end faces of the optical fiber 13 and the PLC chip 12 has unevenness and the gap between the connection end faces is filled with an adhesive, The amplitude and phase of the guided light incident on the adhesive from the optical fiber 13 and the guided light incident on the optical waveguide from the adhesive are distorted. At this time, the connection efficiency is the square of the absolute value of the overlap integral of the electric field of the incident light and the propagation mode of the waveguide.
 そこで、光導波路に入射する光の振幅および位相と、導波路の伝搬モードとの差分が増加し、接続損失は増加する。 Therefore, the difference between the amplitude and phase of the light incident on the optical waveguide and the propagation mode of the waveguide increases, and the connection loss increases.
 一方、本実施の形態おける光ファイバ13とPLCチップ12との接続では、接着剤18の屈折率を光ファイバ13のSiO2の屈折率(1.45)と略同等に設定することにより、振幅や位相の歪みが抑制され、接続損失は低減する。ここで、「略同等の屈折率」は、同等の屈折率を含み、上記接続を導波する光の振幅や位相の歪みが抑制される程度の屈折率を含む。 On the other hand, in the connection between the optical fiber 13 and the PLC chip 12 in this embodiment, the amplitude and Phase distortion is suppressed and connection loss is reduced. Here, "substantially the same refractive index" includes the same refractive index, and includes a refractive index to the extent that distortion of the amplitude and phase of light guided through the connection is suppressed.
 また、本実施の形態では、光ファイバ13とPLCチップ12との接続界面に凹凸を有するので、石英ガラスからなる光ファイバ13や光導波路の屈折率と接着剤18の屈折率との差により、凹凸を有する接続端面で乱反射が生じる。例えば、光ファイバ13からPLCチップ12に導波光が入射する場合、乱反射した光は光ファイバ13に入射して戻り光となる。 Further, in this embodiment, since the connection interface between the optical fiber 13 and the PLC chip 12 has unevenness, the difference between the refractive index of the optical fiber 13 and the optical waveguide made of silica glass and the refractive index of the adhesive 18 causes Diffuse reflection occurs on the connection end face having unevenness. For example, when guided light enters the PLC chip 12 from the optical fiber 13, the diffusely reflected light enters the optical fiber 13 and becomes return light.
 この戻り光は、光ファイバ13又は光導波路の端面を、導波光の進行方向に垂直な面に対して傾斜させることにより抑制できる。傾斜端面の傾斜角度は、乱反射した光の大部分が光ファイバ13のモードに結合しないような角度に設定すればよい。鏡面研磨を前提としたアングルドフィジカルコネクタ(APC)の端面の傾斜角度が8°であることから、傾斜角度は導波光の進行方向に垂直な面に対して10°以内が望ましい。 This return light can be suppressed by inclining the end face of the optical fiber 13 or the optical waveguide with respect to a plane perpendicular to the traveling direction of the guided light. The inclination angle of the slanted end surface may be set to such an angle that most of the diffusely reflected light is not coupled to the mode of the optical fiber 13 . Since the angle of inclination of the end face of an angled physical connector (APC) that assumes mirror polishing is 8°, it is desirable that the angle of inclination is within 10° with respect to the plane perpendicular to the traveling direction of guided light.
<光部品の製造方法>
 本実施の形態に係る光部品1の製造方法の一例を説明する。ここでは、光部品1におけるファイバブロック11とPLCチップ12との接続を中心に説明する。
<Method for manufacturing optical components>
An example of a method for manufacturing the optical component 1 according to this embodiment will be described. Here, the connection between the fiber block 11 and the PLC chip 12 in the optical component 1 will be mainly described.
 初めに、図3Aに示すように、光ファイバ13をV溝部品14と抑え蓋15との間に固定し搭載して、ファイバブロック11を作製する。 First, as shown in FIG. 3A, the fiber block 11 is produced by fixing and mounting the optical fiber 13 between the V-groove component 14 and the holding lid 15 .
 次に、ファイバブロック11における光ファイバ13とV溝部品14と抑え蓋15の端面(図中P領域)を研磨する。 Next, the end faces (area P in the drawing) of the optical fiber 13, the V-groove component 14, and the holding lid 15 in the fiber block 11 are polished.
