WO2022127110A1 - 转子结构、电机和转子加工方法 - Google Patents

转子结构、电机和转子加工方法 Download PDF

Info

Publication number
WO2022127110A1
WO2022127110A1 PCT/CN2021/107838 CN2021107838W WO2022127110A1 WO 2022127110 A1 WO2022127110 A1 WO 2022127110A1 CN 2021107838 W CN2021107838 W CN 2021107838W WO 2022127110 A1 WO2022127110 A1 WO 2022127110A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
filling
slot
rotor structure
magnetic barrier
Prior art date
Application number
PCT/CN2021/107838
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
肖勇
史进飞
李霞
张志东
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US18/017,061 priority Critical patent/US20230308001A1/en
Priority to EP21905043.2A priority patent/EP4167451A4/en
Priority to JP2023503213A priority patent/JP2023538492A/ja
Publication of WO2022127110A1 publication Critical patent/WO2022127110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure is based on the Chinese application with the application number of 202011503752.1 and the filing date of December 17, 2020 , and claims its priority.
  • the disclosure of the Chinese application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the field of motors, and in particular, to a rotor structure, a motor and a rotor processing method.
  • the self-starting synchronous reluctance motor Based on the synchronous reluctance motor, the self-starting synchronous reluctance motor combines the advantages of the asynchronous motor, and realizes the self-starting through the asynchronous torque generated by the rotor bar. Compared with the synchronous reluctance motor, the self-starting synchronous reluctance motor does not need to be driven by a frequency converter, the loss of the motor system is reduced, and the motor efficiency is improved; compared with the asynchronous motor, the self-starting synchronous reluctance motor can achieve constant speed operation, The rotor loss is low, and the efficiency during operation is high; compared with the asynchronous starting permanent magnet synchronous motor, the self-starting synchronous reluctance motor does not use permanent magnet materials, the motor cost is low, and there is no permanent magnet demagnetization problem.
  • the slit portion of the self-starting synchronous induction motor is a straight line, the center of the rotor has a shaft hole, and the d-axis rotor has a large internal space, which leads to a low utilization rate of the rotor space, and the rotor The saturation of the part is high and the motor efficiency is low.
  • the main purpose of the present disclosure is to provide a rotor structure, a motor and a rotor processing method, so as to solve the problem of low motor efficiency in the prior art.
  • a rotor structure comprising:
  • a plurality of rotor punching pieces are stacked in sequence along the axial direction of the rotor structure, and each rotor punching piece is provided with a shaft hole, a first slot slot and a first filling slot located at both ends of the first slot slot.
  • the first slot slot extending in the direction of the straight axis of the rotor structure and including slot segments on opposite sides of the shaft hole;
  • the first slit groove, the first filling groove and the rotating shaft form the first magnetic barrier layer.
  • the rotor structure includes two rotor poles arranged in pairs; and/or the rotating shaft is made of a non-magnetic material; and/or the outer peripheral surface of the rotating shaft is cylindrical, or the outer peripheral surface of the rotating shaft includes a partial cylindrical surface .
  • the value range of the minimum distance L1 between the slot slot segment and the shaft hole is: ⁇ L1 ⁇ 5 ⁇ ; and/or the minimum distance between the slot slot segment and its adjacent first filling slot
  • the slot section and the first filling slot are filled with the same material; or the slot section is an air slot.
  • the slit groove segment is rectangular; and/or the minimum width h1 of the slit groove segment ranges from: 0.9h2 ⁇ h1 ⁇ 1.1h2; h2 is the first filling adjacent to the slit groove segment The width of the slot.
  • each group of second magnetic barrier layers includes a plurality of second magnetic barrier layers arranged along the direction of the orthogonal axis of the rotor structure a barrier layer; the second magnetic barrier layer includes a second slit groove and a second filling groove arranged at both ends of the second slit groove.
  • the value range of the minimum width h1 of the slit slot segment is: L6 is the minimum vertical distance between the second slit slot of the second magnetic barrier layer closest to the straight axis in each group of second magnetic barrier layers and the straight axis along the quadrature axis; and/or the lowest vertical distance in each group of second magnetic barrier layers
  • the value range of the minimum distance h4 along the orthogonal axis direction between the second slit slot of the second magnetic barrier layer close to the straight axis and the first slit slot is: L7 ⁇ h4 ⁇ 1.65L7; wherein, L7 is the shaft hole The minimum distance along the quadrature axis to the second magnetic barrier layer closest to the direct axis.
  • the second slit groove and the second filling groove are spaced apart, and the value range of the space width L3 is: 0.8 ⁇ L3 ⁇ 2 ⁇ ; wherein, ⁇ The width of the air gap between the inner diameter of the stator and the outer diameter of the rotor formed by the rotor structure; and/or within the same second magnetic barrier layer, the maximum width of the second filling slot and the maximum width of the second slot slot. The difference is within 10% of the maximum width of the second slot.
  • the minimum distance L5 between two adjacent second magnetic barrier layers is greater than 1.8h3; wherein h3 is the distance between two adjacent second magnetic barrier layers The smallest width of the second slit groove of the second magnetic barrier layer with smaller size along the quadrature axis direction.
  • the width of each of the second slit grooves gradually increases from the quadrature axis to two ends of the second slit groove.
  • a third magnetic barrier layer is disposed on a side of each group of second magnetic barrier layers away from the first magnetic barrier layer, and the third magnetic barrier layer is formed by a third filling groove.
  • the ratio between the sum of the widths of the second slit slots of the second magnetic barrier layers and the width of the shaft hole to the outer peripheral surface of the rotor structure is 0.3 to 0.5 .
  • both the first filling groove and the second filling groove extend to the outer peripheral surface of the rotor structure; and/or the first filling groove and the second filling groove are both filled with aluminum or an aluminum alloy.
  • the notches of the first filling groove and the second filling groove are located on the side of the end near the straight axis adjacent thereto, or the notches of the first filling groove and the second filling groove are located at the ends thereof the middle of.
  • the ends of the first filling groove and the second filling groove are provided with chamfered surfaces on one side away from the adjacent straight axis or on both sides of the ends of the first filling groove and the second filling groove. Connect with the notch edge of the corresponding first filling groove or second filling groove.
  • the included angle between the chamfered surface and the groove wall surface of the first filling groove or the second filling groove connected to the chamfered surface is ⁇ , 125° ⁇ 165°.
  • the slot width of the first filling slot and/or the second filling slot is L4, wherein 0.5 ⁇ L4 ⁇ 4 ⁇ , ⁇ is the difference between the inner diameter of the stator and the outer diameter of the rotor of the motor formed by the rotor structure the width of the air gap; and/or the notch width L4 of the first filling groove and/or the second filling groove is smaller than the maximum thickness w of the first filling groove or the second filling groove.
  • the value range of the slot width L4 of the first filling groove and/or the second filling groove is: 0.1w ⁇ L4 ⁇ 0.7w; wherein, w is the first filling groove or the second filling groove maximum thickness.
  • the area of the second filling slot on the end face of the rotor punch is relative to the second slot slot and the second filling slot of the second magnetic barrier layer in the rotor.
  • the proportion of the sum of the areas on the end faces of the punched sheet is greater than 40%.
  • the area of the first filling slot on the end face of the rotor punch is relative to the first slot slot and the first filling slot of the first magnetic barrier layer in the rotor.
  • the proportion of the sum of the areas on the end faces of the punched sheet is greater than 30%.
  • a motor including a stator and the above-described rotor structure.
  • a rotor processing method for processing the above-mentioned rotor structure comprising: obtaining a rotor iron core, the outer peripheral surface of the rotor iron core is larger than the outer peripheral surface of the rotor structure, so that A temporary rib is formed between the notch of the filling groove of the rotor structure and the outer peripheral surface of the rotor core; the filling groove is filled with the material to be filled and the end ring is installed; the temporary rib is removed to form the rotor structure.
  • the rotor structure of the present disclosure is a rotor structure of a self-starting synchronous reluctance motor, and the rotor structure includes a plurality of rotor punches stacked in sequence, and the rotor punches are provided with a first slot, a first filling Slots and shaft holes.
  • the first slot slot extends along the straight axis direction of the rotor structure, the two first filling slots are located at both ends of the extending direction of the first slot slot, the first slot slot, the first filling slot and the first slot slot are penetrated in the shaft hole
  • the rotation axis of the first magnetic barrier layer is formed.
  • the rotor structure of the present disclosure can increase the salient pole difference of the motor, improve the output torque of the motor, and improve the efficiency of the motor, which not only solves the problem of low motor efficiency in the prior art, but also increases the size of the rotor structure for machining
  • the utilization rate of the rotor core space is improved, and the starting ability of the motor is improved.
  • FIG. 1 shows a schematic structural diagram of a first embodiment of a rotor structure according to the present disclosure
  • FIG. 2 shows a schematic structural diagram of a first embodiment of a rotor punch in a rotor structure according to the present disclosure
  • FIG. 3 shows a schematic structural diagram of a second embodiment of a rotor die in a rotor structure according to the present disclosure.
  • FIG. 4 is a graph showing a comparison of the output torque of the motor with the rotor structure of the present disclosure and the output torque of the motor with the rotor structure of the related art as a function of time.
  • 100 rotor punching; 10, rotor pole; 101, first magnetic barrier layer; 102, second magnetic barrier layer; 103, third magnetic barrier layer; 111, first slot slot; 1110, slot slot segment; 112, the second slit slot; 121, the first filling slot; 122, the second filling slot; 123, the third filling slot; 120, the chamfered surface; 20, the shaft hole; 2, the central axis; 3, the straight shaft; 4 , cross axis; 200, end ring.
  • the present disclosure provides a rotor structure, which includes a rotating shaft and a plurality of rotor punches 100 stacked in sequence along the axial direction of the rotor structure.
  • the shaft hole 20 for the rotating shaft to pass through.
  • the rotor punching piece 100 is provided with a first slit groove 111 and a first filling groove 121 located at both ends of the first slit groove 111.
  • the slit slot sections 1110 on both sides, the first slit slot 111, the first filling slot 121 and the shaft passing through the shaft hole 20 form the first magnetic barrier layer 101; wherein, the first slot slot 111 is along the rotor structure
  • the straight axis 3 direction extends.
  • the rotor structure of the present disclosure is a rotor structure of a self-starting synchronous reluctance motor.
  • the rotor structure includes a plurality of rotor punches 100 stacked in sequence.
  • the rotor punches 100 are provided with a first slit slot 111 , a first filling slot 121 and a Axle hole 20.
  • the first slit slot 111 extends along the direction of the straight axis 3 of the rotor structure, and the two first filling slots 121 are located at both ends of the extending direction of the first slot slot 111 .
