WO2022124411A1 - レゾルバ - Google Patents

レゾルバ Download PDF

Info

Publication number
WO2022124411A1
WO2022124411A1 PCT/JP2021/045683 JP2021045683W WO2022124411A1 WO 2022124411 A1 WO2022124411 A1 WO 2022124411A1 JP 2021045683 W JP2021045683 W JP 2021045683W WO 2022124411 A1 WO2022124411 A1 WO 2022124411A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotor
detection
excitation
stator
Prior art date
Application number
PCT/JP2021/045683
Other languages
English (en)
French (fr)
Inventor
暁 松縄
Original Assignee
マブチモーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マブチモーター株式会社 filed Critical マブチモーター株式会社
Priority to CN202180082221.6A priority Critical patent/CN116568995B/zh
Priority to JP2022568358A priority patent/JP7314426B2/ja
Priority to US18/256,208 priority patent/US11901780B2/en
Publication of WO2022124411A1 publication Critical patent/WO2022124411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a resolver that detects the rotation angle of the rotor with respect to the stator.
  • a technique using a plurality of axial double angles is known in a resolver that detects the rotation angle of the rotor with respect to the stator.
  • the axis double angle is set to 1X
  • one rotation of the rotor corresponds to one cycle of the output signal, and it becomes easy to specify the absolute angle.
  • the axis double angle is set to nX larger than 1X
  • the change in the output signal with respect to the rotation angle fluctuation of the rotor increases, and the angular resolution increases. Therefore, by using a coil having an axial double angle of 1X and a coil having an axial double angle of nX in combination, the rotation angle detection performance can be improved.
  • a resolver that detects the angle of rotation using a plurality of axial double angles is also called a double-speed resolver (see Japanese Patent No. 4418475).
  • a coil with an axial double angle of 1X has a relatively large area of the coil as compared with a coil with an axial double angle of nX, and has the property of being easily affected by an external magnetic field. Therefore, the angle of rotation detection performance may deteriorate depending on the strength of the external magnetic field. Further, the optimum value of the air gap (distance between the coil on the stator side and the coil on the rotor side arranged facing the stator) differs between the coil having a shaft double angle of 1X and the coil having a shaft double angle of nX. .. Therefore, it is difficult to set an air gap suitable for each coil, and it is difficult to optimize the distribution of the magnetic field strength.
  • One of the purposes of this case is to provide a resolver that was created in light of the above-mentioned problems and that can improve the detection performance of the angle of rotation with a simple configuration. Not limited to this purpose, it is also possible to exert an action and effect derived from each configuration shown in the "mode for carrying out the invention" described later, which cannot be obtained by the conventional technique. It can be positioned as a purpose.
  • the disclosed resolver is a resolver that detects the rotation angle of the rotor with respect to the stator, and has an axial double angle of nX (where n is a natural number of 3 or more), is arranged coaxially with the rotation axis of the rotor, and has an annular shape.
  • the first coil group having the first exciting coil and the first detection coil to be formed and the first coil group having an axial double angle of (n-1) X are arranged coaxially with the rotation axis of the rotor and are formed in an annular shape. It includes a second excitation coil and a second coil group having a second detection coil. Further, the first coil group and the second coil group are provided at different positions in the radial direction.
  • the angle of rotation detection performance can be improved with a simple configuration.
  • FIG. 1 is a schematic diagram showing the structure of the resolver 1 as the first embodiment.
  • This resolver 1 is a two-phase excitation single-phase output type resolver 1, and is a modulated wave type resolver that inputs an amplitude-modulated AC signal and detects the rotation angle from a phase-modulated signal using the same.
  • the resolver 1 includes a rotor 2 (rotor), a stator 3 (stator), and a control device 4.
  • the rotor 2 is a disk-shaped member rotatably supported by the stator 3.
  • the stator 3 is a disk-shaped member fixed to a casing (not shown).
  • a plurality of seat coils are provided in each of the rotor 2 and the stator 3.
  • the control device 4 calculates and outputs the rotation angle of the rotor 2 with respect to the stator 3.
  • the control device 4 includes a signal generation circuit 5 that generates an AC signal supplied to the seat coil, and a signal processing circuit 6 that outputs angle information corresponding to the rotation angle based on the AC signal returned from the seat coil. Built-in.
  • the AC signal generated by the signal generation circuit 5 is transmitted from the stator 3 side to the rotor 2 side by electromagnetic induction, then returned from the rotor 2 side to the stator 3 side and input to the signal processing circuit 6. It has become like.
  • the rotor 2 and the stator 3 of the resolver 1 shown in FIG. 1 are provided with a first coil group 10 and a second coil group 20.
  • the first coil group 10 is a coil group including an exciting coil and a detection coil having an axial double angle of nX (where n is a natural number of 3 or more).
  • the exciting coil and the detection coil of the first coil group 10 are multi-pole coils, and n pole pairs (N-pole and S-pole) are formed.
  • the excitation coil and the detection coil of the first coil group 10 are arranged coaxially with the rotation axis of the rotor 2, and each is formed in an annular shape.
  • the polarities of the magnetic pole pairs (N pole, S pole) referred to here are inverted at a frequency corresponding to the frequency of alternating current. Therefore, the polarity of the pole pair is not always fixed. In other words, there is a part that functions as an N pole and a part that functions as an S pole at a certain moment, and the polarity of each part changes with the passage of time.
  • the second coil group 20 is a coil group including an exciting coil and a detection coil having an axial double angle of (n-1) X.
  • the excitation coil and the detection coil of the second coil group 20 are arranged coaxially with the rotation axis of the rotor 2, and each is formed in an annular shape.
  • the first coil group 10 and the second coil group 20 are provided at different positions in the radial direction.
  • the exciting coil and the detection coil of the second coil group 20 are also multi-pole coils, but the number of magnetic pole pairs (N-pole and S-pole) is n-1.
  • the exciting coil and the detection coil of the second coil group 20 have a characteristic that the axial double angle is smaller by 1X than the exciting coil and the detection coil of the first coil group 10, and the number of magnetic pole pairs is one less.
  • the value of n representing the axis double angle may be any natural number of 3 or more, and the larger the value of n, the better the angular resolution.
  • the first coil group 10 includes a first sine exciting coil 11, a first chord exciting coil 12, a first detection coil 13, a first transmitting antenna coil 14, and a first receiving antenna coil 15. Of these coils 11 to 15, at least the axial double angle of the first sine exciting coil 11, the first chord exciting coil 12, and the first detection coil 13 is set to nX. As shown in FIG. 1, the first sine and cosine exciting coil 11, the first chord exciting coil 12, and the first receiving antenna coil 15 are provided on the stator 3 side. Further, the first detection coil 13 and the first transmission antenna coil 14 are provided on the rotor 2 side.
  • the first sine exciting coil 11 and the first cosine exciting coil 12 are sheet-shaped coils for inducing a voltage (voltage corresponding to the rotor angle) in the first detection coil 13 on the rotor 2 side. When it is not necessary to distinguish between them, they may be collectively referred to as the first excitation coils 11 and 12.
  • AC signals whose electrical angles are 90 degrees out of phase with each other are input to the first excitation coils 11 and 12. This AC signal is generated by the signal generation circuit 5 and then supplied to each of the first sine excitation coil 11 and the first cosine excitation coil 12.
  • Specific examples of the AC signal include a modulated wave in which the amplitude of a high-frequency signal of several tens of kilohertz to several megahertz is modulated so as to periodically increase or decrease.
  • the first sinusoidal excitation coil 11 is formed in a closed circuit shape in which, for example, an outward coil for generating one of the magnetic pole pairs (N pole and S pole) and a return coil for generating the other of the magnetic pole pairs are connected. ..
  • Each of the outward coil and the return coil is formed in a shape such that a rectangular wave is arranged along the circumference of a circle coaxial with the rotation center of the rotor 2, for example.
  • each of the outward coil and the return coil is formed in a shape in which conductors are arranged so as to form the contour of a gear coaxially arranged with the rotation center of the rotor 2. Therefore, in the first sinusoidal excitation coil 11, n magnetic pole pairs are alternately arranged in the circumferential direction.
  • FIG. 2 is an exploded perspective view showing the main structure of the resolver 1 in an exploded manner.
  • the first sinusoidal excitation coil 11 is formed on one side surface of the base material 8 of the insulator.
  • the outward coil and the return coil may be arranged in two layers on one side surface of the base material 8, or may be arranged separately on both side surfaces of the base material 8.
  • the shape is formed such that a rectangular wave is arranged along the circumference of a circle coaxial with the rotation center of the rotor 2.
  • n magnetic pole pairs are alternately arranged in the circumferential direction.
  • the first chord excitation coil 12 is formed on the other side surface of the base material 8 of the insulator.
  • the first sine exciting coil 11 and the first cosine exciting coil 12 may be arranged so as to overlap one side surface of the base material 8, or the first sine excitation coil 11 and the first cosine exciting coil 12 may be arranged. The positional relationship may be reversed.