 このとき、研磨定盤上に、研磨砥粒を液体に混合したもの(研磨液)を流しこみ、ファイバブロック11を治具で支持し、研磨定盤上に押し当てて研磨する。まず、粗研磨を行い、光ファイバ13とV溝部品14と抑え蓋15の端面(図中P領域)が面一になるように研磨する。ここで、「面一」とは、複数の面の間に段差がなく平坦な状態であることをいう。 At this time, a liquid mixture of abrasive grains (polishing liquid) is poured onto the polishing surface plate, and the fiber block 11 is supported by a jig and pressed against the polishing surface plate for polishing. First, the optical fiber 13, the V-groove component 14, and the end face (area P in the figure) of the holding lid 15 are polished so that they are flush with each other. Here, "flush" means that there are no steps between a plurality of surfaces and the surfaces are flat.
 それぞれの端面が平滑(平坦)になるに従い、研磨液を入れ替え、研磨砥粒の粒度を小さくする。 As each end surface becomes smoother (flat), the polishing liquid is replaced to reduce the grain size of the abrasive grains.
 次に、表面のRaが、導波光の波長程度(1μm程度)になった時点で、ファイバブロック11の研磨を止める。 Next, the polishing of the fiber block 11 is stopped when the Ra of the surface becomes approximately the wavelength of the guided light (approximately 1 μm).
 一方、PLCチップ12において、図3Bに示すように、ガラス板16をPLCチップ12の接続端面およびその近傍の上面に貼り付ける。 On the other hand, in the PLC chip 12, as shown in FIG. 3B, the glass plate 16 is attached to the connection end surface of the PLC chip 12 and the upper surface in the vicinity thereof.
 次に、上述と同様に、PLCチップ12とガラス板16が面一になるように研磨し、端面のRaが導波光の波長程度(1μm程度)になった時点で研磨を止める(図中Q領域)。 Next, in the same manner as described above, the PLC chip 12 and the glass plate 16 are polished so that they are flush with each other. region).
 最後に、ファイバブロック11の光ファイバ13をPLCチップ12の導波路に調芯して、ファイバブロック11の接続端面とPLCチップ12とガラス板16の接続端面とを紫外線硬化型接着剤18により接続(固着)する。 Finally, the optical fiber 13 of the fiber block 11 is aligned with the waveguide of the PLC chip 12, and the connection end surface of the fiber block 11 and the connection end surface of the PLC chip 12 and the glass plate 16 are connected with an ultraviolet curing adhesive 18. (stick).
 このように、本実施の形態では、鏡面になる前に研磨を止めるので、従来の研磨工程に比べて簡単な工程でファイバブロック11をPLCチップ12に接続できる。 As described above, in the present embodiment, polishing is stopped before the mirror surface is obtained, so the fiber block 11 can be connected to the PLC chip 12 in a simpler process than the conventional polishing process.
 また、その他の工程は従来工程と同じなので、付加的な工程を用いずに、本実施の形態に係る光部品を作製できる。 In addition, since the other steps are the same as the conventional steps, the optical component according to this embodiment can be produced without using additional steps.
 本実施の形態に係る光部品によれば、ファイバブロックとPLCチップとの接着強度を低減することなく、それぞれを小型化できる。 According to the optical component according to the present embodiment, each can be miniaturized without reducing the bonding strength between the fiber block and the PLC chip.
 本実施の形態では、ファイバブロックとPLCチップとガラス板それぞれの接続端面の全面が凹凸を有する例を示したが、これに限らない。ファイバブロックとPLCチップとガラス板それぞれの接続端面の少なくとも一部に凹凸を有すれば、接続端面の全面が鏡面研磨状態である場合に比べて、接着強度を向上できる。ここで、凹凸を有する部分の面積が、接続端面の総面積の1/4以上であることが望ましい。 In the present embodiment, an example in which the entire connection end surfaces of the fiber block, PLC chip, and glass plate are uneven has been shown, but the present invention is not limited to this. If at least a part of the connecting end faces of the fiber block, PLC chip, and glass plate has unevenness, the bonding strength can be improved compared to the case where the entire connecting end face is mirror-polished. Here, it is desirable that the area of the uneven portion is 1/4 or more of the total area of the connecting end face.
<第2の実施の形態>
 本発明の第2の実施の形態に係る光部品について、図4A、B参照して説明する。
<Second Embodiment>
An optical component according to a second embodiment of the present invention will be described with reference to FIGS. 4A and 4B.