  • the first slot slot 111 , the first filling slot 121 and the The first magnetic barrier layer 101 is formed by the shaft passing through the shaft hole 20 , and the shaft hole 20 divides the first magnetic barrier layer 101 into two segments.
  • the rotor structure of the present disclosure can increase the salient pole difference of the motor, improve the output torque of the motor, and improve the efficiency of the motor, which not only solves the problem of low motor efficiency in the prior art, but also increases the size of the rotor structure for machining The utilization rate of the rotor core space is improved, and the starting ability of the motor is improved.
  • the direction of the rotor magnetic field is the straight axis 3, also called the d axis
  • the quadrature axis 4 is 90° electrical angle from the straight axis 3, also called the q axis.
  • the magnetic barrier is a magnetic flux barrier, which is a structure that hinders the passage of magnetic lines of force.
  • a magnetic channel is formed between two adjacent magnetic flux barriers in the same rotor pole 10.
  • the magnetic flux barrier is filled with hollow air slots or other non-magnetic materials. internal composition.
  • the rotor structure is composed of two rotor poles 10 arranged in pairs; and/or the rotating shaft is made of non-magnetic material; and/or the outer peripheral surface of the rotating shaft is cylindrical, or a part of the surface of the outer peripheral surface of the rotating shaft is made of cylindrical part of the face.
  • the rotor structure of the present disclosure includes two symmetrical rotor poles 10 , the rotating shaft passing through the shaft hole 20 of the rotor structure is made of non-magnetic material, and at least part of the surface of the outer peripheral surface of the rotating shaft is cylindrical.
  • the rotating shaft can increase the width of the magnetic channel between the first magnetic barrier layer 101 and the second magnetic barrier layer 102 closest to the shaft hole 20 .
  • the value range of the minimum distance L1 between the slit groove segment 1110 and the shaft hole 20 is: ⁇ L1 ⁇ 5 ⁇ ; and/or the slit groove segment 1110 and its adjacent first filling groove 121
  • the slot segment 1110 is located on both sides of the shaft hole 20. In order to ensure the mechanical strength of the connecting rib at the connection between the slot segment 1110 and the shaft hole 20, and to maximize the use of the space of the rotor core, the slot segment 1110 is connected to the shaft.
  • the minimum distance between them is L1, L1 should satisfy ⁇ L1 ⁇ 5 ⁇ , and ⁇ is the width of the air gap between the inner diameter of the stator and the outer diameter of the rotor of the motor with rotor structure.
  • the filling grooves 121 may be spaced apart or connected to each other.
  • the slot section 1110 and the first filling slot 121 are filled with the same material; or the slot section 1110 is an air slot.
  • the slot segment 1110 When the slot segment 1110 is an air slot, the slot segment 1110 is spaced apart from the first filling slot 121 adjacent to it, and controlling the distance L2 between the slot segment 1110 and the first filling slot 121 can ensure the rotor iron
  • the mechanical strength of the core reduces the magnetic flux leakage between the slit slot segment 1110 and the first filling slot 121 .
  • the first magnetic barrier layer 101 composed of the slit slot segment 1110 , the first filling slot 121 and the non-magnetic rotating shaft is a segmented magnetic barrier layer.
  • the slit slot segment 1110 is connected to the first filling slot 121, and the first magnetic barrier layer 101 can increase the salient pole difference of the motor.
  • the salient pole difference is the d-axis inductance Ld of the motor.
  • the difference between the q-axis inductance Lq and the q-axis inductance Lq a larger saliency difference can improve the output torque capacity of the motor.
  • Tem is the electromagnetic torque
  • p is the number of pole pairs of the motor
  • Ld is the d-axis inductance of the motor
  • Lq is the q-axis inductance of the motor
  • id is the d-axis current of the motor
  • iq is the q-axis of the motor current
  • is the current angle.
  • the slit groove section 1110 in the first magnetic barrier layer 101 can be filled with the same filling material in the first filling groove 121, the area of the d-axis filling groove can be increased, and the d-axis resistance can be reduced. As shown in the following formula (2),
  • Te-ave is the average electromagnetic torque
  • P is the number of pole pairs of the motor
  • SSYNC is the slip ratio
  • is the electrical angular velocity of the motor
  • VS is the effective value of the input voltage
  • Rrd and Rrq are the rotor d respectively.
  • Shaft resistance and q-axis resistance, Lmd and Lmq are the d-axis excitation inductance and q-axis excitation inductance of the stator, respectively, and Lds and Lqs are the d-axis leakage inductance and q-axis leakage inductance of the stator, respectively.
  • stator d-axis leakage inductance Lds is relatively close to the stator q-axis leakage inductance Lqs, and the stator d-axis excitation inductance Lmd is much larger than the stator q-axis excitation inductance Lmq, so Therefore, reducing the d-axis resistance Rrd is a more effective method to increase the average electromagnetic torque Te-ave when the motor is started.
  • the slit groove section 1110 in the first magnetic barrier layer 101 is filled with the same filling material as that in the first filling groove 121, which can increase the area of the d-axis filling groove and reduce the d-axis resistance, thereby increasing the motor startup process.
  • the average electromagnetic torque Te-ave improves the starting ability of the motor.
  • the slit groove segment 1110 is rectangular; and/or the minimum width h1 of the slit groove segment 1110 has a value range of: 0.9h2 ⁇ h1 ⁇ 1.1h2; h2 is the same as the slit groove segment 1110 The width of the adjacent first filling groove 121 .
  • the shape of the slotted slot segment 1110 is rectangular or other shapes.
  • the minimum value of the width of the slit groove segment 1110 is h1
  • the maximum width of the first filling groove 121 adjacent to the slit groove segment 1110 is h2
  • h1 and h2 should satisfy 0.9h2 ⁇ h1 ⁇ 1.1h2, so that Increasing the area of the magnetic conduction channel extending along the direction of the straight axis 3 and close to the slot segment 1110 reduces the magnetic resistance of the magnetic circuit of the rotor structure, making the magnetic circuit of the rotor part smoother.
  • a group of second magnetic barrier layers 102 are disposed on opposite sides of the first magnetic barrier layer 101 , and each group of second magnetic barrier layers 102 includes a plurality of second magnetic barrier layers 102 arranged along the direction of the quadrature axis 4 of the rotor structure.
  • the first magnetic barrier layer 101 is a segmented magnetic barrier layer, that is, the first slit groove 111 of the first magnetic barrier layer 101 is divided into two slit groove segments 1110 along the straight axis direction by the shaft hole 20;
  • the two magnetic barrier layers 102 are both continuous magnetic barrier layers, that is, the second slits 112 of the second magnetic barrier layer 102 are continuous, and the plurality of second magnetic barrier layers 102 are respectively located on both sides of the shaft hole 20 , along the The direction distribution of the quadrature axis 4.
  • the value range of the minimum width h1 of the slit slot segment 1110 is: L6 is the minimum vertical distance between the second slot 112 of the second magnetic barrier layer 102 closest to the straight axis 3 in the second magnetic barrier layer 102 of each group and the straight axis 3 along the direction of the quadrature axis 4; and/or the first slot of each group
  • the value range of the minimum value h4 between the second slot 112 of the second magnetic barrier layer 102 closest to the direct axis 3 and the first slot 111 along the quadrature axis 4 direction in the two magnetic barrier layers 102 is: L7 ⁇ h4 ⁇ 1.65L7; wherein, L7 is the minimum distance between the shaft hole 20 and the second magnetic barrier layer 102 closest to the straight axis 3 along the direction of the quadrature axis 4 .
  • the minimum value h1 of the width of the slit groove section 1110 should also satisfy L6 is the minimum vertical distance between the second magnetic barrier layer 102 closest to the shaft hole 20 and the straight axis 3 along the direction of the quadrature axis 4 .
  • L6 is the minimum vertical distance between the second magnetic barrier layer 102 closest to the shaft hole 20 and the straight axis 3 along the direction of the quadrature axis 4 .
  • the smallest distance between the second slit groove 112 of the second magnetic barrier layer 102 closest to the shaft hole 20 and the slit groove segment 1110 of the first magnetic barrier layer 101 along the direction of the cross axis 4 among the plurality of second magnetic barrier layers 102 The distance is h4, the minimum distance between the shaft hole 20 and the second magnetic barrier layer 102 closest to the shaft hole 20 along the direction of the quadrature axis 4 is L7, and h4 should satisfy L7 ⁇ h4 ⁇ 1.65L7, which can ensure the distance from the shaft hole 20
  • the magnetic channel between the nearest second magnetic barrier layer 102 and the first magnetic barrier layer 101 is smooth.
  • the second slit groove 112 and the second filling groove 122 are spaced apart, and the value range of the space width L3 is: 0.8 ⁇ L3 ⁇ 2 ⁇ ; Wherein, ⁇ is the width of the air gap between the inner diameter of the stator and the outer diameter of the rotor of the motor formed by the rotor structure; and/or within the same second magnetic barrier layer 102 , the maximum width of the second filling slot 122 and the second slit The difference between the maximum widths of the grooves 112 is within 10% of the maximum width of the second slit grooves 112 .
  • Each second slot slot 112 and the corresponding second filling slot 122 together constitute each second magnetic barrier layer 102 of the rotor structure, wherein the second slot slot 112 in each second magnetic barrier layer 102 is associated with the corresponding second magnetic barrier layer 102 .
  • the two filling slots 122 are arranged at intervals, and the width L3 of the interval should satisfy 0.8 ⁇ L3 ⁇ 2 ⁇ , where ⁇ is the width of the air gap between the inner diameter of the stator and the outer diameter of the rotor of the motor with the rotor structure, and the second slot 112 and the second filling groove 122 are smoothly connected, and the difference between the maximum width of the second slit groove 112 in each second magnetic barrier layer 102 and the maximum width of the second filling groove 122 is in the second slit groove Within 10% of the maximum width of the second slit groove 112, the maximum width of the second slit groove 112 refers to the maximum dimension of the second slit groove 112 along the direction of the intersection axis 4, and the maximum width of the
  • the mechanical strength of the rotor structure can be ensured, the magnetic flux leakage between the second slot slots 112 and the corresponding second filling slots 122 can be reduced, and on the other hand, the second slot slots 112 and the corresponding second filling slots 122 can be controlled.
  • the width between the slots 122 can reduce the magnetic resistance of the magnetic circuit of the rotor structure, so that the magnetic channel of the rotor structure is smoother.
  • the minimum distance L5 between two adjacent second magnetic barrier layers 102 is greater than 1.8h3; where h3 is two adjacent second magnetic barrier layers The smallest width of the second slit groove 112 of the second magnetic barrier layer 102 with the smaller size in the second magnetic barrier layer 102 along the direction of the quadrature axis 4 .
  • the minimum distance between two adjacent second magnetic barrier layers 102 in one rotor pole 10 is L5, and the smallest distance along the quadrature axis 4 direction of the second magnetic barrier layer 102 of the two adjacent second magnetic barrier layers 102 is the smallest.
  • the width is h3, where L5 should be greater than 1.8h3.
  • the processing difficulty of the rotor structure can be reduced, and on the other hand, the uniformity of the magnetic density distribution of the rotor structure can be ensured, and the saturation of the rotor magnetic density can be reduced.
  • each second slit groove 112 gradually increases from the direction of the quadrature axis 4 to the two ends of the second slit groove 112 .
  • the width of the second slot 112 in each second magnetic barrier layer 102 gradually increases from the middle of the second slot 112 (ie, the quadrature axis 4) to both ends thereof.