  • the first detection coil 13 is arranged at a position facing the rotor 2 in the axial direction with respect to the first sine and cosine excitation coil 11 and the first cosine excitation coil 12.
  • the shape of the first detection coil 13 is formed in a sheet shape like the first sine and cosine excitation coil 11 and the first cosine excitation coil 12, and is formed, for example, along the circumference of a circle coaxial with the center of rotation of the rotor 2. It is formed in a shape like an arrangement of rectangular waves.
  • a voltage is induced in the first detection coil 13 by the interlinking of the magnetic flux generated by exciting the first sine exciting coil 11 and the first chord exciting coil 12.
  • the first detection coil 13 is formed on one side surface of the base material 7 of the insulator.
  • An AC signal corresponding to the rotation angle of the rotor 2 with respect to the stator 3 is generated in the first detection coil 13 by electromagnetic induction.
  • the first transmitting antenna coil 14 is a winding (coil) excited by the voltage induced in the first detection coil 13, and is provided in the rotor 2. As shown in FIG. 1, both ends of the first transmitting antenna coil 14 are connected to both ends of the first detection coil 13 to form a closed circuit.
  • the first transmitting antenna coil 14 shown in FIG. 2 is formed inside the first detection coil 13 in a shape in which conductors are arranged so as to spirally swirl around the center of rotation of the rotor 2. As shown in FIG. 2, a conducting wire extending from the ends of the first detection coil 13 and the first transmitting antenna coil 14 is passed through the base material 7, and these are connected by the other side surface of the base material 7. May be good.
  • the first receiving antenna coil 15 is provided on the stator 3 and is arranged at a position facing the first transmitting antenna coil 14 in the axial direction of the rotor 2. A voltage is induced in the first receiving antenna coil 15 by the interlinking of magnetic flux generated by exciting the first transmitting antenna coil 14.
  • the first receiving antenna coil 15 shown in FIG. 2 is formed on one side surface of the base material 8 and is a conductor inside the first sine excitation coil 11 so as to spiral around the center of rotation of the rotor 2. It is formed in the shape of a wire.
  • the AC signal transmitted to the first receiving antenna coil 15 is input to the signal processing circuit 6 and used to calculate the rotation angle of the rotor 2 with respect to the stator 3.
  • the configuration of the second coil group 20 is almost the same as that of the first coil group 10 except for the characteristics related to the axial double angle.
  • the second coil group 20 includes a second sine exciting coil 21, a second chord exciting coil 22, a second detection coil 23, a second transmitting antenna coil 24, and a second receiving antenna coil 25.
  • the axial double angle of at least the second sine exciting coil 21, the second cosine exciting coil 22, and the second detection coil 23 is set to (n-1) X.
  • the second sine and cosine exciting coil 21, the second cosine exciting coil 22, and the second receiving antenna coil 25 are provided on the stator 3 side.
  • the second detection coil 23 and the second transmission antenna coil 24 are provided on the rotor 2 side.
  • the second sine exciting coil 21 and the second cosine exciting coil 22 are sheet-shaped coils for inducing a voltage (voltage corresponding to the rotor angle) in the second detection coil 23 on the rotor 2 side. When it is not necessary to distinguish between them, they may be collectively referred to as the second excitation coils 21 and 22. Similar to the first excitation coils 11 and 12, an AC signal (an AC signal generated by the signal generation circuit 5) whose electrical angles are 90 degrees out of phase with each other is input to the second excitation coils 21 and 22.
  • the second sine-excited coil 21 is formed in a sheet shape inside the first sine-excited coil 11, and has, for example, an outward coil for generating one of the magnetic pole pairs (N pole and S pole) and the other of the magnetic pole pairs. It is formed in a closed circuit shape connected to a return coil for generation. Each of the outward coil and the return coil is formed in a shape such that a rectangular wave is arranged along the circumference of a circle coaxial with the rotation center of the rotor 2, for example.
  • the second chord excitation coil 22 is formed in a sheet shape inside the first chord excitation coil 12, and is, for example, an outward coil and a magnetic pole for generating one of a magnetic pole pair (N pole and S pole). It is formed in a closed circuit shape connected to a return coil for generating the other of the pair. In these second excitation coils 21 and 22, n-1 N poles and S poles are alternately arranged in the circumferential direction.
  • the second detection coil 23 is arranged at a position facing the rotor 2 in the axial direction with respect to the second sine and cosine excitation coil 21 and the second cosine excitation coil 22.
  • the shape of the second detection coil 23 is formed in a sheet shape inside the first detection coil 13, and has a shape such that a rectangular wave is arranged along the circumference of a circle coaxial with the rotation center of the rotor 2, for example. It is formed.
  • n-1 N poles and S poles are alternately arranged in the circumferential direction.
  • the second transmitting antenna coil 24 is a winding (coil) excited by the voltage induced in the second detection coil 23, and is provided in the rotor 2. As shown in FIG. 1, both ends of the second transmitting antenna coil 24 are connected to both ends of the second detection coil 23 to form a closed circuit.
  • the second transmitting antenna coil 24 shown in FIG. 2 is formed inside the second detection coil 23 in a shape in which conductors are arranged so as to spirally swirl around the center of rotation of the rotor 2.
  • the second receiving antenna coil 25 is provided on the stator 3 and is arranged at a position facing the second transmitting antenna coil 24 in the axial direction of the rotor 2. A voltage is induced in the second receiving antenna coil 25 by the interlinking of the magnetic flux generated by exciting the second transmitting antenna coil 24.
  • the second receiving antenna coil 25 shown in FIG. 2 is formed inside the second sine excitation coil 21 in a shape in which conductors are arranged so as to spiral around the center of rotation of the rotor 2.
  • the AC signal transmitted to the second receiving antenna coil 25 is input to the signal processing circuit 6 and used for calculating the rotation angle of the rotor 2 with respect to the stator 3.
  • the signal processing circuit 6 calculates the rotation angle (absolute angle) of the rotor 2 with respect to the stator 3 based on the AC signal transmitted to the first receiving antenna coil 15 and the AC signal transmitted to the second receiving antenna coil 25.
  • the former AC signal is a signal transmitted via coils 11 to 13 having an axial double angle of nX
  • the latter AC signal is transmitted via coils 21 to 23 having an axial double angle of (n-1) X. It is a signal.
  • the phase difference between the former AC signal and the latter AC signal becomes the absolute angle of the rotor 2.
  • the absolute angle of the rotor 2 can be detected accurately based on the phase difference of the AC signal.
  • This detection principle is known as the Vernier principle (measurement principle of caliper) (see, for example, International Patent Application No. 2015/037491, European Patent No. 1353151).
  • FIG. 3 is a front view of the rotor 2.
  • the second detection coil 23 included in the second coil group 20 is arranged inside the first detection coil 13 included in the first coil group 10. Further, as shown in FIG. 2, the same applies to the excitation coils 11, 12, 21 and 22. That is, the second sine-excited coil 21 included in the second coil group 20 is arranged inside the first sine-excited coil 11 included in the first coil group 10, and the second cosine included in the second coil group 20.
  • the exciting coil 22 is arranged inside the first cosine exciting coil 12 included in the first coil group 10.
  • the magnetic pole dimension (width of the magnetic pole) in the circumferential direction is secured as compared with the case where the coil with a large number of magnetic pole pairs is arranged inside. It will be easier.
  • the first detection coil 13 shown in FIG. 3 is arranged in an annular region coaxial with the rotation center of the rotor 2.
  • W 1 be the radial dimension of this region.
  • W 2 is set to a dimension larger than W 1 . That is, the radial dimension W 2 of the second detection coil 23 arranged inside is set to be larger than the radial dimension W 1 of the first detection coil 13 arranged outside the radial dimension W 2.
  • the radial dimension of the second sine exciting coil 21 arranged inside is larger than the radial dimension of the first sine exciting coil 11 arranged outside. It is set large. Further, the radial dimension of the second chord exciting coil 22 arranged inside is set to be larger than the radial dimension of the first chord exciting coil 12 arranged outside the radial dimension.
  • the resolver 1 is provided with a first coil group 10 and a second coil group 20.
  • the first coil group 10 has an axial double angle of nX (where n is a natural number of 3 or more), is arranged to face the rotor 2 and the stator 3, is arranged coaxially with the rotation axis of the rotor 2, and each is annular. It has a first excitation coil 11 and 12 (first sine excitation coil 11, first cosine excitation coil 12) and a first detection coil 13 formed in the above.
  • the second coil group 20 has an axial double angle of (n-1) X, is arranged facing the rotor 2 and the stator 3, is arranged coaxially with the rotation axis of the rotor 2, and is formed in an annular shape. It has a second excitation coil 21 and 22 (second sine excitation coil 21, second cosine excitation coil 22) and a second detection coil 23.
  • the first coil group 10 and the second coil group 20 are provided at different positions in the radial direction.
  • the vernier principle can be used to improve the angle of rotation detection performance with a simple configuration. Further, by using a multi-pole coil instead of using a coil having an axial double angle of 1X, it is possible to reduce the influence of an external magnetic field. This makes it possible to increase the resistance to magnetic noise and prevent an increase in detection error.
  • first coil group 10 and the second coil group 20 at different positions in the radial direction, they can be housed in the same plane.
  • the first sine exciting coil 11 and the second sine exciting coil 21 can be arranged in the same plane.
  • the first chord excitation coil 12 and the second chord excitation coil 22 can be arranged in the same plane.
  • the first detection coil 13 and the second detection coil 23 can be arranged in the same plane. Therefore, the structure of the rotor 2 and the stator 3 can be simplified.
  • the signal strength can be made uniform between the first coil group 10 and the second coil group 20, and the angle detection accuracy of the resolver 1 can be improved.
  • the difference in magnetic pole size can be reduced and the distribution of the magnetic field strength can be made almost uniform as compared with the case where a coil having an axial double angle of nX and a coil having an axial double angle of 1X are used.
  • the air gap suitable for a coil having an axial double angle of nX is close to the air gap suitable for a coil having an axial double angle of (n-1) X. Therefore, the air gap of the first coil group 10 and the air gap of the second coil group 20 can be aligned, and the distribution of the magnetic field strength can be easily optimized.
  • each of the first coil group 10 and the second coil group 20 is formed in a sheet shape.
  • the first excitation coils 11 and 12 are formed in a sheet shape, and the first detection coil 13 is also formed in a sheet shape.
  • the second excitation coils 21 and 22 are formed in a sheet shape, and the second detection coil 23 is also formed in a sheet shape.
  • the second coil group 20 is arranged inside the first coil group 10 in the radial direction.
  • the second excitation coils 21 and 22 are arranged inside the first excitation coils 11 and 12, and the second detection coil 23 is arranged inside the first detection coil 13.
  • the magnetic pole dimensions (magnetic poles) in the circumferential direction are compared with the case where the coils 11 to 13 having a large number of magnetic pole pairs are arranged inside. Width) can be secured. Therefore, the rotation angle detection performance can be improved. Further, by using the sheet-shaped coil, the thickness dimension of the rotor 2 and the stator 3 can be reduced, and the resolver 1 can be made smaller and lighter.
  • the radial dimension of the region where the second coil group 20 is arranged is larger than the radial dimension of the region where the first coil group 10 is arranged.
  • the radial dimension W 2 of the second detection coil 23 is set to be larger than the radial dimension W 1 of the first detection coil 13.
  • the radial dimensions of the second exciting coils 21 and 22 are also set to be larger than the radial dimensions of the first exciting coils 11 and 12. In this way, the magnetic pole area can be secured by increasing the radial dimension of the coils 21 to 23 arranged inside. Therefore, the distribution of the strength of the magnetic field can be optimized, and the detection performance of the angle of rotation can be improved.
  • the first coil group 10 of the resolver 1 includes a first sinusoidal excitation coil 11, a first chord excitation coil 12, and a first detection coil 13.
  • the second coil group 20 includes a second sine and cosine excitation coil 21, a second cosine excitation coil 22, and a second detection coil 23.
  • the sinusoidal excitation coils 11 and 21 are provided on the stator 3 and are excited by the first signal corresponding to the amplitude-modulated sine wave.
  • the cosine excitation coils 12 and 22 are provided in the stator 3 and are excited by a second signal (a signal orthogonal to the first signal) corresponding to the amplitude-modulated cosine wave.
  • the detection coils 13 and 23 are provided in the rotor 2 and output a modulated wave including a phase displacement according to the rotation angle of the rotor 2 with respect to the stator 3. With such a configuration, it is possible to improve the detection performance of the rotation angle in the modulated wave resolver 1 of the two-phase excitation single-phase output. Further, since it is the modulated wave resolver 1, it is possible to secure a desired angle detection accuracy while significantly reducing the number of coil turns.
  • the resolver 31 is provided with a rotor 32, a stator 33, and a control device 34.
  • the control device 34 includes a signal generation circuit 35 and a signal processing circuit 36.
  • the rotor 32 and the stator 33 of the resolver 31 are provided with a first coil group 40 and a second coil group 50.
  • the first coil group 40 includes a first sine detection coil 41, a first chord detection coil 42, a first excitation coil 43, a first receiving antenna coil 44, and a first transmitting antenna coil 45.
  • the second coil group 50 includes a second sine detection coil 51, a second chord detection coil 52, a second excitation coil 53, a second receive antenna coil 54, and a second transmit antenna coil 55.
  • the axial double angles of the first sine detection coil 41, the first cosine detection coil 42, and the first excitation coil 43 are set to nX
  • the axial double angles of the second cosine detection coil 52 and the second excitation coil 53 are set to (n-1) X.
  • first exciting coil 43, the first receiving antenna coil 44, the second exciting coil 53, and the second receiving antenna coil 54 are provided on the rotor 32 side.
  • first sine detection coil 41, the first cosine detection coil 42, the first transmission antenna coil 45, the second sine detection coil 51, the second cosine detection coil 52, and the second transmission antenna coil 55 are on the stator 33 side. It is provided in.
  • the AC signal generated by the signal generation circuit 35 is transmitted to the first transmitting antenna coil 45 and the second transmitting antenna coil 55, and then transmitted to the first receiving antenna coil 44 and the second receiving antenna coil 54.
  • the first excitation coil 43 and the second excitation coil 53 are excited.
  • the first sine detection coil 41, the first cosine detection coil 42, the second sine detection coil 51, and the second cosine detection coil 52 output an AC signal according to the rotation angle of the rotor 32 with respect to the stator 33, and the AC signal is output.
  • the signal is transmitted to the signal processing circuit 36.
  • the signal processing circuit 36 calculates the rotation angle of the rotor 32 with respect to the stator 33 by using an AC signal obtained via two coils having different axial double angles by 1X, and outputs the angle information. As described above, even in the single-phase excitation two-phase output type resolver 31, the rotation angle detection performance can be improved with a simple configuration by utilizing the vernier principle. It is also possible to apply the same structure as in the above embodiment to not only the single-phase excited two-phase output type resolver 31 but also the two-phase excited two-phase output type resolver.
  • the excitation coil and the detection coil of the first coil group 10 and the second coil group 20 are formed in an annular shape, but the "annular" here means only the shape of a perfect ring. It does not include the meaning of a partial ring shape (arc shape). Therefore, the coils included in the first coil group 10 and the second coil group 20 are not necessarily formed around the center of rotation of the rotor 2 over the entire circumference.
  • FIG. 5 is a diagram showing a modified example of the first exciting coils 11 and 12 and the second exciting coils 21 and 22 provided on the stator 3 side.
  • each coil 11,12,21,22 has a shape corresponding to the partial annulus region, and is formed at a position where the phases of the coils 11,12,21,22 match with respect to the magnetic pole pitch of the rotor 2. ..
  • the partial annulus region is an region that constitutes a part of the annulus, and is a region surrounded by two circles that are coaxial with the center of rotation of the rotor 2 and two straight lines that pass through the center of rotation. If the angle formed by the two straight lines is, for example, 90 degrees, four partial annular regions can be arranged in the circumferential direction.
  • the coils 11, 12, 21, 22 shown in FIG. 5 are arranged in one of such partial annular regions. Further, these coils 11, 12, 21, 22 are formed by stacking coil patterns arranged in each of the four layers.
  • the outward coil of the first sine-excited coil 11 and the outward coil of the second sine-excited coil 21 are arranged in the first layer (upper part in FIG. 5, the first figure from the left).
  • the return coil of the first sine excitation coil 11 and the return coil of the second sine excitation coil 21 are arranged in the second layer (upper part in FIG. 5, the second figure from the left).
  • the first sine exciting coil 11 and the second sine exciting coil 21 are formed as shown in the middle part of FIG.
  • the outward coil of the first chord excitation coil 12 and the outward coil of the second chord excitation coil 22 are arranged. ..
  • the return coil of the first chord excitation coil 12 and the return coil of the second chord excitation coil 22 are arranged. By connecting each of the outward coil and the return coil, the first chord excitation coil 12 and the second chord excitation coil 22 are formed as shown in the middle part of FIG.
  • the length of the coils 11, 12, 21, 22 in the circumferential direction should be at least as long as one pole pair (N pole and S pole) can be formed.
  • N pole and S pole By forming the shapes of the first exciting coils 11 and 12 and the second exciting coils 21 and 22 on the stator 3 side into a fan shape, it is possible to save space while achieving the same effects as those in the above embodiment. ..
  • the first sine and cosine excitation coil 11 and the first cosine excitation coil 12 may be arranged so as not to overlap each other, or they may be formed in the same plane (in the same layer).
  • the sinusoidal excitation coils 11 and 21 may be arranged in one partial annular region, and the cosine exciting coils 12 and 22 may be arranged in the other partial annular region.