<光部品の構成>
 本実施の形態に係る光部品は、第1の実施の形態と、ファイバブロックとPLCチップとの接続端面における凹凸部分が異なる。その他の構成は、第1の実施の形態と同様である。
<Configuration of optical components>
The optical component according to the present embodiment differs from that of the first embodiment in the irregularities on the connection end surface between the fiber block and the PLC chip. Other configurations are the same as those of the first embodiment.
 本実施の形態におけるファイバブロック21の接続端面において、図4Aに示すように、光ファイバ23のコアとクラッド及びその近傍部の端面が鏡面研磨状態であり(図中R領域)、抑え蓋25の端面(図中、P1領域)とV溝部品24の端面の下側部分(図中、P2領域)が凹凸を有する。 As shown in FIG. 4A, on the connection end face of the fiber block 21 according to the present embodiment, the core and clad of the optical fiber 23 and the end faces in the vicinity thereof are mirror-polished (region R in the figure). The end face (area P1 in the drawing) and the lower portion of the end face of the V-groove component 24 (area P2 in the drawing) have irregularities.
 一方、PLCチップ22の接続端面においては、導波路コア22_1と導波路クラッド22_2の部分の端面が鏡面研磨状態であり(図中、S領域)、ガラス板26の端面(図中、Q1領域)及びSi基板22_3の端面(図中、Q2領域)が凹凸を有する。 On the other hand, in the connection end face of the PLC chip 22, the end face of the portion of the waveguide core 22_1 and the waveguide clad 22_2 is mirror-polished (region S in the drawing), and the end face of the glass plate 26 (region Q1 in the drawing). And the end face (Q2 region in the figure) of the Si substrate 22_3 has unevenness.
 このように、光が導波するコアとクラッドの端面が鏡面研磨されているので、端面から出射される光の位相と振幅に歪が生じない。そこで、ファイバブロック21とPLCチップ22との間に充填される光学接着剤の屈折率をSiO2の屈折率(1.45)程度に設定しなくても、接続損失が増加しない。 In this way, since the end faces of the core and the clad through which light is guided are mirror-polished, the phase and amplitude of the light emitted from the end faces are not distorted. Therefore, the connection loss does not increase even if the refractive index of the optical adhesive filled between the fiber block 21 and the PLC chip 22 is not set to about the refractive index of SiO2 (1.45).
 これにより、光部品における接続に適用できる接着剤の選択範囲を拡大できる。例えば、屈折率が1.45と異なり、接着強度・接着信頼性に優れる接着剤を適用することができる。 As a result, the selection range of adhesives that can be applied to connections in optical components can be expanded. For example, an adhesive having a refractive index different from 1.45 and having excellent adhesion strength and adhesion reliability can be applied.
<光部品の製造方法>
 本実施の形態に係る光部品2の製造方法の一例を説明する。ここでは、光部品2におけるファイバブロック21とPLCチップ22との接続を中心に説明する。
<Method for manufacturing optical components>
An example of a method for manufacturing the optical component 2 according to this embodiment will be described. Here, the connection between the fiber block 21 and the PLC chip 22 in the optical component 2 will be mainly described.
 初めに、第1の実施の形態と同様に、ファイバブロック21を作製する。また、石英系PLCチップ22において、ガラス板26をPLCチップ22の接続端面およびその近傍の上面に貼り付ける。 First, a fiber block 21 is produced in the same manner as in the first embodiment. Further, in the quartz-based PLC chip 22, a glass plate 26 is attached to the connection end surface of the PLC chip 22 and the upper surface in the vicinity thereof.
 次に、ファイバブロック21における光ファイバ23とV溝部品24と抑え蓋25の端面を鏡面研磨する。また、PLCチップ22とガラス板26の端面を鏡面研磨する。 Next, the end faces of the optical fiber 23, the V-groove part 24, and the holding lid 25 in the fiber block 21 are mirror-polished. Also, the end surfaces of the PLC chip 22 and the glass plate 26 are mirror-polished.
 次に、サンドブラスト法により、それぞれの端面に、選択的に凹凸を形成する。 Next, by sandblasting, unevenness is selectively formed on each end surface.