  • the dimension of the slit groove 112 in the direction of the quadrature axis 4 is the dimension of the slit groove 112 in the direction of the quadrature axis 4 .
  • each group of second magnetic barrier layers 102 is provided with a third magnetic barrier layer 103 on one side away from the first magnetic barrier layer 101 , and the third magnetic barrier layer 103 is constituted by third filling grooves 123 .
  • One rotor pole 10 further includes a third magnetic barrier layer 103 .
  • the third magnetic barrier layer 103 is also a continuous magnetic barrier layer. side, the third magnetic barrier layer 103 includes a third filling trench 123 .
  • the third filling slot 123 in the third magnetic barrier layer 103 is an independent filling slot, and the angle occupied by the third filling slot 123 relative to the central axis 2 of the rotor structure is ⁇ , and ⁇ should satisfy 0.05 ⁇ 0.3 ⁇ .
  • the third filling slot 123 can not only be used as a part of the third magnetic barrier layer 103 to improve the salient pole ratio of the motor, but also can increase the area of the filling slot of the rotor structure of the motor and improve the starting ability of the motor. If the angle ⁇ occupied by the slot 123 is too large, the asynchronous torque of the motor will be reduced, and the starting ability of the motor will be deteriorated.
  • the ratio between the sum of the widths of the second slit slots 112 of the second magnetic barrier layers 102 and the width of the shaft hole 20 to the outer peripheral surface of the rotor structure is 0.3 to 0.5.
  • one rotor pole 10 includes four second magnetic barrier layers 102 and one third magnetic barrier layer 103 .
  • the widths of the second slit groove 112 of the barrier layer 102 and the third filling groove 123 of one third magnetic barrier layer 103 are m1, m2, m3, m4 and m5 in sequence, and the plurality of second magnetic barrier layers 102 and the third magnetic barrier
  • the sum of the minimum dimensions of the barrier layer 103 along the radial direction of the rotor punch 100 is (m1+m2+m3+m4+m5), the width between the shaft hole 20 of the rotor punch 100 and the outer peripheral surface of the rotor punch 100 It means that the shortest distance between the shaft hole 20 of the rotor punch 100 and the outer peripheral surface of the rotor punch 100 is m6, where (m1+m2+m3+m4+m5)
  • each magnetic barrier layer 1 can not only ensure a sufficient width of the magnetic barrier layer 1, effectively block the quadrature-axis magnetic flux, but also ensure a reasonable magnetic channel, prevent the magnetic circuit from over-saturation, and increase the direct-axis magnetic flux. , increase the salient pole ratio of the motor.
  • both the first filling groove 121 and the second filling groove 122 extend to the outer peripheral surface of the rotor structure; and/or the first filling groove 121 and the second filling groove 122 are both filled with aluminum or aluminum alloy.
  • the first filling groove 121 and the second filling groove 122 are open grooves, that is, the notches of the first filling groove 121 and the second filling groove 122 are opened at the outer peripheral surface of the rotor punching piece 100 , and
  • the third filling groove 123 is a closed groove.
  • the filling slot includes a first filling slot 121, a second filling slot 122 and a third filling slot 123, which are filled with conductive but non-magnetic material, preferably aluminum or aluminum alloy, and the filling material in the filling slot passes through the rotor structure.
  • the end rings 200 at both ends form a self-shorting connection and form a squirrel cage structure.
  • the material of the end rings 200 is the same as the filling material in the filling groove. In this way, the structure can provide asynchronous torque in the motor starting stage, so as to realize the self-starting of the self-starting synchronous reluctance motor.
  • the notches of the first filling groove 121 and the second filling groove 122 are located at the side of the end of the first filling groove 121 and the second filling groove 122 near the side of the adjacent straight shaft 3 , or the grooves of the first filling groove 121 and the second filling groove 122 The mouth is located in the middle of its end.
  • the widths of the notch of the first filling groove 121 and the second filling groove 122 are smaller than the corresponding widths of the first filling groove 121 or the second filling groove 122 .
  • the notches of the first filling groove 121 and the second filling groove 122 are located at one end of the corresponding first filling groove 121 or the second filling groove 122 close to the outer peripheral surface of the rotor punch 100, and are located in the corresponding first filling groove 121 or the first filling groove 122.
  • the second filling slot 122 is close to the side of the adjacent straight shaft 3; or the notch of the first filling slot 121 and the second filling slot 122 are located in the corresponding first filling slot 121 or the second filling slot 122 close to the rotor punch 100 one end of the outer peripheral surface, and is located in the middle of the end.
  • the ends of the first filling groove 121 and the second filling groove 122 are provided with a side away from the side of the straight axis 3 that is close to them or on both sides of the ends of the first filling groove 121 and the second filling groove 122 .
  • the chamfered surface 120 is connected with the notch edge of the corresponding first filling groove 121 or the second filling groove 122 .
  • the ends of the first filling groove 121 and the second filling groove 122 are provided with chamfered surfaces 120 on the side away from the straight axis 3 or on both sides of the middle of the ends of the first filling groove 121 and the second filling groove 122 .
  • 120 is connected with the corresponding notch of the first filling groove 121 or the second filling groove 122 to form a semi-open groove structure of the first filling groove 121 or the second filling groove 122 .
  • the magnetic channel between the first filling slot 121 or the second filling slot 122 near the outer peripheral surface of the rotor structure is widened, and the straight-axis magnetic flux can smoothly enter the stator through the chamfered surface 120, reducing the
  • the influence of the openings of the first filling slot 121 and the second filling slot 122 on the direct-axis magnetic flux ensures the direct-axis inductance; at the same time, the chamfered surface 120 can also improve the magnetic flux distribution, slow down the magnetic flux change, and reduce the interaction with the stator teeth
  • the generated torque ripple reduces the vibration and noise of the motor.
  • setting the notch can effectively hinder the flow of the quadrature axis magnetic flux, reduce the quadrature axis inductance, increase the gap between the direct axis and the quadrature axis inductance, and improve the output torque and efficiency of the motor.
  • the included angle between the chamfered surface 120 and the groove wall surface of the first filling groove 121 or the second filling groove 122 connected to the chamfered surface 120 is ⁇ , 125° ⁇ 165°.
  • the chamfered surface 120 can reduce the influence of the notch of the corresponding first filling slot 121 or the second filling slot 122 on the direct-axis inductance, so that the straight-axis magnetic field line can smoothly enter the stator and generate torque, and at the same time, the chamfered surface 120 can reduce The inductance of the motor is abruptly changed to reduce the reluctance torque ripple.
  • the notch width of the first filling slot 121 and/or the second filling slot 122 is L4, where 0.5 ⁇ L4 ⁇ 4 ⁇ , ⁇ is the difference between the inner diameter of the stator and the outer diameter of the rotor of the motor formed by the rotor structure and/or the notch width L4 of the first filling groove 121 and/or the second filling groove 122 is smaller than the maximum thickness w of the first filling groove 121 or the second filling groove 122 .
  • the slot width of the first filling slot 121 and/or the second filling slot 122 is L4, L4 satisfies 0.5 ⁇ L4 ⁇ 4 ⁇ , ⁇ is the width of the air gap between the inner diameter of the stator and the outer diameter of the rotor of the motor with the rotor structure , in some embodiments, the slot width L4 of the first filling groove 121 and/or the second filling groove 122 satisfies 1.5 ⁇ L4 ⁇ 3 ⁇ .
  • the value range of the slot width L4 of the first filling groove 121 and/or the second filling groove 122 is: 0.1w ⁇ L4 ⁇ 0.7w; wherein, w is the first filling groove 121 or the first filling groove 121 or the first filling groove 121.
  • the maximum thickness of the filling groove 122 is selected an appropriate slot width for the first filling slot 121 and/or the second filling slot 122 helps the motor to obtain the best inductance difference, so as to improve the working efficiency of the motor.
  • the area of the second filling groove 122 on the end face of the rotor punch 100 is relative to the second slit groove 112 and the second filling groove of the second magnetic barrier layer 102
  • the proportion of the total area of 122 on the end face of the rotor punch 100 is greater than 40%.
  • the ratio of the area of the second filling groove 122 to the area of the corresponding second magnetic barrier layer 102 is greater than 40%.
  • the area of the second filling groove 122 is the same as the corresponding area
  • the area ratio of the second magnetic barrier layer 102 ranges from 40% to 60% to ensure that the motor has sufficient self-starting capability.
  • the area of the first filling groove 121 on the end face of the rotor punch 100 is relative to the first slit groove 111 and the first filling groove of the first magnetic barrier layer 101
  • the proportion of the sum of the areas of 121 on the end face of the rotor punch 100 is greater than 30%.
  • the ratio of the area of the second filling groove 122 to the area of the corresponding first magnetic barrier layer 101 is greater than 30%.
  • the area ratio of the first magnetic barrier layer 101 ranges from 30% to 100%, so as to improve the start-up capability of the motor under load.
  • a motor including a stator and a rotor, and the rotor is the above-mentioned rotor structure.
  • a rotor processing method for processing the above-mentioned rotor structure comprising: obtaining a rotor iron core, the outer peripheral surface of the rotor iron core is larger than the outer peripheral surface of the rotor structure, so as to A temporary rib is formed between the notch of the filling groove of the rotor structure and the outer peripheral surface of the rotor core; the filling groove is filled with the material to be filled and the end ring 200 is installed; the temporary rib is removed to form the rotor structure.
  • the rotor processing method of the present disclosure is specifically as follows:
  • a rotor core with a diameter slightly larger than the diameter of the outer peripheral surface of the rotor punch 100 is manufactured.
  • the notch of the filling slot is closed, and the position corresponding to the notch of the filling slot has a connection between the filling slot and the rotor core.
  • the slit groove segment 1110 and the adjacent first filling groove 121 are spaced apart or connected to each other;
  • the third magnetic barrier layer 103 can be an independent filling groove, or can be a filling groove and a slit groove.
  • the combination of slots; the shape of the slot segment 1110 can be rectangular or other regular and irregular shapes; the shape of the shaft hole 20 can be all circular or partially circular;
  • the first filling slot 121 and the second filling slot 122 can be an open groove or a closed groove.
  • the position of the notch can be close to the adjacent straight shaft 3 at the end of the corresponding filling groove. one side or the middle of the end of the corresponding filling slot or both.
  • the area of the direct-axis filling groove can be increased, the direct-axis resistance can be reduced, and the average value of the motor during the starting process can be increased. torque, improve the starting ability of the motor, and increase the utilization rate of the rotor core space.
  • the asynchronous torque provided by the rotor bar realizes the self-starting of the motor, solves the problem that the synchronous reluctance motor needs to be driven by a frequency converter, and reduces the loss of the motor at the same time , improve the efficiency of the motor, and solve the problem of low motor efficiency in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种转子结构、电机和转子加工方法,转子结构包括:多个转子冲片(100),沿转子结构的轴向依次叠置,每个转子冲片(100)上设置有轴孔(20)、第一狭缝槽(111)和位于第一狭缝槽(111)两端的第一填充槽(121),第一狭缝槽(111)沿转子结构的直轴(3)方向延伸,且包括位于轴孔(20)相对两侧的狭缝槽段(1110);和转轴,穿过多个转子冲片(100)的轴孔(20);其中,第一狭缝槽(111)、第一填充槽(121)和转轴形成第一磁障层(101)。转子结构解决了现有技术中的电机效率较低的问题。