  • the sine and cosine excitation coils 11 and 21 and the cosine excitation coils 12 and 22 can be arranged on the same plane, and the number of layers of the substrate can be two. Therefore, the number of layers can be reduced as compared with the structure shown in FIG. These layers may be formed on one side of the substrate (two layers on one side), or may be formed on both sides of one substrate.
  • FIG. 7 is a schematic diagram showing the structure of the resolver 71 as the second embodiment.
  • This resolver 71 is a single-phase excitation two-phase output type resolver 71, which is an inductive type resolver (inductive sensor) that inputs an AC signal and detects the rotation angle from an amplitude-modulated signal.
  • the resolver 71 includes a rotor 72 (rotor), a stator 73 (stator), and a control device 74.
  • the rotor 72 is a disk-shaped member rotatably supported by the stator 73.
  • the stator 73 is a disk-shaped member fixed to a casing (not shown).
  • Excitation coils 81, 86 and detection coils 82, 83, 87, 88 are provided on the stator 73.
  • the rotor 72 is not provided with a coil, but is provided with conductors 84 and 89.
  • the control device 74 calculates and outputs the rotation angle of the rotor 72 with respect to the stator 73.
  • the control device 74 has an angle information corresponding to the rotation angle based on a signal generation circuit 75 that generates an AC signal supplied to the excitation coils 81 and 86 and a signal returned from the detection coils 82, 83, 87, 88. Is built in with a signal processing circuit 76 that outputs.
  • the AC signal generated by the signal generation circuit 75 is transmitted to the excitation coils 81 and 86, and a predetermined magnetic field is formed in the stator 73.
  • the rotor 72 and the stator 73 of the resolver 71 shown in FIG. 7 are provided with a first coil group 80 and a second coil group 85.
  • the first coil group 80 is a coil group including an exciting coil and a detection coil having an axial double angle of nX.
  • the second coil group 85 is a coil group including an exciting coil and a detection coil having an axial double angle of (n-1) X.
  • the first coil group 80 and the second coil group 85 are provided at different positions in the radial direction.
  • the second coil group 85 is arranged radially inside the first coil group 80.
  • the second coil group 85 may be arranged radially outside the first coil group 80.
  • the exciting coils 81 and 86 are coils that generate an axial magnetic field between the first exciting coil 81 and the second exciting coil 86.
  • the conductors 84, 89 (first conductor 84, second conductor 89) on the rotor 72 side facing the stator 73 in the axial direction receive the magnetic field of the exciting coils 81, 86 and generate an eddy current inside to generate the exciting coils 81, 86. Generates a demagnetic field that cancels the magnetic field of. Therefore, the conductors 84 and 89 shield a part of the magnetic field of the exciting coils 81 and 86.
  • an AC signal having a predetermined amplitude is input to the excitation coils 81 and 86.
  • the amplitude of the AC signal input to the exciting coils 81 and 86 can be changed by the instruction of the control device 74.
  • the voltage value of the AC signal input to the excitation coils 81 and 86 is expressed as "sin ⁇ ct ".
  • ⁇ ct is the angular velocity of the AC signal.
  • the detection coils 82, 83, 87, 88 detect the magnetic fields of the excitation coils 81, 86. Since the conductors 84 and 89 on the rotor 72 side facing in the axial direction move in the circumferential direction with the rotation of the rotor 72, the portion where the conductors 84 and 89 shield the magnetic field of the excitation coils 81 and 86 depends on the rotor angle. Change. Therefore, the magnetic field detected by the detection coils 82, 83, 87, 88 also changes according to the rotor angle.
  • the detection coils 82 and 83 of the first coil group 80 include a first sine and cosine detection coil 82 and a first cosine detection coil 83.
  • the detection coils 87 and 88 of the second coil group 85 include the second sine and cosine detection coil 87 and the second cosine detection coil 88.
  • the first sine detection coil 82 and the second sine detection coil 87 detect the sine of the rotor angle
  • the first cosine detection coil 83 and the second cosine detection coil 88 detect the cosine of the rotor angle.
  • the voltage value of the AC signal obtained by the first sine detection coil 82 whose axial double angle is nX is expressed as “sinn ⁇ ⁇ sin ⁇ ct ”, and is expressed by the first cosine detection coil 83.
  • the voltage value of the obtained AC signal is expressed as "cosn ⁇ ⁇ sin ⁇ ct ".
  • the voltage value of the AC signal obtained by the second sine detection coil 87 whose axial double angle is (n-1) X is expressed as "sin (n-1) ⁇ ⁇ sin ⁇ ct ", and the second cosine detection.
  • the voltage value of the AC signal obtained by the coil 88 is expressed as "cos (n-1) ⁇ ⁇ sin ⁇ ct ".
  • the rotor angle ⁇ can be specified based on these amplitudes.
  • the signals detected by each of the detection coils 82, 83, 87, and 88 are input to the control device 74.
  • FIG. 8 is a diagram showing a layout example of conductors 84 and 89 provided on the rotor 72.
  • the conductors 84 and 89 are formed in a shape in which the area affected by the magnetic field generated by the exciting coils 81 and 86 changes according to the rotation angle of the rotor 72. Specifically, the annulus is divided into multiple parts in the circumferential direction, and the multi-divided disc pieces are alternately deleted along the circumferential direction (remaining by removing the disc pieces by skipping one). The disk pieces are also formed in a shape that is arranged by skipping one.
  • the first conductor 84 shown in FIG. 8 is a layout example when the axis double angle is 32X.
  • the first conductor 84 has a layout in which annulus divided into 64 equal parts in the circumferential direction is alternately removed, and is dispersedly arranged in a total of 32 places on a resin plate. Further, since the second conductor 89 shown in FIG. 8 has an axial double angle of 31X, the layout is such that the annulus divided into 62 in the circumferential direction is alternately removed (conductors are distributed at 31 locations at equal intervals in the circumferential direction). Layout).
  • the shape of each of the conductors 84 and 89 does not have to be a “filled shape” as shown in FIG. 8, and may be, for example, a “closed ring shape surrounding only the outer circumference”.
  • FIG. 9 shows a first excitation coil 81, a first sine detection coil 82, a first cosine detection coil 83, a second excitation coil 86, a second sine detection coil 87, and a second cosine detection coil 88 provided on the stator 73. It is a figure which shows the layout example of. Here, only one of the outward path and the return path is shown for only one of the first sine detection coil 82 and the first cosine detection coil 83. Similarly, for only one of the second sine detection coil 87 and the second cosine detection coil 88, only one of the outward path and the return path is shown.
  • Each of the first excitation coil 81, the first sine detection coil 82, the first cosine detection coil 83, the second excitation coil 86, the second sine detection coil 87, and the second cosine detection coil 88 is around the rotation axis C. It is provided in a ring shape so as to surround the.
  • the first excitation coil 81 is arranged in a shape that orbits the outer peripheral side a plurality of times on the surface facing the disk-shaped rotor 72.
  • the second excitation coil 86 is arranged in a shape that orbits the inner peripheral side close to the rotation axis C a plurality of times on the facing surface.
  • These exciting coils 81 and 86 are not dedicated coils to the first coil group 80 and the second coil group 85, respectively, but collectively function as one exciting coil. In the region outside the first excitation coil 81 and the region inside the second excitation coil 86, magnetic fields that cancel each other out are formed.
  • the detection coils 82 and 83 of the first coil group 80 are arranged on the outer peripheral side of the annular region surrounded by the first exciting coil 81 and the second exciting coil 86.
  • the detection coils 87 and 88 of the second coil group 85 are arranged on the inner peripheral side of this annular region.
  • the first sine and cosine detection coil 82 and the first chord detection coil 83 are arranged in the same layout as the first sine and cosine excitation coil 11 and the first chord excitation coil 12 of the first embodiment. .. That is, each of the first sine and cosine detection coil 82 and the first cosine detection coil 83 arranges rectangular waves along the circumference of a circle coaxial with the center of rotation of the rotor 72 on the surface of the stator 73 facing the rotor 72. It is formed in such a shape.
  • Each of the first sine and cosine detection coil 82 and the first cosine detection coil 83 has a shape in which n magnetic pole pairs are alternately arranged in the circumferential direction.
  • the first sine and cosine detection coil 82 and the first cosine detection coil 83 may be arranged on one side surface of the base material, or may be placed on the front surface and the back surface of the base material. Further, for each of the first sine and cosine detection coil 82 and the first cosine detection coil 83, the outward coil and the return coil may be arranged in two layers on one side surface of the base material, or both side surfaces of the base material. It may be arranged separately in.
  • a second sine detection coil 87 and a second cosine detection coil 88 are provided inside the first sine detection coil 82 and the first cosine detection coil 83.