 詳細には、まず、鏡面研磨状態を残存する箇所をマスキングする。ここでは、光ファイバ23のコアとクラッド及びその近傍部の端面(図4A中、R領域)をマスキングする。また、PLCチップ22の導波路コア22_1と導波路クラッド22_2の部分の端面(図4B中、S領域)をマスキングする。 Specifically, first, the areas where the mirror-polished state remains are masked. Here, the core and the clad of the optical fiber 23 and the end face of the vicinity thereof (region R in FIG. 4A) are masked. In addition, the end faces (region S in FIG. 4B) of the waveguide core 22_1 and waveguide clad 22_2 of the PLC chip 22 are masked.
 次に、ファイバブロック21の端面でマスキングを施していない露出部分(図4A中、P1領域、P2領域)およびPLCチップ22とガラス板26の端面でマスキングを施していない露出部分(図4B中、Q1領域、Q2領域)に、研磨材を圧縮空気に混合して吹き付けることにより、凹凸を形成する。 Next, the exposed portions (areas P1 and P2 in FIG. 4A) that are not masked on the end face of the fiber block 21 and the exposed portions that are not masked on the end faces of the PLC chip 22 and the glass plate 26 (regions P1 and P2 in FIG. 4B). Concavities and convexities are formed by spraying an abrasive mixed with compressed air onto the regions Q1 and Q2.
 このように、凹凸が形成される部分は、全面を鏡面研磨した後に加工され形成されるので、鏡面研磨状態の部分より凹んでいる。 In this way, the part where the unevenness is formed is processed and formed after mirror-polishing the entire surface, so it is recessed from the mirror-polished part.
 最後に、ファイバブロック21の光ファイバ23をPLCチップ22の導波路に調芯して、ファイバブロック21の接続端面とPLCチップ22とガラス板26の接続端面とを紫外線硬化型接着剤により接続(固着)する。 Finally, the optical fiber 23 of the fiber block 21 is aligned with the waveguide of the PLC chip 22, and the connection end surface of the fiber block 21 and the connection end surface of the PLC chip 22 and the glass plate 26 are connected with an ultraviolet curable adhesive ( stick).
 または、PLCチップ22の端面に凹凸を形成する工程に、選択研磨法を用いることができる。 Alternatively, a selective polishing method can be used in the step of forming unevenness on the end face of the PLC chip 22 .
 詳細には、SiO2と反応せず、Siと反応する研磨液を用い研磨することで、選択的にSiが研磨される。これにより、PLCチップ22の端面において、導波路コア22_1と導波路クラッド22_2のSiO2を鏡面状態のままで、Si基板22_3の端面のみに凹凸を形成できる。 Specifically, Si is selectively polished by polishing using a polishing liquid that does not react with SiO2 but reacts with Si. As a result, on the end face of the PLC chip 22, the SiO2 of the waveguide core 22_1 and the waveguide clad 22_2 can be kept in a mirror state, and only the end face of the Si substrate 22_3 can be uneven.
 このように、選択研磨法を用いる場合には、Si基板22_3の端面のみに凹凸が形成されるが、接続端面の全面が鏡面研磨状態である場合に比べて、接着強度を向上できる。 Thus, when the selective polishing method is used, unevenness is formed only on the end surface of the Si substrate 22_3, but the bonding strength can be improved compared to the case where the entire connection end surface is mirror-polished.
 以上のように、本実施の形態では、簡単な工程で、ファイバブロック21の接続端面とPLCチップ22とガラス板26の接続端面に選択的に凹凸を形成でき、ファイバブロック21をPLCチップ22に接続できる。 As described above, according to the present embodiment, unevenness can be selectively formed on the connection end face of the fiber block 21 and the connection end face of the PLC chip 22 and the glass plate 26 by a simple process, and the fiber block 21 can be connected to the PLC chip 22. Can connect.
 また、ファイバブロック21の端面において、鏡面研磨が施されている部分(図4A中、R領域)の高さHRは100μm程度である。また、PLCチップ22とガラス板26の端面において、鏡面研磨が施されている部分(図4B中、S領域)の高さHSも100μm程度である。 In addition, the height HR of the mirror-polished portion (R area in FIG. 4A) on the end face of the fiber block 21 is about 100 μm. Moreover, the height HS of the mirror-polished portion (region S in FIG. 4B) of the end surfaces of the PLC chip 22 and the glass plate 26 is also about 100 μm.
