WO2022130451A1 - 柱状半導体装置とその製造方法 - Google Patents

柱状半導体装置とその製造方法 Download PDF

Info

Publication number
WO2022130451A1
WO2022130451A1 PCT/JP2020/046526 JP2020046526W WO2022130451A1 WO 2022130451 A1 WO2022130451 A1 WO 2022130451A1 JP 2020046526 W JP2020046526 W JP 2020046526W WO 2022130451 A1 WO2022130451 A1 WO 2022130451A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
impurity region
mask material
semiconductor column
Prior art date
Application number
PCT/JP2020/046526
Other languages
English (en)
French (fr)
Inventor
賢一 金澤
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
賢一 金澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 賢一 金澤 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to JP2022569328A priority Critical patent/JPWO2022130451A1/ja
Priority to PCT/JP2020/046526 priority patent/WO2022130451A1/ja
Priority to TW110141868A priority patent/TWI815211B/zh
Publication of WO2022130451A1 publication Critical patent/WO2022130451A1/ja
Priority to US18/332,968 priority patent/US20230328949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • H10B10/125Static random access memory [SRAM] devices comprising a MOSFET load element the MOSFET being a thin film transistor [TFT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Definitions

  • the present invention relates to a columnar semiconductor device and a method for manufacturing the same.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate.
  • the channel of SGT extends in the direction perpendicular to the upper surface of the semiconductor substrate (see, for example, Patent Document 1 and Non-Patent Document 1). Therefore, the SGT can increase the density of the semiconductor device as compared with the planar type MOS transistor.
  • FIG. 13 shows a schematic structural diagram of the N-channel SGT.
  • Si column the silicon semiconductor column
  • the silicon semiconductor column is referred to as "Si column” having a P-type or i-type (intrinsic type) conductive type, when one is the source, the other is the drain.
  • N + layers 221a and 221b (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as “N + layer”) are formed.
  • the portion of the Si column 220 between the N + layers 221a and 221b that serve as the source and drain becomes the channel region 222.
  • a gate insulating layer 223 is formed so as to surround the channel region 222.
  • a gate conductor layer 224 is formed so as to surround the gate insulating layer 223.
  • the N + layers 221a and 221b serving as sources and drains, the channel region 222, the gate insulating layer 223, and the gate conductor layer 224 are formed in a columnar shape as a whole. Therefore, in plan view, the occupied area of the SGT corresponds to the occupied area of a single source or drain N + layer of the planar type MOS transistor. Therefore, the circuit chip having the SGT can realize further reduction in the chip size as compared with the circuit chip having the planar type MOS transistor. In addition, if the driving capacity of the SGT can be improved, the number of SGTs used for one chip can be reduced, which also contributes to the reduction of the chip size.
  • the SGT has a vertical structure that is advantageous for high integration.
  • the gate length and effective channel length are mainly determined by the accuracy of photolithography, but in SGT, they are mainly determined by the film formation variation, etching and CMP processing accuracy. Be done.
  • the accuracy of photolithography has become nano-order level accuracy due to recent advances in exposure equipment and resist agents, but on the other hand, for film formation, etching and CMP, especially thick film material layers are formed.
  • the film thickness, etching amount and CMP polishing amount of the film formation have not reached the accuracy of processing at the nano-order level. Therefore, in SGT, how to reduce the variation in the gate length and the effective channel length has become a big issue.
  • FIG. 14 shows a SRAM cell (Static Random Access Memory) circuit diagram.
  • This SRAM cell circuit includes two inverter circuits.
  • One inverter circuit is composed of a P channel SGT_Pc1 as a load transistor and an N channel SGT_Nc1 as a drive transistor.
  • the other inverter circuit is composed of a P channel SGT_Pc2 as a load transistor and an N channel SGT_Nc2 as a drive transistor.
  • the gate of P channel SGT_Pc1 and the gate of N channel SGT_Nc1 are connected.
  • the drain of the P channel SGT_Pc2 and the drain of the N channel SGT_Nc2 are connected.
  • the gate of P channel SGT_Pc2 and the gate of N channel SGT_Nc2 are connected.
  • the drain of the P channel SGT_Pc1 and the drain of the N channel SGT_Nc1 are connected.
  • the sources of the P channels SGT_Pc1 and Pc2 are connected to the power supply terminal Vdd.
  • the sources of the N channels SGT_Nc1 and Nc2 are connected to the ground terminal Vss.
  • Selected N channels SGT_SN1 and SN2 are arranged on both sides of the two inverter circuits.
  • the gates of the selected N channels SGT_SN1 and SN2 are connected to the word line terminal WLt.
  • the source and drain of the selected N channel SGT_SN1 are connected to the drain of the N channel SGT_Nc1 and the P channel SGT_Pc1 and the bit line terminal BLt.
  • the source and drain of the selected N channel SGT_SN2 are connected to the drain of the N channel SGT_Nc2 and the P channel SGT_Pc2 and the inverted bit line terminal BLRt.
  • the circuit having the SRAM cell is composed of a total of 6 SGTs including 2 P channels SGT_Pc1 and Pc2 and 4 N channels SGT_Nc1, Nc2, SN1 and SN2 (for example, Patent Document). See 2).
  • a plurality of drive transistors can be connected in parallel to increase the speed of the SRAM circuit.
  • the SGTs constituting the RAM cells are formed in different semiconductor columns. An important factor necessary for stable operation and high quality of the SRAM cell circuit is to suppress operation variation and malfunction of each SGT. This also applies to other circuit formations using SGT.
  • the gate length and effective channel length vary, which causes variation in characteristics and malfunction.
  • the method for manufacturing a columnar semiconductor device is as follows. At the top of the semiconductor column, a semiconductor column, a gate insulating layer surrounding the semiconductor column, a gate conductor layer surrounding the gate insulating layer, a first impurity region connected to the lower part of the semiconductor column, and the top of the semiconductor column.
  • An SGT having a second impurity region to be connected and having the semiconductor column as a channel between the first impurity region and the second impurity region.
  • the film thickness of the first insulating layer is thicker than the film thickness of the gate insulating layer, and the position of the lower end of the gate conductor layer is the same as the position of the upper end of the first impurity region in the semiconductor column. It is desirable that the film thickness of the first insulating layer is set so as to be located at a lower position.
  • the film thickness of the first mask material layer is smaller than the film thickness of twice the film thickness of the gate insulating layer.
  • oxygen ions and at least one of impurities having the same conductive type as the first impurity region are exposed by an ion implantation method. It is desirable to further include the step of implanting into the surface of the impurity region of 1.
  • impurities having the same conductive type as the first impurity region can be sufficiently implanted into the region under the first insulating layer by an ion implantation method. It is desirable to inject.
  • the manufacturing method Further comprising a step of anisotropically etching the first mask material layer and then selectively forming a semiconductor layer on the exposed substrate surface by epitaxial growth.
  • the step of forming the first insulating layer it is desirable to form the first insulating layer on the exposed substrate surface by thermally or chemically oxidizing the semiconductor layer as a whole.
  • the oxide film growth rate of thermal or chemical oxidation of the semiconductor layer is higher than the oxide film growth rate of thermal or chemical oxidation of the first impurity region.
  • the semiconductor layer is doped with the same conductive type impurities as the first impurity region during epitaxial growth.
  • the manufacturing method After forming the semiconductor layer, it is desirable to implant oxygen ions and at least one of impurities having the same conductive type as the first impurity region into the semiconductor layer by an ion implantation method.
  • the first insulating film having a desired film thickness can be formed by thermally or chemically oxidizing the semiconductor layer so as to change all of the semiconductor layer into an oxide film. It is desirable that the film thickness of the semiconductor layer is set.
  • the method for manufacturing a columnar semiconductor device is as follows. At the top of the semiconductor column, a semiconductor column, a gate insulating layer surrounding the semiconductor column, a gate conductor layer surrounding the gate insulating layer, a first impurity region connected to the lower part of the semiconductor column, and the top of the semiconductor column.
  • An SGT having a second impurity region to be connected and having the semiconductor column as a channel between the first impurity region and the second impurity region.
  • the film thickness of the second mask material layer is set so that the position of the upper end of the gate conductor layer is the same as or higher than the position of the lower end of the second mask material layer. ..
  • the film thickness of the first and third mask material layers is set so that the lower end of the third mask material layer is located at the same position as or lower than the upper end position of the gate conductor layer. desirable.
  • the method for manufacturing a columnar semiconductor device is as follows. At the top of the semiconductor column, a semiconductor column, a gate insulating layer surrounding the semiconductor column, a gate conductor layer surrounding the gate insulating layer, a first impurity region connected to the lower part of the semiconductor column, and the top of the semiconductor column.
  • An SGT having a second impurity region to be connected and having the semiconductor column as a channel between the first impurity region and the second impurity region.
  • the first mask material layer is anisotropically etched to leave the first mask material layer on the side wall of the semiconductor column, and in plan view, the second mask material layer is placed on the top of the semiconductor column.
  • FIGS. 1A to 1M (First Embodiment)
  • SGT manufacturing method as an example, the N-type transistor according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1M.
  • (A) is a plan view
  • (b) is a cross-sectional structure diagram along the XX'line of (a)
  • (c) is a cross-sectional structure diagram along the YY'line of (a).
  • N + layer 2 (an example of the "first impurity region” of the patented range) and i-layer 6 (an example of the "semiconductor” of the patented range) on the P layer 1 (an example of the "substrate” of the patented range).
  • a column is an example) and is formed by an epitaxial crystal growth method, and as shown in FIG. 1A, for example, a SiN mask material layer 7 (an example of a “second mask material layer” within the scope of the patent claim. ),
  • the mask semiconductor layer 8 of silicon germanium (SiGe), and the mask semiconductor layer 9 of SiO 2 are sequentially deposited.
  • the i-layer 6 may be formed of N-type or P-type Si containing a small amount of donor or acceptor impurity atoms.
  • the mask semiconductor layer 9 is etched using a circular or rectangular resist layer (not shown) as a mask in a plan view formed by a lithography method. Then, the circular or rectangular SiO 2 mask semiconductor layer 9 is used as an etching mask and etched by, for example, RIE (Reactive Ion Etching) to form the circular or rectangular mask semiconductor layer 9. Next, by using the circular or rectangular mask semiconductor layer 9 as a mask and etching the SiGe mask semiconductor layer 8 by, for example, the RIE method, a circular or rectangular SiGe mask is used, as shown in FIG. 1B. The semiconductor layer 8 is formed. The above-mentioned circular or rectangular SiO 2 mask semiconductor layer 9 may be removed or left before etching the SiGe mask semiconductor layer 8.
  • RIE Reactive Ion Etching
  • the aforementioned SiO 2 mask semiconductor layer 9 and SiGe mask semiconductor layer 8 are used as an etching mask and sequentially etched by, for example, RIE, and as shown in FIG. 1C, the circular or rectangular mask material layer 7 and The i-layer 6 is formed, and the mask semiconductor layer 9 and the SiGe layer 8 remaining on the mask material layer 7 are removed. At this time, the SiO 2 mask semiconductor layer 9 and the SiGe mask semiconductor layer 8 may be left as they are without being removed.
  • an oxidation-resistant mask material layer 21 (an example of the “first mask material layer” in the claims), for example, a SiN layer, which covers the whole and has oxidation resistance, is applied to the ALD method. To form.
  • the operating region and the insulating region of the transistor are patterned, and the mask material layer 21 and the substrate existing in the insulating region which is the resist opening are formed.
  • Etching is performed by the RIE method.
  • the whole is covered to form a SiO 2 layer 23 thicker than the etching depth by the FCVD method.
  • the whole is polished by the CMP method so that the upper surface position of the SiO 2 layer 23 is the upper surface position of the mask material layer 7 existing on the semiconductor column, and then the SiO 2 is as shown in FIG. 1E.
  • the upper surface of the layer 23 is etched back so as to be the upper surface of the mask material layer 21, and an inter-element insulating region is formed.
  • the mask material layer 21 is etched by the RIE method to leave the mask material layer 21 on the side wall of the semiconductor column, and the mask material layer 7 at the top of the semiconductor column and the substrate are viewed in plan view. Exposing the surface.
  • an oxide film 100 (an example of the "first insulating layer” in the claims) is thermally or chemically formed on the surface of the substrate.