  • the second sine detection coil 87 and the second cosine detection coil 88 are arranged in the same layout as the second sine excitation coil 21 and the second cosine excitation coil 22 of the first embodiment. That is, each of the second sine and cosine detection coil 87 and the second cosine detection coil 88 arranges rectangular waves along the circumference of a circle coaxial with the center of rotation of the rotor 72 on the facing surface of the stator 73 with respect to the rotor 72. It is formed in such a shape.
  • Each of the second sine and cosine detection coil 87 and the second cosine detection coil 88 has a shape in which (n-1) magnetic pole pairs are alternately arranged in the circumferential direction.
  • the second sine and cosine detection coil 87 and the second cosine detection coil 88 may be arranged so as to be overlapped on one side surface of the base material, or may be dispersedly arranged on the front surface and the back surface of the base material. Further, for each of the second sine detection coil 87 and the second cosine detection coil 88, the outward coil and the return coil may be arranged in two layers on one side surface of the base material, or both side surfaces of the base material. It may be arranged separately in.
  • the resolver 71 of the second embodiment is provided with a first coil group 80 and a second coil group 85.
  • the first coil group 80 has a shaft double angle of nX (where n is a natural number of 3 or more), is arranged coaxially with the rotation axis of the rotor 72, and has the first excitation coil 81 and each formed in an annular shape. It has first detection coils 82, 83.
  • the second coil group 85 has a shaft double angle of (n-1) X and is arranged coaxially with the rotation axis of the rotor 72, and the second excitation coil 86 and the second coil are formed in an annular shape, respectively. It has detection coils 87 and 88.
  • the first coil group 80 and the second coil group 85 are provided at different positions in the radial direction.
  • the vernier principle can be used to improve the angle of rotation detection performance with a simple configuration.
  • a multi-pole coil instead of using a coil having an axial double angle of 1X, it is possible to reduce the influence of an external magnetic field. This makes it possible to increase the resistance to magnetic noise and prevent an increase in detection error.
  • the first coil group 80 and the second coil group 85 at different positions in the radial direction, they can be housed in the same plane.
  • the magnetic pole size difference can be reduced as compared with the case where the coil having an axial double angle of nX and the coil having an axial double angle of 1X are used, and the magnetic coupling between the exciting coil and the detection coil can be made substantially uniform.
  • the coil shapes as shown in FIGS. 5 to 6 may be applied.
  • First coil group 11 First sinusoidal excitation coil (first excitation coil) , Sine excitement coil) 12 First Cosine Excitation Coil (First Excitation Coil, Cosine Excitation Coil) 13 First detection coil (detection coil) 14 First transmitting antenna coil 15 First receiving antenna coil 20 Second coil group 21 Second sine excitation coil (second excitation coil, sine excitation coil) 22 Second Cosine Excitation Coil (Second Excitation Coil, Cosine Excitation Coil) 23 Second detection coil (detection coil) 24 Second transmitting antenna coil 25 Second receiving antenna coil 80 First coil group 81 First excitation coil 82 First sine detection coil (first detection coil) 83 First chord detection coil (first detection coil) 84 First conductor 85 Second coil group 86 Second excitation coil 87 Second sine detection coil (second detection coil) 88 Second chord detection coil (second detection coil) 89 Second conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

開示のレゾルバ(1)は、ロータ(2)のステータ(3)に対する回転角を検出するレゾルバ(1)であって、第一コイル群(10)と第二コイル群(20)とを備える。第一コイル群(10)は、軸倍角がnX(ただしnは3以上の自然数)であって、ロータ(2)の回転軸と同軸に配置され、それぞれ環状に形成される第一励磁コイル(11,12,81)及び第一検出コイル(13,82,83)を有する。また、第二コイル群(20)は、軸倍角が(n-1)Xであって、ロータ(2)の回転軸と同軸に配置され、それぞれ環状に形成される第二励磁コイル(21,22,86)及び第二検出コイル(23,87,88)を有する。さらに、第一コイル群(10)と第二コイル群(20)とが、径方向に互いに異なる位置に設けられる。

Description

レゾルバ
 本発明は、ステータに対するロータの回転角を検出するレゾルバに関する。
 従来、ステータに対するロータの回転角を検出するレゾルバにおいて、複数の軸倍角を利用する技術が知られている。例えば、軸倍角を1Xに設定するとロータの一回転が出力信号の一周期に対応し、絶対角度の特定が容易となる。一方、軸倍角を1Xよりも大きいnXに設定すれば、ロータの回転角変動に対する出力信号の変化が増大し、角度分解能が上昇する。したがって、軸倍角が1Xになるコイルと軸倍角がnXになるコイルとを併用することで、回転角の検出性能が向上しうる。なお、複数の軸倍角を利用して回転角を検出するレゾルバは、複速度レゾルバとも呼ばれる(日本特許第4418475号公報参照)。
特許第4418475号公報
 軸倍角が1Xになるコイルは、軸倍角がnXになるコイルと比較すると相対的にコイルの面積が大きく、外来磁場の影響を受けやすい性質がある。そのため、外来磁場の強さによっては回転角の検出性能が低下するおそれがある。また、エアギャップ(ステータ側のコイルとこれに対向して配置されるロータ側のコイルとの距離)の最適値は、軸倍角が1Xになるコイルと軸倍角がnXになるコイルとで相違する。そのため、各々のコイルに適したエアギャップを設定することが難しく、磁界の強さの分布を適正化することが困難であるという課題もある。
 本件の目的の一つは、上記のような課題に照らして創案されたものであり、簡素な構成で回転角の検出性能を改善できるようにしたレゾルバを提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。
 開示のレゾルバは、ロータのステータに対する回転角を検出するレゾルバであって、軸倍角がnX(ただしnは3以上の自然数)であって、前記ロータの回転軸と同軸に配置され、それぞれ環状に形成される第一励磁コイル及び第一検出コイルを有する第一コイル群と、軸倍角が(n-1)Xであって、前記ロータの回転軸と同軸に配置され、それぞれ環状に形成される第二励磁コイル及び第二検出コイルを有する第二コイル群とを備える。また、前記第一コイル群と前記第二コイル群とが、径方向に互いに異なる位置に設けられる。
 開示のレゾルバによれば、簡素な構成で回転角の検出性能を改善できる。
第一実施例としてのレゾルバの構造を示す模式図である。 図1に示すレゾルバの要部を示す分解斜視図である。 図1に示すロータの正面図である。 変形例としてのレゾルバの構造を示す模式図である。 変形例としてのコイル形状を例示するステータの正面図である。 変形例としてのコイル形状を例示するステータの正面図である。 第二実施例としてのレゾルバの構造を示す模式図である。 図7に示すレゾルバのロータの構造を示す正面図である。 図7に示すレゾルバのステータの構造を示す正面図である。
[1.第一実施例]
 [A.構成]
 図1は、第一実施例としてのレゾルバ1の構造を示す模式図である。このレゾルバ1は、二相励磁単相出力型のレゾルバ1であり、振幅変調された交流信号入力し、それを用いて位相変調された信号から回転角を検出する変調波型レゾルバである。また、このレゾルバ1はロータ2(回転子)とステータ3(固定子)と制御装置4とを備える。ロータ2は、ステータ3に対して回転可能に軸支される円盤状の部材である。また、ステータ3は、図示しないケーシングに対して固定される円盤状の部材である。ロータ2,ステータ3の各々には、複数のシートコイルが設けられる。
 制御装置4は、ロータ2のステータ3に対する回転角を演算して出力するものである。制御装置4には、シートコイルに供給される交流信号を生成する信号生成回路5と、シートコイルから返送される交流信号に基づき、回転角に対応する角度情報を出力する信号処理回路6とが内蔵される。信号生成回路5で生成された交流信号は、電磁誘導によりステータ3側からロータ2側へと伝達された後、ロータ2側からステータ3側へと返送されて信号処理回路6へと入力されるようになっている。
 図1に示すレゾルバ1のロータ2及びステータ3には、第一コイル群10と第二コイル群20とが設けられる。第一コイル群10は、軸倍角がnX(ただしnは3以上の自然数)の励磁コイル及び検出コイルを含むコイル群である。言い換えれば、第一コイル群10の励磁コイル及び検出コイルは多極コイルであり、磁極対(N極及びS極)がn個形成される。また、第一コイル群10の励磁コイル及び検出コイルは、ロータ2の回転軸と同軸に配置され、それぞれが環状に形成される。なお、レゾルバ1のコイルを流れる電流は交流であることから、ここでいう磁極対の極性(N極,S極)は交流の周波数に応じた頻度で反転する。したがって、磁極対の極性は常に固定されている訳ではない。言い換えれば、ある瞬間にN極として機能する部位とS極として機能する部位とが存在し、各々の部位の極性が時間経過とともに変動する。
 これに対して、第二コイル群20は、軸倍角が(n-1)Xの励磁コイル及び検出コイルを含むコイル群である。第二コイル群20の励磁コイル及び検出コイルは、ロータ2の回転軸と同軸に配置され、それぞれが環状に形成される。第一コイル群10及び第二コイル群20は、径方向に互いに異なる位置に設けられる。第二コイル群20の励磁コイル及び検出コイルも多極コイルであるが、磁極対(N極及びS極)の数はn-1個である。このように、第二コイル群20の励磁コイル及び検出コイルは、第一コイル群10の励磁コイル及び検出コイルと比べて軸倍角が1Xだけ小さい特性を持ち、磁極対の数が1個少ない。軸倍角を表すnの値は、3以上の任意の自然数であればよく、nの値が大きいほど角度分解能が向上する。
 第一コイル群10には、第一正弦励磁コイル11,第一余弦励磁コイル12,第一検出コイル13,第一送信アンテナコイル14,第一受信アンテナコイル15が含まれる。これらのコイル11~15のうち、少なくとも第一正弦励磁コイル11,第一余弦励磁コイル12,第一検出コイル13の軸倍角がnXに設定される。図1に示すように、第一正弦励磁コイル11,第一余弦励磁コイル12,第一受信アンテナコイル15は、ステータ3側に設けられる。また、第一検出コイル13,第一送信アンテナコイル14は、ロータ2側に設けられる。
 第一正弦励磁コイル11及び第一余弦励磁コイル12は、ロータ2側の第一検出コイル13に電圧(ロータ角に応じた電圧)を誘起させるためのシート状のコイルである。これらを区別する必要がない場合には、これらをまとめて第一励磁コイル11,12と呼称しても差し支えない。第一励磁コイル11,12には、電気角の位相が互いに90度相違する交流信号が入力される。この交流信号は、信号生成回路5で生成された後に、第一正弦励磁コイル11,第一余弦励磁コイル12の各々に供給される。交流信号の具体例としては、例えば数十キロヘルツ~数メガヘルツの高周波信号の振幅を周期的に増減するように変調させた変調波が挙げられる。
 第一正弦励磁コイル11は、例えば磁極対(N極及びS極)の一方を生成するための往路コイルと磁極対の他方を生成するための復路コイルとを繋いだ閉回路形状に形成される。往路コイル及び復路コイルの各々は、例えばロータ2の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。言い換えれば、往路コイル及び復路コイルの各々は、ロータ2の回転中心と同軸に配置された歯車の輪郭をなすように導体を配索した形状に形成される。したがって、第一正弦励磁コイル11においては、n個ずつの磁極対が周方向に交互に配置される。図2は、レゾルバ1の要部構造を分解して簡易的に示す分解斜視図である。この例では、第一正弦励磁コイル11が絶縁体の基材8の一側面に形成されている。往路コイル及び復路コイルは、基材8の一側面において二層に重ねて配置してもよいし、基材8の両側面に分離して配置してもよい。
 第一余弦励磁コイル12についても同様であり、例えばロータ2の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。第一余弦励磁コイル12においても、n個ずつの磁極対が周方向に交互に配置される。図2に示す例では、第一余弦励磁コイル12が絶縁体の基材8の他側面に形成されている。なお、第一正弦励磁コイル11と第一余弦励磁コイル12とを基材8の一側面に重ねて配置してもよいし、第一正弦励磁コイル11と第一余弦励磁コイル12との位置関係を逆にしてもよい。
 第一検出コイル13は、第一正弦励磁コイル11,第一余弦励磁コイル12に対してロータ2の軸方向に対向する位置に配置される。第一検出コイル13の形状は、第一正弦励磁コイル11や第一余弦励磁コイル12と同様に、シート状に形成されるとともに、例えばロータ2の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。第一検出コイル13には、第一正弦励磁コイル11及び第一余弦励磁コイル12を励磁することで発生した磁束の鎖交によって電圧が誘起される。図2に示す例では、第一検出コイル13が絶縁体の基材7の一側面に形成されている。第一検出コイル13には、電磁誘導により、ステータ3に対するロータ2の回転角に応じた交流信号が発生する。
 第一送信アンテナコイル14は、第一検出コイル13に誘起された電圧によって励磁される巻線(コイル)であり、ロータ2に設けられる。図1に示すように、第一送信アンテナコイル14は、その両端が第一検出コイル13の両端に接続されて閉回路を形成する。図2に示す第一送信アンテナコイル14は、第一検出コイル13の内側において、ロータ2の回転中心の周囲を螺旋状に旋回するように導体を配索した形状に形成される。なお、図2中に示すように、第一検出コイル13及び第一送信アンテナコイル14の端部から延出される導線を基材7に貫通させ、基材7の他側面でこれらを接続してもよい。
 第一受信アンテナコイル15は、ステータ3に設けられ、第一送信アンテナコイル14に対してロータ2の軸方向に対向する位置に配置される。第一受信アンテナコイル15には、第一送信アンテナコイル14を励磁することで発生した磁束の鎖交によって電圧が誘起される。図2に示す第一受信アンテナコイル15は、基材8の一側面に形成されるとともに、第一正弦励磁コイル11の内側において、ロータ2の回転中心の周囲を螺旋状に旋回するように導体を配索した形状に形成されている。第一受信アンテナコイル15に伝達された交流信号は信号処理回路6へと入力され、ロータ2のステータ3に対する回転角の演算に用いられる。
 第二コイル群20の構成は、軸倍角に関する特徴を除いて第一コイル群10とほぼ同様である。第二コイル群20には、第二正弦励磁コイル21,第二余弦励磁コイル22,第二検出コイル23,第二送信アンテナコイル24,第二受信アンテナコイル25が含まれる。これらのコイル21~25のうち、少なくとも第二正弦励磁コイル21,第二余弦励磁コイル22,第二検出コイル23の軸倍角が(n-1)Xに設定される。図1に示すように、第二正弦励磁コイル21,第二余弦励磁コイル22,第二受信アンテナコイル25は、ステータ3側に設けられる。また、第二検出コイル23,第二送信アンテナコイル24は、ロータ2側に設けられる。
 第二正弦励磁コイル21及び第二余弦励磁コイル22は、ロータ2側の第二検出コイル23に電圧(ロータ角に応じた電圧)を誘起させるためのシート状のコイルである。これらを区別する必要がない場合には、これらをまとめて第二励磁コイル21,22と呼称しても差し支えない。第二励磁コイル21,22には、第一励磁コイル11,12と同様に、電気角の位相が互いに90度相違する交流信号(信号生成回路5で生成された交流信号)が入力される。
 第二正弦励磁コイル21は、第一正弦励磁コイル11の内側においてシート状に形成されるとともに、例えば磁極対(N極及びS極)の一方を生成するための往路コイルと磁極対の他方を生成するための復路コイルとを繋いだ閉回路形状に形成される。往路コイル及び復路コイルの各々は、例えばロータ2の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。また、第二余弦励磁コイル22は、第一余弦励磁コイル12の内側においてシート状に形成されるとともに、例えば磁極対(N極及びS極)の一方を生成するための往路コイルと磁極対の他方を生成するための復路コイルとを繋いだ閉回路形状に形成される。これらの第二励磁コイル21,22においては、n-1個ずつのN極及びS極が周方向に交互に配置される。
 第二検出コイル23は、第二正弦励磁コイル21,第二余弦励磁コイル22に対してロータ2の軸方向に対向する位置に配置される。第二検出コイル23の形状は、第一検出コイル13の内側においてシート状に形成されるとともに、例えばロータ2の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。第二検出コイル23においても、n-1個ずつのN極及びS極が周方向に交互に配置される。
 第二送信アンテナコイル24は、第二検出コイル23に誘起された電圧によって励磁される巻線(コイル)であり、ロータ2に設けられる。図1に示すように、第二送信アンテナコイル24は、その両端が第二検出コイル23の両端に接続されて閉回路を形成する。図2に示す第二送信アンテナコイル24は、第二検出コイル23の内側において、ロータ2の回転中心の周囲を螺旋状に旋回するように導体を配索した形状に形成される。
 第二受信アンテナコイル25は、ステータ3に設けられ、第二送信アンテナコイル24に対してロータ2の軸方向に対向する位置に配置される。第二受信アンテナコイル25には、第二送信アンテナコイル24を励磁することで発生した磁束の鎖交によって電圧が誘起される。図2に示す第二受信アンテナコイル25は、第二正弦励磁コイル21の内側において、ロータ2の回転中心の周囲を螺旋状に旋回するように導体を配索した形状に形成されている。第二受信アンテナコイル25に伝達された交流信号は信号処理回路6へと入力され、ロータ2のステータ3に対する回転角の演算に用いられる。
 信号処理回路6は、第一受信アンテナコイル15に伝達された交流信号と第二受信アンテナコイル25に伝達された交流信号とに基づき、ロータ2のステータ3に対する回転角(絶対角)を算出する機能を持つ。前者の交流信号は、軸倍角がnXのコイル11~13を介して伝達された信号であり、後者の交流信号は、軸倍角が(n-1)Xのコイル21~23を介して伝達された信号である。
 このように、軸倍角が1X分だけ相違する二系統のコイルを経由して得られる交流信号を併用することで、前者の交流信号と後者の交流信号との位相差がロータ2の絶対角に対して一対一に対応することになる。したがって、交流信号の位相差に基づいてロータ2の絶対角を精度よく検出することができる。この検出原理は、バーニアの原理(ノギスの測定原理)として知られるものである(例えば、国際特許出願第2015/037491号,欧州特許第1353151号を参照)。
 図3は、ロータ2の正面図である。第二コイル群20に含まれる第二検出コイル23は、第一コイル群10に含まれる第一検出コイル13の内側に配置される。また、図2に示すように、励磁コイル11,12,21,22についても同様である。すなわち、第二コイル群20に含まれる第二正弦励磁コイル21は、第一コイル群10に含まれる第一正弦励磁コイル11の内側に配置され、第二コイル群20に含まれる第二余弦励磁コイル22は、第一コイル群10に含まれる第一余弦励磁コイル12の内側に配置される。このように、磁極対の数が少ないコイルを内側に配置することで、磁極対の数が多いコイルを内側に配置した場合と比較して、周方向の磁極寸法(磁極の幅)が確保されやすくなる。
 図3に示す第一検出コイル13は、ロータ2の回転中心と同軸の円環状の領域内に配置されている。この領域の径方向寸法をWとおく。一方、第二検出コイル23が配置される円環状の領域の径方向寸法をWとおけば、WはWよりも大きな寸法に設定される。すなわち、内側に配置される第二検出コイル23の径方向寸法Wは、その外側に配置される第一検出コイル13の径方向寸法Wよりも大きく設定される。
 励磁コイル11,12,21,22についても同様であり、内側に配置される第二正弦励磁コイル21の径方向寸法は、その外側に配置される第一正弦励磁コイル11の径方向寸法よりも大きく設定される。また、内側に配置される第二余弦励磁コイル22の径方向寸法は、その外側に配置される第一余弦励磁コイル12の径方向寸法よりも大きく設定される。このように、内側に配置されるコイルの径方向寸法を大きくすることで、磁極面積が確保されやすくなる。
 [B.作用,効果]
 (1)上記のレゾルバ1には、第一コイル群10と第二コイル群20とが設けられる。第一コイル群10は、軸倍角がnX(ただしnは3以上の自然数)であって、ロータ2及びステータ3に対向配置され、ロータ2の回転軸と同軸に配置されるとともに、それぞれが環状に形成される第一励磁コイル11,12(第一正弦励磁コイル11,第一余弦励磁コイル12)及び第一検出コイル13を有する。また、第二コイル群20は、軸倍角が(n-1)Xであって、ロータ2及びステータ3に対向配置され、ロータ2の回転軸と同軸に配置されるとともに、それぞれが環状に形成される第二励磁コイル21,22(第二正弦励磁コイル21,第二余弦励磁コイル22)及び第二検出コイル23を有する。第一コイル群10及び第二コイル群20は、径方向に互いに異なる位置に設けられる。
 このような構成により、軸倍角が1X分だけ相違する二系統のコイルを経由して得られる交流信号を取得することができ、位相差の情報をロータ2の絶対角に対して一対一に対応させることができる。したがって、バーニアの原理を利用して、簡素な構成で回転角の検出性能を改善できる。また、軸倍角が1Xのコイルを使用せず、代わりに多極コイルを使用することで、外来磁場の影響を受けにくくすることができる。これにより、磁気ノイズへの耐性を高めることができ、検出誤差の増大を防ぐことができる。
 また、第一コイル群10と第二コイル群20とを径方向に互いに異なる位置に設けることで、これらを同一平面内に収めることができる。例えば、図2に示すように、第一正弦励磁コイル11と第二正弦励磁コイル21とを同一平面内に配置することができる。また、第一余弦励磁コイル12と第二余弦励磁コイル22とを同一平面内に配置することができる。加えて、第一検出コイル13と第二検出コイル23とを同一平面内に配置することができる。したがって、ロータ2やステータ3の構造を簡素化することができる。第一コイル群10と第二コイル群20とで信号強度を揃えることができ、レゾルバ1の角度検出精度を向上させることができる。
 さらに、軸倍角がnXのコイルと1Xのコイルとを用いた場合と比較して、磁極サイズ差を小さくすることができ、磁界の強さの分布をほぼ均一にすることができる。なお、軸倍角がnXのコイルに適したエアギャップは、軸倍角が(n-1)Xのコイルに適したエアギャップに近い値となる。したがって、第一コイル群10のエアギャップと第二コイル群20のエアギャップとを揃えることができ、磁界の強さの分布を容易に適正化できる。
 (2)上記のレゾルバ1では、第一コイル群10及び第二コイル群20の各々が、シート状に形成される。例えば、第一励磁コイル11,12がシート状に形成されるとともに、第一検出コイル13もシート状に形成される。同様に、第二励磁コイル21,22がシート状に形成されるとともに、第二検出コイル23もシート状に形成される。また、第二コイル群20は、第一コイル群10の径方向内側に配置される。例えば、図2に示すように、第二励磁コイル21,22が第一励磁コイル11,12の内側に配置され、第二検出コイル23が第一検出コイル13の内側に配置される。このように、磁極対の数が少ないコイル21~23を内側に配置することで、磁極対の数が多いコイル11~13を内側に配置した場合と比較して、周方向の磁極寸法(磁極の幅)を確保できる。したがって、回転角の検出性能を改善できる。また、シート状のコイルを用いることで、ロータ2及びステータ3の厚み寸法を削減することができ、レゾルバ1の小型化や軽量化を図ることができる。
 (3)上記のレゾルバ1では、第二コイル群20が配置される領域の径方向寸法が、第一コイル群10が配置される領域の径方向寸法よりも大きい。例えば、図3に示すように、第二検出コイル23の径方向寸法Wは第一検出コイル13の径方向寸法Wよりも大きく設定される。同様に、第二励磁コイル21,22の径方向寸法についても、第一励磁コイル11,12の径方向寸法よりも大きく設定される。このように、内側に配置されるコイル21~23の径方向寸法を大きくすることで、磁極面積を確保することができる。したがって、磁界の強さの分布を適正化することができ、回転角の検出性能を改善できる。
 (4)上記のレゾルバ1の第一コイル群10には、第一正弦励磁コイル11と第一余弦励磁コイル12と第一検出コイル13とが含まれている。同様に、第二コイル群20には、第二正弦励磁コイル21と第二余弦励磁コイル22と第二検出コイル23とが含まれている。正弦励磁コイル11,21は、ステータ3に設けられ、振幅変調されたサイン波に対応する第一信号によって励磁される。また、余弦励磁コイル12,22は、ステータ3に設けられ、振幅変調されたコサイン波に対応する第二信号(第一信号に直交する信号)によって励磁される。さらに、検出コイル13,23は、ロータ2に設けられ、ロータ2のステータ3に対する回転角に応じた位相変位を含む変調波を出力する。このような構成により、二相励磁単相出力の変調波レゾルバ1における回転角の検出性能を改善できる。また、変調波レゾルバ1であることから、コイルの巻数を大幅に削減しつつ所望の角度検出精度を確保することができる。
 [C.変形例]
 上記の第一実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施できる。また、必要に応じて取捨選択でき、あるいは適宜組み合わせることができる。例えば、上記の実施例では励磁コイル及び検出コイルが多極のシートコイルであるものを励磁したが、シートコイルの代わりに巻線コイルを適用してもよい。