 一方、ファイバブロック21の端面において、凹凸を有する部分(図4A中、P1領域、P2領域)の高さHP1、HP2はそれぞれ1mm程度である。また、PLCチップ22とガラス板26の端面において、凹凸を有する部分(図4B中、Q1領域、Q2領域)の高さHQ1、HQ2はそれぞれ1mm程度である。 On the other hand, on the end face of the fiber block 21, the heights HP1 and HP2 of the uneven portions (areas P1 and P2 in FIG. 4A) are each about 1 mm. Further, the heights HQ1 and HQ2 of the uneven portions (regions Q1 and Q2 in FIG. 4B) on the end surfaces of the PLC chip 22 and the glass plate 26 are about 1 mm, respectively.
 このように、ファイバブロック21の端面およびPLCチップ22とガラス板26の端面において、大部分が凹凸を有するので、全面に凹凸を有する場合(第1の実施の形態)と同程度の接続強度を有する。 As described above, since most of the end face of the fiber block 21 and the end faces of the PLC chip 22 and the glass plate 26 have unevenness, the same level of connection strength as the case where the entire surface has unevenness (first embodiment) can be obtained. have.
 本実施の形態に係る光部品によれば、ファイバブロックとPLCチップとの接着強度を低減することなく、それぞれを小型化できる。 According to the optical component according to the present embodiment, each can be miniaturized without reducing the bonding strength between the fiber block and the PLC chip.
 本発明の実施の形態では、ファイバブロックにPLCチップを接続する例を示したが、これに限らない。PLCチップ以外にも、例えば、シリコンフォトニックス(SiPh)チップであってもよい。シリコンフォトニックスは、導波路コアにSi、導波路クラッドに石英ガラス(SiO2)等を用いて構成され、導波光の導波モードはテーパ形状のSi導波路(SSC:Spot Size Converter)で拡大され、最終的に(Si導波路はなくなり)SiO2からなる入出力端で出力される。このように、ファイバブロックに接続される部品は、入出力端がSiO2により構成される導波路型光部品であればよい。 Although the embodiment of the present invention shows an example of connecting a PLC chip to a fiber block, it is not limited to this. Besides the PLC chip, for example, a silicon photonics (SiPh) chip may be used. Silicon photonics is configured using Si for the waveguide core and silica glass (SiO2) for the waveguide clad, etc., and the waveguide mode of the guided light is expanded by a tapered Si waveguide (SSC: Spot Size Converter). , is finally output from an input/output end made of SiO2 (there is no Si waveguide). In this way, the components connected to the fiber block may be waveguide type optical components whose input and output ends are made of SiO2.
 本実施の形態では、ファイバブロック21の接続端面における抑え蓋25の端面(図中、P1領域)とV溝部品24の端面の下側部分(図中、P2領域)と、PLCチップ22の接続端面におけるガラス板26の端面(図中、Q1領域)及びSi基板22_3の端面(図中、Q2領域)が凹凸を有する例を示したが、これに限らない。 In this embodiment, the end surface of the restraining lid 25 (area P1 in the drawing), the lower portion of the end surface of the V-groove component 24 (area P2 in the drawing), and the PLC chip 22 are connected to the connection end surface of the fiber block 21. An example in which the end surface of the glass plate 26 (area Q1 in the figure) and the edge surface of the Si substrate 22_3 (area Q2 in the figure) have unevenness has been shown, but the present invention is not limited to this.
 本実施の形態では、光ファイバ23のコアとクラッドと、PLCチップ22の導波路コア22_1と導波路クラッド22_2の部分の接続端面が鏡面研磨状態であればよく、他の接続端面の少なくとも一部が凹凸を有すれば、接続端面の全面が鏡面研磨状態である場合に比べて、接着強度を向上できる。ここで、凹凸を有する部分の面積が、接続端面の総面積の1/4以上であることが望ましい。 In the present embodiment, the connection end surfaces of the core and the clad of the optical fiber 23 and the waveguide core 22_1 and the waveguide clad 22_2 of the PLC chip 22 are mirror-polished. If there is unevenness, the bonding strength can be improved as compared with the case where the entire connection end surface is mirror-polished. Here, it is desirable that the area of the uneven portion is 1/4 or more of the total area of the connecting end face.
 本発明の実施の形態では、PLCチップが干渉回路を備える例を示したが、これに限らず、他の機能の光回路を備えてもよい。 In the embodiment of the present invention, an example in which the PLC chip is provided with an interferometric circuit has been shown, but the PLC chip is not limited to this, and may be provided with an optical circuit with other functions.