Description

转子结构、电机和转子加工方法
相关申请的横向引用
本公开是以申请号为 202011503752.1,申请日为 2020年12月17日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及电机领域,具体而言,涉及一种转子结构、电机和转子加工方法。
背景技术
自起动同步磁阻电机在同步磁阻电机的基础上,结合了异步电机的优点,通过转子导条产生的异步转矩实现自起动。与同步磁阻电机相比,自起动同步磁阻电机不需要再使用变频器驱动,电机系统的损耗降低,电机效率提升;与异步电机相比,自起动同步磁阻电机可实现恒速运行,转子损耗低,运行时的效率高;与异步起动永磁同步电机相比,自起动同步磁阻电机不使用永磁体材料,电机成本低,且不存在永磁体退磁问题。
在发明人所知晓的技术中,自起动的同步感应电动机的狭缝部为直线的形状,转子中心有轴孔,d轴转子内部空间很大,这样设置导致转子空间的利用率低,且转子部分的饱和度高,电机效率低。
发明内容
本公开的主要目的在于提供一种转子结构、电机和转子加工方法,以解决现有技术中的电机效率较低的问题。
根据本公开的第一方面,提供了一种转子结构,包括:
多个转子冲片,沿转子结构的轴向依次叠置,每个转子冲片上设置有轴孔、第一狭缝槽和位于第一狭缝槽两端的第一填充槽,第一狭缝槽沿转子结构的直轴方向延伸,且包括位于轴孔相对两侧的狭缝槽段;和
转走,穿过多个转子冲片的轴孔;
其中,第一狭缝槽、第一填充槽和转轴形成第一磁障层。
在一些实施例中,转子结构包括成对设置的两个转子极;和/或转轴由不导磁材料 制成;和/或转轴的外周面为圆柱状,或转轴的外周面包括部分圆柱面。
在一些实施例中,狭缝槽段与轴孔之间的最小距离L1的取值范围为:σ≤L1≤5σ;和/或狭缝槽段与其相邻的第一填充槽之间的最小距离L2的取值范围为:0.8σ≤L2≤2σ,或者L2=0;其中,σ为转子结构所形成的电机的定子内径和转子外径之间气隙的宽度。
在一些实施例中,狭缝槽段和第一填充槽内填充有相同的材料;或者狭缝槽段为空气槽。
在一些实施例中,狭缝槽段为矩形;和/或狭缝槽段的最小宽度h1的取值范围为:0.9h2≤h1≤1.1h2;h2为与该狭缝槽段相邻的第一填充槽的宽度。
在一些实施例中,第一磁障层的相对两侧均设置有一组第二磁障层,每组第二磁障层中均包括沿转子结构的交轴的方向布置的多个第二磁障层;第二磁障层包括第二狭缝槽和设置在第二狭缝槽两端的第二填充槽。
在一些实施例中,狭缝槽段的最小宽度h1的取值范围为:
Figure PCTCN2021107838-appb-000001
L6为每组第二磁障层中最靠近直轴的第二磁障层的第二狭缝槽与直轴沿交轴方向的最小垂直距离;和/或每组第二磁障层中最靠近直轴的第二磁障层的第二狭缝槽与第一狭缝槽之间沿交轴方向的最小距离h4的取值范围为:L7≤h4≤1.65L7;其中,L7为轴孔与最靠近直轴的第二磁障层之间沿交轴方向的最小距离。
在一些实施例中,在同一个第二磁障层内,第二狭缝槽与第二填充槽之间间隔设置且间隔宽度L3的取值范围为:0.8σ≤L3≤2σ;其中,σ为转子结构所形成电机的定子内径和转子外径之间气隙的宽度;和/或在同一个第二磁障层内,第二填充槽的最大宽度和第二狭缝槽的最大宽度之间的差值在第二狭缝槽的最大宽度的10%之内。
在一些实施例中,在每组第二磁障层内,相邻两个第二磁障层之间的最小距离L5大于1.8h3;其中,h3为相邻两个第二磁障层中的尺寸较小的第二磁障层的第二狭缝槽沿交轴方向的最小宽度。
在一些实施例中,每个第二狭缝槽的宽度由交轴至第二狭缝槽的两端的方向逐渐增大。
在一些实施例中,每组第二磁障层远离第一磁障层的一侧设置有第三磁障层,第三磁障层由第三填充槽构成。
在一些实施例中,第三填充槽相对于转子结构的中心轴线所占角度α的取值范围为0.05τ≤α≤0.3τ;τ=180°/p,p为转子结构的极对数。
在一些实施例中,在每组第二磁障层中,第二磁障层的第二狭缝槽的宽度之和与轴孔到转子结构的外周面的宽度之间的比值为0.3至0.5。
在一些实施例中,第一填充槽和第二填充槽均延伸至转子结构的外周面;和/或第一填充槽和第二填充槽内均填充有铝或铝合金。
在一些实施例中,第一填充槽和第二填充槽的槽口位于其端部靠近与其相邻的直轴的一侧,或者第一填充槽和第二填充槽的槽口位于其端部的中部。
在一些实施例中,第一填充槽和第二填充槽的端部远离其靠近的直轴的一侧或第一填充槽和第二填充槽的端部的两侧设置有斜切面,斜切面与相应的第一填充槽或第二填充槽的槽口边连接。
在一些实施例中,斜切面与第一填充槽或第二填充槽的与该斜切面连接的槽壁面之间的夹角为β,125°≤β≤165°。
在一些实施例中,第一填充槽和/或第二填充槽的槽口宽度为L4,其中,0.5σ≤L4≤4σ,σ为转子结构形成的电机的定子内径与转子外径之间的气隙宽度;和/或第一填充槽和/或第二填充槽的槽口宽度L4小于该第一填充槽或第二填充槽的最大厚度w。
在一些实施例中,第一填充槽和/或第二填充槽的槽口宽度L4的取值范围为:0.1w≤L4≤0.7w;其中,w为该第一填充槽或第二填充槽的最大厚度。
在一些实施例中,在同一个第二磁障层内,第二填充槽在转子冲片的端面上的面积相对于该第二磁障层的第二狭缝槽和第二填充槽在转子冲片的端面上的面积之和的占比大于40%。
在一些实施例中,在同一个第一磁障层内,第一填充槽在转子冲片的端面上的面积相对于该第一磁障层的第一狭缝槽和第一填充槽在转子冲片的端面上的面积之和的占比大于30%。
根据本公开的第二方面,提供了一种电机,包括定子和上述的转子结构。
根据本公开的第三方面,提供了一种转子加工方法,用于加工上述的转子结构,转子加工方法包括:得出转子铁芯,转子铁芯的外周面大于转子结构的外周面,以使转子结构的填充槽的槽口与转子铁芯的外周面之间形成临时筋;向填充槽内填充待填充材料并安装端环;去除临时筋,以形成转子结构。
应用本公开的技术方案,本公开的转子结构为自起动同步磁阻电机的转子结构,转子结构包括多个依次叠置的转子冲片,转子冲片上设置有第一狭缝槽、第一填充槽 和轴孔。第一狭缝槽沿转子结构的直轴方向延伸,两个第一填充槽位于第一狭缝槽的延伸方向的两端,第一狭缝槽、第一填充槽和穿设在轴孔内的转轴形成第一磁障层。本公开的转子结构能够增大电机的凸极差,提升电机的输出转矩,提升电机的效率,不仅解决了现有技术中的电机效率较低的问题,还能增大用于加工转子结构的转子铁芯空间的利用率,提升电机的起动能力。
附图说明
构成本申请的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的转子结构的第一实施例的结构示意图;
图2示出了根据本公开的转子结构中的转子冲片的第一实施例的结构示意图;
图3示出了根据本公开的转子结构中的转子冲片的第二实施例的结构示意图;以及
图4示出了具有本公开的转子结构的电机的输出转矩与具有相关技术的转子结构的电机的输出转矩随时间变化的对比图。
其中,上述附图包括以下附图标记:
100、转子冲片;10、转子极;101、第一磁障层;102、第二磁障层;103、第三磁障层;111、第一狭缝槽;1110、狭缝槽段;112、第二狭缝槽;121、第一填充槽;122、第二填充槽;123、第三填充槽;120、斜切面;20、轴孔;2、中心轴线;3、直轴;4、交轴;200、端环。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
如图1至图3所示,本公开提供了一种转子结构,转子结构包括转轴和多个沿转子结构的轴向依次叠置的转子冲片100,每个转子冲片100上设置有用于供转轴穿过的轴孔20,转子冲片100上开设有第一狭缝槽111和位于第一狭缝槽111两端的第一填充槽121,第一狭缝槽111包括位于轴孔20相对两侧的狭缝槽段1110,第一狭缝槽111、第一填充槽121和穿设在轴孔20内的转轴形成第一磁障层101;其中,第一狭缝槽111沿转子结构的直轴3方向延伸。
本公开的转子结构为自起动同步磁阻电机的转子结构,转子结构包括多个依次叠置的转子冲片100,转子冲片100上设置有第一狭缝槽111、第一填充槽121和轴孔20。第一狭缝槽111沿转子结构的直轴3方向延伸,两个第一填充槽121位于第一狭缝槽111的延伸方向的两端,第一狭缝槽111、第一填充槽121和穿设在轴孔20内的转轴形成第一磁障层101,轴孔20将第一磁障层101分为分段式的两部分。本公开的转子结构能够增大电机的凸极差,提升电机的输出转矩,提升电机的效率,不仅解决了现有技术中的电机效率较低的问题,还能增大用于加工转子结构的转子铁芯空间的利用率,提升电机的起动能力。
在自起动同步磁阻电机中,转子磁场方向为直轴3,也称d轴,交轴4与直轴3相差90°电角度,也称q轴。
磁障即磁通屏障,是阻碍磁力线通过的结构,同一个转子极10中相邻两个磁通屏障之间形成磁通道,磁通屏障由镂空的空气槽或其他不导磁材料填充于槽内构成。
具体地,转子结构由成对设置的两个转子极10构成;和/或转轴由不导磁材料制成;和/或转轴的外周面为圆柱状,或转轴的外周面的部分表面由圆柱面的部分构成。
本公开的转子结构包括两个对称的转子极10,穿设在转子结构的轴孔20中的转轴为不导磁材料制成,转轴的外周面的至少部分表面为圆柱状,采用上述形状的转轴可以增大第一磁障层101与距离轴孔20最近的第二磁障层102之间的磁通道的宽度。
如图2所示,狭缝槽段1110与轴孔20之间的最小距离L1的取值范围为:σ≤L1≤5σ;和/或狭缝槽段1110与其相邻的第一填充槽121之间的最小距离L2的取值范围为:0.8σ≤L2≤2σ,或者L2=0;其中,σ为转子结构所形成的电机的定子内径和转子外径之间气隙的宽度。
狭缝槽段1110位于轴孔20的两侧,为了保证狭缝槽段1110和轴孔20连接处连接筋的机械强度,同时最大化地利用转子铁芯的空间,狭缝槽段1110与转轴之间的最小距离为L1,L1应满足σ≤L1≤5σ,σ为具有转子结构的电机的定子内径和转子外径之间的气隙的宽度。
狭缝槽段1110和与其相邻的第一填充槽121之间的最小距离为L2,L2应满足0.8σ≤L2≤2σ或L2=0,即狭缝槽段1110和与其相邻的第一填充槽121之间可以相互间隔或相互连接。
在一些实施例中,狭缝槽段1110和第一填充槽121内填充有相同的材料;或者狭缝槽段1110为空气槽。
当狭缝槽段1110为空气槽时,狭缝槽段1110和与其相邻的第一填充槽121相间隔,控制狭缝槽段1110和第一填充槽121之间的距离L2可以保证转子铁芯的机械强度,减小狭缝槽段1110和第一填充槽121之间的漏磁。
狭缝槽段1110、第一填充槽121和不导磁的转轴组成的第一磁障层101为分段式磁障层,当狭缝槽段1110与第一填充槽121内填充相同的填充材料时,狭缝槽段1110和第一填充槽121相连接,第一磁障层101可以增大电机的凸极差,如下公式(1)所示,凸极差即为电机d轴电感Ld和q轴电感Lq之差,较大的凸极差可以提升电机输出转矩的能力。
Figure PCTCN2021107838-appb-000002
式(1)中,Tem为电磁转矩,p为电机极对数,Ld为电机d轴电感,Lq为电机q轴电感,is为定子电流,id为电机d轴电流,iq为电机q轴电流,β为电流角。
另外,当第一磁障层101中的狭缝槽段1110可以填充第一填充槽121内相同的填充材料时,可以增加d轴填充槽的面积,减小d轴电阻。如下公式(2)所示,
Figure PCTCN2021107838-appb-000003
式(2)中,Te-ave为平均电磁转矩,P为电机的磁极对数,SSYNC为转差率,ω为电机电角速度,VS为输入端电压有效值,Rrd、Rrq分别为转子d轴电阻和q轴电阻,Lmd、Lmq分别为定子d轴励磁电感和q轴励磁电感,Lds、Lqs分别为定子d轴漏感和q轴漏感。
由于定子d轴漏感Lds和定子q轴漏感Lqs较为接近,而定子d轴励磁电感Lmd远大于定子q轴励磁电感Lmq,所以
Figure PCTCN2021107838-appb-000004
因此,减小d轴电阻Rrd是更为有效地提升电机起动时的平均电磁转矩Te-ave的方法。第一磁障层101中的狭缝槽段1110填充与第一填充槽121内相同的填充材料,可以增大d轴填充槽的面积,减小d轴电阻,从而增大电机在起动过程中的平均电磁转矩Te-ave,提升电机的起动能力。
如图2所示,狭缝槽段1110为矩形;和/或狭缝槽段1110的最小宽度h1的取值范围为:0.9h2≤h1≤1.1h2;h2为与该狭缝槽段1110相邻的第一填充槽121的宽度。
在一些实施例中,狭缝槽段1110的形状为矩形或其他形状。
具体地,狭缝槽段1110的宽度的最小值为h1,与狭缝槽段1110相邻的第一填充 槽121的最大宽度为h2,h1和h2应满足0.9h2≤h1≤1.1h2,以增大沿直轴3方向延伸且靠近狭缝槽段1110处的导磁通道的面积,减小转子结构的磁路的磁阻,使得转子部分的磁路更加顺畅。
如图2所示,第一磁障层101的相对两侧均设置有一组第二磁障层102,每组第二磁障层102中均包括沿转子结构的交轴4方向布置的多个第二磁障层102;第二磁障层102包括第二狭缝槽112和设置在第二狭缝槽112两端的第二填充槽122。
第一磁障层101为分段式磁障层,即第一磁障层101的第一狭缝槽111被轴孔20分为沿直轴方向的两个狭缝槽段1110;多个第二磁障层102均为连续式磁障层,即第二磁障层102的第二狭缝槽112为连续的,多个第二磁障层102分别位于轴孔20的两侧,且沿交轴4的方向分布。
在一些实施例中,狭缝槽段1110的最小宽度h1的取值范围为:
Figure PCTCN2021107838-appb-000005
L6为每组第二磁障层102中最靠近直轴3的第二磁障层102的第二狭缝槽112与直轴3沿交轴4方向的最小垂直距离;和/或每组第二磁障层102中最靠近直轴3的第二磁障层102的第二狭缝槽112与第一狭缝槽111之间沿交轴4方向的最小值h4的取值范围为:L7≤h4≤1.65L7;其中,L7为轴孔20与最靠近直轴3的第二磁障层102之间沿交轴4方向的最小距离。
狭缝槽段1110宽度的最小值h1还应满足
Figure PCTCN2021107838-appb-000006
L6为距离轴孔20最近的第二磁障层102与直轴3之间沿交轴4方向的最小垂直距离。这样能够保证沿直轴3方向延伸且靠近狭缝槽段1110处的磁通道的面积,以保证转子结构沿直轴3方向的磁路的顺畅,减小转子结构的磁密的饱和度,使得转子结构的磁密分布更均匀。
多个第二磁障层102中距离轴孔20最近的第二磁障层102的第二狭缝槽112与第一磁障层101的狭缝槽段1110之间沿交轴4方向的最小距离为h4,轴孔20与距离轴孔20最近的第二磁障层102之间沿交轴4方向的最小距离为L7,h4应满足L7≤h4≤1.65L7,这样能够保证距离轴孔20最近的第二磁障层102与第一磁障层101之间的磁通道的顺畅。
在一些实施例中,在同一个第二磁障层102内,第二狭缝槽112与第二填充槽122之间间隔设置且间隔宽度L3的取值范围为:0.8σ≤L3≤2σ;其中,σ为转子结构所形成电机的定子内径和转子外径之间气隙的宽度;和/或在同一个第二磁障层102内,第二填充槽122的最大宽度和第二狭缝槽112的最大宽度之间的差值在第二狭缝 槽112的最大宽度的10%之内。
各个第二狭缝槽112与相应的第二填充槽122共同组成转子结构的各个第二磁障层102,其中,每个第二磁障层102中的第二狭缝槽112与相应的第二填充槽122均间隔设置,该间隔的宽度L3应满足0.8σ≤L3≤2σ,σ为具有转子结构的电机的定子内径和转子外径之间的气隙的宽度,第二狭缝槽112和第二填充槽122之间顺畅连接,且每个第二磁障层102中第二狭缝槽112的最大宽度和第二填充槽122的最大宽度之间的差值在第二狭缝槽112的最大宽度的10%以内,其中,第二狭缝槽112的最大宽度是指第二狭缝槽112沿交轴4方向的最大尺寸,第二填充槽122的最大宽度是指第二填充槽122沿交轴4方向的最大尺寸。
这样,一方面可以保证转子结构的机械强度,减小第二狭缝槽112与相应的第二填充槽122之间的漏磁,另一方面控制第二狭缝槽112与相应的第二填充槽122之间的宽度能够减小转子结构的磁路的磁阻,使得转子结构的磁通道更加顺畅。
在一些实施例中,在各组第二磁障层102内,相邻两个第二磁障层102之间的最小距离L5大于1.8h3;其中,h3为相邻两个第二磁障层102中的尺寸较小的第二磁障层102的第二狭缝槽112沿交轴4方向的最小宽度。
一个转子极10中相邻两个第二磁障层102之间的最小距离为L5,两相邻第二磁障层102中尺寸较小第二磁障层102的沿交轴4方向的最小宽度为h3,其中,L5应大于1.8h3。
这样,一方面可以降低转子结构的加工难度,另一方面也可保证转子结构的磁密分布的均匀度,降低转子磁密的饱和度。
在一些实施例中,各个第二狭缝槽112的宽度由交轴4至第二狭缝槽112的两端的方向逐渐增大。
各个第二磁障层102中第二狭缝槽112的宽度从第二狭缝槽112的中间(即交轴4)向其两端逐渐增加,第二狭缝槽112的宽度是指第二狭缝槽112沿交轴4方向的尺寸。
如图2和图3所示,各组第二磁障层102远离第一磁障层101的一侧设置有第三磁障层103,第三磁障层103由第三填充槽123构成。
一个转子极10还包括第三磁障层103,第三磁障层103也为连续式磁障层,第三磁障层103位于各个第二磁障层102远离第一磁障层101的一侧,第三磁障层103包括第三填充槽123。
具体地,第三填充槽123相对于转子结构的中心轴线2所占角度α的取值范围为0.05τ≤α≤0.3τ;τ=180°/p,p为转子结构的极对数。
第三磁障层103中的第三填充槽123为独立填充槽,第三填充槽123相对于转子结构的中心轴线2所占的角度为α,α应满足0.05τ≤α≤0.3τ,在一些实施例中,α满足0.15τ≤α≤0.26τ,其中τ为极距角,即τ=180°/p,p为转子极对数。
第三填充槽123不仅可以作为第三磁障层103的一部分,提高电机的凸极比,还可以增大电机的转子结构的填充槽的面积,提升电机的起动能力,但是,如果第三填充槽123所占的角度α过大,会使得电机的异步转矩减小,电机的起动能力变差。
在一些实施例中,在各组第二磁障层102中,第二磁障层102的第二狭缝槽112的宽度之和与轴孔20到转子结构的外周面的宽度之间的比值为0.3至0.5。
如图2所示,本公开的转子结构中一个转子极10包括四个第二磁障层102和一个第三磁障层103,沿远离转子结构的直轴3的方向,四个第二磁障层102的第二狭缝槽112和一个第三磁障层103的第三填充槽123的宽度依次为m1、m2、m3、m4和m5,多个第二磁障层102和第三磁障层103沿转子冲片100的径向方向的最小尺寸之和为(m1+m2+m3+m4+m5),转子冲片100的轴孔20到转子冲片100的外周面之间的宽度是指转子冲片100的轴孔20到转子冲片100的外周面之间的最短距离为m6,其中,(m1+m2+m3+m4+m5)/m6=0.3至0.5。
各个磁障层1选择合理的占比,既能保证足够的磁障层1的宽度,有效地阻碍交轴磁通,又能保证合理的磁通道,防止出现磁路过饱和,增加直轴磁通,增加电机的凸极比。
具体地,第一填充槽121和第二填充槽122均延伸至转子结构的外周面;和/或第一填充槽121和第二填充槽122内均填充有铝或铝合金。
转子结构的多个填充槽中第一填充槽121和第二填充槽122为开口槽,即第一填充槽121和第二填充槽122的槽口开在转子冲片100的外周面处,而第三填充槽123为封闭槽。
填充槽包括第一填充槽121、第二填充槽122和第三填充槽123,其内填充有导电但不导磁的材料,优选为铝或铝合金,填充槽内的填充材料通过位于转子结构两端的端环200形成自行短路的连接,并构成鼠笼结构,端环200的材料与填充槽内的填充材料相同。这样,该结构在电机起动阶段可以提供异步转矩,以实现自起动同步磁阻电机的自起动。
在一些实施例中,第一填充槽121和第二填充槽122的槽口位于其端部靠近与其相邻的直轴3的一侧,或者第一填充槽121和第二填充槽122的槽口位于其端部的中部。
如图2和图3所示,第一填充槽121和第二填充槽122的槽口的宽度小于相应的第一填充槽121或第二填充槽122的宽度。第一填充槽121和第二填充槽122的槽口位于相应的第一填充槽121或第二填充槽122靠近转子冲片100的外周面的一端,且位于相应的第一填充槽121或第二填充槽122靠近与其相邻的直轴3的一侧;或者第一填充槽121和第二填充槽122的槽口位于相应的第一填充槽121或第二填充槽122靠近转子冲片100的外周面的一端,且位于该端部的中部。
在一些实施例中,第一填充槽121和第二填充槽122的端部远离其靠近的直轴3的一侧或第一填充槽121和第二填充槽122的端部的两侧设置有斜切面120,斜切面120与相应的第一填充槽121或第二填充槽122的槽口边连接。
具体地,第一填充槽121和第二填充槽122的端部远离直轴3一侧或第一填充槽121和第二填充槽122端部的中部的两侧设置有斜切面120,斜切面120与相应的第一填充槽121或第二填充槽122的槽口连接,形成第一填充槽121或和第二填充槽122的半开口槽结构。通过设置斜切面120,使靠近转子结构的外周面处的第一填充槽121或第二填充槽122之间的磁通道变宽,直轴磁通能够通过斜切面120顺利进入定子,减小第一填充槽121和第二填充槽122的槽口对直轴磁通的影响,保证直轴电感;同时,斜切面120还能改善磁通分布,减缓磁通变化,降低与定子齿槽相互作用产生的转矩脉动,降低电机的振动噪声。同时,设置槽口能够有效阻碍交轴磁通流动,减小交轴电感,增加直轴和交轴电感差距,提升电机的输出扭矩及效率。
在一些实施例中,斜切面120与第一填充槽121或第二填充槽122的与该斜切面120连接的槽壁面之间的夹角为β,125°≤β≤165°。斜切面120可以减小相应的第一填充槽121或第二填充槽122的槽口对直轴电感的影响,使直轴磁力线能够顺利进入定子并产生转矩,同时,斜切面120可以减小电机的电感突变,降低磁阻转矩脉动。
如图2所示,第一填充槽121和/或第二填充槽122的槽口宽度为L4,其中,0.5σ≤L4≤4σ,σ为转子结构形成的电机的定子内径与转子外径之间的气隙宽度;和/或第一填充槽121和/或第二填充槽122的槽口宽度L4小于该第一填充槽121或第二填充槽122的最大厚度w。
第一填充槽121和/或第二填充槽122的槽口宽度为L4,L4满足0.5σ≤L4≤4σ,σ为具有转子结构的电机的定子内径与转子外径之间的气隙的宽度,在一些实施例中,第一填充槽121和/或第二填充槽122的槽口宽度L4满足1.5σ≤L4≤3σ。
在一些实施例中,第一填充槽121和/或第二填充槽122的槽口宽度L4的取值范围为:0.1w≤L4≤0.7w;其中,w为该第一填充槽121或第二填充槽122的最大厚度。这样,第一填充槽121和/或第二填充槽122选择合适的槽口宽度,有助于电机获得最佳的电感差,以提高电机的工作效率。
具体地,在同一个第二磁障层102内,第二填充槽122在转子冲片100的端面上的面积相对于该第二磁障层102的第二狭缝槽112和第二填充槽122在转子冲片100的端面上的面积之和的占比大于40%。
在同一个第二磁障层102内,第二填充槽122的面积与相应的第二磁障层102的面积之比大于40%,在一些实施例中,第二填充槽122的面积与相应的第二磁障层102的面积之比的范围为40%~60%,以保证电机具有足够的自起动能力。
具体地,在同一个第一磁障层101内,第一填充槽121在转子冲片100的端面上的面积相对于该第一磁障层101的第一狭缝槽111和第一填充槽121在转子冲片100的端面上的面积之和的占比大于30%。
在同一个第一磁障层101内,第二填充槽122的面积与相应的第一磁障层101的面积之比大于30%,在一些实施例中,第二填充槽122的面积与相应的第一磁障层101的面积之比的范围为30%至100%,以提升电机的带载起动能力。
根据本公开的第二个方面,提供了一种电机,包括定子和转子,转子为上述的转子结构。
根据本公开的第三个方面,提供了一种转子加工方法,用于加工上述的转子结构,转子加工方法包括:得出转子铁芯,转子铁芯的外周面大于转子结构的外周面,以使转子结构的填充槽的槽口与转子铁芯的外周面之间形成临时筋;向填充槽内填充待填充材料并安装端环200;去除临时筋,以形成转子结构。
本公开的转子加工方法具体如下:
首先,制造出比上述转子冲片100的外周面的直径略大的转子铁芯,此时填充槽的槽口闭合,填充槽的槽口所对应的位置处具有将填充槽和转子铁芯的外周面隔开的临时筋。
然后,往填充槽中填充材料,并将填充的材料与位于转子铁芯轴向两侧的端环200 焊接,以形成鼠笼结构。
最后,通过车削等加工方法,将临时筋去除,以形成填充槽槽口的半开口结构,从而制造出如图1所示的转子结构。
如图4所示,在具有本公开的转子结构的电机的输出转矩与具有现有技术的转子结构的电机的输出转矩随时间变化的对比图中可以看出,具有本公开的转子结构的电机的输出转矩相较于具有现有技术的转子结构的电机的输出转矩有明显的增加,本公开的转子结构可以增大电机的输出转矩。
在本公开的具体实施方式中,狭缝槽段1110和与其相邻的第一填充槽121之间相互间隔或连接;第三磁障层103可以为独立填充槽,也可以为填充槽和狭缝槽的组合;狭缝槽段1110的形状可以为矩形或其它规则和不规则的形状;轴孔20的形状可以全部为圆形或部分为圆形;第一填充槽121和第二填充槽122可以为开口槽,也可为闭口槽,当第一填充槽121和第二填充槽122为开口槽时,槽口的位置可以在相应的填充槽的端部靠近与其相邻的直轴3的一侧或相应的填充槽的端部的中间位置处或两者兼具。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
(1)通过在转子结构的直轴3方向上设置分段式的第一磁障层101,可以增大电机的凸极差,提升电机的转矩输出能力。
(2)通过在狭缝槽段1110中填充与第一填充槽121内相同的填充材料,可以增大直轴填充槽的面积,减小直轴电阻,增大电机的在起动过程中的平均转矩,提升电机的起动能力,增大转子铁芯空间的利用率。
(3)通过转子导条(即填充槽内的填充材料所形成的条形结构)提供的异步转矩实现电机的自起动,解决同步磁阻电机需要变频器驱动的问题,同时降低电机的损耗,提升电机的效率,解决现有技术中的电机效率较低的问题。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (23)

  1. 一种转子结构,包括:
    多个转子冲片(100),沿所述转子结构的轴向依次叠置,每个所述转子冲片(100)上设置有轴孔(20)、第一狭缝槽(111)和位于所述第一狭缝槽(111)两端的第一填充槽(121),所述第一狭缝槽(111)沿所述转子结构的直轴(3)方向延伸,且包括位于所述轴孔(20)相对两侧的狭缝槽段(1110);和
    转轴,穿过所述多个转子冲片(100)的轴孔(20);
    其中,所述第一狭缝槽(111)、所述第一填充槽(121)和所述转轴形成第一磁障层(101)。
  2. 根据权利要求1所述的转子结构,其中,
    所述转子结构包括成对设置的两个转子极(10);和/或
    所述转轴由不导磁材料制成;和/或
    所述转轴的外周面为圆柱状,或所述转轴的外周面包括部分圆柱面。
  3. 根据权利要求1或2所述的转子结构,其中,
    所述狭缝槽段(1110)与所述轴孔(20)之间的最小距离L1的取值范围为:σ≤L1≤5σ;和/或
    所述狭缝槽段(1110)与其相邻的所述第一填充槽(121)之间的最小距离L2的取值范围为:0.8σ≤L2≤2σ,或者L2=0;
    其中,σ为所述转子结构所形成的电机的定子内径和转子外径之间气隙的宽度。
  4. 根据权利要求1~3任一项所述的转子结构,其中,
    所述狭缝槽段(1110)和所述第一填充槽(121)内填充有相同的材料;或者
    所述狭缝槽段(1110)为空气槽。
  5. 根据权利要求1~4任一项所述的转子结构,其中,
    所述狭缝槽段(1110)为矩形;和/或
    所述狭缝槽段(1110)的最小宽度h1的取值范围为:0.9h2≤h1≤1.1h2;h2为与该狭缝槽段(1110)相邻的第一填充槽(121)的宽度。
  6. 根据权利要求1~5任一项所述的转子结构,其中,
    所述第一磁障层(101)的相对两侧均设置有一组第二磁障层(102),每组所述第二磁障层(102)中均包括沿所述转子结构的交轴(4)方向布置的多个所述第二磁 障层(102);所述第二磁障层(102)包括第二狭缝槽(112)和设置在所述第二狭缝槽(112)两端的第二填充槽(122)。
  7. 根据权利要求6所述的转子结构,其中,
    所述狭缝槽段(1110)的最小宽度h1的取值范围为:
    Figure PCTCN2021107838-appb-100001
    L6为每组所述第二磁障层(102)中最靠近所述直轴(3)的第二磁障层(102)的第二狭缝槽(112)与所述直轴(3)沿所述交轴(4)方向的最小垂直距离;和/或
    每组所述第二磁障层(102)中最靠近所述直轴(3)的第二磁障层(102)的第二狭缝槽(112)与所述第一狭缝槽(111)之间沿所述交轴(4)方向的最小距离h4的取值范围为:L7≤h4≤1.65L7;其中,L7为所述轴孔(20)与最靠近所述直轴(3)的第二磁障层(102)之间沿所述交轴(4)方向的最小距离。
  8. 根据权利要求6或7所述的转子结构,其中,
    在同一个所述第二磁障层(102)内,所述第二狭缝槽(112)与所述第二填充槽(122)之间间隔设置且间隔宽度L3的取值范围为:0.8σ≤L3≤2σ;其中,σ为所述转子结构所形成电机的定子内径和转子外径之间气隙的宽度;和/或
    在同一个所述第二磁障层(102)内,所述第二填充槽(122)的最大宽度和所述第二狭缝槽(112)的最大宽度之间的差值在所述第二狭缝槽(112)的最大宽度的10%之内。
  9. 根据权利要求6~8任一项所述的转子结构,其中,
    在每组所述第二磁障层(102)内,相邻两个所述第二磁障层(102)之间的最小距离L5大于1.8h3;其中,h3为相邻两个所述第二磁障层(102)中的尺寸较小的第二磁障层(102)的第二狭缝槽(112)沿所述交轴(4)方向的最小宽度。
  10. 根据权利要求6~9任一项所述的转子结构,其中,
    每个所述第二狭缝槽(112)的宽度由所述交轴(4)至所述第二狭缝槽(112)的两端的方向逐渐增大。
  11. 根据权利要求6~10任一项所述的转子结构,其中,
    每组所述第二磁障层(102)远离所述第一磁障层(101)的一侧设置有第三磁障层(103),所述第三磁障层(103)由第三填充槽(123)构成。
  12. 根据权利要求11所述的转子结构,其中,
    所述第三填充槽(123)相对于所述转子结构的中心轴线(2)所占角度α的取值范围为0.05τ≤α≤0.3τ;τ=180°/p,p为所述转子结构的极对数。
  13. 根据权利要求6~12任一项所述的转子结构,其中,
    在每组第二磁障层(102)中,所述第二磁障层(102)的第二狭缝槽(112)的宽度之和与所述轴孔(20)到所述转子结构的外周面的宽度之间的比值为0.3至0.5。
  14. 根据权利要求6~13任一项所述的转子结构,其中,
    所述第一填充槽(121)和所述第二填充槽(122)均延伸至所述转子结构的外周面;和/或
    所述第一填充槽(121)和所述第二填充槽(122)内均填充有铝或铝合金。
  15. 根据权利要求6~14任一项所述的转子结构,其中,所述第一填充槽(121)和所述第二填充槽(122)的槽口位于其端部靠近与其相邻的所述直轴(3)的一侧,或者所述第一填充槽(121)和所述第二填充槽(122)的槽口位于其端部的中部。
  16. 根据权利要求6~15任一项所述的转子结构,其中,所述第一填充槽(121)和所述第二填充槽(122)的端部远离其靠近的所述直轴(3)的一侧或所述第一填充槽(121)和所述第二填充槽(122)的端部的两侧设置有斜切面(120),所述斜切面(120)与相应的所述第一填充槽(121)或所述第二填充槽(122)的槽口边连接。
  17. 根据权利要求16所述的转子结构,其中,所述斜切面(120)与所述第一填充槽(121)或所述第二填充槽(122)的与该斜切面(120)连接的槽壁面之间的夹角为β,125°≤β≤165°。
  18. 根据权利要求6~17任一项所述的转子结构,其中,所述第一填充槽(121)和/或所述第二填充槽(122)的槽口宽度为L4,其中,
    0.5σ≤L4≤4σ,σ为所述转子结构形成的电机的定子内径与转子外径之间的气隙宽度;和/或
    所述第一填充槽(121)和/或所述第二填充槽(122)的槽口宽度L4小于该第一填充槽(121)或第二填充槽(122)的最大厚度w。
  19. 根据权利要求6~18任一项所述的转子结构,其中,所述第一填充槽(121)和/或所述第二填充槽(122)的槽口宽度L4的取值范围为:0.1w≤L4≤0.7w;其中,w为该第一填充槽(121)或第二填充槽(122)的最大厚度。
  20. 根据权利要求6~19任一项所述的转子结构,其中,在同一个第二磁障层(102)内,所述第二填充槽(122)在所述转子冲片(100)的端面上的面积相对于该第二磁障层(102)的第二狭缝槽(112)和第二填充槽(122)在所述转子冲片(100)的端面上的面积之和的占比大于40%。
  21. 根据权利要求1~20任一项所述的转子结构,其中,在同一个所述第一磁障层(101)内,所述第一填充槽(121)在所述转子冲片(100)的端面上的面积相对于该第一磁障层(101)的第一狭缝槽(111)和第一填充槽(121)在所述转子冲片(100)的端面上的面积之和的占比大于30%。
  22. 一种电机,包括定子和权利要求1~21任一项所述的转子结构。
  23. 一种转子加工方法,用于加工权利要求1~21任一项所述的转子结构,其中所述转子加工方法包括:
    得出转子铁芯,所述转子铁芯的外周面大于所述转子结构的外周面,以使所述转子结构的填充槽的槽口与所述转子铁芯的外周面之间形成临时筋;
    向所述填充槽内填充待填充材料并安装端环(200);
    去除临时筋,以形成所述转子结构。
PCT/CN2021/107838 2020-12-17 2021-07-22 转子结构、电机和转子加工方法 WO2022127110A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/017,061 US20230308001A1 (en) 2020-12-17 2021-07-22 Rotor structure, electric motor and rotor manufacturing method
EP21905043.2A EP4167451A4 (en) 2020-12-17 2021-07-22 ROTOR STRUCTURE, ENGINE AND ROTOR PROCESSING PROCESS
JP2023503213A JP2023538492A (ja) 2020-12-17 2021-07-22 回転子構造、モーター及び回転子加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011503752.1 2020-12-17
CN202011503752.1A CN112653265B (zh) 2020-12-17 2020-12-17 转子结构、电机和转子加工方法