  • the mask material layer 21 is isotropically etched to remove the mask material layer 21 remaining on the side wall of the semiconductor column.
  • the HfO2 layer 24 (an example of the "gate insulating layer” in the claims), the TiN layer 26 (an example of the “gate conductor layer” in the claims), and the W layer 25 (an example of the "gate conductor layer” in the claims). It is an example of the "gate conductor layer” in the claims), and the entire surface is covered by the CMP method so that the upper surface position of the W layer 25 is the upper surface position of the mask material layer 7 existing on the semiconductor column. Grind. Then, as shown in FIG. 1I, the W layer 25 flattened by the RIE method is etched back so as to be separated from the top of the semiconductor column 6, and the exposed HfO 2 layer 24 and TiN layer 26 are isotropically etched. Remove with.
  • the gate conductor layer was patterned by etching the W layer 25 and the TiN layer 26 by the RIE method using the resist layer (not shown) formed by the lithography method as a mask, and then the whole was covered.
  • the interlayer insulating film 27 (which is an example of the "second insulating layer" in the patentable range) is coated, and as shown in FIG. Polish to become.
  • the top of the semiconductor column 6 exposed on the surface is etched by recess etching so that the surface of the top is recessed with respect to the surface of the interlayer insulating layer 27, and selective epitaxial crystal growth is performed as shown in FIG. 1K.
  • an N + layer 29 (an example of a “second impurity region” within the scope of the patent claim) containing a donor impurity is formed on the top of the exposed semiconductor column 6.
  • the entire layer is covered with the interlayer insulating film layer 30, and the layer is polished and flattened by the CMP method.
  • the interlayer insulating film layer 30 above the N + layer 29 is etched and removed by the RIE method.
  • the TiN layer (not shown) and the W layer 33 are coated so as to cover the whole, and as shown in FIG. 1L, the whole is polished by the CMP method so that the upper portion of the interlayer insulating film 30 is exposed. ..
  • the TiN layer (not shown) and the W layer 33 are coated before the SiO 2 layer 30, and at least a part of the N + layer 29 is covered by a lithography method and RIE (Reactive Ion Etching).
  • the SiO 2 layer 30 may be coated on the whole by the CVD method, and the whole may be polished by the CMP method until the surface of the W layer is exposed.
  • the entire surface is covered to form a SiO 2 layer 35 having a flat upper surface.
  • the source or drain wiring metal layer X1 is formed through the contact hole C1 formed on the N + layer 2.
  • the entire surface is covered to form a SiO 2 layer 37 having a flat upper surface.
  • the word wiring metal layer X2 is formed through the contact hole C2 formed on the W layer 25.
  • the entire is covered to form a SiO 2 layer 39 having a flat upper surface.
  • the source or drain wiring metal layer X3 is formed via the contact hole C3 formed on the W layer 33. This completes the creation of the SGT N-type transistor.
  • donor impurities are diffused by the thermal step after formation, and a donor impurity region is also formed inside the semiconductor column 6. .. Similarly, when each of these is formed as a P + layer, acceptor impurities are diffused, and an acceptor impurity region is also formed inside the semiconductor column 6.
  • the manufacturing method of the first embodiment it has the following features for the above problem.
  • Mask material layers 7 and 21 having oxidation resistance remain on the top and side walls of the gate insulating layer and the semiconductor column 6 before the formation of the gate electrode, and the other N + layer 2 surfaces are exposed in plan view.
  • the insulating film 100 can be selectively and controllably formed in the region provided by a thermal or chemical oxidation method, and the lower end of the gate electrode formed on the upper portion of the insulating film 100 can be selectively and controllably formed at a desired position. Can be formed.
  • 2. 2 In the present embodiment, an example in which the present invention is applied to an N-type transistor has been described, but by forming the N + layer 2 shown in FIG.
  • a P-type transistor can be formed. 3. 3. Further, since it is possible to easily create both an N-type transistor and a P-type transistor using the present invention, it can be used not only for Logic but also for memories such as SRAM and Flash. Further, in the present embodiment, a circular semiconductor column 6 is formed in a plan view. The shape of a part or all of the semiconductor column in a plan view can be easily formed as a circle, an ellipse, or a shape elongated in one direction. Further, even in the logic circuit region formed apart from the SRAM region, semiconductor columns having different planar views can be mixedly formed in the logic circuit region according to the logic circuit design. This makes it possible to realize a high-performance, low-power consumption microprocessor circuit.
  • FIG. 1A is a cross-sectional structure diagram along the X-X'line of FIG. 1G in the first embodiment
  • (c) is an enlarged view of a main part related to the present embodiment of (a)
  • (b) is the first embodiment
  • 1M is a cross-sectional structure view along the XX'line
  • FIG. 1D shows an enlarged view of a main part related to the present embodiment of FIG. 1B.
  • the upper end position g of the N + layer 2 and the upper end position of the HfO 2 layer 24, that is, the lower end position h of the gate electrode 25, and the position of g is not lower than h.
  • the film thickness f of the insulating film layer 100 is set.
  • This embodiment has the following features. 1.
  • the gate electrode W layer 25, the TiN layer 26, and the N + layer 2 are sufficiently overlapped in the vertical direction to suppress characteristic defects and variations. Can be done.
  • the insulating layer film 100 can be formed to be sufficiently thicker than the thickness of the gate insulating layer HfO2 layer 24, the parasitic capacitance between the substrate and the gate electrode is reduced, and the speed and power consumption of the product using this structure are reduced. Can contribute to.
  • FIG. 1A is a cross-sectional structure diagram along the XX'line of FIG. 1G in the first embodiment
  • (c) is an enlarged view of a main part related to the present embodiment of (a)
  • (b) is the first embodiment.
  • 1H is a cross-sectional structural view along the XX'line in a state where the gate insulator HfO 2 layer 24 is formed
  • FIG. 1D shows an enlarged view of a main part related to the present embodiment of FIG. 1B.
  • the lower portion of the semiconductor column 6 is formed.
  • the film thickness p of the mask material layer 21 remaining on the side wall of the first embodiment is substantially equal to the film thickness immediately after the formation of the mask material layer 21 in FIG. 1D of the first embodiment.
  • the remaining mask material layer 21 is removed by isotropic etching. At that time, a dent is generated between the lower portion of the semiconductor column 6 and the insulating layer 100, and the width of the dent is equal to the above p. ..
  • the gate insulating layer HfO 2 layer 24 is formed, and as shown in FIG. 3 (d), this recess is formed by the film thickness q of the gate insulating layer HfO 2 layer 24. It is desirable to set the film thickness p of the mask material layer 21 to be thinner than twice the film thickness q of the gate oxide film HfO 2 layer 24 in order to fill the above.
  • This embodiment has the following features. By filling the recess locally existing between the lower part of the semiconductor column 6 and the insulating film layer 100 with the gate oxide film HfO 2 layer 24, the gate electrode W layer 25 and the TiN layer 26 enter the recess and locally. It is possible to suppress an increase in the parasitic capacitance between the gate electrode and the semiconductor column, and it is possible to contribute to high speed and low power consumption of the product using this structure.
  • FIG. 4A and 4B show a state in which the fifth embodiment is carried out after the process of FIG. 1F in the first embodiment is completed
  • FIG. 4A is a plan view thereof
  • FIG. 4B is an XX'in FIG.
  • the cross-sectional structure diagram along the line, (c) shows the cross-sectional structure diagram along the YY'line of (a).
  • the mask material layer 21 is etched by the RIE method to leave the mask material layer 21 on the side wall of the semiconductor column, and the mask material layer 7 at the top of the semiconductor column and the substrate surface are exposed in a plan view. Then, oxygen ions, impurities that are the same conductive type as the impurity region of N + layer 2, or both are injected into the exposed substrate surface layer by an ion implantation method, and the impurity region layer 3 is formed. To form.
  • This embodiment has the following features.
  • injecting oxygen or an impurity which is the same conductive type into the surface of the substrate to be formed before thermally or chemically forming the oxide film 100 the oxide film growth rate is remarkably increased, and the oxide film growth rate is remarkably increased at a low temperature and in a short time.
  • An oxide film can be formed. Further, further effect can be obtained by oxidizing by the ozone thermal oxidation method. As a result, the diffusion of impurities due to heat can be suppressed, and characteristic variations and pressure resistance defects can be suppressed.
  • FIG. 5A and 5B show a state in which the fifth embodiment is carried out after the step shown in FIG. 1G in the first embodiment is completed, FIG. 5A is a plan view thereof, and FIG. 5B is an XX of FIG. 5A.
  • impurities which are the same conductive type as the impurity region of N + layer 2 are applied to the entire surface by an ion injection method.
  • the region under the insulating layer of No. 1 is injected with sufficient energy to be injected to form an impurity region 200.
  • This embodiment has the following features.
  • the impurity concentration of the N + layer 2 directly under the oxide film 100 becomes low, and the electric resistance becomes high.
  • an impurity having the same conductive type as the N + impurity region 2 is injected to compensate for the decrease in the impurity concentration and suppress the increase in electrical resistance.
  • the impurities may be injected through the mask material layer 7 also at the top of the semiconductor column 6, but an N + layer 29 containing donor impurities is formed at the top of the semiconductor column 6. Since the top of the semiconductor column 6 is removed by the recess etching, there is no effect.
  • FIGS. 6A and 6B A method for manufacturing an SGT, as an example, an N-type transistor according to the seventh and eighth embodiments will be described.
  • 6A and 6B (a) are plan views, (b) is a cross-sectional structure view along the XX'line of (a), and (c) is a cross-sectional structure along the YY'line of (a). The figure is shown.
  • the semiconductor layer 400 (an example of the “semiconductor layer” in the claims) is formed by selectively epitaxial growth on the exposed substrate surface. ..
  • the semiconductor layer 400 is thermally and chemically oxidized to form the insulating layer 100 as a whole.
  • an oxide film can be formed at a low temperature and in a short time.
  • the semiconductor layer 400 is a semiconductor layer doped with the same conductive type impurities as N + impurity region 2, the oxide film growth rate is further increased, and an oxide film is formed at a low temperature and in a short time. Can be filmed.
  • This embodiment has the following features. 1.
  • the upper end of the insulating film 100 which is the lower end position of the gate electrode, can be set at a position sufficiently higher than the upper end of the N + impurity region 2, and the transistor can be set.
  • the risk of becoming an offset structure which is one of the causes of significantly deteriorating the characteristics of the 2.
  • the oxidation rate of the semiconductor layer 400 is increased so that the N + impurity region 2 is hardly oxidized. Therefore, the impurity concentration in the N + impurity region 2 is not affected, and the transistor characteristics are not affected. It is possible to contribute to high speed and low power consumption of products using this structure without causing variation or deterioration of driving capacity.
  • FIG. 7 is a plan view
  • FIG. 8B is a cross-sectional structure diagram along the XX'line of FIG. 8A
  • FIG. 8C is a cross-sectional structure diagram along the YY'line of FIG. ..
  • the semiconductor layer 400 is entirely the same conductive type as the oxygen ion or the impurity region of the N + layer 2. Impurities, or both, are implanted by ion implantation, or by ion implantation, with energy that remains in the semiconductor layer 400 film.
  • This embodiment has the following features. 1. 1. By implanting oxygen ions and at least one of impurities having the same conductive type as the impurity region of N + layer 2 into the semiconductor layer 400, the semiconductor layer 400 can be oxidized at a low temperature and in a short time. I can do it. Further, further effect can be obtained by oxidizing by the ozone thermal oxidation method. As a result, the diffusion of impurities due to heat can be suppressed, and characteristic variations and pressure resistance defects can be suppressed. 2. 2. By injecting oxygen ions and at least one of impurities having the same conductive type as the impurity region of N + layer 2 into the semiconductor layer 400, the oxide film growth rate of the semiconductor layer 400 can be adjusted to the N + impurity region 2.
  • the impurity concentration in the N + impurity region 2 is not affected, and the transistor characteristics do not vary or the drive capacity is not deteriorated. It can contribute to high speed and low power consumption of products using the structure.
  • FIG. 8A shows a plan view
  • FIG. 8B shows a cross-sectional structure diagram along the XX'line of FIG. 8A
  • FIG. 8C shows a cross-sectional structure diagram along the YY'line of FIG. 8A.