 本発明の実施の形態では、光接続構造および光部品の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光接続構造および光部品の機能を発揮し効果を奏するものであればよい。 In the embodiments of the present invention, examples of the structure, dimensions, materials, etc., of each constituent part have been shown in the optical connection structure and optical component structure, manufacturing method, etc., but the present invention is not limited to this. Any material may be used as long as it exhibits the functions of the optical connection structure and the optical component and produces an effect.
 本発明は、光通信分野やセンシング分野で用いられる光デバイス、とくに光部品の接続に適用することができる。 The present invention can be applied to the connection of optical devices, especially optical parts, used in the fields of optical communication and sensing.
1 光部品
11 ファイバブロック
12 PLCチップ
13 光ファイバ
14 V溝部品
15 抑え蓋
16 ガラス板
17 干渉回路
18 接着剤
1 optical component 11 fiber block 12 PLC chip 13 optical fiber 14 V groove component 15 holding lid 16 glass plate 17 interference circuit 18 adhesive

Claims (8)

  1.  V溝部品と抑え蓋との間に光ファイバが搭載されるファイバブロックと、
     入出力端がSiO2により構成される導波路型光部品と、
     前記導波路型光部品の接続端面および当該接続端面近傍の上面に配置されるガラス板と
     を備え、
     前記ファイバブロックの接続端面の少なくとも一部が凹凸を有し、
     前記導波路型光部品の接続端面の少なくとも一部が凹凸を有し、
     前記ファイバブロックと前記導波路型光部品とがそれぞれの接続端面の間に充填される接着剤により固着される
     ことを特徴とする光部品。
    a fiber block in which an optical fiber is mounted between the V-groove component and the holding lid;
    a waveguide type optical component whose input and output ends are made of SiO2;
    a glass plate disposed on the connection end surface of the waveguide optical component and on the upper surface near the connection end surface;
    at least a portion of the connection end surface of the fiber block has unevenness,
    at least a part of the connection end face of the waveguide type optical component has unevenness,
    An optical component, wherein the fiber block and the waveguide type optical component are fixed with an adhesive filled between their connecting end faces.
  2.  前記ガラス板の接続端面の少なくとも一部が凹凸を有する
     ことを特徴とする請求項1に記載の光部品。
    2. The optical component according to claim 1, wherein at least a part of the connection end face of said glass plate has unevenness.
  3.  前記光ファイバがコアとクラッドとを有し、
     前記導波路型光部品が導波路コアと導波路クラッドとを有し、
     光が前記コアと前記導波路コアを導波する
     ことを特徴とする請求項1又は請求項2に記載の光部品。
    The optical fiber has a core and a cladding,
    The waveguide-type optical component has a waveguide core and a waveguide clad,
    3. The optical component according to claim 1, wherein light is guided through the core and the waveguide core.
  4.  前記凹凸の算術平均粗さが、前記光の波長の1/10以上10倍以下である
     ことを特徴とする請求項3に記載の光部品。
    4. The optical component according to claim 3, wherein the arithmetic mean roughness of the unevenness is from 1/10 to 10 times the wavelength of the light.
  5.  前記接続端面が、前記光の進行方向に垂直な面に対して傾斜していることを特徴とする請求項3又は請求項4に記載の光部品。 The optical component according to claim 3 or 4, characterized in that the connection end surface is inclined with respect to a plane perpendicular to the traveling direction of the light.
  6.  前記ファイバブロックの接続端面における前記光ファイバのコアとクラッドの端面の少なくとも一部と、前記導波路型光部品の接続端面における前記導波路型光部品のコアとクラッドの部分の端面の少なくとも一部とが凹凸を有し、
     前記接着剤の屈折率が、前記SiO2の屈折率と略同等である
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の光部品。
    At least a portion of the core and clad end faces of the optical fiber at the connection end face of the fiber block, and at least a part of the core and clad portion of the optical waveguide component at the connection end face of the optical waveguide component. and has unevenness,
    6. The optical component according to any one of claims 1 to 5, wherein the refractive index of the adhesive is approximately equal to the refractive index of the SiO2.