Publications (1)

Publication Number Publication Date
WO2022127110A1 true WO2022127110A1 (zh) 2022-06-23

Family

ID=75355247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107838 WO2022127110A1 (zh) 2020-12-17 2021-07-22 转子结构、电机和转子加工方法

Country Status (5)

Country Link
US (1) US20230308001A1 (zh)
EP (1) EP4167451A4 (zh)
JP (1) JP2023538492A (zh)
CN (1) CN112653265B (zh)
WO (1) WO2022127110A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653265B (zh) * 2020-12-17 2022-09-13 珠海格力电器股份有限公司 转子结构、电机和转子加工方法
CN114640226B (zh) * 2022-03-09 2024-03-26 上海电机系统节能工程技术研究中心有限公司 二极电机转子冲片设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090170A1 (en) * 2001-11-12 2003-05-15 Mitsubishi Denki Kabushiki Kaisha Synchronous inductance motor, a manufacturing method of the synchronous inductance motor, and a compressor
CN1447492A (zh) * 2002-03-27 2003-10-08 三菱电机株式会社 同步感应电动机的转子和制造方法、压缩机、金属模
CN1950992A (zh) * 2005-03-09 2007-04-18 三菱电机株式会社 同步感应电动机的转子及压缩机
CN108711968A (zh) * 2018-07-13 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN110838780A (zh) * 2019-11-26 2020-02-25 江苏大学 一种交直轴磁阻可控式永磁无刷电机
CN112653265A (zh) * 2020-12-17 2021-04-13 珠海格力电器股份有限公司 转子结构、电机和转子加工方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422522A (en) * 1971-12-17 1976-01-28 Nat Res Dev Dynamo-electric machines of the relictance type
US3758800A (en) * 1972-01-24 1973-09-11 Gen Electric Reluctance synchronous motors and rotors for same
CN105553139B (zh) * 2016-01-26 2017-12-12 珠海格力节能环保制冷技术研究中心有限公司 一种同步磁阻电机转子及同步磁阻电机
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN208337260U (zh) * 2018-07-13 2019-01-04 珠海格力电器股份有限公司 转子组件及电机
CN110138117B (zh) * 2019-06-19 2023-12-08 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
CN110149014B (zh) * 2019-06-19 2020-11-10 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构及具有其的电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090170A1 (en) * 2001-11-12 2003-05-15 Mitsubishi Denki Kabushiki Kaisha Synchronous inductance motor, a manufacturing method of the synchronous inductance motor, and a compressor
CN1447492A (zh) * 2002-03-27 2003-10-08 三菱电机株式会社 同步感应电动机的转子和制造方法、压缩机、金属模
CN1950992A (zh) * 2005-03-09 2007-04-18 三菱电机株式会社 同步感应电动机的转子及压缩机
CN108711968A (zh) * 2018-07-13 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN110838780A (zh) * 2019-11-26 2020-02-25 江苏大学 一种交直轴磁阻可控式永磁无刷电机
CN112653265A (zh) * 2020-12-17 2021-04-13 珠海格力电器股份有限公司 转子结构、电机和转子加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167451A4 *

Also Published As

Publication number Publication date
CN112653265B (zh) 2022-09-13
EP4167451A4 (en) 2024-03-06
US20230308001A1 (en) 2023-09-28
JP2023538492A (ja) 2023-09-08
CN112653265A (zh) 2021-04-13
EP4167451A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
EP3672026B1 (en) Asynchronous starting and synchronous reluctance electric motor rotor, electric motor and compressor
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
WO2022127110A1 (zh) 转子结构、电机和转子加工方法
EP3926795A1 (en) Direct start-up and synchronous reluctance motor rotor structure and motor comprising same
EP3767795B1 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor, and electric vehicle
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
EP3989401A1 (en) Rotor structure of direct start-up synchronuous reluctance motor and motor
EP3780346A1 (en) Rotor assembly and electric motor
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN112671127A (zh) 转子结构、电机及转子加工方法
EP3926796A1 (en) Rotor structure of self-starting synchronous reluctance motor and motor having same
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
EP3926798A1 (en) Direct-start synchronous reluctance electric motor rotor structure, electric motor and compressor
CN218633493U (zh) 一种电机转子、电机和压缩机
CN112701818B (zh) 转子结构、电机和转子加工方法
WO2023142548A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216290383U (zh) 电机转子和自起动同步磁阻电机
JP7114005B1 (ja) 回転電機
CN113964969A (zh) 电机转子和自起动同步磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503213

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021905043

Country of ref document: EP

Effective date: 20230116

NENP Non-entry into the national phase

Ref country code: DE