  • the semiconductor layer 400 selectively epitaxially grown is thermally oxidized, as shown in FIG. 8, the entire semiconductor layer 400 is oxidized under the condition of changing to the insulating film 100. As a result, the film thickness of the semiconductor layer 400 is set so that the film thickness of the insulating film 100 becomes a desired film thickness.
  • This embodiment has the following features. By utilizing the fact that the oxide film growth rates of the semiconductor layer 400 and the N + impurity region 2 are different, only the semiconductor layer 400 can be oxidized to form the insulating film 100, and as a result, the film thickness of the insulating film 100 can be formed with good controllability. Can be done. This makes it possible to further suppress variations in transistor characteristics.
  • FIGS. 9A, 9B, 9C (a) is a plan view, (b) is a cross-sectional structural view along the XX'line of (a), and (c) is the YY'line of (a). A cross-sectional structure diagram along the line is shown.
  • FIG. 9A corresponds to FIG. 1J in the first embodiment.
  • the entire surface is covered with the interlayer insulating film 27, and the entire surface is formed by the CMP method, and the upper surface position thereof is the SiN mask material layer. Polish so that it is in the upper surface position of 7.
  • the SiN mask material layer 7 is used as a stopper for polishing by the CMP method, the film thickness for forming the SiN mask material layer 7 is set in FIG. 1A.
  • FIG. 9B the remaining SiN mask material layer 7 is removed by isotropic etching.
  • FIG. 9A corresponds to FIG. 1J in the first embodiment.
  • an N + layer 29 containing a donor impurity is formed on the top of the exposed semiconductor column 6 by the selective epitaxial crystal growth method.
  • the SiN mask material layer 7 is used not only as a mask material layer for forming the semiconductor column 6 but also as a film for determining the formation position of the impurity N + layer 29 at the top of the semiconductor column 6. Therefore, in FIG. 1A, when the SiN mask material layer 7 is formed into a film, the film thickness is set as a thickness sufficient to function as a stopper for polishing by the CMP method in FIG. 9A.
  • This embodiment has the following features.
  • the SiN mask material layer 7 not only as a mask material layer for forming the semiconductor column 6 but also as a stopper when polishing the interlayer insulating film 27 by the CMP method, an impurity N + layer on the top of the semiconductor column 6 is used.
  • the variation in the formation position of the 29 is suppressed, and as a result, the variation in the length of the semiconductor column 6 corresponding to the channel length of the SGT is suppressed. This makes it possible to suppress variations in transistor characteristics.
  • the eleventh embodiment instead of carrying out the steps of FIGS. 1I to 1K in the first embodiment, it is possible to suppress variations in both the gate length and the channel length of the SGT. Become. That is, in the first embodiment, as described above, the variation in the position of the lower end of the gate electrode can be suppressed to suppress the variation in the gate length, and in the eleventh embodiment, the semiconductor column corresponding to the channel length can be suppressed. By suppressing the variation in the position of the top of No. 6, the variation in the channel length can be suppressed.
  • FIG. (A) is a cross-sectional structure diagram along the XX'line of FIG. 9A in the twelfth embodiment
  • (c) is an enlarged view of a main part related to the present embodiment of (a)
  • (b) is the first embodiment
  • 1M is a cross-sectional structure view along the XX'line
  • FIG. 1D shows an enlarged view of a main part related to the present embodiment of FIG. 1B.
  • the lower end position m of the impurity region 29, the lower end of the insulating film layer 27, that is, the upper end position n of the gate electrode 25, and the position of n is not lower than m.
  • the film thickness j of the mask material layer 7 existing on the semiconductor column 6 is the gate electrode W layer 25 and the TiN layer. 26 is set to be larger than the film thickness k to be etched.
  • This embodiment has the following features. 1.
  • the film thickness of the interlayer insulating film 27 on the gate electrode which is determined by the film thickness j of the mask material layer 7 and the film thickness k for etching the gate electrode, is formed to be sufficiently thicker than the film thickness of the insulating layer HfO2 layer 24. Therefore, the parasitic capacitance between the impurity region N + layer 29 and the gate electrode 25 is reduced, which can contribute to high speed and low power consumption of the product using this structure.
  • FIGS. 11A and 11B are plan views, (b) is a cross-sectional structure view along the XX'line of (a), and (c) is a cross-sectional structure along the YY'line of (a). The figure is shown.
  • FIG. 11A corresponds to FIG. 1A in the first embodiment, in which the i-layer 6 is formed on the substrate and is, for example, an example of the mask material layer 300 of SiO 2 (“third mask material layer” in the scope of patent claims. Yes), the mask material layer 7 of SiN, the mask semiconductor layer 8 of silicon germanium (SiGe), and the mask semiconductor layer 9 of SiO 2 are sequentially deposited.
  • the mask semiconductor layer of the silicon germanium (SiGe) layer 8 and the SiO 2 layer 9 is used as a mask, and the mask of the SiN layer 7 and the SiO 2 layer 300 is used as a mask.
  • the material layer and the i-layer 6 are formed by RIE, and the SiGe layer 8 and the SiO 2 layer 9 remaining on the SiN layer 7 are removed.
  • the process damage to the top of the semiconductor column 6 is caused by forming the mask material layer 300 (for example, Si0 2 layer) between the semiconductor column 6 and the mask material layer 7 (for example, SiN layer). After that, when the N + layer 29 containing the donor impurities is formed on the top of the semiconductor column 6 by the epitaxial crystal growth method, the crystal growth is hindered by the damage of the top of the semiconductor column 6. Can be suppressed.
  • the mask material layer 300 for example, Si0 2 layer
  • the mask material layer 7 for example, SiN layer
  • FIG. 12 (a) corresponds to FIG. 1I in the first embodiment when the 14th embodiment is applied
  • FIG. 12 (c) is a cross-sectional structure diagram along the XX'line
  • FIG. 12 (c) is the present embodiment of (a).
  • An enlarged view of the main part related to the present embodiment, (b) corresponds to FIG. 1M in the first embodiment, and a cross-sectional structural view along the X-X'line
  • (d) is the main part related to the present embodiment of (b). An enlarged view is shown.
  • the lower end position t of the impurity region 29, the lower end position of the insulating film layer 27, that is, the upper end position u of the gate electrode 25, and u In the step of etching back the gate electrode 25 of FIG. 12 (a) by the RIE method so that the position does not become lower than t, as shown by (c), the mask material layer 300 existing on the semiconductor column 6
  • the total film thickness r of the mask material layer 7 is set to be larger than the film thickness s for etching the gate electrode W layer 25 and the TiN layer (not shown).
  • This embodiment has the following features.
  • the features of the thirteenth embodiment as shown in FIG. 12, by appropriately setting the film thicknesses of the mask material layers 300 and 7, the gate electrode W layer 25, the TiN layer (not shown), and the impurities N +
  • the layers 29 are sufficiently overlapped in the vertical direction, and an electrical short circuit between the gate electrode and the impurity N + layer 29 can be suppressed, so that characteristic defects and variations can be suppressed.
  • one SGT is formed on one semiconductor column, but the present invention can also be applied to the formation of a circuit in which two or more SGTs are formed.
  • the SGT described in the present invention is the SGT at the bottom of the semiconductor column.
  • the semiconductor pillar is formed of Si, but the semiconductor pillar may be made of another semiconductor material. This also applies to the other embodiments according to the present invention.
  • the N + layer 2 at the lower part of the semiconductor column and the N + layer 29 at the top of the semiconductor column may be formed of P + layer Si containing acceptor impurities or another semiconductor material layer. This also applies to the other embodiments according to the present invention.
  • the N + layer 29 was formed by using the selective epitaxial crystal growth method, but by CDE (Chemical Dry Etching) and normal epitaxial crystal growth, N + was formed on the top of the semiconductor column 6.
  • N + layer 2 may be formed by other methods including the method of forming the layer 29. This also applies to the other embodiments according to the present invention.
  • the mask material layer 7 at the top of the semiconductor column 6 and the mask material layer 21 at the outer periphery are an organic material or an inorganic material composed of a single layer or a plurality of layers as long as the material meets the object of the present invention.
  • Other material layers containing the material may be used. This also applies to the other embodiments according to the present invention.
  • the SiN layer 7, the silicon germanium (SiGe) layer 8 and the SiO 2 layer 9 are used as the mask material layer and the mask semiconductor layer, but any material suitable for the object of the present invention can be used.
  • Other material layers including organic or inorganic materials consisting of a single layer or a plurality of layers may be used. This also applies to the other embodiments according to the present invention.
  • the materials of the various wiring metal layers X1, X2, and X3 in the first embodiment may be not only a metal but also a conductive material layer such as an alloy, an acceptor, or a semiconductor layer containing a large amount of donor impurities. Then, they may be configured as a single layer or a combination of a plurality of layers. This also applies to the other embodiments according to the present invention.
  • the TiN layer 26 was used as the gate metal layer.
  • a material layer composed of a single layer or a plurality of layers can be used as long as it is a material that meets the object of the present invention.
  • the TiN layer 26 can be formed from a conductor layer such as a single layer or a plurality of metal layers having at least a desired work function.
  • the W layer is used on the outside thereof and plays the role of a metal wiring layer, but a single layer other than the W layer or a plurality of metal layers may be used.
  • the HfO2 layer 24 is used as the gate insulating layer, another material layer composed of a single layer or a plurality of layers may be used for each. This also applies to the other embodiments according to the present invention.
  • the shape of the semiconductor column 6 in a plan view was a circular shape.
  • the shape of a part or all of the semiconductor pillar 6 in a plan view can be easily formed as a circle, an ellipse, or a shape elongated in one direction. This also applies to the other embodiments of the present invention.
  • the N + layer 2 was formed by connecting to the bottom of the semiconductor column 6.
  • An alloy layer such as metal or silicide may be formed on the upper surface of the N + layer 2. This also applies when a P + layer is formed instead of the N + layer.
  • the SGT is formed on the P layer substrate 1, but an SOI (Silicon On Insulator) substrate may be used instead of the P layer substrate 1.
  • SOI Silicon On Insulator
  • another material substrate may be used as long as it serves as a substrate. This also applies to the other embodiments according to the present invention.
  • the SGT constituting the source and the drain by using the N + layer 2 and the N + layer 29 having the same polarity of conductivity above and below the semiconductor column 6 has been described, but the polarities are different.
  • the present invention can also be applied to a tunnel type SGT having a source and a drain. This also applies to the other embodiments according to the present invention.
  • the gate HfO2 layer 24 and the gate TiN layer 26 were formed, and then the N + layer 29 was formed.
  • the gate HfO2 layer 24 and the gate TiN layer 26 may be formed. This also applies to the other embodiments according to the present invention.
  • a semiconductor column is used as a channel, and a plurality of memory cells composed of a tunnel oxide layer, a charge storage layer, an interlayer insulating layer, and a control conductor layer surrounding the semiconductor column are vertically arranged. Formed in the direction.
  • the semiconductor columns at both ends of these memory cells have a source line impurity layer corresponding to the source and a bit line impurity layer corresponding to the drain. Further, for one memory cell, if one of the memory cells on both sides thereof is a source, the other serves as a drain.
  • the vertical NAND flash memory circuit is one of the SGT circuits. Therefore, the present invention can also be applied to a mixed circuit with a NAND flash memory circuit.
  • magnetic memory circuits and ferroelectric memory circuits it can also be applied to inverters and logic circuits used inside and outside the memory cell area.
  • the present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an embodiment of the present invention, and does not limit the scope of the present invention. The above-mentioned embodiment and modification can be arbitrarily combined. Further, even if a part of the constituent requirements of the above embodiment is removed as necessary, it is within the scope of the technical idea of the present invention.
  • h Upper end position (height) of HfO 2 layer 24 or lower end position (height) of gate electrode 25
  • j Film thickness of SiN mask material layer 7 k
  • s Etching film thickness of gate electrode W layer 25 and TiN layer 26 m
  • t Lower end position (height) of N + layer 29 on the upper part of semiconductor column 6 n
  • u Lower end position (height) of SiO 2 layer 27 or upper end position (height) of gate electrode 25 and TiN layer 26
  • p Film thickness of SiN mask material layer 21
  • q Film thickness of HfO 2 layer 24
  • r Total film thickness of SiN mask material layer 7 and SiO 2 mask material layer 300

Abstract

半導体柱を囲むゲート導体層の形成方法において、耐酸化性をもつ第2及び第1のマスク材料層を各々半導体柱頂部と半導体柱側壁に形成し、全体に、熱的又は化学的に酸化を施し、露出した第1の不純物領域表面に第1の絶縁層を形成し、次に前記第1のマスク材料層を除去し、前記第1の絶縁層上部にゲート導体層を形成する。

Description

柱状半導体装置とその製造方法
 本発明は、柱状半導体装置とその製造方法に関する。
 近年、LSI(Large Scale Integration)に3次元構造トランジスタが使われている。その中で、柱状半導体装置であるSGT(Surrounding Gate Transistor)は、高集積な半導体装置を提供する半導体素子として注目されている。また、SGTを有する半導体装置の更なる高集積化、高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。
 図13に、NチャネルSGTの模式構造図を示す。P型又はi型(真性型)の導電型を有するSi柱220(以下、シリコン半導体柱を「Si柱」と称する。)内の上下の位置に、一方がソースとなる場合に、他方がドレインとなるN+層221a、221b(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)が形成されている。このソース、ドレインとなるN+層221a、221b間のSi柱220の部分がチャネル領域222となる。このチャネル領域222を囲むようにゲート絶縁層223が形成されている。このゲート絶縁層223を囲むようにゲート導体層224が形成されている。SGTでは、ソース、ドレインとなるN+層221a、221b、チャネル領域222、ゲート絶縁層223、ゲート導体層224が、全体として柱状に形成される。このため、平面視において、SGTの占有面積は、プレナー型MOSトランジスタの単一のソース又はドレインN+層の占有面積に相当する。そのため、SGTを有する回路チップは、プレナー型MOSトランジスタを有する回路チップと比較して、更なるチップサイズの縮小化が実現できる。加えて、SGTの駆動能力を向上することが出来れば1チップに使用するSGT数を減らすことが出来、同じくチップサイズの縮小化に寄与する。
 但し、前述したように高集積化に有利な縦型構造のSGTであるが故の課題も存在する。従来のプレナー型構造のトランジスタにおいては、そのゲート長及び実効チャネル長は、主にフォトリソグラフィーの精度により定められているが、SGTにおいては、主に成膜ばらつき、エッチングやCMPの加工精度により定められる。
 フォトリソグラフィーの精度は、近年の露光装置やレジスト剤の進歩によりナノオーダーレベルの精度が得られるようになってきているが、一方、成膜、エッチングやCMPについて、特に厚膜の材料層を成膜し加工する場合、成膜の膜厚、エッチング量やCMP研磨量をナノオーダーレベルで加工する精度までには至っていない。このため、SGTにおいては、ゲート長及び実効チャネル長のバラツキを如何に低減するかが大きな課題となっている。
 図14に、SRAMセル(Static Random Access Memory)回路図を示す。本SRAMセル回路は2個のインバータ回路を含んでいる。1つのインバータ回路は負荷トランジスタとしてのPチャネルSGT_Pc1と、駆動トランジスタとしてのNチャネルSGT_Nc1と、から構成されている。もう1つのインバータ回路は負荷トランジスタとしてのPチャネルSGT_Pc2と、駆動トランジスタとしてのNチャネルSGT_Nc2と、から構成されている。PチャネルSGT_Pc1のゲートとNチャネルSGT_Nc1のゲートが接続されている。PチャネルSGT_Pc2のドレインとNチャネルSGT_Nc2のドレインが接続されている。PチャネルSGT_Pc2のゲートとNチャネルSGT_Nc2のゲートが接続されている。PチャネルSGT_Pc1のドレインとNチャネルSGT_Nc1のドレインが接続されている。
 図14に示すように、PチャネルSGT_Pc1、Pc2のソースは電源端子Vddに接続されている。そして、NチャネルSGT_Nc1、Nc2のソースはグランド端子Vssに接続されている。選択NチャネルSGT_SN1、SN2が2つのインバータ回路の両側に配置されている。選択NチャネルSGT_SN1、SN2のゲートはワード線端子WLtに接続されている。選択NチャネルSGT_SN1のソース、ドレインはNチャネルSGT_Nc1、PチャネルSGT_Pc1のドレインとビット線端子BLtに接続されている。選択NチャネルSGT_SN2のソース、ドレインはNチャネルSGT_Nc2、PチャネルSGT_Pc2のドレインと反転ビット線端子BLRtに接続されている。このようにSRAMセルを有する回路は、2個のPチャネルSGT_Pc1、Pc2と、4個のNチャネルSGT_Nc1、Nc2、SN1、SN2とからなる合計6個のSGTから構成されている(例えば、特許文献2を参照)。また、駆動用トランジスタを複数個、並列接続させて、SRAM回路の高速化を図れる。通常、SRAMのメモリセルを構成するSGTは、それぞれ、異なる半導体柱に形成されている。SRAMセル回路の安定動作や高品質化に必要な重要な要素は、個々のSGTの動作バラツキや動作不良を抑制することである。これは、SGTを用いた他の回路形成においても同様である。
特開平2-188966号公報 米国特許出願公開第2010/0219483号明細書 米国登録US8530960B2号明細書
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) C.Y.Ting,V.J.Vivalda,and H.G.Schaefer:"Study of planarized sputter-deposited SiO2",J.Vac.Sci. Technol. 15(3),p.p.1105-1112,May/June (1978) A.Raley, S.Thibaut, N. Mohanty, K. Subhadeep, S. Nakamura, etal. : " Self-aligned quadruple patterning integration using spacer on spacer pitch splitting at the resist level for sub-32nm pitch applications" Proc. Of SPIE Vol.9782, 2016
 SGTを用いた回路において、ゲート長及び実効チャネル長がばらつくことにより、特性バラツキや動作不良が発生する。
 本発明の観点に係る柱状半導体装置の製造方法は、
 基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
を有した柱状半導体装置の製造において、
 前記基板の表面上に、ドナーまたはアクセプタ不純物を含んだ前記第1の不純物領域を形成する工程と、
 前記第1の不純物領域上に前記半導体柱を形成する工程と、
 全面を覆って、第1のマスク材料層を被覆する工程と、
 前記第1のマスク材料層を異方性エッチングにより、前記半導体柱の側壁に前記第1のマスク材料層を残存させると共に、前記第1の不純物領域表面を露出する工程と、
 全体に、熱的又は化学的に酸化を施し、露出した前記第1の不純物領域の表面に第1の絶縁層を形成する工程と、
 前記半導体柱の側壁に残存している前記第1のマスク材料層を等方性エッチングにより除去する工程と、
 前記半導体柱を取り囲む前記ゲート絶縁層とさらにその前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
 前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
 を有する、
 ことを特徴とする。
 前記製造方法において、
 前記第1の絶縁層の膜厚が、前記ゲート絶縁層の膜厚より厚く、且つ、前記ゲート導体層の下端の位置が、前記半導体柱内の前記第1の不純物領域の上端位置と同じ位置か、若しくは低く位置するように、前記第1の絶縁層の膜厚が設定されていることが望ましい。
 前記製造方法において、
 前記第1のマスク材料層の膜厚が、前記ゲート絶縁層の膜厚の2倍の膜厚より小さいことが望ましい。
 前記製造方法において、
 前記第1のマスク材料層を異方性エッチング後に、全体に、酸素イオン、及び、前記第1の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入法にて、露出した前記第1の不純物領域表面に注入する工程を更に含むことが望ましい。
 前記製造方法において、
 前記第1の絶縁層を形成後、全体に、第1の不純物領域と同じ導電型である不純物を、イオン注入法にて、前記第1の絶縁層下の領域に十分に注入可能なエネルギーで注入することが望ましい。
 前記製造方法において、
 前記第1のマスク材料層を異方性エッチング後、露出した前記基板表面に選択的にエピタキシャル成長にて、半導体層を形成する工程を更に含み、
 前記第1の絶縁層を形成する工程は、全体に、熱的又は化学的に前記半導体層を酸化することにより、露出した前記基板表面に前記第1の絶縁層を形成することが望ましい。
 前記製造方法において、
 前記半導体層の熱的又は化学的な酸化の酸化膜成長速度が、前記第1の不純物領域の熱的又は化学的な酸化の酸化膜成長速度より大きいことが望ましい。
 前記製造方法において、
 前記半導体層は、エピタキシャル成長時に、前記第1の不純物領域と同じ導電型の不純物がドーピングされていることが望ましい。
 前記製造方法において、
 前記半導体層を形成後、全体に、酸素イオン、及び、前記第1の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入法にて、前記半導体層に注入することが望ましい。
 前記製造方法において、
 前記半導体層を形成後、該半導体層の全てを酸化膜に変えるような、熱的又は化学的に酸化を施すことで、所望の膜厚の前記第1の絶縁膜を形成することが出来るよう、前記半導体層の膜厚が設定されていることが望ましい。
 本発明の別の観点に係る柱状半導体装置の製造方法は、
 基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
 を有した柱状半導体装置の製造において、
 前記第1の不純物領域の上に前記半導体柱とその頂部に第2のマスク材料層を形成する工程と、
 前記半導体柱を取り囲む前記ゲート絶縁層を形成する工程と、
 前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
 全面を覆って、前記第2のマスク材料層の表面の高さより大きい膜厚で第2の絶縁層を被覆する工程と、
 前記第2のマスク材料層の表面が露出するように前記第2の絶縁層を研磨し平坦化する工程と、
 露出された前記第2のマスク材料層を除去し、前記半導体柱の頂部を露出させる工程と、
 露出した前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
 を有する、
 ことを特徴とする。
 前記製造方法において、
 前記ゲート導体層の上端の位置が、前記第2のマスク材料層の下端位置と同じ位置か、若しくは高く位置するように、前記第2のマスク材料層の膜厚が設定されていることが望ましい。
 前記製造方法において、
 前記半導体柱の頂部に第3のマスク材料層と、その上部に前記第2のマスク材料層を形成することが望ましい。
 前記製造方法において、
 前記第3のマスク材料層の下端が、前記ゲート導体層の上端位置と同じ位置か、若しくは低く位置するように、前記第1及び第3のマスク材料層の膜厚が設定されていることが望ましい。
 本発明の更なる別の観点に係る柱状半導体装置の製造方法は、
 基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
 を有した柱状半導体装置の製造において、
 前記基板の表面上に、ドナーまたはアクセプタ不純物を含んだ前記第1の不純物領域を形成する工程と、
 前記第1の不純物領域上に前記半導体柱とその頂部に第2のマスク材料層を形成する工程と、
 全面を覆って、第1のマスク材料層を被覆する工程と、
 前記第1のマスク材料層を異方性エッチングにより、前記半導体柱の側壁に前記第1のマスク材料層を残存させ、且つ、平面視において、前記半導体柱の頂部に前記第2のマスク材料層を残存させるとともに、前記半導体柱以外の領域に前記第1の不純物領域表面を露出する工程と、
 全体に、熱的又は化学的に酸化を施し、露出した前記第1の不純物領域表面に第1の絶縁層を形成する工程と、
 前記半導体柱の側壁に残存している前記第1のマスク材料層を等方性エッチングにより除去する工程と、
 前記半導体柱を取り囲む前記ゲート絶縁層とさらにその前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
 全面を覆って、前記半導体柱の高さより大きい膜厚で第2の絶縁膜を被覆する工程と、
 前記半導体柱頂部の前記第2のマスク材料層が露出するように前記第2の絶縁膜を研磨し平坦化する工程と、
 露出された前記第2のマスク材料層を除去し、前記半導体柱の頂部を露出させる工程と、
 露出した前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
 を有する、
 ことを特徴とする。
第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 第1実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第2実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための断面構造図と主要部拡大図である。 本発明の第3実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための断面構造図と主要部拡大図である。 本発明の第4実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための断面構造図である。 本発明の第5実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第6、第7及び第8実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第6、第7及び第8実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第9実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第10実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第11実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第11実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第11実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第12実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための断面構造図と主要部拡大図である。 本発明の第13実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第13実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための平面図と断面構造図である。 本発明の第14実施形態に係るSGTを有する柱状半導体装置の製造方法を説明するための断面構造図と主要部拡大図である。 従来例のSGTを示す模式構造図である。 従来例のSGTを用いたSRAMセル回路図である。
 以下、本発明の実施形態に係る、柱状半導体装置の製造方法について、図面を参照しながら説明する。
 (第1実施形態)
 以下、図1A~図1Mを参照しながら、本発明の第1実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。(a)は平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 P層1(特許請求範囲の「基板」の一例である)上にN+層2(特許請求範囲の「第1の不純物領域」の一例である)とi層6(特許請求範囲の「半導体柱」一例である)とをエピタキシャル結晶成長法により形成し、そして、図1Aに示すように、例えば、SiNのマスク材料層7(特許請求範囲の「第2のマスク材料層」の一例である)、シリコンゲルマニウム(SiGe)のマスク半導体層8、SiO2のマスク半導体層9を順次堆積する。なお、i層6はドナーまたはアクセプタ不純物原子を少量に含むN型、またはP型のSiで形成されてもよい。
 次に、リソグラフィ法により形成した平面視において円状若しくは長方形状のレジスト層(図示せず)をマスクにして、マスク半導体層9をエッチングする。そして、円状若しくは長方形状のSiO2マスク半導体層9をエッチングマスクにして、例えばRIE(Reactive Ion Etching)によりエッチングして、円状若しくは長方形状のマスク半導体層9を形成する。次に、円状若しくは長方形状のマスク半導体層9をマスクにして、SiGeのマスク半導体層8を、例えばRIE法によりエッチングすることにより、図1Bに示すように、円状若しくは長方形状のSiGeマスク半導体層8を形成する。前述の円状若しくは長方形状のSiO2マスク半導体層9は、SiGeマスク半導体層8のエッチングの前に除去してもよく、または残存させていてもよい。
 次に、前述のSiO2マスク半導体層9とSiGeマスク半導体層8をエッチングマスクにして、例えばRIEにより、順次エッチングして、図1Cに示すように、円状若しくは長方形状のマスク材料層7及びi層6を形成し、マスク材料層7上に残存するマスク半導体層9とSiGe層8を除去する。この際、このSiO2マスク半導体層9とSiGeマスク半導体層8は、除去せずにそのまま残存させておいてもよい。
 次に、図1Dに示すように、全体を覆って、耐酸化性をもつマスク材料層21(特許請求範囲の「第1のマスク材料層」の一例である)、例えばSiN層をALD法にて形成する。
 次に、リソグラフィ法により形成したレジスト層(図示せず)をマスクにして、トランジスタの動作領域と絶縁領域をパターニングし、レジスト開口部となっている絶縁領域に存在するマスク材料層21と基板をRIE法にてエッチングする。次に、フォトレジストを除去した後に、全体を覆って、FCVD法により少なくとも前記エッチング深さより厚いSiO2層23を形成する。次に、CMP法により全体を、SiO2層23の上面位置が、半導体柱上に存在するマスク材料層7の上面位置になるように研磨し、次に、図1Eに示すように、SiO2層23の上面位置が、マスク材料層21の上面位置になるようにエッチバックし、素子間絶縁領域を形成する。
 次に、図1Fに示すように、マスク材料層21をRIE法にてエッチングし、半導体柱の側壁にマスク材料層21を残存させるとともに、平面視において、半導体柱頂部のマスク材料層7と基板表面を露出する。
 次に、図1Gに示すように、基板表面に熱的若しくは化学的に酸化膜100(特許請求範囲の「第1の絶縁層」の一例である)を形成する。
 次に、図1Hに示すように、マスク材料層21を等方性エッチングし、半導体柱の側壁に残存するマスク材料層21を除去する。
 次に、全体を覆って、HfO2層24(特許請求範囲の「ゲート絶縁層」の一例である)、TiN層26(特許請求範囲の「ゲート導体層」の一例である)、W層25(特許請求範囲の「ゲート導体層」の一例である)を被覆し、CMP法により全体を、そのW層25の上面位置が、半導体柱上に存在するマスク材料層7の上面位置になるように研磨する。そして、図1Iに示すように、RIE法により平坦化したW層25を半導体柱6の頂上から離間するようにエッチバックし、その際露出したHfO2層24、TiN層26を等方性エッチングにて除去する。
 次に、リソグラフィ法により形成したレジスト層(図示せず)をマスクにして、RIE法により、W層25とTiN層26をエッチングすることで、ゲート導体層をパターニングし、次に、全体を覆って、層間絶縁膜27(特許請求範囲の「第2の絶縁層」の一例である)を被覆し、図1Jに示すように、CMP法により全体を、その上面位置が、半導体柱の上面位置になるように研磨する。
 次に、平面視において、表面に露出している半導体柱6の頂部をリセスエッチングにより、その頂部表面が層間絶縁層27表面に対し窪むようエッチングし、図1Kに示すように、選択エピタキシャル結晶成長法により、露出している半導体柱6頂部に、ドナー不純物を含んだN+層29(特許請求範囲の「第2の不純物領域」の一例である)を形成する。
 次に、全体を覆って、層間絶縁膜層30を被覆し、CMP法により研磨平坦化する。次に、リソグラフィ法により形成したレジスト層(図示せず)をマスクにして、RIE法により、N+層29上部の層間絶縁膜層30をエッチングし、除去する。次に、全体を覆うように、TiN層(図示せず)、W層33、を被覆し、図1Lに示すように、CMP法により全体を、層間絶縁膜30上部が露出するように研磨する。
 尚、本工程は、SiO2層30より先にTiN層(図示せず)、W層33、を被覆し、リソグラフィ法と、RIE(Reactive Ion Etching)により、N+層29の少なくとも一部にコンタクトするように、TiN層、W層を残存させた後に、CVD法により全体に、SiO2層30を被覆し、CMP法により全体を、W層表面が露出するまで研磨する方法でもよい。
 次に、全体を覆って、上表面が平坦なSiO2層35を形成する。そして、N+層2上に形成したコンタクトホールC1を介して、ソース若しくはドレイン配線金属層X1を形成する。次に、全体を覆って、上表面が平坦なSiO2層37を形成する。そして、W層25上に形成したコンタクトホールC2を介して、ワード配線金属層X2を形成する。次に、全体を覆って、上表面が平坦なSiO2層39を形成する。そして、図1Mに示すように、W層33上に形成したコンタクトホールC3を介して、ソース若しくはドレイン配線金属層X3を形成する。
 以上により、SGTのN型トランジスタの作成が完了する。
 なお、図1Eで示したN+層2、図1Kで示したN+層29は、形成後の熱工程により、ドナー不純物が拡散し、半導体柱6の内部にもドナー不純物領域が形成される。これは、各々、P+層として形成した場合も同様に、アクセプタ不純物が拡散し、半導体柱6の内部にもアクセプタ不純物領域が形成される。
 SGTを使用する回路で高速化や低消費電力化を図る際、トランジスタのチャネル長の縮小やゲートと基板間の容量といった寄生容量の低減化が実施される。これらを両立しようとすると、以下の課題が発生する。
課題1.
 トランジスタのチャネル長を縮小すると、ショートチャネル効果が顕著になり、チャネル長ばらつきによるトランジスタ特性のばらつきやトランジスタ耐圧低下を引き起こす。
課題2.
 SGT構造において、ゲートと基板間の寄生容量を低減する場合、ゲート電極直下の基板との間にある絶縁膜を厚く形成すればよいが、その形成方法によってゲート長ばらつきが発生し、動作不良を引き起こす。
 第1実施形態の製造方法によれば、上記問題に対し以下のような特徴をもつ。
1.ゲート絶縁層やゲート電極形成前の半導体柱6の頂部及び側壁に、それぞれに耐酸化性を持つマスク材料層7と21を残存し、平面視において、それ以外のN+層2表面が露出している領域に、熱的若しくは化学的な酸化方法により、選択的に且つ制御性良く絶縁膜100を成膜することが出来、その上部に形成するゲート電極の下端が所望の位置にばらつくことなく形成できる。
2.本実施形態では、本発明をN型トランジスタに適用した例について説明したが、図1Aで示したN+層2、図1K以降で示したN+層29をP+層で形成することにより、P型トランジスタを形成することができる。
3.また、本発明を用いてN型トランジスタとP型トランジスタ両方を容易に作成することが可能であるため、Logicはもとより、SRAMやFlashといったメモリにも使用することが可能である。更に、本実施形態では、平面視において、円形状の半導体柱6を形成した。本半導体柱の一部または全ての平面視における形状は、円形、楕円、一方方向に長く伸びた形状などの形状が容易に形成できる。そして、SRAM領域から離れて形成されるロジック回路領域においても、ロジック回路設計に応じて、ロジック回路領域に、平面視形状の異なる半導体柱が混在して形成することができる。これにより、高性能、低消費電力のマイクロプロセッサ回路が実現できる。
 (第2実施形態)
 以下、図2を参照しながら、本発明の第2実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。(a)は第1実施形態における図1GのX-X’線に沿う断面構造図、(c)は(a)の本実施形態に関わる主要部の拡大図、(b)は第1実施形態における図1MのX-X’線に沿う断面構造図、(d)は(b)の本実施形態に関わる主要部の拡大図を示す。
 図2(d)が示すように、N+層2の上端位置g、HfO2層24の上端すなわちゲート電極25の下端位置hであり、gの位置がhより低くならないように、図2(a)の絶縁膜層100を形成する際、(c)が示すように、絶縁膜層100の膜厚fを設定する。
 本実施形態は以下のような特徴をもつ。
1.図2に示すように、絶縁層膜100の膜厚を適切に設定することにより、ゲート電極W層25とTiN層26とN+層2が垂直方向に十分に重なり、特性不良やバラツキを抑制することが出来る。
2.加えて、ゲート絶縁層HfO2層24の膜厚より十分厚く絶縁層膜100を形成できるため、基板とゲート電極間の寄生容量が低減され、本構造を使用した製品の高速化、低消費電力化に寄与することが出来る。
 (第3実施形態)
 以下、図3を参照しながら、本発明の第3実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。(a)は第1実施形態における図1GのX-X’線に沿う断面構造図、(c)は(a)の本実施形態に関わる主要部の拡大図、(b)は第1実施形態における図1Hを経て、ゲート絶縁体HfO2層24を形成した状態のX-X’線に沿う断面構造図、(d)は(b)の本実施形態に関わる主要部の拡大図を示す。
 図3(a)の半導体柱6の側壁に異方性エッチングにてマスク材料層21を残存させ、次に絶縁層100を形成する工程において、(c)に示すように、半導体柱6の下部の側壁に残存するマスク材料層21の膜厚pは、第1実施形態の図1Dのマスク材料層21形成直後の膜厚とほぼ等しい。次に、残存するマスク材料層21を等方性エッチングにより除去するが、その際、半導体柱6の下部と絶縁層100との間に窪みが発生し、その窪みの幅は、前記pと等しい。次に、図3(b)に示すように、ゲート絶縁層HfO2層24を形成するが、図3(d)に示すように、ゲート絶縁層HfO2層24の膜厚qで、この窪みを埋めるために、マスク材料層21の膜厚pをゲート酸化膜HfO2層24の膜厚qの2倍の膜厚より薄く設定することが望ましい。
 本実施形態は以下のような特徴をもつ。
 半導体柱6の下部と絶縁膜層100間に局所的に存在する窪みを、ゲート酸化膜HfO2層24で埋めることにより、ゲート電極W層25とTiN層26が、その窪みに入りこみ、局所的にゲート電極と半導体柱間の寄生容量が増えることを抑制することが出来、本構造を使用した製品の高速化、低消費電力化に寄与することが出来る。
 (第4実施形態)
 以下、図4を参照しながら、本発明の第4実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図4は、第1実施形態における図1Fの工程を完了後、第5実施形態を実施した状態を示しており、(a)はその平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 図4が示すように、マスク材料層21をRIE法にてエッチングし、半導体柱の側壁にマスク材料層21を残存させるとともに、平面視において、半導体柱頂部のマスク材料層7と基板表面を露出させ、全体に、酸素イオン、若しくは、N+層2の不純物領域と同じ導電型である不純物を、またはその両方を、イオン注入法にて、露出した前記基板表層に注入し、不純物領域層3を形成する。
 以降の工程は、第1実施例の図1G以降と同じである。
 本実施形態は以下のような特徴をもつ。
 熱的若しくは化学的に酸化膜100を形成する前に、形成する基板表面に、酸素や同じ導電型である不純物を注入することで、酸化膜成長速度が著しく大きくなり、低温で且つ短時間で酸化膜を成膜することが出来る。更に、オゾン熱酸化方法で酸化すれば尚一層の効果が得られる。これによって、熱による不純物拡散が抑制され、特性ばらつきや耐圧不良等を抑制することが出来る。
 (第5実施形態)
 以下、図5を参照しながら、本発明の第5実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図5は、第1実施形態における図1Gが示す工程を完了後、第5実施形態を実施した状態を示しており、(a)はその平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 図5が示すように、基板表面に熱的若しくは化学的に酸化膜100を形成後、N+層2の不純物領域と同じ導電型である不純物を、全体に、イオン注入法にて、前記第1の絶縁層下の領域に十分に注入可能なエネルギーで注入し、不純物領域200を形成する。
 以降の工程は、第1実施例の図1H以降と同じである。
 本実施形態は以下のような特徴をもつ。
 基板表面に熱的若しくは化学的に酸化膜100を形成する際、その酸化膜100直下のN+層2の不純物濃度が低くなり、電気抵抗が高くなってしまう。これを防ぐために、絶縁層100を形成後、N+不純物領域2と同じ導電型である不純物を注入することで、不純物濃度の低下を補い、電気抵抗の増加を抑制する。この際、半導体柱6の頂部にも、マスク材料層7をスルーして、該不純物が注入される可能性があるが、半導体柱6の頂部に、ドナー不純物を含んだN+層29を形成する際、半導体柱6の頂部はリセスエッチングにより除去されるため影響はない。
 (第6、第7及び第8実施形態)
 以下、図6A、図6Bを参照しながら、本発明の第6。第7及び第8実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図6A、図6Bの(a)は、平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 図6Aが示すように、第1実施形態における図1Fの工程後、露出した基板表面に選択的にエピタキシャル成長にて、半導体層400(特許請求範囲の「半導体層」の一例である)を形成する。
 次に、図6Bが示すように、全体に、熱的及び化学的に、半導体層400を酸化し、絶縁層100を形成する。その際、半導体層400に、酸化膜成長速度がN+不純物領域2よりも大きい材料を使用することで、低温で且つ短時間で酸化膜を成膜することが出来る。
 更に、前記半導体層400が、N+不純物領域2と同じ導電型の不純物がドーピングされた半導体層であれば、より一層、酸化膜成長速度が大きくなり、低温で且つ短時間で酸化膜を成膜することが出来る。
 以降の工程は、第1実施例の図1I以降と同じである。
 本実施形態は以下のような特徴をもつ。
1.図6Bに示すように、選択的にエピタキシャル成長した半導体層を酸化するため、ゲート電極の下端位置となる絶縁膜100の上端は、N+不純物領域2の上端より、十分高い位置に設定出来、トランジスタの特性を著しく低下させる原因の一つであるオフセット構造になる危険性が非常に小さくなる。
2.絶縁膜100を形成する際、半導体層400の酸化レートを大きくすることで、N+不純物領域2は殆ど酸化されないようにできるため、N+不純物領域2の不純物濃度は影響を受けず、トランジスタ特性のばらつきや駆動能力低下を引き起こすことはなく、本構造を使用した製品の高速化、低消費電力化に寄与することが出来る。
 (第9実施形態)
 以下、図7を参照しながら、本発明の第9実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図8の(a)は、平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 第7実施形態の図6Aの工程において、選択的に半導体層400をエピタキシャル成長した後、図7に示すように、全体に、酸素イオン、若しくは、N+層2の不純物領域と同じ導電型である不純物を、またはその両方を、イオン注入法にて、イオン注入法にて、半導体層400膜中にとどまるようなエネルギーで注入する。
 以降の工程は、図6Bを経て、第1実施例の図1H以降と同じである。
 本実施形態は以下のような特徴をもつ。
1.半導体層400に、酸素イオン、及び、N+層2の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入することによって、低温で且つ短時間で、半導体層400を酸化することが出来る。更に、オゾン熱酸化方法で酸化すれば尚一層の効果が得られる。これによって、熱による不純物拡散が抑制され、特性ばらつきや耐圧不良等を抑制することが出来る。
2.半導体層400に、酸素イオン、及び、N+層2の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入することによって、半導体層400の酸化膜成長速度を、N+不純物領域2より、さらに大きくすることが出来、N+不純物領域2の酸化を抑制できるため、N+不純物領域2の不純物濃度は影響を受けず、トランジスタ特性のばらつきや駆動能力低下を引き起こすことはなく、本構造を使用した製品の高速化、低消費電力化に寄与することが出来る。
 (第10実施形態)
 以下、図8を参照しながら、本発明の第10実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図8(a)は、平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 第7実施形態の図6Bの工程において、選択的にエピタキシャル成長した半導体層400を熱的に酸化する際、図8に示すように、半導体層400全てを絶縁膜100に変えるような条件で酸化し、結果、その絶縁膜100の膜厚が所望の膜厚になるように、半導体層400の膜厚を設定する。
 以降の工程は、第1実施例の図1H以降と同じである。
 本実施形態は以下のような特徴をもつ。
 半導体層400とN+不純物領域2の酸化膜成長速度が異なることを利用することで、半導体層400のみを酸化し絶縁膜100を形成出来、結果、絶縁膜100の膜厚を制御性良く形成することが出来る。これによって、一層、トランジスタ特性のばらつきを抑制することが出来る。
 (第11実施形態)
 以下、図9A、図9B、図9C、を参照しながら、本発明の第12実施形態に係る、SGTの製造方法の例としてN型トランジスタについて説明する。図9A、図9B、図9Cの(a)は、平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 図9Aは、第1実施形態における図1Jに相当し、ゲート導体層をパターニング後、全体を覆って、層間絶縁膜27を被覆し、CMP法により全体を、その上面位置が、SiNマスク材料層7の上面位置になるように研磨する。本工程において、該SiNマスク材料層7を、CMP法による研磨のストッパーとして使用するため、図1Aにて、該SiNマスク材料層7を成膜する膜厚を設定する。
 次に、図9Bに示すように、残存したSiNマスク材料層7を等方性エッチングにより除去する。次に、図9Cに示すように、選択エピタキシャル結晶成長法により、露出している半導体柱6頂部に、ドナー不純物を含んだN+層29を形成する。
 このように、該SiNマスク材料層7は、半導体柱6形成用のマスク材料層としてだけではなく、半導体柱6頂部の不純物N+層29の形成位置を決める膜としても用いる。このため、図1Aにて、該SiNマスク材料層7を成膜する際、図9AでのCMP法による研磨のストッパーとして機能するのに十分な厚さとして、その膜厚を設定する。
 以降の工程は、第1実施例の図1L以降と同じである。
 本実施形態は以下のような特徴をもつ。
 SiNマスク材料層7を、半導体柱6形成用としてのマスク材料層だけではなく、層間絶縁膜27をCMP法により研磨する際のストッパーとしても使用することにより、半導体柱6頂部の不純物N+層29の形成位置のばらつきが抑制され、結果、SGTのチャネル長に相当する半導体柱6の長さのばらつきが抑制される。これによって、トランジスタ特性のばらつきを抑制することが出来る。
 第1実施形態における図1Iから図1Kの工程を実施する代わりに、上述の通り、第11実施形態を実施することにより、SGTのゲート長及びチャネル長の両者についてばらつきを抑制することが可能となる。すなわち、第1実施形態では、上述の通り、ゲート電極の下端の位置のばらつきを抑制することにより、ゲート長のばらつきを抑制することができ、第11実施形態では、チャネル長に相当する半導体柱6の頂部の位置のばらつきを抑制することにより、チャネル長のばらつきを抑制することができる。
 (第12実施形態)
 以下、図10を参照しながら、本発明の第12実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。(a)は第12実施形態における図9AのX-X’線に沿う断面構造図、(c)は(a)の本実施形態に関わる主要部の拡大図、(b)は第1実施形態における図1MのX-X’線に沿う断面構造図、(d)は(b)の本実施形態に関わる主要部の拡大図を示す。
 図10(d)が示すように、不純物領域29の下端位置m、絶縁膜層27の下端すなわちゲート電極25の上端位置nであり、nの位置がmより低くならないように、図10(a)のゲート電極25をRIE法にてエッチバックする工程にて、(c)が示すように、半導体柱6上に存在するマスク材料層7の膜厚jが、ゲート電極W層25とTiN層26をエッチングする膜厚kより大きくなるよう設定する。
 本実施形態は以下のような特徴をもつ。
1.図10に示すように、マスク材料層7の膜厚を適切に設定することにより、ゲート電極W層25とTiN層(図示せず)と不純物N+層29が垂直方向に十分に重なり、且つ、ゲート電極と不純物N+層29との電気的ショートを抑制することが出来、特性不良やバラツキを抑制することが出来る。
2.加えて、マスク材料層7の膜厚jとゲート電極をエッチングする膜厚kとで決定されるゲート電極上の層間絶縁膜27の膜厚を、絶縁層HfO2層24の膜厚より十分厚く形成できるため、不純物領域N+層29とゲート電極25間の寄生容量が低減され、本構造を使用した製品の高速化、低消費電力化に寄与することが出来る。
 (第13実施形態)
 以下、図11A、図11Bを参照しながら、本発明の第13実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図10A、図10Bの(a)は、平面図、(b)は(a)のX-X’線に沿う断面構造図、(c)は(a)のY-Y’線に沿う断面構造図を示す。
 図11Aは、第1実施形態における図1Aに相当し、基板上にi層6を形成し、例えば、SiO2のマスク材料層300(特許請求範囲の「第3のマスク材料層」の一例である)、SiNのマスク材料層7、シリコンゲルマニウム(SiGe)のマスク半導体層8、SiO2のマスク半導体層9を順次堆積する。
 次に、第1実施形態における図1Cに相当する図11Bが示すように、シリコンゲルマニウム(SiGe)層8、SiO2層9のマスク半導体層をマスクにして、SiN層7、SiO2層300のマスク材料層、i層6をRIEにより形成し、SiN層7上に残存するSiGe層8とSiO2層9を除去する。
 以降の工程は、第1実施例の図1D以降と同じである。
 本実施形態は以下のような特徴をもつ。
 第3実施形態の特徴に加え、半導体柱6とマスク材料層7(例えばSiN層)の間に、マスク材料層300(例えばSi02層)を形成することにより、半導体柱6頂部へのプロセスダメージを軽減することが出来、その後、半導体柱6頂部に、エピタキシャル結晶成長法により、ドナー不純物を含んだN+層29を形成する際、半導体柱6頂部のダメージにより、結晶成長が阻害されることを抑制することが出来る。
 (第14実施形態)
 以下、図12を参照しながら、本発明の第14実施形態に係る、SGTの製造方法、例としてN型トランジスタについて説明する。図12(a)は第14実施形態を適用した際の第1実施形態における図1Iに相当し、そのX-X’線に沿う断面構造図、(c)は(a)の本実施形態に関わる主要部の拡大図、(b)は第1実施形態における図1Mに相当し、そのX-X’線に沿う断面構造図、(d)は(b)の本実施形態に関わる主要部の拡大図を示す。
 図12(b)のプロセス完了後の断面構造図において、(d)が示すように、不純物領域29の下端位置t、絶縁膜層27の下端すなわちゲート電極25の上端位置uであり、uの位置がtより低くならないように、図12(a)のゲート電極25をRIE法にてエッチバックする工程にて、(c)が示すように、半導体柱6上に存在するマスク材料層300とマスク材料層7のトータルの膜厚rが、ゲート電極W層25とTiN層(図示せず)をエッチングする膜厚sより大きくなるよう設定する。
 本実施形態は以下のような特徴をもつ。
 第13実施形態の特徴に加え、図12に示すように、マスク材料層300と7の膜厚を適切に設定することにより、ゲート電極W層25とTiN層(図示せず)と不純物N+層29が垂直方向に十分に重なり、且つ、ゲート電極と不純物N+層29との電気的ショートを抑制することが出来、特性不良やバラツキを抑制することが出来る。
 なお、本発明に係る実施形態では、1つの半導体柱に1個のSGTを形成したが、2個以上を形成する回路形成においても、本発明を適用できる。2個以上を形成する回路形成においては、本発明が述べているSGTは、半導体柱の最下部にあるSGTである。
 また、第1実施形態では、半導体柱をSiで形成したが、ほかの半導体材料よりなる半導体柱であってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態における、半導体柱下部のN+層2と半導体柱頂部のN+層29は、アクセプタ不純物を含んだP+層Si、または他の半導体材料層より形成されてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、N+層29は、選択エピタキシャル結晶成長法を用いて形成したが、CDE(Chemical Dry Etching)と通常のエピタキシャル結晶成長とで、半導体柱6の頂部上にN+層29を形成する方法を含め、他の方法によりN+層2を形成してもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態における、半導体柱6の頂部のマスク材料層7及び外周部のマスク材料層21は、本発明の目的に合う材料であれば、単層または複数層よりなる有機材料または無機材料を含む他の材料層を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態において、マスク材料層及びマスク半導体層として、SiN層7、シリコンゲルマニウム(SiGe)層8、SiO2層9を使用していたが、本発明の目的に合う材料であれば、単層または複数層よりなる有機材料または無機材料を含む他の材料層を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態における、各種配線金属層X1、X2、X3の材料は、金属だけでなく、合金、アクセプタ、またはドナー不純物を多く含んだ半導体層などの導電材料層であってもよく、そして、それらを単層、または複数層組み合わせて構成させてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、図1Iに示したように、ゲート金属層として、TiN層26を用いた。このTiN層26は、本発明の目的に合う材料であれば、単層または複数層よりなる材料層を用いることができる。TiN層26は、少なくとも所望の仕事関数を持つ、単層または複数層の金属層などの導体層より形成できる。本実施形態では、この外側にW層を使用し、金属配線層の役割を担っているが、W層以外の単層、または複数層の金属層を用いても良い。また、ゲート絶縁層として、HfO2層24を用いたが、それぞれを単層または複数層よりなる他の材料層を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 第1実施形態において、半導体柱6の平面視における形状は、円形状であった。そして、半導体柱6の一部または全ての平面視における形状は、円形、楕円、一方方向に長く伸びた形状などの形状が容易に形成できる。これらのこのことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態において、半導体柱6の底部に接続してN+層2を形成した。N+層2上面に金属、シリサイドなどの合金層を形成してもよい。このことは、N+層の代わりに、P+層を形成した場合も同様である。
 また、第1実施形態では、P層基板1上にSGTを形成したが、P層基板1の代わりにSOI(Silicon On Insulator)基板を用いても良い。または、基板としての役割を行うものであれば他の材料基板を用いてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、半導体柱6の上下に、同じ極性の導電性を有するN+層2とN+層29を用いて、ソース、ドレインを構成するSGTについて説明したが、極性が異なるソース、ドレインを有するトンネル型SGTに対しても、本発明が適用できる。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、ゲートHfO2層24、ゲートTiN層26を形成した後に、N+層29を形成した。これに対し、N+層29を形成した後に、ゲートHfO2層24、ゲートTiN層26を形成してもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、縦型NAND型フラッシュメモリ回路では、半導体柱をチャネルにして、この半導体柱を囲んだトンネル酸化層、電荷蓄積層、層間絶縁層、制御導体層から構成されるメモリセルが複数段、垂直方向に形成される。これらメモリセルの両端の半導体柱には、ソースに対応するソース線不純物層と、ドレインに対応するビット線不純物層がある。また、1つのメモリセルに対して、その両側のメモリセルの一方がソースならば、他方がドレインの役割を行う。このように、縦型NAND型フラッシュメモリ回路はSGT回路の1つである。従って、本発明はNAND型フラッシュメモリ回路との混在回路に対しても適用することができる。
 同様に、磁気メモリ回路や強誘電体メモリ回路においても、メモリセル領域内外で使用されるインバータやロジック回路に対しても適用することができる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、柱状半導体装置の製造方法によれば、特性バラツキや動作不良が抑制され、SGTを使用した回路及び製品の品質向上に寄与する。
 1:P層基板
 2:N+層基板及び半導体柱6下部のN+
 6:i層
 7、21:SiNマスク材料層
 23、27、30、35.37.39、100:SiO2
 24:HfO2
 25、33:W層
 26:TiN層
 29:半導体柱6上部のN+
 200:N++
 300:SiO2マスク材料層
 400:エピタキシャル半導体層
 C1、C2、C3:コンタクトホール
 X1、X2、X3:接続配線金属層
 f:SiO2層100の膜厚
 g:半導体柱6下部のN+層2の上端位置(高さ)
 h:HfO2層24の上端またはゲート電極25の下端位置(高さ)
 j:SiNマスク材料層7の膜厚
 k、s:ゲート電極W層25及びTiN層26のエッチング膜厚
 m、t:半導体柱6上部のN+層29の下端位置(高さ)
 n、u:SiO2層27の下端またはゲート電極25及びTiN層26の上端位置(高さ)
 p:SiNマスク材料層21の膜厚
 q:HfO2層24の膜厚
 r:SiNマスク材料層7とSiO2マスク材料層300の合計膜厚

Claims (15)

  1.  基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
    を有した柱状半導体装置の製造において、
     前記基板の表面上に、ドナーまたはアクセプタ不純物を含んだ前記第1の不純物領域を形成する工程と、
     前記第1の不純物領域上に前記半導体柱を形成する工程と、
     全面を覆って、第1のマスク材料層を被覆する工程と、
     前記第1のマスク材料層を異方性エッチングにより、前記半導体柱の側壁に前記第1のマスク材料層を残存させると共に、前記第1の不純物領域表面を露出する工程と、
     全体に、熱的又は化学的に酸化を施し、露出した前記第1の不純物領域の表面に第1の絶縁層を形成する工程と、
     前記半導体柱の側壁に残存している前記第1のマスク材料層を等方性エッチングにより除去する工程と、
     前記半導体柱を取り囲む前記ゲート絶縁層とさらにその前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
     前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
     を有する、
     ことを特徴とする柱状半導体装置の製造方法。
  2.  前記第1の絶縁層の膜厚が、前記ゲート絶縁層の膜厚より厚く、且つ、前記ゲート導体層の下端の位置が、前記半導体柱内の前記第1の不純物領域の上端位置と同じ位置か、若しくは低く位置するように、前記第1の絶縁層の膜厚が設定されている、
     ことを特徴とする請求項1に記載の柱状半導体装置の製造方法。
  3.  前記第1のマスク材料層の膜厚が、前記ゲート絶縁層の膜厚の2倍の膜厚より小さい、
     ことを特徴とする請求項1に記載の柱状半導体装置の製造方法。
  4.  前記第1のマスク材料層を異方性エッチング後に、全体に、酸素イオン、及び、前記第1の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入法にて、露出した前記第1の不純物領域表面に注入する工程を更に含む、
     ことを特徴とする請求項1に記載の柱状半導体装置の製造方法。
  5.  前記第1の絶縁層を形成後、全体に、第1の不純物領域と同じ導電型である不純物を、イオン注入法にて、前記第1の絶縁層下の領域に十分に注入可能なエネルギーで注入する、
     ことを特徴とする請求項1に記載の柱状半導体装置の製造方法。
  6.  前記第1のマスク材料層を異方性エッチング後、露出した前記基板表面に選択的にエピタキシャル成長にて、半導体層を形成する工程を更に含み、
     前記第1の絶縁層を形成する工程は、全体に、熱的又は化学的に前記半導体層を酸化することにより、露出した前記基板表面に前記第1の絶縁層を形成する、
     ことを特徴とする請求項1に記載の柱状半導体装置の製造方法。
  7.  前記半導体層の熱的又は化学的な酸化の酸化膜成長速度が、前記第1の不純物領域の熱的又は化学的な酸化の酸化膜成長速度より大きい、
     ことを特徴とする請求項6に記載の柱状半導体装置の製造方法。
  8.  前記半導体層は、エピタキシャル成長時に、前記第1の不純物領域と同じ導電型の不純物がドーピングされている、
     ことを特徴とする請求項6に記載の柱状半導体装置の製造方法。
  9.  前記半導体層を形成後、全体に、酸素イオン、及び、前記第1の不純物領域と同じ導電型である不純物の少なくとも一方を、イオン注入法にて、前記半導体層に注入する、
     ことを特徴とする請求項6に記載の柱状半導体装置の製造方法。
  10.  前記半導体層を形成後、該半導体層の全てを酸化膜に変えるような、熱的又は化学的に酸化を施すことで、所望の膜厚の前記第1の絶縁層を形成することが出来るよう、前記半導体層の膜厚が設定されている、
     ことを特徴とする請求項6に記載の柱状半導体装置の製造方法。
  11.  基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
     を有した柱状半導体装置の製造において、
     前記第1の不純物領域の上に前記半導体柱とその頂部に第2のマスク材料層を形成する工程と、
     前記半導体柱を取り囲む前記ゲート絶縁層を形成する工程と、
     前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
     全面を覆って、前記第2のマスク材料層の表面の高さより大きい膜厚で第2の絶縁層を被覆する工程と、
     前記第2のマスク材料層の表面が露出するように前記第2の絶縁層を研磨し平坦化する工程と、
     露出された前記第2のマスク材料層を除去し、前記半導体柱の頂部を露出させる工程と、
     露出した前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
     を有する、
     ことを特徴とする柱状半導体装置の製造方法。
  12.  前記ゲート導体層の上端の位置が、前記第2のマスク材料層の下端位置と同じ位置か、若しくは高く位置するように、前記第2のマスク材料層の膜厚が設定されている、
     ことを特徴とする請求項11に記載の柱状半導体装置の製造方法。
  13.  前記半導体柱の頂部に第3のマスク材料層と、その上部に前記第2のマスク材料層を形成する、
     ことを特徴とする請求項11に記載の柱状半導体装置の製造方法。
  14.  前記第3のマスク材料層の下端が、前記ゲート導体層の上端位置と同じ位置か、若しくは低く位置するように、前記第1及び第3のマスク材料層の膜厚が設定されている、
     ことを特徴とする請求項13に記載の柱状半導体装置の製造方法。
  15.  基板上部に、半導体柱と、前記半導体柱を囲むゲート絶縁層と、前記ゲート絶縁層を囲むゲート導体層と、前記半導体柱の下部に接続する第1の不純物領域と、前記半導体柱の頂部に接続する第2の不純物領域とを有し、前記第1の不純物領域と前記第2の不純物領域との間の前記半導体柱をチャネルにしたSGT、
     を有した柱状半導体装置の製造において、
     前記基板の表面上に、ドナーまたはアクセプタ不純物を含んだ前記第1の不純物領域を形成する工程と、
     前記第1の不純物領域上に前記半導体柱とその頂部に第2のマスク材料層を形成する工程と、
     全面を覆って、第1のマスク材料層を被覆する工程と、
     前記第1のマスク材料層を異方性エッチングにより、前記半導体柱の側壁に前記第1のマスク材料層を残存させ、且つ、平面視において、前記半導体柱の頂部に前記第2のマスク材料層を残存させるとともに、前記半導体柱以外の領域に前記第1の不純物領域表面を露出する工程と、
     全体に、熱的又は化学的に酸化を施し、露出した前記第1の不純物領域表面に第1の絶縁層を形成する工程と、
     前記半導体柱の側壁に残存している前記第1のマスク材料層を等方性エッチングにより除去する工程と、
     前記半導体柱を取り囲む前記ゲート絶縁層とさらにその前記ゲート絶縁層を取り囲む前記ゲート導体層を形成する工程と、
     全面を覆って、前記半導体柱の高さより大きい膜厚で第2の絶縁膜を被覆する工程と、
     前記半導体柱頂部の前記第2のマスク材料層が露出するように前記第2の絶縁膜を研磨し平坦化する工程と、
     露出された前記第2のマスク材料層を除去し、前記半導体柱の頂部を露出させる工程と、
     露出した前記半導体柱の頂部に、前記第2の不純物領域を形成する工程と、
     を有する、
     ことを特徴とする柱状半導体装置の製造方法。
PCT/JP2020/046526 2020-12-14 2020-12-14 柱状半導体装置とその製造方法 WO2022130451A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022569328A JPWO2022130451A1 (ja) 2020-12-14 2020-12-14
PCT/JP2020/046526 WO2022130451A1 (ja) 2020-12-14 2020-12-14 柱状半導体装置とその製造方法
TW110141868A TWI815211B (zh) 2020-12-14 2021-11-10 柱狀半導體裝置及其製造方法
US18/332,968 US20230328949A1 (en) 2020-12-14 2023-06-12 Pillar-shaped semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046526 WO2022130451A1 (ja) 2020-12-14 2020-12-14 柱状半導体装置とその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/332,968 Continuation US20230328949A1 (en) 2020-12-14 2023-06-12 Pillar-shaped semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022130451A1 true WO2022130451A1 (ja) 2022-06-23

Family

ID=82057393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046526 WO2022130451A1 (ja) 2020-12-14 2020-12-14 柱状半導体装置とその製造方法

Country Status (4)

Country Link
US (1) US20230328949A1 (ja)
JP (1) JPWO2022130451A1 (ja)
TW (1) TWI815211B (ja)
WO (1) WO2022130451A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148852A (ja) * 1988-11-30 1990-06-07 Hitachi Ltd 半導体装置およびその製造方法
JPH0745715A (ja) * 1993-07-26 1995-02-14 Sony Corp 半導体装置の製造方法
JP2013026382A (ja) * 2011-07-20 2013-02-04 Elpida Memory Inc 半導体装置の製造方法
WO2019087328A1 (ja) * 2017-11-01 2019-05-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置と、その製造方法
JP2020520110A (ja) * 2017-05-16 2020-07-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Vfetの下部接点抵抗が低減された半導体デバイスを形成する方法および半導体デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148852A (ja) * 1988-11-30 1990-06-07 Hitachi Ltd 半導体装置およびその製造方法
JPH0745715A (ja) * 1993-07-26 1995-02-14 Sony Corp 半導体装置の製造方法
JP2013026382A (ja) * 2011-07-20 2013-02-04 Elpida Memory Inc 半導体装置の製造方法
JP2020520110A (ja) * 2017-05-16 2020-07-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Vfetの下部接点抵抗が低減された半導体デバイスを形成する方法および半導体デバイス
WO2019087328A1 (ja) * 2017-11-01 2019-05-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置と、その製造方法

Also Published As

Publication number Publication date
US20230328949A1 (en) 2023-10-12
TW202224030A (zh) 2022-06-16
JPWO2022130451A1 (ja) 2022-06-23
TWI815211B (zh) 2023-09-11

Similar Documents

Publication Publication Date Title
US7052958B1 (en) FinFET CMOS with NVRAM capability
US7830703B2 (en) Semiconductor device and manufacturing method thereof
US9111794B2 (en) Method for producing a semiconductor device having SGTS
US8796085B2 (en) Vertical super-thin body semiconductor on dielectric wall devices and methods of their fabrication
US20070257277A1 (en) Semiconductor Device and Method for Manufacturing the Same
KR20060110702A (ko) 다중채널을 갖는 반도체 장치 및 그의 제조방법.
TW200945556A (en) Semiconductor device and method of manufacturing semiconductor device
US11508735B2 (en) Cell manufacturing
US20220352365A1 (en) Semiconductor Device and Method
US20190172822A1 (en) Logic layout with reduced area and method of making the same
CN109817640B (zh) 包括存储器件的集成电路(ic)及其制造方法
US10242991B2 (en) Highly compact floating gate analog memory
TW202129964A (zh) 先進邏輯操作的電荷捕捉tfet半導體元件製作方法
US9419015B1 (en) Method for integrating thin-film transistors on an isolation region in an integrated circuit and resulting device
WO2012077178A1 (ja) 半導体装置
WO2022130451A1 (ja) 柱状半導体装置とその製造方法
JPWO2022130451A5 (ja)
KR102639002B1 (ko) 강유전체 메모리를 포함하는 반도체 디바이스들 및 그 형성 방법들
US11532520B2 (en) Semiconductor device and method
US20230058135A1 (en) Pillar-shaped semiconductor device and method for producing the same
CN115719706A (zh) 一种堆叠纳米片gaa-fet器件及其制作方法
CN115799335A (zh) 一种堆叠纳米片gaa-fet器件及其制作方法
CN116825720A (zh) 一种半导体器件及制造方法
CN115910794A (zh) 一种堆叠纳米片gaa-fet器件及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965839

Country of ref document: EP

Kind code of ref document: A1