  7.  前記ファイバブロックの接続端面における前記光ファイバのコアとクラッドの端面と、前記導波路型光部品の接続端面における前記導波路型光部品のコアとクラッドの部分の端面とが鏡面研磨状態である
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の光部品。
    The end face of the core and clad of the optical fiber at the connection end face of the fiber block and the end face of the core and clad portion of the optical waveguide component at the connection end face of the optical waveguide component are mirror-polished. The optical component according to any one of claims 1 to 5, characterized by:
  8.  前記凹凸を有する部分が前記鏡面研磨状態の部分より凹んでいる
     ことを特徴とする請求項7に記載の光部品。
    8. The optical component according to claim 7, wherein the uneven portion is recessed from the mirror-polished portion.
PCT/JP2021/019925 2021-05-26 2021-05-26 Optical component WO2022249313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/019925 WO2022249313A1 (en) 2021-05-26 2021-05-26 Optical component
JP2023523787A JPWO2022249313A1 (en) 2021-05-26 2021-05-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019925 WO2022249313A1 (en) 2021-05-26 2021-05-26 Optical component

Publications (1)

Publication Number Publication Date
WO2022249313A1 true WO2022249313A1 (en) 2022-12-01

Family

ID=84228626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019925 WO2022249313A1 (en) 2021-05-26 2021-05-26 Optical component

Country Status (2)

Country Link
JP (1) JPWO2022249313A1 (en)
WO (1) WO2022249313A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719711U (en) * 1993-09-10 1995-04-07 日本碍子株式会社 Coupling structure of optical waveguide and optical fiber
JPH08304664A (en) * 1995-05-09 1996-11-22 Furukawa Electric Co Ltd:The Wavelength demultiplexing element
JPH08313744A (en) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> Optical circuit parts
JP2000019346A (en) * 1998-06-26 2000-01-21 Fujikura Ltd Optical waveguide and optical connecting block as well as optical waveguide parts
JP2005157088A (en) * 2003-11-27 2005-06-16 Mitsumi Electric Co Ltd Optical waveguide module
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2017032950A (en) * 2015-08-06 2017-02-09 日本電信電話株式会社 Optical signal processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719711U (en) * 1993-09-10 1995-04-07 日本碍子株式会社 Coupling structure of optical waveguide and optical fiber
JPH08304664A (en) * 1995-05-09 1996-11-22 Furukawa Electric Co Ltd:The Wavelength demultiplexing element
JPH08313744A (en) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> Optical circuit parts
JP2000019346A (en) * 1998-06-26 2000-01-21 Fujikura Ltd Optical waveguide and optical connecting block as well as optical waveguide parts
JP2005157088A (en) * 2003-11-27 2005-06-16 Mitsumi Electric Co Ltd Optical waveguide module
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2017032950A (en) * 2015-08-06 2017-02-09 日本電信電話株式会社 Optical signal processing device

Also Published As

Publication number Publication date
JPWO2022249313A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
US8503843B2 (en) Hybrid integrated optical module
JPH09120014A (en) Optical fiber array
JPH09101431A (en) Waveguide connection method
JP4896231B2 (en) Optical circuit and optical signal processing apparatus using the same
US10094989B2 (en) Optical device, optical processing device, and method of producing the optical device
US11333828B2 (en) Optical connection component
JP2000009968A (en) Photodetecting module
WO2022249313A1 (en) Optical component
US20180252876A1 (en) Optical apparatus, stub device
WO2003083542A1 (en) Optical device and method for fabricating the same
US6438297B1 (en) Assembly of optical component and optical fibre
JPS5860704A (en) Light attenuation unit and manufacture thereof
JP5039523B2 (en) Optical waveguide circuit chip
WO2024047727A1 (en) Optical component, optical module, and optical module manufacturing method
WO2020080196A1 (en) Optical connection structure
WO2019176561A1 (en) Fiber module
JP3450068B2 (en) Optical waveguide coupling structure
US7076136B1 (en) Method of attaching optical fibers to integrated optic chips that excludes all adhesive from the optical path
JP7364929B2 (en) How to connect optical fiber array
WO2023188175A1 (en) Optical waveguide element, and optical modulation device and optical transmission device using same
JP7348550B2 (en) optical circuit module
WO2022254657A1 (en) Integrated-type optical device and manufacturing method therefor
US7044649B2 (en) Optical filter module, and manufacturing method thereof
JP7464053B2 (en) Method for aligning optical waveguide element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523787

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE