WO2022124795A1 - 트라메티닙 및 선택적으로 파르네소이드 x 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물 - Google Patents

트라메티닙 및 선택적으로 파르네소이드 x 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2022124795A1
WO2022124795A1 PCT/KR2021/018540 KR2021018540W WO2022124795A1 WO 2022124795 A1 WO2022124795 A1 WO 2022124795A1 KR 2021018540 W KR2021018540 W KR 2021018540W WO 2022124795 A1 WO2022124795 A1 WO 2022124795A1
Authority
WO
WIPO (PCT)
Prior art keywords
trametinib
group
pharmaceutical composition
liver disease
liver
Prior art date
Application number
PCT/KR2021/018540
Other languages
English (en)
French (fr)
Inventor
한대희
전형진
구희정
Original Assignee
주식회사 스탠다임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠다임 filed Critical 주식회사 스탠다임
Publication of WO2022124795A1 publication Critical patent/WO2022124795A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics

Definitions

  • the present invention relates to metabolic or cholestasis comprising trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a Farnesoid X Receptor (“FXR”) agonist. It relates to a pharmaceutical composition for preventing or treating liver disease.
  • FXR Farnesoid X Receptor
  • Fatty liver disease includes fatty liver disease formed by alcohol and metabolic liver disease such as hepatic steatosis, steatohepatitis or liver fibrosis resulting from metabolic dysregulation.
  • Non-alcoholic fatty liver disease is the aforementioned metabolic liver disease, and is a disease caused by fat accumulation in the liver that is not related to alcohol consumption.
  • Non-alcoholic fatty liver disease is a group of diseases including simple steatosis, in which there is only excessive accumulation of fat in hepatocytes, and non-alcoholic steatohepatitis (NASH), which is accompanied by hepatocellular necrosis, inflammation and fibrosis.
  • NASH non-alcoholic steatohepatitis
  • the nonalcoholic steatohepatitis is a disease that occurs during the exacerbation of the nonalcoholic fatty liver disease (NAFLD).
  • NASH nonalcoholic fatty liver disease
  • inflammatory cytokines are secreted where destroyed hepatocyte fragments are phagocytosed by Kupffer cells and macrophages.
  • the secreted cytokine activates hepatic stellate cells to synthesize and secrete connective tissue components including collagen to cause fibrosis. If this process progresses, it will progress to nonalcoholic steatohepatitis (NASH), a serious lesion that causes ballooning, inflammation, or fibrosis, not simply steatosis with localized hepatocytes.
  • NASH nonalcoholic steatohepatitis
  • composition that can be approved as a drug treatment for metabolic liver disease including nonalcoholic fatty liver disease.
  • Cholestatic liver disease is a disease in which the flow of bile from the liver to the duodenum is impaired. Intrahepatic cholestasis, in which the formation and excretion of bile inside the liver is impaired due to various causes such as drugs and diseases, and stenosis of the bile duct outside the liver , including extrahepatic cholestasis in which the bile duct is blocked by various causes such as tumors, stones, and the like. Cholestatic liver disease presents symptoms such as fatigue, pruritus (itching), jaundice and xanthoma, and progresses to liver fibrosis, cirrhosis and liver failure, requiring liver transplantation.
  • Intrahepatic cholestasis diseases include primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), progressive familial intrahepatic cholestasis (PFIC), and Alagille syndrome (PFIC). ), etc. are included.
  • PBC primary biliary cholangitis
  • PSC primary sclerosing cholangitis
  • PFIC progressive familial intrahepatic cholestasis
  • PFIC Alagille syndrome
  • primary biliary cholangitis also known as primary biliary cirrhosis
  • primary biliary cirrhosis a chronic cholestasis autoimmune liver characterized by progressive destruction of the intralobular and small bile ducts of the liver.
  • progressive biliary tract injury due to portal and periportal inflammation can lead to intrahepatic accumulation of bile, which can lead to progressive fibrosis and cirrhosis.
  • Typical symptoms of PBC patients are fatigue and pruritus, and these symptoms significantly impair the quality of life of PBC patients (Selmi C, et al; Lancet. 2011; 377 (9777): 1600-1609).
  • UDCA ursodeoxycholic acid
  • OCA obeticholic acid
  • the mechanism of action of both drugs in primary biliary cholangitis is related to their ability to activate farnesoid X receptor (FXR) and TGFR-5 to exert anti-inflammatory effects.
  • UDCA was approved by the FDA in 1997 for the treatment of PBC. However, it has been reported that about 40% of patients treated with UDCA do not have a sufficient effect (Pares A, et al; Gastroenterology. 2006; 130: 715-720). Recently approved OCA has been raised for safety reasons such as increased expression of pruritus (Nevens F, et al; N Engl J Med. 2016 Aug 18; 375 (7): 631-43).
  • FXR farnesoid X receptor
  • BAR bile acid receptor
  • FXR farnesoid X receptor
  • BAR bile acid receptor
  • FXR is expressed in key sites of bile acid metabolism, such as the liver, intestine, and kidney, and plays a role in regulating the production, conjugation and clearance of bile acids through multiple mechanisms in the liver and intestine. Therefore, FXR agonists are being studied as therapeutic agents for various liver diseases.
  • trametinib (Trametinib) is a MEK inhibitor with anticancer action. That is, it inhibits oncogenic proteins, and is a drug used especially for patients with BRAF V600E and V600K gene mutations. Since trametinib was approved by the US FDA for the treatment of patients with V600E mutation metastatic melanoma, combination therapy with various anticancer drugs such as dabrafenib is being studied.
  • trametinib which has been used as an anticancer agent in the prior art, exhibits an excellent therapeutic effect on metabolic or cholestatic liver disease, and also The present invention has been completed by confirming that when methinib is administered in combination with a farnesoid X receptor (FXR) agonist, such as tropifexor, it exhibits a synergistic therapeutic effect on metabolic and cholestatic liver disease.
  • FXR farnesoid X receptor
  • One aspect of the present invention provides a pharmaceutical composition for preventing or treating metabolic or cholestatic liver disease comprising trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a farnesoid X receptor agonist is to provide
  • Another aspect of the invention comprises administering to a subject a therapeutically effective amount of trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a therapeutically effective amount of a farnesoid X receptor agonist, To provide a method for preventing or treating metabolic or cholestatic liver disease.
  • Another aspect of the present invention provides the use of a combination of trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a farnesoid X receptor agonist for the prophylaxis or treatment of metabolic or cholestatic liver disease.
  • the pharmaceutical composition of the present invention comprising trametinib exhibits an excellent preventive or therapeutic effect on metabolic or cholestatic liver disease, and the pharmaceutical composition of the present invention further comprising an FXR agonist reduces steatosis, anti-fibrosis, and anti-inflammatory properties. In inflammation and apoptosis due to lipotoxicity, it exhibits significant synergy compared to trametinib alone or FXR agonist alone. Therefore, the pharmaceutical composition of the present invention can be effectively used for the prevention and treatment of metabolic or cholestatic liver disease, particularly non-alcoholic fatty liver disease, more preferably non-alcoholic steatohepatitis (NASH).
  • NASH non-alcoholic steatohepatitis
  • FIG. 1 is a diagram showing liver sections of mice treated with Sirius Red in a vehicle-administered group, a telmisartan-administered group, and a trametinib-administered group.
  • FIG. 2 is a graph showing the index of the Sirius Red positive site in the vehicle administration group, the telmisartan administration group, and the trametinib administration group.
  • FIG. 3 is a western blot photograph (FIG. 3a) and density analysis results (FIG. 3a) measuring Col1A1 and ⁇ -SMA protein levels to confirm the antifibrotic effect when trametinib and tropexer alone or in combination treatment in mouse liver astrocytes 3b).
  • Figure 4 is a western blot photograph (Fig. 4a) and p-IkB ⁇ / IkB ⁇ measuring the levels of p-IkB ⁇ and IkB ⁇ in order to confirm the anti-inflammatory effect of trametinib and tropexer alone or in combination treatment in mouse bone marrow-derived macrophages. of the density analysis result (Fig. 4b).
  • FIG. 5 is a western blot photograph measuring the level of cleaved caspase 3 (FIG. 5a) and density analysis results (FIG. 5b) to confirm the lipotoxicity inhibitory effect upon treatment with trametinib and tropexer alone or in combination in mouse Hepa1c1c7 cells. )to be.
  • FIG. 6 is a result of measuring plasma AST (FIG. 6a) and plasma ALT (FIG. 6b) in a normal feed group, NASH control group, trametinib alone group, tropexer alone group, and trametinib and tropexer combination administration group.
  • FIG. 9 is a steatosis index (FIG. 9a), liver balloon phenomenon index after H&E staining of liver tissues obtained from a normal feed group, NASH control group, trametinib alone group, tropexer alone administration group, and trametinib and tropexer combination administration group.
  • FIG. 9b liver balloon phenomenon index after H&E staining of liver tissues obtained from a normal feed group
  • FIG. 9b liver balloon phenomenon index after H&E staining of liver tissues obtained from a normal feed group
  • FIG. 9b liver balloon phenomenon index after H&E staining of liver tissues obtained from a normal feed group
  • NASH control group trametinib alone group
  • tropexer alone administration group tropexer alone administration group
  • trametinib and tropexer combination administration group trametinib and tropexer combination administration group.
  • FIG. 9d lobular inflammation index
  • FIG. 9d combined NAFLD activity index
  • FIG. 10 is a collagen ratio area (FIG. 10a) and fibrosis index after Sirius Red staining of liver tissues obtained from normal feed group, NASH control group, trametinib alone group, tropexer alone group, and trametinib and tropexer combination administration group.
  • FIG. 10b is a measurement result.
  • Figure 11 shows the percentage of the stained area after oil-red-O staining of liver tissues obtained from the normal feed group, NASH control group, trametinib alone group, tropexer alone group, and trametinib and tropexer combination administration group. This is the measurement result.
  • FIG. 12 is a gene of TGF- ⁇ ( FIG. 12a ) and Col1A1 ( FIG. 12b ) from liver tissues obtained from the normal feed group, NASH control group, trametinib alone group, tropexer alone group, and trametinib and tropexer combination administration group. It is the result of measuring the expression level.
  • One aspect of the present invention is for the prevention or treatment of metabolic or cholestatic liver disease comprising trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a farnesoid X receptor agonist as an active ingredient
  • a pharmaceutical composition is provided.
  • trametinib of the present invention has the chemical name N-(3- ⁇ 3-cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7 -trioxo-3,4,6,7-tetrahydropyrido [4,3-d] pyrimidin-1 (2H) -yl ⁇ phenyl) acetamide (N- (3- ⁇ 3-cyclopropyl-5- [(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-1(2H)- yl ⁇ phenyl)acetamide).
  • the trametinib may be represented by the following formula (I).
  • the trametinib is a MEK inhibitor, which inhibits oncogenic proteins, and is particularly used for patients with BRAF V600E and V600K gene mutations.
  • the trametinib may be synthesized through a known synthesis method.
  • the trametinib may be commercially available, but is not limited thereto.
  • the pharmaceutical composition may comprise trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a farnesoid X receptor (FXR) agonist.
  • the pharmaceutical composition may include trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and a farnesoid X receptor (FXR) agonist.
  • a “farnesoid X receptor (FXR) agonist” of the present invention refers to a substance that directly binds to FXR and upregulates its activity.
  • FXR is known to be involved in the regulation of the synthesis of bile acids in the liver, the metabolism of glucose and lipids, and the regulation of insulin sensitivity in muscle and adipose tissue.
  • FXR agonists reduce hepatic triglyceride synthesis resulting in reduction of steatosis, reduce hepatic fibrosis by inhibiting hepatic stellate cell activation, and improve hepatic insulin sensitivity by promoting FGF15/FGF19 expression (a key regulator of bile acid metabolism) can do it
  • the FXR agonist is tropifexor, bonafexor, nidufexor, obeticholic acid, Px-102, INT-767, cafestol, fexaramine, GW4064, cilofexor, MET-642, ASC-42, TERN-101, MET-409, HPG-1860, AGN-242266, EDP-297, EDP-305, XZP-5610 , and may be at least one selected from the group consisting of pharmaceutically acceptable salts, solvates or hydrates thereof.
  • the FXR agonist of the present invention is a tropexer.
  • Tropifexor is a potent FXR agonist being developed by Novartis, also known as LJN452, NMZ08KM76Z or NVP-LJN452-NXA.
  • the chemical structure and chemical name of tropexer are as follows.
  • Bonafexor also known as EYP-001, EYP-001a, and PXL-007, is undergoing phase II clinical trials for the treatment of nonalcoholic steatohepatitis and chronic hepatitis B by Enyo Pharma.
  • the chemical structure and chemical name of bonapexor are as follows.
  • Nidufexor also known as LMB-763, is undergoing phase II clinical trials as an oral treatment for diabetic neuropathy by Novartis.
  • the chemical structure and chemical name of nidupexer are as follows.
  • Obeticholic acid is a potent FXR agonist as a semisynthetic bile acid analog with the following structure and chemical name.
  • Obeticholic acid was approved for the treatment of primary biliary cholangitis (PBC) as a combination therapy with ursodeoxycholic acid (UDCA), and is currently being developed as a treatment for nonalcoholic steatohepatitis.
  • PBC primary biliary cholangitis
  • UDCA ursodeoxycholic acid
  • Px-102 is an FXR agonist, also known as Px-20606.
  • the structure and chemical name of Px-102 are as follows.
  • INT-767 is a dual agonist of FXR and TGR5 having the following structure and chemical name.
  • TGR5 also known as G protein-coupled bile acid receptor 1 (GPBAR1), is a metabolic regulator and is involved in energy homeostasis, biliary homeostasis, and glucose metabolism.
  • G protein-coupled bile acid receptor 1 G protein-coupled bile acid receptor 1
  • cafestol is a diterpenoid-based compound present in coffee beans, which acts as an agonist on FXR and pregnane X receptor, is involved in cholesterol homeostasis, and has anticancer activity. also known as
  • FXR agonist As another FXR agonist that can be used in the present invention, the structure and chemical name of fexaramine are as follows, respectively.
  • GW4064 As another FXR agonist that can be used in the present invention, the structure and chemical name of GW4064 are as follows, respectively.
  • Silofexor also known as GS9674, is an FXR agonist under development by Gilead Phenex Pharmaceuticals.
  • the structure and chemical name of silopexor are as follows, respectively.
  • MET-642 (Metacrine), ASC-42 (Ascletis), TERN-101 (Terns Pharmaceuticals), MET-409 (Metacrine), HPG-1860 (Hepagene Therapeutics), AGN-242266 (Allergan) ), EDP-297 (Enanta Pharmaceuticals), EDP-305 (Enanta Pharmaceuticals), XZP-5610 (XuanZhu Biopharma), etc. can be used as the FXR agonist of the present invention.
  • non-alcoholic fatty liver disease refers to a disease caused by fat accumulation in the liver that is not associated with alcohol consumption.
  • the non-alcoholic fatty liver disease is caused by liver triglyceride accumulation, simple steatosis, non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH) and progression of these diseases.
  • NASH non-alcoholic steatohepatitis
  • Nonalcoholic fatty liver disease can progress to nonalcoholic steatohepatitis or nonalcoholic steatohepatitis with fibrosis.
  • non-alcoholic steatohepatitis is a disease that occurs during the exacerbation of non-alcoholic fatty liver disease (NAFLD). and activation of phagocytic cells. Then, oxidation of hepatocyte mitochondria occurs, causing inflammation and fibrosis.
  • the main symptoms of the disease include steatosis, inflammation, or ballooning of the liver tissue, and fibrosis of the liver tissue may be accompanied.
  • the "steatosis” refers to a phenomenon in which lipids accumulate in the liver due to abnormality in lipid metabolism
  • the "inflammation” refers to the degree of lobular inflammation of the liver
  • the "ballooning” refers to hepatocyte ballooning. Also called degeneration in which the liver cells swell.
  • the "fibrosis” refers to a phenomenon in which a part of the tissue hardens. The three lesions of steatosis, inflammation, and ballooning can be quantified by comprehensive analysis, which is reflected in the NAFLD activity score (NAFLD activity score; NAS).
  • cholestasis liver disease is a disease caused by a circulatory disorder of bile that is made in the liver by causes such as various drugs, infections, tumors, autoimmune diseases, etc. and circulates through the biliary tract and intestine. It can be divided into intrahepatic cholestasis, in which the formation and excretion of bile is impaired, and extrahepatic cholestasis, in which the bile duct is blocked due to various causes, such as stenosis of the bile duct outside the liver, tumors, and stones. Cholestatic liver disease presents symptoms such as fatigue, pruritus (itching), jaundice and xanthoma, and progresses to liver fibrosis, cirrhosis and liver failure, requiring liver transplantation.
  • Intrahepatic cholestasis diseases include primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), progressive familial intrahepatic cholestasis (PFIC), and Alagille syndrome. ), cholestatic viral hepatitis, cholestatic alcoholic hepatitis, drug-induced cholestasis, gestational intrahepatic cholestasis, and cholestasis associated with malignant tumors.
  • PBC primary biliary cholangitis
  • PSC primary sclerosing cholangitis
  • PFIC progressive familial intrahepatic cholestasis
  • Alagille syndrome cholestatic viral hepatitis
  • cholestatic alcoholic hepatitis cholestatic alcoholic hepatitis
  • drug-induced cholestasis drug-induced cholestasis
  • gestational intrahepatic cholestasis and
  • the cholestasis disease of the present invention is primary biliary cholangitis, primary sclerosing cholangitis, progressive familial intrahepatic cholestasis or Alagil syndrome, and more preferably primary biliary cholangitis.
  • Primary biliary cholangitis is a chronic cholestatic autoimmune liver disease characterized by progressive destruction of the intralobular and small bile ducts of the liver.
  • progressive biliary duct injury due to portal and periportal inflammation can cause intrahepatic accumulation of bile, which can lead to progressive liver fibrosis and cirrhosis.
  • the "inflammation” refers to the degree of lobular inflammation of the liver, and the "fibrosis” refers to a phenomenon in which a part of the liver tissue hardens.
  • primary sclerosing cholangitis is a chronic cholestatic liver disease characterized by intrahepatic or extrahepatic bile duct inflammation and fibrosis, which ultimately causes liver fibrosis and cirrhosis.
  • the root cause of inflammation is thought to be autoimmune, and it has been reported that about 3/4 of PSC patients are accompanied by inflammatory bowel disease.
  • Progressive familial intrahepatic cholestasis is a chronic disorder that interferes with the formation of bile and manifests in the form of cholestasis of hepatocellular origin, a disease that begins in infants and progresses to cirrhosis before the age of 10 years.
  • PFIC-1 familial intrahepatic cholestasis 1 deficiency
  • PFIC-2 bile salt excretion pump deficiency
  • PFIC-3 multidrug resistance protein 3 deficiency
  • Alagille syndrome is an autosomal dominant disease in which the intrahepatic bile duct is narrowed and malformed, and is a disease in which bile flow is blocked, causing liver fibrosis and cirrhosis.
  • a "pharmaceutically acceptable salt” of the present invention is a concentration having an effective action that is relatively non-toxic and harmless to an individual, and any and all organic or inorganic additions of the compound in which the side effects attributable to the salt do not reduce the beneficial efficacy of the compound. means salt.
  • the pharmaceutically acceptable salts of trametinib and FXR agonists that can be used in the present invention refer to salts prepared according to methods conventional in the art, and such preparation methods are known to those skilled in the art.
  • the pharmaceutically acceptable salts include, but are not limited to, salts derived from the following pharmacologically or physiologically acceptable inorganic acids and organic acids and bases.
  • Acid addition salts are prepared by conventional methods, for example, by dissolving the compound in an aqueous solution of an excess of acid and precipitating the salt with a water-miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. Equal molar amounts of the compound and an acid or alcohol (eg glycol monomethyl ether) in water may be heated, and then the mixture may be evaporated to dryness, or the precipitated salt may be filtered off with suction.
  • organic acids and inorganic acids can be used as free acids, hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, tartaric acid, etc.
  • inorganic acids can be used as inorganic acids, and methanesulfonic acid, p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, maleic acid as organic acids , succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, manderic acid, propionic acid, citric acid, lactic acid, glycolic acid, gluconic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid, ascorbic acid, carbonic acid, Vanillic acid, hydroiodic acid, etc. may be used, but is not limited thereto.
  • a pharmaceutically acceptable metal salt can be prepared using a base.
  • the alkali metal salt or alkaline earth metal salt is obtained, for example, by dissolving the compound in an excess alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the undissolved compound salt, and then evaporating and drying the filtrate.
  • it is pharmaceutically suitable to prepare a sodium, potassium, or calcium salt as the metal salt, but is not limited thereto.
  • the corresponding silver salt can be obtained by reacting an alkali metal or alkaline earth metal salt with a suitable silver salt (eg, silver nitrate).
  • solvates of trametinib and FXR agonists according to the present invention are dimethylsulfoxide solvate, acetic acid solvate, ethanol solvate, nitromethane solvate, chlorobenzene solvate, 1-pentanol solvate, isopropyl alcohol solvates, ethylene glycol solvates, and 3-methylbutanol solvates.
  • trametinib dimethyl sulfoxide solvate commercially available under the trade name Mekinist may be used.
  • the FXR agonist of the present invention such as tropexer, can be used in the form of the free acid.
  • composition may be used interchangeably with “combination” and is one unit dosage form (eg, tablet, capsule). Combinations, which may be administered in separate unit dosage forms simultaneously, sequentially or in any order, without specific time limit, or kits of parts for concurrent administration, are included inclusively.
  • trametinib and an FXR agonist may be administered separately simultaneously, sequentially, or in any order without specific time limit.
  • the trametinib and FXR agonist may be administered to the patient as a single dosage form or as separate unit dosage forms.
  • “combination administration” means administering a plurality of therapeutic agents (eg, trametinib and an FXR agonist) to a single individual, wherein the plurality of therapeutic agents may be administered by the same or different routes of administration.
  • the combined administration includes administering a plurality of therapeutic agents together on the same day for a predetermined administration period, administering each dosage form of a plurality of therapeutic agents on different administration dates, or administering a plurality of therapeutic agents through the same or separate dosage forms for a predetermined administration period continuous administration during the
  • the pharmaceutical composition comprising trametinib, a pharmaceutically acceptable salt, solvate or hydrate thereof, and, optionally, an FXR agonist as an active ingredient according to the present invention may contain suitable carriers and excipients commonly used in the preparation of pharmaceutical compositions. or a diluent may be further included.
  • the carrier may include, but is not limited to, non-naturally occurring ones.
  • Carriers, excipients or diluents usable in the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methyl hydroxy benzoate, propyl hydroxy benzoate, talc, magnesium stearate, or mineral oil.
  • the pharmaceutical composition according to the present invention is formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups and aerosols, external preparations, suppositories, and sterile injection solutions according to conventional methods, respectively.
  • oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups and aerosols, external preparations, suppositories, and sterile injection solutions according to conventional methods, respectively.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations contain at least one excipient, for example, starch, calcium carbonate, sucrose or lactose, gelatin, etc. Mix and prepare
  • lubricants such as magnesium stearate and talc are also used.
  • Liquid formulations for oral use include suspensions, solutions, emulsions, syrups, etc.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included.
  • trametinib and FXR agonist may be formulated in one unit dosage form or in two separate unit dosage forms, , may be administered by the same or different routes of administration when formulated in separate unit dosage forms.
  • the trametinib exhibits an effect of reducing inflammation and fibrosis in liver tissue.
  • trametinib when trametinib is administered in combination with the FXR agonist, preferably tropexer, in the reduction of steatosis, anti-fibrosis, anti-inflammatory, and apoptosis due to lipotoxicity, trametinib alone or trophy It was confirmed that a significant synergistic effect was achieved compared to the administration of Pexor alone. Therefore, the administration of trametinib according to the present invention and the combined administration of tropexer and metabolic or cholestatic liver disease, particularly non-alcoholic fatty liver disease, more preferably non-alcoholic steatohepatitis (NASH) can be effectively used for the prevention and treatment.
  • the FXR agonist preferably tropexer
  • trametinib used in the present invention exhibited an effect of reducing liver fibrosis sites at a level superior to or similar to that of telmisartan in inflammation and liver fibrosis of the liver when administered alone (Fig. 1 and Figure 2).
  • trametinib and tropexer when trametinib and tropexer are co-administered to an animal model of NASH, plasma AST and ALT (FIG. 6), hepatic hydroxyproline production (FIG. 7), steatosis in liver tissue, It was confirmed that lobular inflammation and liver ballooning phenomenon (FIG. 9), the percentage of collagen ratio area and fibrosis area (FIG. 10) and oil-Red-O staining area (FIG. 11) during Sirius Red staining were significantly reduced. In particular, the steatosis, liver inflammation and fibrosis inhibitory effects due to the combined administration of trametinib and tropexer were significantly improved compared to when each was administered alone, confirming the synergistic therapeutic effect of the combined administration.
  • prevention refers to any action that inhibits or delays the occurrence, spread, and recurrence of a target disease by administration of the pharmaceutical composition
  • treatment refers to any action that inhibits or delays the occurrence, spread, and recurrence of a target disease by administration of the pharmaceutical composition. It refers to any action that improves or changes to a beneficial effect.
  • the treatment is metabolic or cholestatic liver disease and/or reducing or alleviating the signs of the liver disease, reducing the severity of the disease, delaying or slowing the disease, temporarily ameliorating the disease state palliation or stabilization, and other beneficial outcomes.
  • the pharmaceutical composition of the present invention may comprise a therapeutically effective amount of trametinib, a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a therapeutically effective amount of an FXR agonist.
  • therapeutically effective amount refers to an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment.
  • trametinib or a pharmaceutically acceptable salt, solvate or hydrate thereof, in an amount of from about 0.001 mg/day to about 1,000 mg/day for an adult (about 60 kg) based on trametinib, preferably can be administered in an amount of about 0.01 mg/day to about 100 mg/day, more preferably 0.5 mg/day to 10 mg/day, divided once or several times a day.
  • an FXR agonist e.g., in the case of tropexer, a pharmaceutically acceptable salt, solvate or hydrate thereof, in an amount of about 0.001 mg/day to about 1,000 mg/day for an adult (about 60 kg) based on tropexer , more preferably about 0.01 mg/day to about 1 mg/day may be administered once a day or divided into several times a day.
  • a specific therapeutically effective amount for a specific patient may be appropriately selected depending on the type and degree of response to be achieved, the patient's condition, weight, sex, age, severity of the patient, administration route, concomitant drugs, etc. and such dosage should not be construed as limiting the scope of the present invention.
  • the frequency of administration of the pharmaceutical composition of the present invention is not particularly limited thereto, but may be administered once a day or administered several times by dividing the dose.
  • the pharmaceutical composition of the present invention comprises trametinib and tropexer, they may be administered simultaneously, sequentially, or separately. It may also be administered single or multiple. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount while minimizing the occurrence of side effects, and such an administration regimen can be easily determined by a person skilled in the art.
  • the pharmaceutical composition of the present invention may be used alone or in combination with methods using surgery, hormone therapy, drug therapy, and biological response modifiers.
  • the pharmaceutical composition according to the present invention may be administered in combination and/or in combination with one or more additional ingredients and/or agents effective for the treatment or prevention of these metabolic or cholestatic liver diseases.
  • Examples of additional ingredients and/or drugs effective for the treatment or prevention of the metabolic liver disease, preferably non-alcoholic steatohepatitis, include TZDs (Thiazolidinediones), vitamin E, metformin (Metformin), statins (Statins), UDCA (Ursodeoxycholic acid), polyunsaturated fatty acids such as omega 3, angiotensin receptor blockers, pentoxifylline, GLP-1 receptor agonists (Glucagon-like peptide 1 receptor agonists), DPP- 4 inhibitors (Dipeptidyl peptidase 4 inhibitors), SGLT2 inhibitors (sodium/glucose cotransporter 2 inhibitors), Elafibranor, Telmisartan, Resmetirom, MGL-3196, Aramchol ), Cenicriviroc, brieflysertib, Simtuzumab, etc., but are not particularly limited thereto, and are effective in treating or preventing nonalcoholic fatty liver disease or non
  • UDCA Ultradeoxycholic acid
  • treatment or prevention of cholestatic liver disease examples include UDCA (Ursodeoxycholic acid), but are not particularly limited thereto, and treatment or prevention of cholestatic liver disease known in the art Any effective ingredient and/or drug may be used without limitation.
  • Another aspect of the invention comprises administering to a subject a therapeutically effective amount of trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a therapeutically effective amount of a farnesoid X receptor agonist,
  • a method for preventing or treating metabolic or cholestatic liver disease is provided.
  • the trametinib, farnesoid X receptor, therapeutically effective amount, metabolic or cholestatic liver disease, prevention and treatment are the same as described above.
  • the components and features of the present invention described above in relation to the pharmaceutical composition may be applied to a method for preventing or treating metabolic or cholestatic liver disease, if possible.
  • the term "subject” refers to all animals, including humans, that have or may develop the target disease, and by administering the pharmaceutical composition of the present invention to an individual suffering from or suspected of having metabolic or cholestatic liver disease. , it is possible to effectively treat or prevent the subject.
  • the pharmaceutical composition of the present invention is not particularly limited as long as it is an individual for the purpose of preventing or treating metabolic or cholestatic liver disease, and can be applied to any individual.
  • animals such as monkeys, dogs, cats, rabbits, guinea pigs, rats, mice, cattle, sheep, pigs, goats, etc., birds and fish may be used, but the case of humans is preferable.
  • the term "administration” means introducing a predetermined substance into a patient by any suitable method, and the administration route of the pharmaceutical composition of the present invention is any general route as long as the drug can reach the target tissue. It can be administered through Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, intrapulmonary administration, rectal administration and the like may be used, but are not limited thereto.
  • administration according to the present invention means oral administration.
  • Another aspect of the present invention provides the use of a combination of trametinib, or a pharmaceutically acceptable salt, solvate or hydrate thereof, and optionally a farnesoid X receptor agonist for the prophylaxis or treatment of metabolic or cholestatic liver disease do.
  • the trametinib, farnesoid X receptor, combination, metabolic or cholestatic liver disease, prevention and treatment are the same as described above.
  • the components and features of the present invention described above in relation to the pharmaceutical composition and the method for preventing or treating can be applied to the preventive or therapeutic use of metabolic or cholestatic liver disease, if possible.
  • Example 1 Confirmation of anti-inflammatory and anti-fibrotic effects of trametinib in an animal model of liver fibrosis
  • liver tissue fibrotic mice prepared in Example 1.1 were randomly divided into 7 to 8 mice each into the following 3 groups, and then the following compounds were administered to the mice in each group, respectively. It was orally administered at 100 ⁇ l/mouse.
  • the vehicle-administered group was treated with the same solvent used for dissolving the compound.
  • Telmisartan (Boehringer Ingelheim GmbH, Germany) was used as a positive control compound. The telmisartan is a drug widely used as a positive control to confirm anti-fibrotic and anti-inflammatory effects in liver disease animal models.
  • mice were orally administered with vehicle [1% DMSO in saline] at a dose of 10 ml/kg once a day from 6 weeks to 9 weeks of age.
  • telmisartan administration group positive control group
  • Group 3 (trametinib administration group, experimental group): 8 mice from 6 weeks to 9 weeks of age, once a day at a dose of 0.2 mg/kg (10 ml/kg dose), a vehicle in which trametinib was dissolved Orally administered.
  • the body weight of each mouse was measured daily during the dosing period, and the survival rate, clinical symptoms and behavior of the mice were monitored daily.
  • livers were excised.
  • Sirius red staining is the most used staining method in diagnosis to evaluate the level of tissue destruction, and the level of fibrosis of the liver tissue induced by inflammation can be observed.
  • Sirius Red staining Sirius Red reagent was equilibrated and gently stirred. Paraffin was removed from the paraffin-fixed liver tissue sections, hydrated with distilled water, and then completely immersed in Sirius Red solution for 60 minutes. The slides were quickly rinsed twice with acetic acid solution and then rinsed with 100% ethanol. After removing the slide and sealing it with synthetic resin, the tissue was observed under a microscope.
  • the fibrosis of the liver tissue in the trametinib-administered group was significantly reduced compared to the vehicle-administered group, and the effect of the trametinib-administered group on the occurrence of fibrosis was superior to that of the telmisartan-administered group, a positive control group. confirmed to be
  • the index of the Sirius Red-positive site was confirmed through the Sirius Red staining performed in Example 1.3.1.
  • the index of the Sirius Red-positive region was calculated as a percentage of the stained portion compared to the entire tissue of the sample image, and the exponential average of the samples in each group was calculated.
  • the index of the fibrosis site in the vehicle-administered group was 0.69 ⁇ 0.13
  • the positive control group, telmisartan had an index of 0.44 ⁇ 0.06 ( P ⁇ 0.001 compared to the vehicle)
  • the trametinib-administered group was 0.34 ⁇ lower than the positive control group. It was confirmed to have an index of 0.15 ( P ⁇ 0.001 compared to vehicle) (FIG. 2).
  • the trametinib-administered group exhibited 50% or more increased fibrosis inhibitory efficacy compared to the vehicle-administered group, and 15% or more increased fibrosis inhibitory efficacy compared to the telmisartan-administered group, a positive control group.
  • the composition containing trametinib of the present invention reduces inflammation in the inflammation-induced liver tissue, and reduces the level of fibrosis in the liver tissue induced by inflammation, metabolic or cholestasis It can be usefully used for the prevention and treatment of liver disease.
  • Mouse hepatic astrocytes (mHSC; ATCC), mouse bone marrow-derived macrophages (BMDM; ATCC), and mouse Hepa1c1c7 cell line (ATCC) were prepared with 5% carbon dioxide (CO 2 ) concentration and 10% FBS (fetal bovine serum) in an incubator maintained at 37°C. (Hyclone, SV30087.02)) and 1% penicillin-streptomycin (penicillin-streptomycin, Biowest, L0022) containing DMEM (Dulbecco's modified Eagle's medium (Hyclone, HS3243.01)) was used for maintenance and culture.
  • CO 2 carbon dioxide
  • FBS fetal bovine serum
  • TGF- ⁇ (PeproTech, 100-21) was treated to mouse liver astrocytes to induce a fibrotic environment for confirmation, and LPS (Sigma Aldrich, L6529) was treated to mouse bone marrow-derived macrophages to induce an inflammatory environment.
  • LPS Sigma Aldrich, L6529
  • Hepa1c1c7 cells were treated with PA (Sigma Aldrich, P0500)
  • Tramethinib and tropipexer were completely dissolved in DMSO (dimethyl sulfoxide), aliquoted, and maintained at very low temperature, and the drug effect was confirmed It was thawed immediately before the experiment and used after dilution to the required concentration in the culture medium.
  • Mouse liver astrocytes (mHSC, p12) were treated with (i) untreated group, (ii) trametinib (0.05 ⁇ M and 0.5 ⁇ M) alone, (iii) tropexer (0.005 ⁇ M and 0.05 ⁇ M) alone, and (iv) treated by dividing into a combination treatment group of trametinib and tropexer at each concentration.
  • the treated mouse liver astrocytes were incubated with TGF- ⁇ (10 ng/ml) for 18 hours.
  • the untreated group was divided into two groups and incubated with or without TGF- ⁇ (10 ng/ml) or with TGF- ⁇ (10 ng/ml), respectively.
  • the levels of Col1A1, ⁇ -SMA ( ⁇ -smooth muscle actin) and ⁇ -actin (loading control) in mouse liver astrocytes were measured by Western blot.
  • Cells were treated with a cell solution (lysis buffer: 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 4-(2-aminoethyl)-benzensulfonyl fluoride, 1% NP-40, 1 mg/mL aprotinin and leupeptin; After dissolution using 1 mM phenylmethylsulfonyl fluoride (PMSF)), the supernatant cell extract was obtained using a centrifuge.
  • lysis buffer 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 4-(2-aminoethyl)-benzensulfonyl fluoride, 1% NP-40, 1 mg/mL aprotinin and
  • Proteins in the extract were separated according to weight by electrophoresis using SDS-poly-acrylamide gel, and after moving from the gel to a polyvinylidene difluoride membrane for antibody reaction, After reaction with an antibody, quantitative analysis was performed using chemiluminescence (Thermo Fisher Scientific).
  • Antibodies used were anti-Col1A1 (Cell Signaling Technology, 91144S), ⁇ -SMA (abcam, ab5694), and ⁇ -actin (Santa Cruz Biotechnology, sc-47778).
  • densitometric analysis of Col1A1 and ⁇ -SMA was performed using Image-J software. Western blot photographs and density analysis results are shown in FIGS. 3A and 3B, respectively.
  • the data in FIG. 3b is expressed as the mean ⁇ standard deviation obtained from two independent experiments (* is p ⁇ 0.05, ** is p ⁇ 0.01, *** is p ⁇ 0.001).
  • NF-kB nuclear factor-kappa B
  • IkB inhibitory kappa B
  • p-IkB phospho-I-kappa-B
  • Mouse bone marrow-derived macrophages were treated with (i) untreated group, (ii) trametinib (0.05 ⁇ M and 0.5 ⁇ M) alone, (iii) tropexer (0.005 ⁇ M and 0.05 ⁇ M) alone, and (iv) treated by dividing into a combination treatment group of trametinib and tropexer of each concentration.
  • the treated mouse bone marrow-derived macrophages were incubated with LPS (0.5 ⁇ g/ml) for 3 hours.
  • the untreated group was divided into two groups and incubated with or without LPS (0.5 ⁇ g/ml) or with LPS (0.5 ⁇ g/ml), respectively.
  • the levels of IL-1 ⁇ (precursor), p-IkB ⁇ (phospho-I-kappa-B-alpha) and IkB ⁇ in the mouse bone marrow-derived macrophages were measured by Western blot. It was analyzed in the same manner as in Example 2.2, and the antibodies used were anti-p-IkB ⁇ (Cell Signaling Technology, 2859) and anti-IkB ⁇ (Cell Signaling Technology, 9242). In addition, densitometric analysis of p-IkB ⁇ /IkB ⁇ was performed using Image-J software. Western blot photos and density analysis results are shown in FIGS. 4A and 4B, respectively. The data in FIG. 4b is expressed as the mean ⁇ standard deviation obtained from two independent experiments (* is p ⁇ 0.05, ** is p ⁇ 0.01, *** is p ⁇ 0.001).
  • the apoptosis pathway in nonalcoholic fatty liver disease is related to caspase-3, death ligand-induced activation of receptors, and intracellular proteins such as JNK and PARP. .
  • Apoptosis of liver cells and kupffer cells promotes liver fibrosis and inflammation through the activation of astrocytes and the release of cytokines, and apoptosis plays an important role in the development and progression of nonalcoholic fatty liver disease.
  • Mouse Hepa1c1c7 cells were treated with (i) untreated group, (ii) trametinib (0.5 ⁇ M) alone group, (iii) tropexer (0.005 ⁇ M and 0.05 ⁇ M) alone group, and (iv) trameti at the above concentration
  • the treatment was divided into a combination treatment group of nib and tropexer.
  • the treated mouse Hepa1c1c7 cells were incubated with palmitic acid (500 ⁇ M) for 18 hours.
  • the untreated group was divided into two groups and incubated with or without palmitic acid (500 ⁇ M) or with palmitic acid (500 ⁇ M), respectively.
  • Caspase-3 and ⁇ -actin (loading control) cleaved in mouse Hepa1c1c7 cells were measured by Western blot. It was analyzed in the same manner as in Example 2.2, and the antibodies used were anti-Cleaved Caspase3 (Cell Signaling Technology, 9661S) and ⁇ -actin (Santa Cruz Biotechnology, sc-47778). In addition, densitometric analysis of the cleaved caspase-3 protein was performed using Image-J software. Western blot photos and density analysis results are shown in FIGS. 5A and 5B, respectively. In FIG. 5B, data are expressed as mean ⁇ standard deviation obtained from two independent experiments (* is p ⁇ 0.05, *** is p ⁇ 0.001).
  • cleaved caspase-3 protein levels sharply increased due to lipotoxicity induced by palmitic acid, and trametinib and tropexer than in trametinib alone and tropexer alone. It can be confirmed that a significant synergistic effect in terms of suppression of lipotoxicity is observed during the combined treatment.
  • mice Five to six weeks old male C57BL/6 mice (Taconic) were housed in cages each and monitored for good health.
  • the environment of the animal room was set to maintain a temperature of 22 ⁇ 3°C, a relative humidity of 30-70%, and a 12-hour light/12-hour dark cycle.
  • mice were grouped into a normal feed group (Lean Chow Group) and a GAN feed group, and the GAN feed group was again a disease control group (Disease Control or NASH control group), trametinib alone, tropexer alone, and trametinib and trophy.
  • the Pexer combination administration group was grouped into 4 groups. Animals in the GAN diet group were randomized based on body weight ( ⁇ 40 g), ALT ( ⁇ 200 U/L) and AST ( ⁇ 200 U/l) levels.
  • mice in the GAN diet group were allowed to freely consume Gubra Amylin NASH diet (GAN diet; rodent diet containing 40 kcal% fat (mostly palm oil), 20 kcal% fructose and 2% cholesterol) for 30 weeks, and the duration of drug administration The same diet was maintained during (60 days).
  • GAN diet Gubra Amylin NASH diet
  • normal rodent food Safe Diet, D131
  • All groups were allowed to drink water freely, and water intake was periodically checked and recorded.
  • Trametinib was formulated in 3% glycerin and 3% solutol in distilled water (Vehicle 1). The required amount of trametinib ( ⁇ 0.2 mg) was weighed and placed in a clean tube, 3% glycerin was added and sufficiently vortexed to obtain a homogeneous solution. Then 3% Solutol HS15 was added and vortexed to obtain a homogeneous solution. Then, 94% ddH2O was added and vortexed to obtain a 0.02 mg/mL solution, and 4.0 mL of the obtained solution was mixed well with 4 mL of vehicle 1 to obtain a 0.01 mg/mL solution.
  • Tropicexor was formulated with 0.5% methyl cellulose and 0.5% Tween 80 (Vehicle 2) in distilled water. The required amount of tropexer ( ⁇ 0.2 mg) was dissolved in vehicle 2 by vortexing and sonicated for 1 min to give a 0.02 mg/mL solution.
  • the administration volume was calculated based on the body weight measured on the day of administration, and trametinib and tropexer solutions to be administered were freshly prepared every day. After preparing the trametinib and tropexer solutions, they were mixed by shaking up and down several times before administration and gently vortexing to mix.
  • mice in each group were given vehicle 1 (normal feed group and disease control group) daily, trametinib and tropexer according to the instructions in Table 2 below. Orally administered.
  • Dosage (mg/kg) dosing volume (ml/kg) dosing concentration (mg/ml) Administration route/frequency Duration of administration (days) 1 * normal feed 10 - 5 - PO/QD 60 2 * GAN feed 10 - 5 - PO/QD 60 3 trametinib 10 0.05 5 0.01 PO/QD 60 4 trametinib + tropipexer 10 0.05+0.1 5+5 0.01+0.02 PO/QD 60 5 tropexer 10 0.1 5 0.02 PO/QD 60
  • vehicle 1 3% glycerin and 3% solutol in distilled water
  • mice were fasted for 4 hours (with an interval of 5 minutes for each animal), and each compound was administered 2 hours before animals were sacrificed.
  • liver tissue was collected and weighed. A part of the left lobe of the liver was fixed in 10% neutral buffer formalin, and another part of the left lobe of the liver was oil-red-to visualize macro-vesicular fat and micro-vesicular fat. Treated for O(ORO) staining. All formalin-fixed liver lobes were treated for Sirius Red and Hematoxylin and Eosin (H&E) staining, and microscopic evaluation was performed. A certain amount of liver tissue was separately stored in RNAlater (RNALater TM ) for gene expression analysis of TGF- ⁇ and Col1A1.
  • RNALater TM RNAlater
  • Plasma ALT and AST as hepatitis indicators in samples of each group were measured with a colorimetric assay kit (BioAssay Systems) using a biochemical analyzer (EM360), and the results are shown in FIGS. 6A and 6B .
  • AST and ALT levels were significantly increased in the NASH control group compared to the normal diet group (p ⁇ 0.0001), and trametinib alone had little effect on these values, whereas in the tropexer alone group, NASH 16% decreased AST level and 30% decreased ALT level compared to the control group.
  • the AST level was reduced by 28% and the ALT level was reduced by 33% compared to the NASH control group. It was confirmed that the indicators AST and ALT were significantly reduced. Therefore, it can be seen that the combined administration of trametinib and tropexer exhibits a synergistic hepatitis inhibitory effect compared to the administration of each alone.
  • the amount of hydroxyproline in the liver tissue obtained in Example 3.3 was measured by a colorimetric method using Ehrlich's reagent.
  • the results of measuring liver hydroxyproline in order to confirm the liver fibrosis inhibitory activity in each group are shown in FIG. 7 .
  • a rapid increase in liver hydroxyproline was observed in the NASH control group compared to the normal feed group (p ⁇ 0.0001), and 27% and 43% respectively in the trametinib alone group and the tropexer alone group compared to the NASH control group.
  • a decrease in hepatic hydroxyproline was confirmed, whereas a 59% decrease in liver hydroxyproline was confirmed in the group administered with trametinib and tropexer. Therefore, it can be seen that the combined administration of trametinib and tropexer exhibits a synergistic effect in liver fibrosis inhibitory activity compared to administration of each alone.
  • liver tissue slides were immersed in xylene solution for 3 minutes to remove paraffin, and then immersed in 100% ethanol for 3 minutes to remove xylene. , and hydrated with distilled water. This was immersed in a hematoxylin solution for 5 to 10 minutes, hydrated in distilled water for 5 minutes, immersed in 1% HCl solution twice quickly, and then hydrated in distilled water. This was immersed in 1% ammonia solution for 2 minutes to stain the tissue blue. Then, the blue-stained liver tissue was immersed in an eosin solution for 2 minutes and immersed in ethanol for 3 to 5 minutes. Finally, the stained liver sections after immersion in xylene solution were observed under a microscope with a 200X objective lens. A photograph of the H&E-stained liver section observed under a microscope is shown in FIG. 8 .
  • the NASH control group showed severe fat accumulation, inflammatory cell infiltration and ballooning, and the improvement effect of the pathological condition was not significant in the group treated with trametinib alone and the group treated with tropexer alone, but trametinib And it was confirmed that the pathological condition was significantly improved in the group administered with the tropexer combination compared to the group administered alone.
  • NAFLD activity score NAFLD activity score
  • the indices of steatosis, liver ballooning, and lobular inflammation measured in the liver sections of each group are shown in FIGS. 9A to 9C, respectively, and the combined NAFLD activity index is shown in FIG. 9D.
  • the index reduction rate of each group compared to the NASH control group is shown in Table 4 below.
  • the liver tissue treated according to Example 3.3 was stained with Sirius Red in the same manner as in Example 1.3.1. Sirius Red stained tissue sections were examined under a light microscope in a 100X objective. The photographed picture is shown in FIG. 8 .
  • liver fibrosis In addition, to evaluate the extent of liver fibrosis, using Image Pro Premier 9.1 software, the area of collagen ratio in 5 fields (approximately 688.33 ⁇ m x 922.45 ⁇ m per field) randomly selected from each liver tissue (approximately 688.33 ⁇ m x 922.45 ⁇ m) collagen proportion area) was measured. The percentage of the collagen ratio area was calculated as collagen tissue area/total tissue area, and the measurement results are shown in FIG. 10A .
  • the fibrosis index in the tissue sections stained with Sirius Red was measured based on the criteria described in Table 5 below.
  • the measurement result of the fibrosis index is shown in FIG. 10B .
  • the percentage of collagen ratio area and the fibrosis index were significantly increased in the NASH control group compared to the normal feed group (p ⁇ 0.0001), and compared to the NASH control group, in the group treated with trametinib alone or in the group treated with tropexer alone A moderate decrease in levels was observed.
  • a significant decrease of two or more times was observed in the group administered with trametinib and tropexer in combination, and it can be seen that trametinib and tropexer exhibit a synergistic antifibrotic effect when combined.
  • the percentage of oil-red-O stained areas reflects the incidence of steatosis. Therefore, it can be confirmed from FIG. 11 that significant steatosis was induced in the NASH control group (p ⁇ 0.0001).
  • the percentage of oil-red-O stained area was reduced by 8% and 32%, respectively, in the group treated with trametinib alone and the group treated with tropexer alone compared to the NASH control group, whereas the group treated with trametinib and tropexer in combination showed a reduction of 37%. That is, it can be seen that when trametinib and tropexer are administered in combination, they exhibit a synergistic steatosis reduction effect than when each is administered alone.
  • TGF- ⁇ is a key cytokine that initiates and terminates the repair of damaged tissues, and continuous production of TGF- ⁇ results in tissue fibrosis.
  • TGF- ⁇ plays an important role in liver fibrosis, and the expression of TGF- ⁇ 1 mRNA is closely related to the expression of type I collagen mRNA.
  • mRNA was extracted from liver tissue stored separately in RNA letter in Example 3.3 using TRIzol reagent (Fisher Scientific) to extract TGF- ⁇ and The gene expression level of Col1A1 was measured by quantitative real-time PCR (qRT-PCR). 12A and 12B show the results of the correction by measuring the mRNA expression level of each target mRNA for each tissue, which is the housekeeping gene, GAPDH.
  • the gene expression of TGF- ⁇ and type I collagen was significantly increased in the NASH control group compared to the normal feed group (p ⁇ 0.0001), and any in the group administered with trametinib alone or tropexer alone compared with the NASH control group To a certain extent, a reduced expression of the gene was observed. However, the gene expression was significantly inhibited in the group administered with trametinib and tropepex than in the group administered alone, trametinib and tropepect in the liver fibrosis inhibitory effect reflected by the expression level of TGF- ⁇ and type I collagen. It can be seen that the combination exhibits a synergistic effect.
  • trametinib and tropexer are administered in combination, a significant synergistic effect appeared in terms of reduction of steatosis, antifibrotic and anti-inflammatory effects compared to trametinib alone or tropexer alone did
  • the combined administration of trametinib and tropexer provides unexpected and surprising clinical advantages in the prevention and treatment of metabolic and cholestatic diseases, in particular non-alcoholic fatty liver disease, more preferably non-alcoholic steatohepatitis (NASH). .
  • metabolic and cholestatic diseases in particular non-alcoholic fatty liver disease, more preferably non-alcoholic steatohepatitis (NASH).

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 트라메티닙(trametinib), 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체(Farnesoid X Receptor) 작용제(바람직하게는 트로피펙서)를 유효성분으로 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물에 관한 것이다. 트라메티닙 및 선택적으로 파르네소이드 X 수용체(바람직하게는 트로피펙서)를 포함하는 본 발명의 약학적 조성물은 대사성 또는 담즙정체성 간질환, 특히 비알코올성 지방간 질환, 보다 바람직하게는 비알코올성 지방간염(NASH)의 예방 및 치료에 있어서 현저히 상승된 치료 효과를 나타낼 수 있다.

Description

트라메티닙 및 선택적으로 파르네소이드 X 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물
본 발명은 트라메티닙(trametinib), 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체(Farnesoid X Receptor, 이하 "FXR") 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.
지방간 질환에는 알코올에 의해 형성되는 지방간 질환과 대사 조절장애의 결과로 생기는 지방간(hepatic steatosis), 지방간염(steatohepatitis) 또는 간 섬유증(liver fibrosis)과 같은 대사성 간질환(metabolic liver disease)이 포함된다.
비알코올성 지방간 질환(non-alcoholic fatty liver disease; NAFLD)은 전술한 대사성 간질환으로서, 알코올 소비와 관련이 없는 간에서의 지방 축적에 의해 발생되는 질환이다. 비알코올성 지방간 질환은 간세포에 지방의 과도한 축적만 있는 단순 지방증(simple steatosis), 간세포 괴사와 염증 및 섬유화를 동반하는 비알코올성 지방간염(non-alcoholic steatohepatitis; NASH) 등을 포함하는 일련의 질환군을 의미한다(Brunt EM, Nonalcoholic steatohepatitis: definition and pathology. Semin. Liver Dis. 21, 3-16, 2001).
상기 비알코올성 지방간염(NASH)은 상기 비알코올성 지방간 질환(NAFLD)의 악화 과정에서 발생되는 질환이다. 먼저, 파괴된 간세포 파편이 쿠퍼(Kupffer) 세포 및 대식세포(macrophage)에 의해 탐식되는 곳에서 염증성 사이토카인이 분비된다. 상기 분비된 사이토카인은 간성상세포(hepatic stellate cell)를 활성화시켜 콜라겐을 비롯한 결합조직 성분을 합성하고 분비하여 섬유화를 발생시킨다. 이러한 과정이 진행되면, 단순히 지방화한 간세포를 갖는 지방증(steatosis)이 아닌 벌룬 현상(ballooning), 염증(inflammation), 또는 섬유화(fibrosis)를 발생시키는 중대한 병변인 비알코올성 지방간염(NASH)으로 진행하게 된다(Ong JP et al., Obesity Surgery volume 15, pages 310-315, 2005).
현재, 비알코올성 지방간 질환을 비롯한 대사성 간질환의 약물 치료로서 공인될 수 있는 조성물은 없는 상황이다.
담즙정체성 간질환은 간에서 십이지장으로의 담즙의 흐름에 장애가 생긴 질환으로서, 간 내부에서의 담즙 형성 및 배출이 약물, 질환 등의 다양한 원인에 의해 장애가 생긴 간내 담즙정체증과 간 외부에서 담관의 협착, 종양, 결석 등의 다양한 원인에 의해 담관이 폐쇄된 간외 담즙정체증을 포함한다. 담즙정체성 간질환은 피로, 소양감(가려움증), 황달 및 황색종 등의 증상을 나타내며, 간섬유화, 간경화 및 간부전으로 진행하여 간이식이 필요하게 된다.
간내 담즙정체성 질환에는 원발성 담즙성 담관염(primary biliary cholangitis; PBC), 원발성 경화성 담관염(primary sclerosing cholangitis; PSC), 진행성 가족성 간내 담즙정체증(progressive familial intrahepatic cholestasis;PFIC) 및 알라질 증후군(Alagille syndrome) 등이 포함된다.
이들 중 가장 발병 빈도가 높은 질환은 원발성 담즙성 간경변증(primary biliary cirrhosis)으로도 알려진 원발성 담즙성 담관염으로서, 간의 소엽속관(intralobular duct) 및 소담관의 진행성 파괴를 특징으로 하는 만성 담즙정체성 자가면역 간질환이다. PBC 환자에서 문맥 및 문맥주위 염증으로 인한 진행성 담관 손상은 담즙의 간내 축적을 유발하여 진행성 섬유증 및 간경화를 일으킬 수 있다. PBC 환자의 대표적인 증상은 피로 및 소양감이며, 이들 증상은 PBC 환자의 삶의 질을 현저하게 저해시킨다(Selmi C, et al; Lancet. 2011 ; 377 (9777) : 1600-1609).
담즙정체성 간질환, 예컨대 원발성 담즙성 담관염에 대해 현재 승인된 치료 옵션은 우르소데옥시콜산(UDCA) 및 오베티콜산(OCA)을 이용한 담즙산 치료법이다. 원발성 담즙성 담관염에서 두 약물의 작용 매커니즘은 파르네소이드 X 수용체(FXR) 및 TGFR-5를 활성화시켜 항-염증성 효과를 발휘하게 하는 이들의 능력과 연관된다. UDCA는 1997년 PBC의 치료를 위하여 FDA에 의해 승인되었다. 그러나, UDCA가 투여된 환자의 약 40%에서는 충분한 효과가 나타나지 않는 것으로 보고되었다(Pares A, et al; Gastroenterology. 2006; 130 : 715-720). 최근 승인된 OCA는 소양감의 발현 증가와 같은 안전성 이유가 제기되고 있다(Nevens F, et al; N Engl J Med. 2016 Aug 18; 375 (7): 631-43).
이와 같이, 대사성 또는 담즙정체성 간질환의 치료를 위한 임상적으로 유용한 치료제가 아직 개발되지 못한 실정으로서, 현재 다양한 타겟에 대해 대사성 또는 담즙정체성 간질환의 치료를 위한 약물이 연구 및 개발 중에 있다.
예컨대, 파르네소이드 X 수용체(FXR)는 담즙산 수용체(BAR)로도 알려져 있으며, 담즙산에 의해 활성화되는 핵 수용체이다. FXR은 담즙산 대사의 주요 부위, 예컨대 간, 장 및 신장에서 발현되어 간 및 장에서 다수의 기작을 통하여 담즙산의 생성, 컨쥬게이션 및 제거를 조절하는 역할을 한다. 따라서, FXR 작용제가 다양한 간질환의 치료제로서 연구되고 있다.
한편, 트라메티닙(Trametinib)은 항암 작용을 하는 MEK 억제제이다. 즉, 발암성 단백질을 저해하며, 특히 BRAF V600E와 V600K 유전자 변이 환자에게 사용되는 약물이다. 트라메티닙은 V600E 변이 전이성 흑색종 환자의 치료 용도로 미국 FDA의 허가를 받은 이래, 다브라페닙 등 다양한 항암제와의 병용 요법이 연구되고 있다.
이러한 상황에서, 대사성 또는 담즙정체성 간질환의 치료를 위하여 신규 약제의 개발, 나아가 서로 다른 작용 기전을 통하여 상승적인 치료 효능을 나타낼 수 있는 치료제의 조합의 개발이 당업계에서 시급히 요구되고 있다.
이러한 배경 하에, 본 발명자들은 대사성 및 담즙정체성 간질환의 효과적인 치료제를 개발하기 위해 연구한 결과, 종래에 항암제로 사용되던 트라메티닙이 대사성 또는 담즙 정체성 간질환에 대해 우수한 치료 효과를 나타내며, 또한 트라메티닙을 파르네소이드 X 수용체(FXR) 작용제, 예컨대 트로피펙서(tropifexor)와 병용 투여하는 경우, 대사성 및 담즙정체성 간질환에 대하여 상승적 치료 효과를 나타낸다는 점을 확인함으로써 본 발명을 완성하였다.
본 발명의 일 측면은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 다른 측면은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물의 치료적 유효량, 및 선택적으로 파르네소이드 X 수용체 작용제의 치료적 유효량을 개체에게 투여함을 포함하는, 대사성 또는 담즙정체성 간질환의 예방 또는 치료 방법을 제공하는 것이다.
본 발명의 또 다른 측면은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체 작용제의 조합물의 대사성 또는 담즙정체성 간질환의 예방 또는 치료 용도를 제공하는 것이다.
트라메티닙을 포함하는 본 발명의 약학적 조성물은 대사성 또는 담즙정체성 간질환에 대해 우수한 예방 또는 치료 효과를 나타내며, FXR 작용제를 추가로 포함하는 본 발명의 약학 조성물은 지방증의 감소, 항섬유화, 항염증, 지방독성에 의한 세포사멸에 있어서, 트라메티닙 단독 또는 FXR 작용제 단독에 비하여 현저한 상승 효과(synergy)를 나타낸다. 따라서, 본 발명의 약학적 조성물은 대사성 또는 담즙정체성 간질환, 특히 비알코올성 지방간 질환, 보다 바람직하게는 비알코올성 지방간염(NASH)의 예방 및 치료에 효과적으로 사용될 수 있다.
도 1은 비히클 투여군, 텔미사르탄 투여군 및 트라메티닙 투여군에서 시리우스 레드 염색한 마우스의 간 절편을 나타낸 도면이다.
도 2는 비히클 투여군, 텔미사르탄 투여군 및 트라메티닙 투여군에서 시리우스 레드 양성 부위의 지수를 나타낸 그래프이다.
도 3은 마우스 간 성상세포에서 트라메티닙 및 트로피펙서의 단독 또는 병용 처리 시 항섬유화 효과를 확인하기 위하여 Col1A1 및 α-SMA 단백질 수준을 측정한 웨스턴 블롯 사진(도 3a) 및 밀도 분석 결과(도 3b)이다.
도 4는 마우스 골수 유래 대식세포에서 트라메티닙 및 트로피펙서의 단독 또는 병용 처리 시 항염증 효과를 확인하기 위하여 p-IkBα 및 IkBα 수준을 측정한 웨스턴 블롯 사진(도 4a) 및 p-IkBα/ IkBα의 밀도 분석 결과(도 4b)이다.
도 5는 마우스 Hepa1c1c7 세포에서 트라메티닙 및 트로피펙서의 단독 또는 병용 처리 시 지방 독성 억제 효과를 확인하기 위하여 절단된 카스파제 3 수준을 측정한 웨스턴 블롯 사진(도 5a) 및 밀도 분석 결과(도 5b)이다.
도 6은 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 혈장 AST(도 6a) 및 혈장 ALT(도 6b)를 측정한 결과이다.
도 7은 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 간 하이드록시프롤린 양을 측정한 결과이다.
도 8은 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군으로부터 얻은 간 조직을 H&E 염색, 오일-레드-O 염색 및 시리우스 레드 염색한 후 촬영한 사진들이다.
도 9는 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 얻은 간 조직을 H&E 염색한 후 지방증 지수(도 9a), 간 벌룬 현상 지수(도 9b) 및 소엽 염증 지수 (도 9c) 및 이들을 종합한 NAFLD 활성 지수(도 9d)를 측정한 결과이다.
도 10은 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 얻은 간 조직을 시리우스 레드 염색한 후 콜라겐 비율 영역(도 10a) 및 섬유화 지수(도 10b)를 측정한 결과이다.
도 11은 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 얻은 간 조직을 오일-레드-O 염색한 후, 염색된 영역의 백분율을 측정한 결과이다.
도 12는 정상 사료군, NASH 대조군, 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군에서 얻은 간 조직으로부터 TGF-β(도 12a) 및 Col1A1(도 12b)의 유전자 발현 정도를 측정한 결과이다.
본 발명의 일 양상은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체 작용제를 유효성분으로 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명의 "트라메티닙"은 화학명 N-(3-{3-사이클로프로필-5-[(2-플루오로-4-아이오도페닐)아미노]-6,8-디메틸-2,4,7-트리옥소-3,4,6,7-테트라하이드로피리도[4,3-d]피리미딘-1(2H)-일}페닐)아세트아미드(N-(3-{3-cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-1(2H)-yl}phenyl)acetamide)의 화합물이다. 또한, 상기 트라메티닙은 하기 화학식 I로 표시될 수 있다.
[화학식 Ⅰ]
Figure PCTKR2021018540-appb-I000001
상기 트라메티닙은 MEK 억제제로서, 발암성 단백질을 저해하며, 특히 BRAF V600E와 V600K 유전자 변이 환자에게 사용되는 약물이다. 상기 트라메티닙은 공지의 합성 방법을 통해 합성할 수 있다. 또한, 상기 트라메티닙은 상업적으로 입수 가능한 것일 수 있으나, 이에 제한되지 않는다.
상기 약학적 조성물은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체(FXR) 작용제를 포함할 수 있다. 바람직하게는 상기 약학적 조성물은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물 및 파르네소이드 X 수용체(FXR) 작용제를 포함할 수 있다.
본 발명의 "파르네소이드 X 수용체(FXR) 작용제"는 FXR에 직접 결합하여 이의 활성을 상향조절하는 물질을 지칭한다.
FXR은 간에서 담즙산의 합성 조절, 포도당과 지질의 대사를 조절하며, 근육과 지방 조직에서 인슐린 감수성의 조절에 관여하는 것으로 알려져 있다. 따라서, FXR 작용제는 간 트리글리세리드 합성을 감소시켜 지방증 감소를 초래하고, 간 성상 세포 활성화를 저해하여 간 섬유증을 감소시키고, FGF15/FGF19 발현 (담즙산 대사의 핵심 조절자)을 촉진하여 간 인슐린 감수성을 개선시킬 수 있다.
본 발명의 구체예에서, FXR 작용제는 트로피펙서(tropifexor), 보나펙서(vonafexor), 니두펙서(nidufexor), 오베티콜산(obeticholic acid), Px-102, INT-767, 카페스톨(cafestol), 펙사라민(fexaramine), GW4064, 실로펙서(cilofexor), MET-642, ASC-42, TERN-101, MET-409, HPG-1860, AGN-242266, EDP-297, EDP-305, XZP-5610, 및 이들의 약학적으로 허용가능한 염, 용매화물 또는 수화물로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 바람직하게는, 본 발명의 FXR 작용제는 트로피펙서이다.
트로피펙서(tropifexor)는 노바티스(Novartis)사에 의해 개발 중인 강력한 FXR 작용제로서, LJN452, NMZ08KM76Z 또는 NVP-LJN452-NXA로도 알려져 있다. 트로피펙서의 화학 구조 및 화학명은 하기와 같다.
Figure PCTKR2021018540-appb-I000002
2-[(1R,3R,5S)-3-({5-사이클로프로필-3-[2-(트리플루오로메톡시)페닐]-1,2-옥사졸-4-일}메톡시)-8-아자바이사이클로[3.2.1]옥탄-8-일]-4-플루오로-1,3-벤조티아졸-6-카르복실산
보나펙서(vonafexor)는 EYP-001, EYP-001a, PXL-007로도 알려져 있으며, 엔요 파마(Enyo Pharma)사에서 비알코올성 지방간염 및 만성 B형 간염 치료를 위한 임상 II상 시험을 진행 중이다. 보나펙서의 화학 구조 및 화학명은 다음과 같다.
Figure PCTKR2021018540-appb-I000003
4-클로로-5-[4-(2,6-다이클로로벤젠-1-설폰일)피페라진-1-일]-1-벤조퓨란-2-카르복실산
니두펙서(nidufexor)는 LMB-763으로도 알려져 있으며, 노바티스사에서 당뇨병성 신경병증의 경구 치료제로서 임상 II상 시험을 진행 중이다. 니두펙서의 화학 구조 및 화학명은 다음과 같다.
Figure PCTKR2021018540-appb-I000004
4-[[벤질-(8-클로로-1-메틸-1,4-다이하이드로[1]벤조피라노[4,3-c]피라졸-3-카르보닐)아미노]메틸]벤조산
오베티콜산(obeticholic acid)은 하기 구조 및 화학명을 갖는 반합성 담즙산 유사체로서 강력한 FXR 작용제이다.
Figure PCTKR2021018540-appb-I000005
(3α,5β,6α,7α)-6-에틸-3,7-다이하이드록시콜란-24-오산)
오베티콜산은 우르소데옥시콜산(UDCA)과의 병용 요법으로 원발성 담즙성 담관염(PBC) 치료를 적응증으로 하여 허가받았으며, 현재 비알코올성 지방간염 치료제로서 개발 중이다.
Px-102는 Px-20606으로도 알려져 있는 FXR 작용제이다. Px-102의 구조 및 화학명은 다음과 같다.
Figure PCTKR2021018540-appb-I000006
(±)-트랜스-4-[2-[2-클로로-4-[5-사이클로프로필-3-(2,6-다이클로로페닐)이속사졸-4-일메톡시]페닐]시클로프로필]벤조산
INT-767은 하기 구조 및 화학명을 갖는 FXR 및 TGR5 이중작용제이다.
Figure PCTKR2021018540-appb-I000007
6α-에틸-3α,7α,23-트리하이드록시-24-노르-5β-콜란-23-설폰산 나트륨염
TGR5는 G 단백질 결합 담즙산 수용체 1(GPBAR1,G protein-coupled bile acid receptor 1)로도 알려져 있으며, 대사 조절자로서 에너지 항상성, 담즙 항상성 및 글루코스 대사에 관여한다.
카페스톨(cafestol)은 커피 원두에 존재하는 다이터페노이드계(diterpenoid)계 화합물로서, FXR 및 프레그난 X 수용체(pregnane X receptor)에 작용제로서 작용하여, 콜레스테롤 항상성에 관여하고, 항암 활성을 갖는 것으로도 알려져 있다.
Figure PCTKR2021018540-appb-I000008
(3bS,5aS,7R,8R,10aR,10bS)-7-(하이드록시메틸)-10b-메틸-3b,4,5,6,7,8,9,10,10a,10b,11,12-도데카하이드로-5a,8-메타노시클로헵타[5,6]나프토[2,1-b]퓨란-7-올
본 발명에서 사용할 수 있는 다른 FXR 작용제로서, 펙사라민(fexaramine)의 구조 및 화학명은 각각 다음과 같다.
Figure PCTKR2021018540-appb-I000009
메틸 (E)-3-(3-(N-((4'-(다이메틸아미노)-[1,1'-바이페닐]-4-일)메틸)사이클로헥산카르복스아미도)페닐)아크릴레이트
본 발명에서 사용할 수 있는 다른 FXR 작용제로서, GW4064의 구조 및 화학명은 각각 다음과 같다.
Figure PCTKR2021018540-appb-I000010
3-(2,6-다이클로로페닐)-4-(3'-카르복시-2-클로로스틸벤-4-일)옥시메틸-5-이소프로필이속사졸
실로펙서(cilofexor)는 GS9674로도 알려져 있으며, 길리아드 페넥스 파마슈티컬즈(Gilead Phenex Pharmaceuticals)사에 의해 개발 중인 FXR 작용제이다. 실로펙서의 구조 및 화학명은 각각 다음과 같다.
Figure PCTKR2021018540-appb-I000011
2-[3-[2-클로로-4-[[5-시클로프로필-3-(2,6-다이클로로페닐)-4-이속사졸릴]메톡시]페닐]-3-하이드록시-1-아제티디닐]-4-피리딘카르복실산
이외에도, MET-642(Metacrine사), ASC-42(Ascletis사), TERN-101(Terns Pharmaceuticals사), MET-409(Metacrine사), HPG-1860(Hepagene Therapeutics사), AGN-242266(Allergan사), EDP-297(Enanta Pharmaceuticals사), EDP-305(Enanta Pharmaceuticals사), XZP-5610(XuanZhu Biopharma사) 등을 본 발명의 FXR 작용제로서 사용할 수 있다.
본원에서 "비알코올성 지방간 질환(non-alcoholic fatty liver disease; NAFLD)"은 알코올 소비와 관련이 없는 간에서의 지방 축적에 의해 발생되는 질환을 의미한다. 상기 비알코올성 지방간 질환은 간 트리글리세라이드 축적, 단순 지방증(simple steatosis), 비알코올성 지방간(non-alcoholic fatty liver; NAFL), 비알코올성 지방간염(non-alcoholic steatohepatitis; NASH) 및 이러한 질환의 전진에 의해 발생되는 NAFLD-연관 간섬유증(Liver fibrosis) 또는 간경화 등이 포함될 수 있다. 비알코올성 지방간 질환은 비알코올성 지방간염이나 섬유증을 동반한 비알코올성 지방간염으로 진행될 수 있다.
본원에서 "비알코올성 지방간염(non-alcoholic steatohepatitis; NASH)"은 비알코올성 지방간 질환(NAFLD)의 악화 과정에서 발생되는 질환으로, 간에 중성지방이 축적되고, 지방화 상태에서 쿠퍼(Kupffer) 세포의 증가 및 탐식세포의 활성화가 진행된다. 이후, 간세포 미토콘드리아의 산화가 발생하며, 염증 및 섬유화가 야기된다. 상기 질환의 주요 증상으로는 간 조직의 지방증, 염증 또는 벌룬 현상 등이 있으며, 간 조직의 섬유화(fibrosis)가 동반될 수 있다.
상기 "지방증(steatosis)"은 지질 대사 이상으로 간에 지질이 축적되는 현상을 의미하고, 상기 "염증(inflammation)"은 간의 소엽성 염증 정도를 말하고, 상기 "벌룬 현상(ballooning)"은 간세포 풍선화로도 불리우며 간세포가 부풀어오르는 변성을 말한다. 상기 "섬유화(fibrosis)"는 조직의 일부가 굳는 현상을 의미한다. 상기 지방증, 염증 및 벌룬 현상의 3가지 병변은 종합적으로 분석하여 수치화할 수 있는데, 이를 반영한 것이 NAFLD 활성 지수(NAFLD activity score; NAS)이다.
본 명세서에서 사용된 용어 "담즙정체성 간질환"은 각종 약제, 감염, 종양, 자가면역 질환 등의 원인에 의해 간에서 만들어져 담도와 장을 통하여 순환하는 담즙의 순환 장애로 인한 질병으로서, 간 내부에서의 담즙 형성 및 배출에 장애가 생긴 간내 담즙정체증과 간 외부에서 담관의 협착, 종양, 결석 등의 다양한 원인에 의해 담관이 폐쇄된 간외 담즙정체증으로 나눌 수 있다. 담즙정체성 간질환은 피로, 소양감(가려움증), 황달 및 황색종 등의 증상을 나타내며, 간섬유화, 간경화 및 간부전으로 진행하여 간이식이 필요하게 된다.
간내 담즙정체성 질환에는 원발성 담즙성 담관염(primary biliary cholangitis; PBC), 원발성 경화성 담관염(Primary sclerosing cholangitis; PSC), 진행성 가족성 간내 담즙정체증(progressive familial intrahepatic cholestasis; PFIC), 알라질 증후군(Alagille syndrome), 담즙정체성 바이러스성 간염, 담즙정체성 알코올성 간염, 약물 유발성 담즙정체, 임신성 간내 담즙정체, 악성 종양과 관련된 담즙정체 등이 포함된다.
바람직하게는, 본 발명의 담즙정체성 질환은 원발성 담즙성 담관염, 원발성 경화성 담관염, 진행성 가족성 간내 담즙정체증 또는 알라질 증후군이며, 보다 바람직하게는 원발성 담즙성 담관염이다.
"원발성 담즙성 담관염"은 간의 소엽속관(intralobular duct) 및 소담관의 진행성 파괴를 특징으로 하는 만성 담즙정체성 자가면역 간질환이다. 원발성 담즙성 담관염 환자에서 문맥 및 문맥주위 염증으로 인한 진행성 담관 손상은 담즙의 간내 축적을 유발하여 진행성 간 섬유화, 및 간경화를 일으킬 수 있다. 상기 "염증"은 간의 소엽성 염증 정도를 말하고, 상기 "섬유화"는 간 조직의 일부가 굳는 현상을 의미한다.
한편, "원발성 경화성 담관염"은 간내 또는 간외 담관 염증 및 섬유증을 특징으로 하는 만성 담즙정체성 간질환으로서 종국적으로 간섬유화 및 간경변을 야기한다. 염증의 근본적 원인은 자가면역으로 생각되고 있으며, PSC 환자의 약 3/4는 염증성 장질환을 수반하는 것으로 보고되어 있다.
"진행성 가족성 간내 담즙정체증"은 담즙 형성을 방해하고 간세포 기원의 담즙정체증의 형태로 나타나는 만성 장애로서, 유아에서 시작하고 10세 이전에 간경변으로 진행되는 질환이다. 진행성 가족성 간내 담즙정체증은 가족성 간내 담즙정체증 1의 결핍(PFIC-1), 담즙염 배출 펌프의 결핍(PFIC-2) 및 다중약물 내성 단백질 3의 결핍(PFIC-3)의 3가지 유형을 포함한다. 통상적으로 담즙정체증, 황달, 성장 장애, 지방 흡수불량 및 지용성 비타민 결핍 등을 나타내며 심한 소양감을 특징으로 한다.
또한, "알라질 증후군(Alagille syndrome)"은 간내 담관이 좁아지고 기형이 되는 보통염색체 우성질환으로서, 담즙 흐름이 차단되어 간섬유화 및 간경변을 야기하는 질환이다.
본 발명의 "약학적으로 허용가능한 염"은 개체에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서 이 염에 기인한 부작용이 화합물의 이로운 효능을 저하시키지 않는 상기 화합물의 임의의 모든 유기 또는 무기 부가염을 의미한다.
본 발명에서 사용될 수 있는 트라메티닙 및 FXR 작용제의 약학적으로 허용가능한 염은 당해 기술분야에서 통상적인 방법에 따라 제조된 염을 의미하며, 이러한 제조방법은 당업자에게 공지되어 있다. 구체적으로, 상기 약학적으로 허용 가능한 염은 약리학적 또는 생리학적으로 허용되는 하기 무기산과 유기산 및 염기로부터 유도된 염을 포함하지만 이에 제한되지 않는다.
산부가염은 통상의 방법, 예를 들어 화합물을 과량의 산 수용액에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들어 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조한다. 동 몰량의 화합물 및 물 중의 산 또는 알코올(예, 글리콜 모노메틸에테르)을 가열하고, 이어서 상기 혼합물을 증발시켜 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다. 이때, 유리산으로는 유기산과 무기산을 사용할 수 있으며, 무기산으로는 염산, 인산, 황산, 질산, 주석산 등을 사용할 수 있고 유기산으로는 메탄술폰산, p-톨루엔술폰산, 아세트산, 트리플루오로아세트산, 말레인산, 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산, 만데르산, 프로피온산, 구연산, 젖산, 글리콜산, 글루콘산, 갈락투론산, 글루탐산, 글루타르산, 글루쿠론산, 아스파르트산, 아스코르브산, 카본산, 바닐릭산, 요오드화수소산 등을 사용할 수 있으며, 이들에 제한되지 않는다.
또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속염 또는 알칼리 토금속염은, 예를 들어 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해시키고, 비용해 화합물 염을 여과한 후 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 특히 나트륨, 칼륨, 또는 칼슘염을 제조하는 것이 제약상 적합하나 이들에 제한되는 것은 아니다. 또한, 이에 대응하는 은염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 은염(예, 질산은)과 반응시켜 얻을 수 있다.
상기 트라메티닙 및 FXR 작용제는 이의 약학적으로 허용가능한 염 뿐만 아니라 이로부터 제조될 수 있는, 동일한 효능을 나타내는 용매화물 또는 수화물로도 본 발명에서 사용할 수 있다. 예컨대, 본 발명에 따른 트라메티닙 및 FXR 작용제의 용매화물은 디메틸설폭시드 용매화물, 아세트산 용매화물, 에탄올 올매화물, 니트로메탄 용매화물, 클로로벤젠 용매화물, 1-펜탄올 용매화물, 이소프로필 알코올 용매화물, 에틸렌 글리콜 용매화물 및 3-메틸부탄올 용매화물을 포함하지만, 이에 제한되지 않는다. 바람직하게는, 본 발명의 트라메티닙으로서 상품명 메키니스트(Mekinist)로 시판되고 있는 트라메티닙 디메틸설폭시드 용매화물이 사용될 수 있다. 바람직하게는, 본 발명의 FXR 작용제, 예컨대 트로피펙서는 유리산(free acid)의 형태로 사용될 수 있다.
본 발명의 약학적 조성물이 트라메티닙 및 FXR 작용제를 포함하는 경우, "약학적 조성물"은 "조합물"과 상호교환적으로 사용될 수 있으며, 하나의 단위 투여 형태(예컨대, 정제, 캡슐)인 조합물, 특정한 시간 제한 없이 동시에, 순차적으로 또는 임의의 순서로 별도의 단위 투여 형태로 투여될 수 있는 조합물, 또는 병용 투여를 위한 부분들의 키트 등을 포괄적으로 포함한다.
이 경우, 본 발명에 따른 약학적 조성물에서, 트라메티닙 및 FXR 작용제(바람직하게는 트로피펙서)는 특정한 시간 제한 없이 동시에, 순차적으로, 또는 임의의 순서로 개별적으로 투여될 수 있다. 또한, 상기 트라메티닙 및 FXR 작용제는 단일 투여 형태 또는 별도의 단위 투여 형태로서 환자에게 투여될 수 있다.
본원에서, "병용 투여"는 단일의 개체에게 복수의 치료제(예컨대, 트라메티닙 및 FXR 작용제)를 투여함을 의미하고, 상기 복수의 치료제는 동일 또는 상이한 투여 경로에 의해 투여될 수 있다. 상기 병용 투여는 소정의 투여 기간 동안 동일자에 복수의 치료제를 함께 투여하거나, 복수의 치료제 각각의 투여 제형을 상이한 투여 일자에 투여하거나, 복수의 치료제를 동일 또는 별도의 투여 제형을 통하여 소정의 투여 기간 동안 연속 투여하는 것 등을 포함한다.
본 발명에 따른 트라메티닙, 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 FXR 작용제를 유효성분으로 포함하는 약학적 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다. 상기 담체는 비자연적으로 발생하는 것도 포함할 수 있으며, 이에 제한되지 않는다.
본 발명에서 사용가능한 담체, 부형제 또는 희석제로는, 락토오즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등을 들 수 있다.
본 발명에 따른 약학적 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물은 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제한다.
또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
약학적 조성물의 제제화와 관련해서는 당업계에 공지된 기술을 자유로이 채택할 수 있으며, 구체적으로 문헌 [Remington's Pharmaceutical Sciences (19th ed., 1995)] 등을 참조할 수 있다.
본 발명의 약학적 조성물이 트라메티닙 및 FXR 작용제를 포함하는 경우, 트라메티닙 및 FXR 작용제(바람직하게는 트로피펙서)는 하나의 단위 투여 형태 또는 2개의 별도의 단위 투여 형태로 제제화될 수 있으며, 별도의 단위 투여 형태로 제제화되는 경우 동일 또는 상이한 투여 경로로 투여될 수 있다.
한편, 본 발명에서는 상기 트라메티닙이 간 조직에서 염증 및 섬유화를 감소시키는 효과를 나타냄을 확인하였다.
또한, 본 발명에서는 상기 트라메티닙이 상기 FXR 작용제, 바람직하게는 트로피펙서와 함께 병용 투여되는 경우, 지방증의 감소, 항섬유화, 항염증, 지방 독성에 의한 세포 사멸에 있어서 트라메티닙 단독 또는 트로피펙서 단독 투여에 비하여 현저한 상승 효과를 달성함을 확인하였다. 따라서, 본 발명에 따른 트라메티닙의 투여 및 이와 트로피펙서의 병용 투여는 대사성 또는 담즙정체성 간질환, 특히 비알코올성 지방간 질환, 보다 바람직하게는 비알코올성 지방간염(NASH)의 예방 및 치료에 효과적으로 사용될 수 있다.
본 발명의 일 실시예에서, 본 발명에서 사용된 트라메티닙이 단독으로 투여 시 간의 염증 및 간섬유화에 있어서, 텔미사르탄보다 우수하거나 유사한 수준의 간 섬유화 부위 감소 효과를 나타냄을 확인하였다(도 1 및 도 2).
본 발명의 일 실시예에서, 트라메티닙 및 트로피펙서를 간세포에 병용 처리하는 경우, Col1A1 및 α-SMA의 발현(도 3), IkB의 인산화(도 4), 지방 독성으로 인한 절단된 카스파제-3 형성(도 5)이 크게 감소하여, 시험관내 실험에서 각각의 단독 처리 시에 비하여 상승적인 항염증 및 항섬유화 효과를 확인할 수 있었다.
본 발명의 일 실시예에서, NASH 동물 모델에 트라메티닙 및 트로피펙서를 병용 투여하는 경우, 혈장 AST 및 ALT(도 6), 간 하이드록시프롤린의 생성(도 7), 간 조직에서의 지방증, 소엽 염증 및 간 벌룬 현상(도 9), 시리우스 레드 염색 시의 콜라겐 비율 영역 및 섬유화 부위의 백분율(도 10) 및 오일-레드-O 염색 부위(도 11)가 현저히 감소함을 확인할 수 있었다. 특히, 트라메티닙 및 트로피펙서의 병용 투여로 인한 상기 지방증, 간의 염증 및 섬유화 억제 효과는 각각의 단독 투여 시에 비하여 현저히 향상된 것으로써, 병용 투여에 의한 상승적 치료 효과를 확인할 수 있었다.
나아가, 트라메티닙 및 트로피펙서의 병용 투여 시, 조직병리학적 분석을 통하여 간 조직에서 지방증, 염증성 세포 및 벌룬 현상이 현격히 감소함을 확인하였고(도 8), 유전자 발현 분석을 통하여 간 섬유화와 연관된 TGF-β 및 Col1A1의 발현이 현저히 감소됨을 확인하였다(도 12).
본 명세서에서 사용된 용어 "예방"은 상기 약학적 조성물의 투여로 대상 질환의 발생, 확산 및 재발을 억제시키거나 지연시키는 모든 행위를 의미하고, "치료"는 상기 약학적 조성물의 투여로 대상 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명의 일 실시예에서, 상기 치료는 대사성 또는 담즙정체성 간질환 및/또는 상기 간질환의 징후의 감소 또는 완화, 상기 질병의 정도의 축소, 질병의 지연 또는 완행(slowing), 질병 상태의 일시적 완화(palliation) 또는 안정화, 및 그 외 이로운 결과일 수 있으나, 이에 제한되지 않는다.
본 발명의 약학적 조성물은 치료적 유효량의 트라메티닙, 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 치료적 유효량의 FXR 작용제를 포함할 수 있다. 본 명세서에서 사용된 용어 "치료적 유효량(therapeutically effective amount)"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미한다.
일반적으로 트라메티닙, 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물의 경우, 트라메티닙 기준으로 성인(약 60 ㎏)의 경우 약 0.001 ㎎/일 내지 약 1,000 ㎎/일의 양, 바람직하게는 약 0.01 ㎎/일 내지 약 100 ㎎/일, 보다 바람직하게는 0.5 ㎎/일 내지 10 ㎎/일의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다.
FXR 작용제로서, 예컨대, 트로피펙서, 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물의 경우, 트로피펙서를 기준으로 성인(약 60㎏)의 경우 약 0.001 ㎎/일 내지 약 1,000 ㎎/일의 양, 보다 바람직하게는 약 0.01 ㎎/일 내지 약 1 ㎎/일의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다.
본 발명의 목적상, 특정 환자에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 환자의 상태, 체중, 성별, 연령, 환자의 중증도, 투여 경로, 병용되는 약물 등에 따라 적절히 선택될 수 있으며, 이러한 투여량은 본원 발명의 범위를 제한하는 것으로 해석되어서는 아니된다.
본 발명의 약학적 조성물의 투여빈도는 특별히 이에 제한되지 않으나, 1일 1회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다. 본 발명의 약학적 조성물이 트라메티닙 및 트로피펙서를 포함하는 경우, 이들은 동시에, 순차적으로, 또는 개별적으로 투여될 수 있다. 또한 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 유발을 최소화하면서 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이러한 투여 요법은 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 약학적 조성물은 대사성 또는 담즙정체성 간질환의 예방 및 치료를 위하여 단독으로, 또는 수술, 호르몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다. 예를 들어, 본 발명에 따른 약학적 조성물은, 이들 대사성 또는 담즙정체성 간질환의 치료 또는 예방에 효과가 있는 추가의 성분 및/또는 약제 1종 이상과 병용 및/또는 조합하여 투여할 수 있다.
상기 대사성 간질환, 바람직하게는 비알코올성 지방간염의 치료 또는 예방에 효과가 있는 추가의 성분 및/또는 약제의 예로는, TZDs(Thiazolidinediones), 비타민 E, 메트포르민(Metformin), 스타틴(Statins), UDCA(Ursodeoxycholic acid), 오메가 3 등의 불포화 지방산(Polyunsaturated fatty acids), 안지오텐신 수용체 차단제(Angiotensin receptor blockers), 펜톡시필린(Pentoxifylline), GLP-1 수용체 활성제(Glucagon-like peptide 1 receptor agonists), DPP-4 억제제(Dipeptidyl peptidase 4 inhibitors), SGLT2 억제제(sodium/glucose cotransporter 2 inhibitors), 엘라피브라노(Elafibranor), 텔미사르탄(Telmisartan), 레스메티롬(Resmetirom), MGL-3196, 아람콜(Aramchol), 세니크리비록(Cenicriviroc), 셀론서팁(Selonsertib), 심투주맙(Simtuzumab) 등이 있으나, 이에 특별히 제한되지 않으며, 당업계에 알려진 비알코올성 지방간 질환 또는 비알코올성 지방간염의 치료 또는 예방 효과가 있는 성분 및/또는 약제라면 제한 없이 사용될 수 있다.
상기 담즙정체성 간질환의 치료 또는 예방에 효과가 있는 추가의 성분 및/또는 약제의 예로는 UDCA(Ursodeoxycholic acid) 등이 있으나, 이에 특별히 제한되지 않으며, 당업계에 알려진 담즙정체성 간질환의 치료 또는 예방 효과가 있는 성분 및/또는 약제라면 제한 없이 사용될 수 있다.
본 발명의 다른 양상은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물의 치료적 유효량, 및 선택적으로 파르네소이드 X 수용체 작용제의 치료적 유효량을 개체에게 투여함을 포함하는, 대사성 또는 담즙정체성 간질환의 예방 또는 치료 방법을 제공한다. 본 발명의 상기 양상에서, 상기 트라메티닙, 파르네소이드 X 수용체, 치료적 유효량, 대사성 또는 담즙정체성 간질환, 예방 및 치료에 관한 사항은 전술한 바와 같다. 또한, 앞서 약학적 조성물과 관련하여 기술된 본 발명의 구성 요소 및 특징은 가능한 경우 대사성 또는 담즙정체성 간질환의 예방 또는 치료 방법에도 적용될 수 있다.
본 명세서에서 사용된 용어 "개체"는 대상 질환이 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미하며, 본 발명의 약학적 조성물을 대사성 또는 담즙정체성 간질환을 앓는 개체 또는 의심 개체에 투여함으로써, 개체를 효율적으로 치료 또는 예방할 수 있다. 본 발명의 약학적 조성물은 대사성 또는 담즙정체성 간질환을 예방 또는 치료 목적으로 하는 개체이면 특별히 한정되지 않고, 어떠한 개체에든 적용 가능하다. 예를 들면, 원숭이, 개, 고양이, 토끼, 모르모트, 랫트, 마우스, 소, 양, 돼지, 염소 등과 같은 동물, 조류 및 어류 등 어느 것이나 사용할 수 있으나, 인간인 경우가 바람직하다.
본 명세서에서 사용된 용어 "투여"는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 본 발명의 약학적 조성물의 투여 경로는 약물이 목적 조직에 도달할 수 있는 한 임의의 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여 등이 될 수 있으나, 이에 제한되지는 않는다. 바람직하게는 본 발명에 따른 "투여"는 경구 투여를 의미한다.
본 발명의 또 다른 양상은 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체 작용제의 조합물의 대사성 또는 담즙정체성 간질환의 예방 또는 치료 용도를 제공한다. 본 발명의 상기 양상에서, 상기 트라메티닙, 파르네소이드 X 수용체, 조합물, 대사성 또는 담즙정체성 간질환, 예방 및 치료에 관한 사항은 전술한 바와 같다. 또한, 앞서 약학적 조성물 및 예방 또는 치료방법과 관련하여 기술된 본 발명의 구성 요소 및 특징은 가능한 경우 대사성 또는 담즙정체성 간질환의 예방 또는 치료 용도에도 적용될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
실시예 1. 간 섬유화 동물 모델에서 트라메티닙의 항염증 및 항섬유화 효과 확인
1.1. 간 섬유화 동물 모델의 제작
병원균 부재(pathogen-free)의 임신 14일째 C57BL/6 마우스를 Japan SLC, Inc.(일본)로부터 수득하였다. 출생 2일 후 수컷 마우스에 200 ㎍의 스트렙토조토신(streptozotocin; STZ, Sigma, USA)을 단회 피하 투여하고, 4주령(28±2일) 후 고지방 식이(CLEA Japan Inc., 일본)를 자유롭게 섭취하도록 함으로써 간 섬유화 동물 모델을 확립하였다.
1.2. 간 섬유화 동물 모델에서 트라메티닙의 효과 확인
투여 시작 전날, 실시예 1.1에서 제작된 6주령(42±2일)의 간 조직을 섬유화시킨 마우스를 무작위로 7 ~ 8 마리씩 하기 3개의 군으로 나눈 후, 각 군의 마우스에 하기의 화합물을 각각 100 ㎕/mouse로 경구 투여하였다. 본 실시예에서 트라메티닙의 음성 대조군으로서, 비히클 투여군은 화합물 용해에 사용된 동일한 용매를 처리하였다. 텔미사르탄(Telmisartan, Boehringer Ingelheim GmbH, 독일)은 양성 대조군 화합물로 사용되었다. 상기 텔미사르탄은 간 질환 동물모델에서 항-섬유증 및 항-염증성 효과를 확인하기 위하여 양성 대조군으로 널리 사용되는 약물이다.
- 1군(비히클 투여군, 음성 대조군): 7 마리의 마우스에 6주령부터 9주령까지 1일 1회 10 ㎖/㎏의 용량으로 비히클[식염수 내 1% DMSO]을 경구 투여하였다.
- 2군(텔미사르탄 투여군, 양성 대조군): 8 마리의 마우스에 6주령부터 9주령까지 1일 1회 10 ㎎/㎏의 용량(10 ㎖/㎏ 투여량)으로 텔미사르탄을 용해시킨 정제수를 경구 투여하였다.
- 3군(트라메티닙 투여군, 실험군): 8 마리의 마우스에 6주령부터 9주령까지 1일 1회 0.2 ㎎/㎏의 용량(10 ㎖/㎏ 투여량)으로 트라메티닙을 용해시킨 비히클을 경구 투여하였다.
각 마우스의 체중은 투여 기간 동안 매일 측정되었고, 생존율, 마우스의 임상 증상 및 행동을 매일 모니터링하였다.
1.3. 간 조직에 대한 조직학적 분석
간 조직의 조직학적 분석을 위해 실시예 1.2의 1군 내지 3군의 9주령의 마우스를 희생시킨 후, 간을 적출하였다.
1.3.1. 시리우스 레드 염색
시리우스 레드 염색은 조직 파괴 수준을 평가하는 진단에서 가장 많이 사용되는 염색 방법으로서, 염증으로 인해 유발된 간 조직의 섬유화 수준을 관찰할 수 있다.
시리우스 레드 염색을 위해, 시리우스 레드 시약을 평형상태로 유지하고 부드럽게 교반시켰다. 파라핀으로 고정된 간 조직 섹션으로부터 파라핀을 제거하고 증류수로 수화시킨 후 시리우스 레드 용액에 60분간 완전히 침지시켰다. 아세트산 용액으로 2회 슬라이드를 신속히 린스(rinse)하고, 100% 에탄올로 슬라이드를 린스하였다. 슬라이드를 제거하고 합성 수지(synthetic resin)로 봉입한 후 현미경으로 조직을 관찰하였다.
그 결과, 도 1에 나타낸 바와 같이, 트라메티닙 투여군이 비히클 투여군과 비교하여 간 조직의 섬유화가 현저히 감소하였으며, 섬유증 발생에 대한 트라메티닙 투여군의 효과는 양성 대조군인 텔미사르탄 투여군보다 더 우수한 것으로 확인되었다.
1.3.2. 섬유화 부위의 백분율 추정
시리우스 레드 양성 부위의 값은 섬유증 발생 정도에 따라 결정되는 바, 실시예 1.3.1에서 수행한 시리우스 레드 염색을 통해 시리우스 레드 양성 부위의 지수를 확인하였다. 본 실시예에서 시리우스 레드 양성 부위의 지수는 샘플 이미지 조직 전체 대비 염색된 부분을 픽셀 단위 백분율로 계산한 것으로서, 각 군에서 샘플의 지수 평균을 계산하였다.
그 결과, 비히클 투여군의 섬유화 부위의 지수는 0.69±0.13인 반면, 양성 대조군인 텔미사르탄 투여군의 지수는 0.44±0.06(비히클 대비 P < 0.001)이고, 트라메티닙 투여군은 양성 대조군보다 낮은 0.34±0.15(비히클 대비 P < 0.001)의 지수를 갖는 것을 확인하였다(도 2). 상기 지수를 비히클 투여군의 억제 효능을 0%로 하여 상대적 백분율로 환산하면 하기 표 1과 같다.
비히클 투여군
(음성대조군)
텔미사르탄 투여군
(양성대조군)
트라메티닙 투여군
(실험군)
억제 효능% 0.0 ± 6.9 36.4 ± 3.0 51.7 ± 7.7
표 1에서 알 수 있듯이, 트라메티닙 투여군은 비히클 투여군 대비 50% 이상 증가된 섬유화 억제 효능을 나타내었으며, 양성 대조군인 텔미사르탄 투여군에 비해서도 15% 이상 증가된 섬유화 억제 효능을 나타내었다.
1.4. 통계적 분석
실시예 1에서 데이터는 본페로니 다중 비교 테스트(Bonferroni Multiple Comparison Test)를 사용하여 통계학적 분석을 수행하였다. P < 0.05는 통계적으로 유의하다고 간주되었다. 상기 실시예의 결과에서 확인한 바와 같이, 본 발명의 트라메티닙을 포함한 조성물은 염증이 유도된 간 조직에서 염증을 감소시키고, 염증으로 인해 유발된 간 조직의 섬유화 수준을 감소시키는바, 대사성 또는 담즙정체성 간질환의 예방 및 치료에 유용하게 사용될 수 있다.
실시예 2. 트라메티닙과 트로피펙서의 병용 투여 시 비알코올성 지방간염에 대한 효과 확인: 시험관 내 시험
2.1. 시약, 세포 배양 및 화합물 준비
마우스 간 성상세포(mHSC; ATCC), 마우스 골수 유래 대식세포(BMDM; ATCC), 마우스 Hepa1c1c7 세포주(ATCC)는 5% 이산화탄소(CO2) 농도와 37℃ 유지된 배양기에서 10% FBS(fetal bovine serum (Hyclone, SV30087.02))와 1% 페니실린-스트렙토마이신(penicillin-streptomycin, Biowest, L0022)을 함유한 DMEM(Dulbecco's modified Eagle's medium(Hyclone, HS3243.01) 배양액으로 유지 배양하여 사용하였다. 약물 효과 확인을 위한 섬유화 환경 유도를 위해 마우스 간 성상세포에 TGF-β(PeproTech, 100-21)를 처리하였으며, 염증 환경 유도를 위해 마우스 골수 유래 대식세포에 LPS(Sigma Aldrich, L6529)를 처리하였다. 또한 지방독성(lipotoxicity) 환경 유도를 위해 Hepa1c1c7 세포에 PA(Sigma Aldrich, P0500)를 처리하였다. 트라메티닙과 트로피펙서는 DMSO(dimethyl sulfoxide)에 완전용해 후 분주하여 초저온에 보관 유지하였으며, 약물 효과 확인 실험 직전에 해동하여 배양액에 필요한 농도로 희석 후 사용하였다.
2.2 마우스 간 성상세포에서의 항섬유화 효과 확인
마우스 간 성상세포(mHSC, p12)를 (i) 무처리군, (ii) 트라메티닙(0.05 μM 및 0.5 μM) 단독 처리군, (iii) 트로피펙서(0.005 μM 및 0.05 μM) 단독 처리군, 및 (iv) 상기 각각의 농도의 트라메티닙 및 트로피펙서의 병용 처리군으로 나누어 처리하였다. 상기 처리된 마우스 간 성상세포를 TGF-β(10ng/ml)와 함께 18시간 동안 인큐베이션하였다. 무처리군의 경우, 두 군으로 나누어서 각각 TGF-β(10ng/ml) 없이 또는 TGF-β(10ng/ml)와 함께 인큐베이션하였다.
마우스 간 성상세포에서 Col1A1, α-SMA(α-smooth muscle actin) 및 β-액틴(로딩 대조군)의 수준을 웨스턴 블롯으로 측정하였다. 세포를 세포용액제(lysis buffer: 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 4-(2-aminoethyl)-benzensulfonyl fluoride, 1% NP- 40, 1 mg/mL aprotinin과 leupeptin, 1 mM phenylmethylsulfonyl fluoride (PMSF))를 이용하여 용해시킨 후 원심분리기를 이용하여 상층 세포추출물을 얻어내었다. SDS-poly-acrylamide 젤을 이용한 전기영동법(electrophoresis)을 이용하여 추출물 내의 단백질들을 무게에 따라 분리하였고, 항체 반응을 위해 젤로부터 폴리비닐리딘 막(polyvinylidene difluoride membrane)으로 이동시킨 후 각 단백질 표적에 대한 항체로 반응시킨 후 화학형광법(chemiluminescence, Thermo Fisher Scientific)을 이용하여 정량 분석하였다. 사용된 항체는 anti-Col1A1 (Cell Signaling Technology, 91144S), α-SMA (abcam, ab5694), β-actin (Santa Cruz Biotechnology, sc-47778) 이다. 또한, Image-J 소프트웨어를 이용하여 Col1A1 및 α-SMA의 밀도 분석(densitometric analysis)을 수행하였다. 웨스턴 블롯 사진 및 밀도 분석 결과를 각각 도 3a 및 3b에 나타내었다. 도 3b에서 데이터는 2번의 독립적인 실험에서 얻은 평균±표준편차로 나타내었다(*는 p<0.05, **는 p<0.01, ***은 p<0.001임).
도 3a 및 도 3b로부터, TGF-β에 의해 유도된 Col1A1 및 α-SMA 단백질의 발현이 트라메티닙 및 트로피펙서의 처리에 의해 감소되며, 특히 트라메티닙 단독 처리 및 트로피펙서 단독 처리 시에 비하여 트라메티닙과 트로피펙서를 병용처리한 군에서 Col1A1 및 α-SMA의 발현이 현저하게 감소하였음을 확인할 수 있다.
2.3. 마우스 골수 유래 대식세포에서의 항염증 효과 확인
대식세포에서 염증성 사이토카인, COX-2, iNOS와 같은 매개인자들의 발현은 주요 전사인자인 nuclear factor-kappa B(NF-kB)에 의해 조절되는데, LPS와 같은 자극이 없는 경우, NF-kB는 IkB(inhibitory kappa B)와 결합되어 불활성 형태로 세포질에 존재한다. 그러나 LPS로 자극할 경우, IkB는 IkB 키나제에 의해 인산화되어 p-IkB(phospho-I-kappa-B)를 형성하여 분리되고, 유리된 NF-kB는 핵으로 전위되어 다양한 염증성 매개인자들의 발현을 유도하는 것으로 알려져 있다.
이에, 본 실시예에서는 IkBα 및 p-IkBα의 웨스턴 블롯 및 p-IkBα/IkBα 비율의 밀도 분석을 통하여 트라메티닙 및 트로피펙서의 단독 처리 및 병용 처리 시의 항염증 효과를 비교 분석하였다.
마우스 골수 유래 대식세포(BMDM)를 (i) 무처리군, (ii) 트라메티닙(0.05 μM 및 0.5 μM) 단독 처리군, (iii) 트로피펙서(0.005 μM 및 0.05 μM) 단독 처리군, 및 (iv) 상기 각각의 농도의 트라메티닙 및 트로피펙서의 병용 처리군으로 나누어 처리하였다. 이와 같이 처리된 마우스 골수 유래 대식세포를 LPS(0.5 ㎍/ml)와 함께 3시간 동안 인큐베이션하였다. 무처리군의 경우, 두 군으로 나누어서 각각 LPS (0.5 ㎍/ml) 없이 또는 LPS (0.5 ㎍/ml)와 함께 인큐베이션하였다.
상기 마우스 골수 유래 대식세포에서 IL-1β(precursor), p-IkBα (phospho-I-kappa-B-alpha) 및 IkBα의 수준을 웨스턴 블롯으로 측정하였다. 실시예 2.2와 동일한 방법으로 분석하였으며, 사용된 항체는 anti-p-IkBα (Cell Signaling Technology, 2859) 및 anti-IkBα (Cell Signaling Technology, 9242)이다. 또한, Image-J 소프트웨어를 이용하여 p-IkBα/IkBα의 밀도 분석(densitometric analysis)을 수행하였다. 웨스턴 블롯 사진 및 밀도 분석 결과를 각각 도 4a 및 4b에 나타내었다. 도 4b에서 데이터는 2번의 독립적인 실험에서 얻은 평균±표준편차로 나타내었다(*은 p<0.05, **는 p<0.01, ***은 p<0.001임).
도 4a 및 도 4b로부터, LPS에 의한 IkB의 인산화(즉, p-IkB의 형성)가 트라메티닙 단독 처리 및 트로피펙서 단독 처리 시에는 거의 억제되지 않는 반면에, 트라메티닙 및 트로피펙서 병용 처리 시에는 유의적으로 억제되고, 특히 0.5 μM의 트라메티닙과 0.05 μM의 트로피펙서를 병용 처리하였을 때 IkB의 인산화 억제 효과가 매우 우수함을 확인할 수 있다. 상기 실험 결과로부터 트라메티닙 및 트로피펙서 병용 시, 각각의 단독 투여 대비 현저한 염증 억제 효과를 달성할 수 있음을 알 수 있다.
2.4. 마우스 Hepa1c1c7 세포에서의 지방독성(lipotoxicity) 억제 효과 확인
다량의 유리지방산(free fatty acid)에 의한 지방독성(lipotoxicity)은 간 내 인슐린 저항성, 산화 스트레스, 간세포 손상 및 염증을 유발하여 비알코올성 지방간 질환의 발병을 유도하는 것으로 알려져 있으며(Fuchs, M., and Sanyal, A.J., Journal of hepatology, 56:291, 2012), 특히 포화지방산, 예를 들면 팔미테이트 (palmitate)는 직접적인 세포 독성을 나타내고 TNF-α 및 IL-6와 같은 사이토카인 생성을 촉진시켜 염증을 유발하고 인슐린 저항성을 유도하는 것으로 보고되었다 (Ajuwon, K.M. and Spurlock, M.E., The Journal of nutrition, 135:1841, 2005).
한편, 비알코올성 지방간 질환에서 세포 사멸 경로는 카스파제-3(capase-3), 사멸 리간드-활성 유도된 수용체(death ligand-induced activation of receptors) 및 JNK, PARP 등의 세포 내 단백질과 관련되어 있다. 간 세포와 쿠퍼 세포(kupffer cell)의 세포 사멸은 성상세포의 활성화 및 사이토카인의 방출을 통해 간 섬유화 및 염증을 촉진하는바, 세포 사멸은 비알코올성 지방간 질환의 발생 및 진행에 중요한 역할을 한다. 이에, 본 실시예에서는 트라메티닙 및 트로피펙서의 단독 처리 및 병용 처리 시 지방 독성에 의한 세포 사멸 억제 효과를 비교 분석하기 위하여, 세포 사멸에 관여하는 중요 인자인 caspase-3의 절단 정도를 절단된 카스파제-3(cleaved caspase-3)의 웨스턴 블롯 및 밀도 분석을 통하여 측정하였다.
마우스 Hepa1c1c7 세포를 (i) 무처리군, (ii) 트라메티닙(0.5 μM) 단독 처리군, (iii) 트로피펙서(0.005 μM 및 0.05 μM) 단독 처리군, 및 (iv) 상기 농도의 트라메티닙 및 트로피펙서의 병용 처리군으로 나누어 처리하였다. 이와 같이 처리된 마우스 Hepa1c1c7 세포를 팔미트산(500 μM)과 함께 18시간 동안 인큐베이션하였다. 무처리군의 경우, 두 군으로 나누어서 각각 팔미트산(500 μM) 없이 또는 팔미트산(500 μM)과 함께 인큐베이션하였다.
마우스 Hepa1c1c7 세포에서 절단된 카스파제-3 및 β-액틴(로딩 대조군)을 웨스턴 블롯으로 측정하였다. 실시예 2.2와 동일한 방법으로 분석하였으며, 사용된 항체는 anti-Cleaved Caspase3 (Cell Signaling Technology, 9661S) 및 β-actin (Santa Cruz Biotechnology, sc-47778)이다. 또한, Image-J 소프트웨어를 이용하여 절단된 카스파제-3 단백질의 밀도 분석(densitometric analysis)을 수행하였다. 웨스턴 블롯 사진 및 밀도 분석 결과를 각각 도 5a 및 5b에 나타내었다. 도 5b에서 데이터는 2번의 독립적인 실험에서 얻은 평균±표준편차로 나타내었다(*는 p<0.05, ***은 p<0.001임).
도 5a 및 도 5b로부터, 팔미트산에 의해 야기된 지방 독성으로 인하여 절단된 카스파제-3 단백질 수준이 급격히 증가하며, 트라메티닙 단독 처리 시 및 트로피펙서 단독 처리 시보다 트라메티닙 및 트로피펙서 병용 처리 시에 지방 독성 억제 측면에서 현저한 상승 효과가 나타남을 확인할 수 있다.
실시예 3. 트라메티닙과 트로피펙서의 병용 투여 시 비알코올성 지방간염에 대한 효과 확인: 동물 실험
3.1. 실험 동물 및 사료 공급
5-6주령의 수컷 C57BL/6 마우스(Taconic)를 케이지에 5마리씩 수용하고 양호한 건강 상태를 유지하도록 모니터링하였다. 동물실의 환경 은 22±3℃의 온도, 30-70%의 상대 습도 및 12시간 명/12시간 암 사이클을 유지하도록 설정하였다.
마우스는 정상 사료군(Lean Chow Group)과 GAN 사료군으로 그룹핑하고, GAN 사료군은 다시 질병 대조군(Disease Control 또는 NASH 대조군), 트라메티닙 단독 투여군, 트로피펙서 단독 투여군, 및 트라메티닙 및 트로피펙서 병용 투여군의 4개의 군으로 그룹핑하였다. GAN 사료군의 동물은 체중(≥40 g), ALT(≥200 U/L) 및 AST(≥200 U/l) 수준에 기초하여 무작위 분배되었다.
GAN 사료군의 마우스는 30주 동안 Gubra Amylin NASH 사료(GAN 사료; 40 kcal% 지방 (대부분 팜유), 20 kcal% 프럭토스 및 2% 콜레스테롤을 포함하는 설치류 사료)를 자유롭게 섭취하도록 하였고, 약물 투여 기간(60일) 동안에도 동일한 식이를 유지하였다. 정상 사료군(Lean Chow Group)의 경우, 일반 설치류 사료(Safe Diet, D131)를 자유롭게 섭취하도록 하였다. 모든 군에서 물은 자유롭게 마실 수 있도록 하였으며, 물 섭취량을 주기적으로 확인하여 기록하였다.
3.2. 제제의 제조 및 투여
트라메티닙은 증류수 중 3% 글리세린 및 3% 솔루톨(비히클 1) 중에서 제제화하였다. 필요한 양의 트라메티닙(~0.2 mg)을 칭량하고 깨끗한 튜브에 넣고, 3% 글리세린을 첨가하고 충분히 볼텍싱(voltexing)하여 균질한 용액을 얻었다. 이어서, 3% 솔루톨 HS15를 첨가하고 볼텍싱하여 균질한 용액을 얻었다. 이후, 94% ddH2O를 첨가하고 볼텍싱하여 0.02 mg/mL 용액을 수득하였고, 수득된 용액 4.0 mL를 4 mL의 비히클 1과 잘 혼합하여 0.01 mg/mL 용액을 수득하였다.
트로피펙서는 증류수 중 0.5% 메틸 셀룰로스 및 0.5% 트윈 80(비히클 2)로 제제화하였다. 필요한 양의 트로피펙서(~0.2 mg)를 비히클 2에 볼텍싱으로 용해시키고, 1분 동안 초음파처리하여 0.02 mg/mL 용액을 수득하였다.
투여 부피는 투여 당일에 측정한 체중에 기초하여 계산하였고, 투여할 트라메티닙 및 트로피펙서 용액은 매일 새로 제조하였다. 트라메티닙 및 트로피펙서 용액을 제조한 후, 투여 전에 수 차례 상하로 흔들어 혼합하고 부드럽게 볼텍싱하여 혼합하였다.
0일 내지 60일에 암 주기(6:00 PM)를 시작하기 전에 각 군의 마우스에 매일 비히클 1(정상 사료군 및 질병 대조군), 트라메티닙 및 트로피펙서를 하기 표 2에 기재된 사항에 따라서 경구 투여하였다.
처리 동물 수 투여량
(mg/kg)
투여 부피
(ml/kg)
투여 농도
(mg/ml)
투여경로/빈도 투여 기간(일)
1* 정상 사료 10 - 5 - PO/QD 60
2* GAN 사료 10 - 5 - PO/QD 60
3 트라메티닙 10 0.05 5 0.01 PO/QD 60
4 트라메티닙+트로피펙서 10 0.05+0.1 5+5 0.01+0.02 PO/QD 60
5 트로피펙서 10 0.1 5 0.02 PO/QD 60
* 1군 및 2군의 경우 비히클 1(증류수 중 3% 글리세린 및 3% 솔루톨)을 투여함
3.3. 간 조직의 수집 및 처리
체중 측정은 실험 기간 동안 매일 측정하였다. 모든 동물은 임상 징후 및 증상에 대해 매주 2회 관찰하고, 이환율 및 사망률은 NASH 유도 기간 동안 매일 관찰하였다.
투여 60일 후, 실험 마지막 날에 동물을 4시간 동안 절식시키고(각각의 동물에 대해 5분의 간격을 두고 진행함), 동물을 희생시키기 2시간 전에 각각의 화합물을 투여하였다.
실험 종결 시, 모든 군의 동물을 안락사시키고 간 조직을 수집하여 칭량하였다. 간 좌측엽의 일부는 10% 중성 완충제 포르말린에 고정하였고, 간 좌측엽의 다른 일부는 대소포성 지방(macro-vesicular fat) 및 미세소포성 지방(micro-vesicular fat)을 시각화하기 위한 오일-레드-O(ORO) 염색을 위해 처리하였다. 포르말린 고정된 모든 간엽을 시리우스 레드 및 H&E(Hematoxylin and Eosin) 염색을 위해 처리하고, 현미경 평가를 수행하였다. 일정 양의 간 조직은 TGF-β, Col1A1의 유전자 발현 분석을 위해 RNA래터(RNALaterTM) 중에 별도로 저장하였다.
3.4. 혈장 AST 및 ALT의 측정
각 군의 샘플에서 간염 지표로서 혈장 ALT 및 AST를 Biochemical analyzer(EM360)를 이용하여 비색 분석 키트(colorimetric assay kit, BioAssay Systems)로 측정하여, 결과를 도 6a 및 6b에 나타내었다. 도 6a 및 6b로부터, 정상 식이군에 비하여 NASH 대조군에서 AST 및 ALT 수치가 크게 증가하였으며(p<0.0001), 트라메티닙 단독 투여 시 이들 수치에 거의 영향이 없는 반면에, 트로피펙서 단독 투여군에서는 NASH 대조군 대비 16% 감소된 AST 수치 및 30% 감소된 ALT 수치를 나타내었다. 그러나, 트라메티닙 및 트로피펙서 병용 투여군에서는 NASH 대조군 대비 AST 수치가 28%가 감소되고, ALT 수치가 33%가 감소되었는바, 트라메티닙 및 트로피펙서 병용 투여 시 각각의 단독 투여 시에 비하여 간염 지표인 AST 및 ALT가 현저히 감소됨을 확인할 수 있었다. 따라서, 트라메티닙 및 트로피펙서 병용 투여 시 각각의 단독 투여 시 대비 상승적인 간염 억제 효과를 나타내는 것을 알 수 있다.
3.5. 간 하이드록시프롤린의 측정
상기 실시예 3.3에서 얻은 간 조직에서 하이드록시프롤린 양을 에를리히 시약(Ehrlich's reagent) 방법을 사용하는 비색법에 의해 측정하였다. 각 군에서 간 섬유화 억제 활성을 확인하기 위하여 간 하이드록시프롤린을 측정한 결과를 도 7에 도시하였다. 도 7의 실험 결과로부터, 정상 사료군 대비 NASH 대조군에서 급격한 간 하이드록시프롤린 증가가 관찰되었으며(p<0.0001), NASH 대조군 대비 트라메티닙 단독 투여군 및 트로피펙서 단독 투여군에서 각각 27% 및 43%의 간 하이드록시프롤린 감소가 확인된 반면에, 트라메티닙 및 트로피펙서 병용 투여군에서는 59%의 간 하이드록시프롤린 감소가 확인되었다. 따라서, 트라메티닙 및 트로피펙서 병용 투여 시 각각의 단독 투여에 비하여 간 섬유화 억제 활성에 있어서 상승 효과를 나타냄을 알 수 있다.
3.6. 간 조직에 대한 조직학적 분석: H&E 염색
H&E 염색을 위해, 간 조직을 섹션한 후, 파라핀으로 고정한 간 조직 슬라이드를 자일렌(xylen) 용액에 3분 동안 침지시켜 파라핀을 제거하고, 자일렌 제거를 위해 100% 에탄올에 3분간 침지시킨 후, 증류수로 수화하였다. 이를 헤마톡실린(hematoxylin) 용액에 5 내지 10분 침지시키고 5분 동안 증류수에 수화하고, 1% HCl 용액에 신속히 2번 침지한 후 증류수에 수화하였다. 이를 1% 암모니아 용액에 2분 침지시켜 조직을 청색으로 염색하였다. 이후, 청색으로 염색된 간 조직을 에오신(Eosin) 용액에 2분 침지시키고 에탄올에 3 내지 5분 정도 침지시켰다. 마지막으로, 자일렌 용액에 침지 후 염색된 간 절편을 200X 대물렌즈에서 현미경으로 관찰하였다. 현미경으로 관찰된 H&E 염색된 간 절편의 사진은 도 8과 같다.
도 8을 살펴보면, NASH 대조군에서 심각한 지방 축적, 염증성 세포 침윤 및 벌룬 현상(ballooning)을 나타내었고, 트라메티닙 단독 투여군 및 트로피펙서 단독 투여군에서는 상기 병리학적 상태의 개선 효과가 크지 않았으나, 트라메티닙 및 트로피펙서 병용 투여군에서는 단독 투여군 대비 병리학적 상태가 현저히 개선된 것을 확인할 수 있었다.
또한, H&E 염색된 간 절편에서 하기 표 3의 등급 시스템(Kleiner DE et al., Hepatology 41, 1313-1321, 2005)에 따라서, 지방증, 소엽 염증 및 간 풍선화(ballooning) 상태를 지수화하고 이들을 종합하여 NAFLD 활성 지수(NAFLD activity score; NAS)를 결정하였다.
조직병리학적 소견 지수 영향받은 영역
지방증(Steatosis) 0 <5%
1 5-33%
2 >33%-66%
3 >66%
소엽 염증
(Lobular Inflammation)
0 없음
1 <2 병소(foci)/200X
2 2-4 병소/200X
3 >4 병소
간 벌룬 현상
(Hepatic Ballooning)
0 없음
1 몇몇 풍선화 세포
2 많거나 현저한 풍선화 세포
각 군의 간 절편에서 측정된 지방증, 간 벌룬 현상 및 소엽 염증 지수를 각각 도 9a 내지 9c에 나타내었으며, 이들을 종합한 NAFLD 활성 지수를 도 9d에 나타내었다. 또한, NASH 대조군 대비 각 군의 지수 감소율을 하기 표 4에 기재하였다.
NASH 대조군 대비 감소율 트라메티닙 단독 투여군(0.05 mg/kg) 트로피펙서 단독 투여군(0.1 mg/kg) 트라메티닙(0.05 mg/kg) 및 트로피펙서(0.1 mg/kg) 병용 투여군
지방증 지수 0% 17% 17%
간 벌룬 현상 지수 6% 55% 55%
염증 지수 26% 40% 47%
NAFLD 활성 지수 6% 33% 34%
도 9 및 상기 표 4로부터, 정상 사료군 대비 NASH 대조군에서 지방증, 간 벌룬 현상 및 소엽 염증 지수와 이들을 종합한 NAFLD 활성 지수가 월등히 증가되었으며(p<0.0001), NASH 대조군과 대비 시 트라메티닙 단독 투여군에 비하여 트라메티닙 및 트로피펙서 병용 투여군에서 각 지수가 유의적으로 개선되었음을 확인할 수 있었다.
3.7. 시리우스 레드 염색: 콜라겐 비율 영역(% CPA) 및 섬유화 부위의 백분율 측정
실시예 3.3에 따라서 처리된 간 조직을 실시예 1.3.1과 동일한 방법으로 시리우스 레드 염색하였다. 시리우스 레드 염색된 조직 절편을 100X 대물 렌즈에서 광학 현미경으로 검사하였다. 촬영된 사진은 도 8에 나타내었다.
또한, 간 섬유화 정도를 평가하기 위하여, 이미지 프로 프리미어(Image Pro Premier) 9.1 소프트웨어를 사용하여, 각각의 간 조직으로부터 무작위로 선택된 5개의 필드(필드 당 대략 688.33㎛ x 922.45㎛)에서 콜라겐 비율 영역(collagen proportion area)을 측정하였다. 콜라겐 비율 영역의 백분율은 콜라겐 조직 면적/총 조직 면적으로써 계산하였으며, 측정 결과를 도 10a에 나타내었다.
또한, 시리우스 레드 염색된 조직 절편에서 섬유화 지수를 하기 표 5에 기재된 기준으로 측정하였다. 섬유화 지수의 측정 결과를 도 10b에 나타내었다.
조직병리학적 소견 점수 영향받은 영역
섬유화 0 없음
1 동모양혈관주변(perisinusoidal) 또는 간문맥 주변(periportal)
2 동모양혈관주변 및 간문맥/간문맥주변
3 가교 섬유화(bridging fibrosis)
4 간경변증(cirrhosis)
측정된 콜라겐 비율 영역의 백분율 및 섬유화 지수를 기초로 하여, NASH 대조군 대비 각 군의 백분율 및 지수 감소율을 계산하여 하기 표 6에 기재하였다.
NASH 대조군 대비 감소율 트라메티닙 단독 투여군(0.05 mg/kg) 트로피펙서 단독 투여군(0.1 mg/kg) 트라메티닙(0.05 mg/kg) 및 트로피펙서(0.1 mg/kg) 병용 투여군
콜라겐 비율 영역의 백분율 5% 26% 43%
섬유화 지수 15% 12% 35%
도 10 및 상기 표 6에 나타난 바와 같이, 정상 사료군 대비 NASH 대조군에서 콜라겐 비율 영역의 백분율 및 섬유화 지수가 월등히 증가되었으며(p<0.0001), NASH 대조군 대비 트라메티닙 단독 투여군 또는 트로피펙서 단독 투여군에서 어느 정도의 수치 감소가 관찰되었다. 그러나, 이들 단독 투여군 대비 트라메티닙 및 트로피펙서 병용 투여군에서 2배 이상의 현저한 수치 감소가 관찰되었는바, 트라메티닙 및 트로피펙서는 병용 시 상승적인 항섬유화 효과를 나타내는 것을 알 수 있다.
3.8. 오일-레드-O(ORO) 염색 영역 백분율 측정
10% 포름알데히드(formaldehyde) 수용액으로 처리 후 PBS로 세척하고 오일-레드-O 수용액을 처리한 후 실온에서 어두운 곳에서 염색하였다. 증류수로 충분히 세척 후 오일-레드-O 염색된 조직 절편을 100X 대물 렌즈에서 광학 현미경으로 검사하였다. 촬영된 사진은 도 8에 나타내었다.
또한, 이미지 프로 프리미어(Image Pro Premier) 9.1 소프트웨어를 사용하여, 각각의 간 조직으로부터 무작위로 선택된 5개의 필드(필드 당 대략 688.33㎛ x 922.45㎛)에서 염색된 영역을 측정하였다. 염색된 영역의 백분율은 지질 염색된 조직 면적/총 조직 면적으로써 계산하였으며, 각 군의 샘플에서 계산된 결과를 도 11에 나타내었다.
오일-레드-O 염색된 영역의 백분율은 지방증(steatosis)의 발생 정도를 반영한다. 따라서, 도 11로부터 NASH 대조군에서 현격한 지방증이 야기되었음을 확인할 수 있다(p<0.0001). 또한, 도 11을 살펴보면, NASH 대조군 대비 트라메티닙 단독 투여군 및 트로피펙서 단독 투여군에서 오일-레드-O 염색된 영역의 백분율이 각각 8% 및 32% 감소된 반면, 트라메티닙 및 트로피펙서 병용 투여군에서는 37%의 감소를 나타내었다. 즉, 트라메티닙 및 트로피펙서를 병용 투여 시 각각의 단독 투여 시보다 상승적인 지방증 감소 효과를 나타냄을 알 수 있다.
3.9. 유전자 발현 분석
TGF-β는 손상된 조직의 복구를 시작하고 종결시키는 핵심적인 사이토카인으로서, TGF-β가 계속적으로 생산되면 조직의 섬유화가 초래된다. 특히 간섬유증에서 TGF-β가 중요한 역할을 담당한다고 알려져 있으며, TGF-β1 mRNA의 발현은 유형 I 콜라겐 mRNA의 발현과 밀접하게 연관되어 있다.
본 실시예에서는 트라메티닙 및 트로피펙서가 간 섬유화에 미치는 영향을 살펴보기 위하여, 실시예 3.3에서 RNA래터 중에 별도로 저장된 간 조직에서 TRIzol 시약(Fisher Scientific)을 이용하여 mRNA를 추출하여 TGF-β 및 Col1A1의 유전자 발현 정도를 정량적 실시간 PCR(qRT-PCR)에 의해 측정하였다. 각 표적 mRNA발현 량을 하우스키핑 유전자인 GAPDH의 mRNA 양을 각 조직별로 측정하여 보정한 측정 결과를 도 12a 및 도 12b에 각각 나타내었다.
또한, 도 12a 및 도 12b에 나타낸 결과를 기초로 하여, NASH 대조군 대비 각 군에서의 유전자 발현 정도의 감소율을 계산하여 하기 표 7에 기재하였다.
NASH 대조군 대비 감소율 트라메티닙 단독 투여군(0.05 mg/kg) 트로피펙서 단독 투여군(0.1 mg/kg) 트라메티닙(0.05 mg/kg) 및 트로피펙서(0.1 mg/kg) 병용 투여군
TGF-β 발현 16% 11% 33%
Col1A1 발현 30% 8% 60%
도 12 및 상기 표 7로부터, 정상 사료군 대비 NASH 대조군에서 TGF-β 및 유형 I 콜라겐의 유전자 발현이 월등히 증가되었으며(p<0.0001), NASH 대조군 대비 트라메티닙 단독 투여군 또는 트로피펙서 단독 투여군에서 어느 정도 상기 유전자 발현이 감소된 것으로 관찰되었다. 그러나, 이들 단독 투여군에서보다도 트라메티닙 및 트로피펙서 병용 투여군에서 상기 유전자 발현이 현저하게 억제되었는바, TGF-β 및 유형 I 콜라겐 발현 정도가 반영하는 간섬유화 억제 효과에 있어서 트라메티닙 및 트로피펙서는 병용 시 상승적인 효과를 나타내는 것을 알 수 있다.
3.10. 통계적 분석
데이터는 각각의 판독 및 그룹에 대해 평균±표준편차(SD) 및 표준오차(SE)로서 기재하였다. 다수의 상이한 동물로부터 얻은 데이터로부터 계산된 평균값은 그의 SE 평균과 함께 기재하였다. 데이터는 일원 분산 분석(ANOVA One way), 이어서 적합한 다중 비교 테스트 및 이원 분산 분석, 이어서 통계 프로그램으로서 그래프 패드 프리즘 8(Graph pad Prism 8)을 사용하는 본페로니(Bonferroni) 다중 비교 테스트에 의해 분석하였다.
상기 실시예 3.1 내지 3.9를 통하여, 트라메티닙 및 트로피펙서를 병용 투여하는 경우, 트라메티닙 단독 또는 트로피펙서 단독에 비하여 지방증의 감소, 항섬유화 및 항염증 효과 측면에서 현저한 상승 효과가 나타남을 확인하였다. 따라서, 트라메티닙 및 트로피펙서의 상기 병용 투여는 대사성 및 담즙정체성 질환, 특히 비알코올성 지방간 질환, 보다 바람직하게는 비알코올성 지방간염(NASH)의 예방 및 치료에서 예기치 못한 놀라운 임상적 잇점을 제공한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 하기 화학식 I로 표시되는 트라메티닙(trametinib), 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 선택적으로 파르네소이드 X 수용체(Farnesoid X Receptor) 작용제를 유효성분으로 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물.
    [화학식 I]
    Figure PCTKR2021018540-appb-I000012
  2. 제1항에 있어서,
    상기 파르네소이드 X 수용체 작용제가 트로피펙서(tropifexor), 보나펙서(vonafexor), 니두펙서(nidufexor), 오베티콜산(obeticholic acid), Px-102, INT-767, 카페스톨(cafestol), 펙사라민(fexaramine), GW4064, 실로펙서(cilofexor), MET-642, ASC-42, TERN-101, MET-409, HPG-1860, AGN-242266, EDP-297, EDP-305, XZP-5610, 및 이들의 약학적으로 허용가능한 염, 용매화물 또는 수화물로 이루어진 군으로부터 선택되는 하나 이상인, 약학적 조성물.
  3. 제1항에 있어서,
    상기 파르네소이드 X 수용체 작용제가 트로피펙서(tropifexor)인, 약학적 조성물.
  4. 제1항에 있어서,
    트라메티닙의 디메틸설폭시드 용매화물을 포함하는, 약학적 조성물.
  5. 제1항에 있어서,
    상기 대사성 간질환은 비알코올성 지방간 질환인 것인, 약학적 조성물.
  6. 제5항에 있어서,
    상기 비알코올성 지방간 질환은 비알코올성 지방간염(non-alcoholic steatohepatitis), 비알코올성 지방간(non-alcoholic fatty liver; NAFL), NAFLD-연관 간 섬유증(NAFLD-associated liver fibrosis) 및 간경화로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것인, 약학적 조성물.
  7. 제6항에 있어서,
    상기 비알코올성 지방간 질환은 비알코올성 지방간염인 것인, 약학적 조성물.
  8. 제1항에 있어서,
    상기 담즙정체성 간질환이 원발성 담즙성 담관염, 원발성 경화성 담관염, 진행성 가족성 간내 담즙정체증, 및 알라질 증후군(Alagille syndrome)으로 이루어진 군으로부터 선택되는 것인, 약학적 조성물.
  9. 제1항에 있어서,
    상기 조성물은 약제학적으로 허용되는 담체, 부형제 또는 희석제를 추가로 포함하는 것인, 약학적 조성물.
  10. 제1항에 있어서,
    트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 파르네소이드 X 수용체 작용제가 동시에, 순차적으로 또는 개별적으로 투여되는 것인, 약학적 조성물.
  11. 하기 화학식 I로 표시되는 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물의 치료적 유효량, 및 선택적으로 파르네소이드 X 수용체 작용제의 치료적 유효량을 개체에게 투여함을 포함하는, 대사성 또는 담즙정체성 간질환의 예방 또는 치료 방법.
    [화학식 I]
    Figure PCTKR2021018540-appb-I000013
  12. 하기 화학식 I로 표시되는 트라메티닙, 또는 이의 약학적으로 허용가능한 염, 용매화물 또는 수화물, 및 파르네소이드 X 수용체 작용제의 조합물의 대사성 또는 담즙정체성 간질환의 예방 또는 치료 용도.
    [화학식 I]
    Figure PCTKR2021018540-appb-I000014
PCT/KR2021/018540 2020-12-08 2021-12-08 트라메티닙 및 선택적으로 파르네소이드 x 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물 WO2022124795A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0170411 2020-12-08
KR20200170411 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022124795A1 true WO2022124795A1 (ko) 2022-06-16

Family

ID=81973444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018540 WO2022124795A1 (ko) 2020-12-08 2021-12-08 트라메티닙 및 선택적으로 파르네소이드 x 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물

Country Status (1)

Country Link
WO (1) WO2022124795A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876751A (zh) * 2019-10-28 2020-03-13 北京亿药科技有限公司 曲美替尼在制备预防和/或治疗非酒精性肝炎和/或非酒精性脂肪性肝病中的应用
WO2020227711A1 (en) * 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
WO2020256382A1 (en) * 2019-06-18 2020-12-24 Standigm Inc Composition for preventing or treating metabolic liver disease

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227711A1 (en) * 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
WO2020256382A1 (en) * 2019-06-18 2020-12-24 Standigm Inc Composition for preventing or treating metabolic liver disease
CN110876751A (zh) * 2019-10-28 2020-03-13 北京亿药科技有限公司 曲美替尼在制备预防和/或治疗非酒精性肝炎和/或非酒精性脂肪性肝病中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERNANDEZ ELOY D, ZHENG LIANXING, KIM YOUNG, FANG BIN, LIU BO, VALDEZ REGINALD A, DIETRICH WILLIAM F, RUCKER PAUL V, CHIANELLI DON: "Tropifexor-Mediated Abrogation of Steatohepatitis and Fibrosis Is Associated With the Antioxidative Gene Expression Profile in Rodents", HEPATOLOGY COMMUNICATIONS, vol. 3, no. 8, 1 January 2019 (2019-01-01), pages 1085 - 1097, XP055940849, DOI: 10.1002/hep4.1368/suppinfo *
MüLLER PETER; MESSMER MARIE; BAYER MONIKA; PFEILSCHIFTER JOSEF M.; HINTERMANN EDITH; CHRISTEN URS: "Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model", JOURNAL OF AUTOIMMUNITY, vol. 69, 26 February 2016 (2016-02-26), GB , pages 51 - 58, XP029494659, ISSN: 0896-8411, DOI: 10.1016/j.jaut.2016.02.007 *

Similar Documents

Publication Publication Date Title
US9463189B2 (en) Sulfonyl-substituted bicyclic compounds as PPAR modulators for the treatment of non-alcoholic steatohepatitis
WO2018030879A1 (ko) 아모디아퀸 및 항당뇨 약물을 유효성분으로 함유하는 당뇨병의 예방 또는 치료용 약학적 조성물
KR20160133529A (ko) 펙사라민 유도체 및 이의 제조와 사용 방법
BR112019018162A2 (pt) Composições farmacêuticas para terapia de combinação
TW200918049A (en) Compounds useful as medicaments
WO2019009674A1 (ko) 아데노신 유도체를 포함하는 당뇨병성 신증 예방 및 치료용 약학적 조성물
KR20210002573A (ko) 간 질환에 호중구 엘라스타제 저해제의 사용
WO2020055170A1 (ko) Gpr119 리간드를 유효성분으로 포함하는 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물
WO2020141828A2 (en) Anticancer compositions comprising immune checkpoint inhibitors
KR102174191B1 (ko) 조직 재생 및 저하된 조직 기능의 회복을 자극하기 위한 제제로서의 디카르복시산의 비스아미드 유도체
WO2022055285A1 (ko) 암의 기원 세포의 사멸용 약학적 조성물
WO2022124795A1 (ko) 트라메티닙 및 선택적으로 파르네소이드 x 수용체 작용제를 포함하는 대사성 또는 담즙정체성 간질환의 예방 또는 치료용 약학적 조성물
WO2020256382A1 (en) Composition for preventing or treating metabolic liver disease
WO2020130502A1 (ko) 엠파글리플로진 및 시타글립틴을 포함하는 약학적 조성물
WO2015050388A1 (ko) 피마살탄을 포함하는 허혈성 뇌질환 예방 또는 치료용 약학적 조성물
WO2017073897A1 (en) Pharmaceutical composition comprising metformin and lobeglitazone
EP1871364A1 (en) Methods for treating or preventing acute myelogenous leukemia
WO2022065859A1 (ko) 마이크로 rna를 이용하여 체세포로부터 췌장 베타세포를 직접 분화시키는 방법 및 분화 조성물
US20220079895A1 (en) Composition for preventing or treating liver diseases
WO2015111971A1 (ko) Gpr119 리간드를 유효성분으로 포함하는 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물
WO2023286963A1 (ko) 아데노신 유도체를 포함하는 담관염(cholangitis) 또는 담관염에 의한 간 질환의 예방 또는 치료용 약학적 조성물
WO2022203432A1 (ko) 특정 약동학적 매개변수를 나타내는 디메틸푸마레이트를 유효성분으로 함유한 약학적 조성물
WO2021182876A1 (ko) 비알콜성지방간염의 예방 또는 치료를 위한 약학적 조성물
WO2024085698A1 (ko) 글리코겐 가인산분해효소(pygl) 저해제를 유효성분으로 포함하는 염증성 장 질환의 예방 또는 치료용 약학 조성물
WO2023096446A1 (ko) 에트라비린의 대사성 질환 및 섬유화 질환 치료 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903841

Country of ref document: EP

Kind code of ref document: A1