 また、上記の実施例では二相励磁単相出力型のレゾルバ1を例示したが、図4に示すような単相励磁二相出力型のレゾルバ31に同様の構造を適用してもよい。レゾルバ31には、ロータ32とステータ33と制御装置34とが設けられる。制御装置34には、信号生成回路35と信号処理回路36とが内蔵される。また、レゾルバ31のロータ32及びステータ33には、第一コイル群40と第二コイル群50とが設けられる。
 第一コイル群40には、第一正弦検出コイル41,第一余弦検出コイル42,第一励磁コイル43,第一受信アンテナコイル44,第一送信アンテナコイル45が含まれる。同様に、第二コイル群50には、第二正弦検出コイル51,第二余弦検出コイル52,第二励磁コイル53,第二受信アンテナコイル54,第二送信アンテナコイル55が含まれる。これらのコイル群40,50に含まれるコイルのうち、第一正弦検出コイル41,第一余弦検出コイル42,第一励磁コイル43の軸倍角はnXに設定され、第二正弦検出コイル51,第二余弦検出コイル52,第二励磁コイル53の軸倍角は(n-1)Xに設定される。
 また、第一励磁コイル43,第一受信アンテナコイル44,第二励磁コイル53,第二受信アンテナコイル54は、ロータ32側に設けられる。一方、第一正弦検出コイル41,第一余弦検出コイル42,第一送信アンテナコイル45,第二正弦検出コイル51,第二余弦検出コイル52,第二送信アンテナコイル55は、ステータ33側に設けられる。
 信号生成回路35で生成された交流信号は、第一送信アンテナコイル45及び第二送信アンテナコイル55に伝達された後に、第一受信アンテナコイル44及び第二受信アンテナコイル54へと伝達される。この交流信号を受けて第一励磁コイル43及び第二励磁コイル53が励磁される。その後、第一正弦検出コイル41,第一余弦検出コイル42,第二正弦検出コイル51,第二余弦検出コイル52がステータ33に対するロータ32の回転角に応じた交流信号を出力し、その信号が信号処理回路36に伝達される。
 信号処理回路36は、軸倍角が1X分だけ相違する二系統のコイルを経由して得られる交流信号を併用してロータ32のステータ33に対する回転角を算出し、その角度情報を出力する。このように、単相励磁二相出力型のレゾルバ31においても、バーニアの原理を利用して、簡素な構成で回転角の検出性能を改善できる。なお、単相励磁二相出力型のレゾルバ31だけでなく、二相励磁二相出力型のレゾルバに上記の実施例と同様の構造を適用することも可能である。
 上記の実施例では、第一コイル群10,第二コイル群20の励磁コイル及び検出コイルが環状に形成されているが、ここでいう「環状」とは完全な輪の形状のみを意味するものではなく、部分的な環形状(円弧形状)の意味を含む。したがって、第一コイル群10,第二コイル群20に含まれるコイルは、必ずしもロータ2の回転中心のまわりに全周にわたって形成されない。図5は、ステータ3側に設けられる第一励磁コイル11,12及び第二励磁コイル21,22の変形例を示す図である。ここでは、各コイル11,12,21,22が部分円環領域に対応する形状で、ロータ2の磁極ピッチを基準として各コイル11,12,21,22の位相が一致する位置に形成される。
 部分円環領域とは、円環の一部分を構成する領域であって、ロータ2の回転中心と同軸の二つの円とその回転中心を通る二直線とで囲まれる領域である。二直線のなす角度が例えば90度であれば、周方向に四つの部分円環領域が配置されうる。図5中に示すコイル11,12,21,22は、このような部分円環領域の一つに配置されている。また、これらのコイル11,12,21,22は、四つの層の各々に配索されるコイルパターンを積層することで形成される。
 ここで、図5中の上段に示す四層のコイルパターンについて説明する。第一層(図5中の上段,左から一番目の図)には、第一正弦励磁コイル11の往路コイルと第二正弦励磁コイル21の往路コイルとが配索される。一方、第二層(図5中の上段,左から二番目の図)には、第一正弦励磁コイル11の復路コイルと第二正弦励磁コイル21の復路コイルとが配索される。それぞれの往路コイルと復路コイルとを接続することで、図5中の中段に示すように、第一正弦励磁コイル11と第二正弦励磁コイル21とが形成される。
 同様に、第三層(図5中の上段,左から三番目の図)には、第一余弦励磁コイル12の往路コイルと第二余弦励磁コイル22の往路コイルとが配索される。一方、第四層(図5中の上段,左から四番目の図)には、第一余弦励磁コイル12の復路コイルと第二余弦励磁コイル22の復路コイルとが配索される。それぞれの往路コイルと復路コイルとを接続することで、図5中の中段に示すように、第一余弦励磁コイル12と第二余弦励磁コイル22とが形成される。
 コイル11,12,21,22の周方向の長さは、最小限で一つの磁極対(N極およびS極)が形成されうる長さがあればよい。ステータ3側の第一励磁コイル11,12や第二励磁コイル21,22の形状を扇形状に形成することで、上記の実施例と同様の効果を実現しつつ、省スペース化が可能となる。なお、第一正弦励磁コイル11と第一余弦励磁コイル12とを互いに重ならないように配置してもよいし、これらを同一平面内(同一層内)に形成してもよい。
 また、図6に示すように、正弦励磁コイル11,21を一つの部分円環領域に配置するとともに、余弦励磁コイル12,22を他の部分円環領域に配置してもよい。これによって正弦励磁コイル11,21と余弦励磁コイル12,22とを同一の平面上に配置でき、基板の層数を2層にできる。したがって、図5に示す構造と比較して、層数を削減することができる。なお、これらの層は基板の片面に形成してもよいし(片面2層)、1枚の基板の両面に形成してもよい。 
[2.第二実施例]
 図7は、第二実施例としてのレゾルバ71の構造を示す模式図である。このレゾルバ71は単相励磁二相出力型のレゾルバ71であって、交流信号を入力するとともに振幅変調された信号から回転角を検出するインダクティブ型レゾルバ(インダクティブセンサ)である。レゾルバ71は、ロータ72(回転子)とステータ73(固定子)と制御装置74とを備える。ロータ72は、ステータ73に対して回転可能に軸支される円盤状の部材である。ステータ73は、図示しないケーシングに対して固定される円盤状の部材である。ステータ73には、励磁コイル81,86や検出コイル82,83,87,88が設けられる。一方、ロータ72にはコイルが設けられず、導体84,89が設けられる。
 制御装置74は、ロータ72のステータ73に対する回転角を演算して出力するものである。制御装置74には、励磁コイル81,86に供給される交流信号を生成する信号生成回路75と、検出コイル82,83,87,88から返送される信号に基づき、回転角に対応する角度情報を出力する信号処理回路76とが内蔵される。信号生成回路75で生成された交流信号は、励磁コイル81,86に伝達され、ステータ73に所定の磁場が形成される。これを受けて、ロータ72の導体84,89の内部には渦電流が流れ、ステータ73の磁場を打ち消す磁場(反磁界)が生成され、磁場を遮蔽する。そしてロータ72の導体84,89の位置は回転角に応じて変化する。そのため、ステータ73側の検出コイル82,83,87,88には、回転角に応じて振幅変調された信号が返送される。この信号は信号処理回路76へと入力される。
 図7に示すレゾルバ71のロータ72およびステータ73には、第一コイル群80と第二コイル群85とが設けられる。第一コイル群80は、軸倍角がnXの励磁コイルおよび検出コイルを含むコイル群である。これに対して、第二コイル群85は、軸倍角が(n-1)Xの励磁コイルおよび検出コイルを含むコイル群である。第一コイル群80および第二コイル群85は、径方向に互いに異なる位置に設けられる。例えば、第二コイル群85は、第一コイル群80の径方向内側に配置される。なお、第二コイル群85を第一コイル群80の径方向外側に配置してもよい。
 励磁コイル81,86(第一励磁コイル81,第二励磁コイル86)は、第一励磁コイル81,第二励磁コイル86の間に軸方向の磁界を生じさせるコイルである。ステータ73と軸方向に対向するロータ72側の導体84,89(第一導体84,第二導体89)は励磁コイル81,86の磁界を受け、内部に渦電流を生じて励磁コイル81,86の磁界を打ち消す反磁界を生じる。このため導体84,89は励磁コイル81,86の磁界の一部を遮蔽する。励磁コイル81,86には、例えば所定振幅の交流信号が入力される。励磁コイル81,86に入力される交流信号の振幅は、制御装置74の指示により変更可能とされる。ここで、励磁コイル81,86に入力される交流信号の電圧値を「sinωct」と表現する。ωctは交流信号の角速度である。
 検出コイル82,83,87,88は、励磁コイル81,86の磁界を検出する。軸方向に対向するロータ72側の導体84,89はロータ72の回転に伴って周方向に移動するため、導体84,89が励磁コイル81,86の磁界を遮蔽する部分はロータ角に応じて変化する。したがって、検出コイル82,83,87,88が検出する磁界もロータ角に応じて変化する。
 第一コイル群80の検出コイル82,83には、第一正弦検出コイル82と第一余弦検出コイル83とが含まれる。同様に、第二コイル群85の検出コイル87,88には、第二正弦検出コイル87と第二余弦検出コイル88とが含まれる。第一正弦検出コイル82および第二正弦検出コイル87はロータ角の正弦を検出し、第一余弦検出コイル83および第二余弦検出コイル88はロータ角の余弦を検出する。
 ここで、ロータ角をθとおけば、軸倍角がnXである第一正弦検出コイル82で得られる交流信号の電圧値は「sinnθ・sinωct」と表現され、第一余弦検出コイル83で得られる交流信号の電圧値は「cosnθ・sinωct」と表現される。同様に、軸倍角が(n-1)Xである第二正弦検出コイル87で得られる交流信号の電圧値は「sin(n-1)θ・sinωct」と表現され、第二余弦検出コイル88で得られる交流信号の電圧値は「cos(n-1)θ・sinωct」と表現される。このように、ロータ角θの変化に応じて検出コイル82,83,87,88の各々で得られる変調波の振幅が変化するため、これらの振幅に基づいてロータ角θを特定可能である。検出コイル82,83,87,88の各々で検出された信号は、制御装置74に入力される。
 図8は、ロータ72に設けられる導体84,89のレイアウト例を示す図である。導体84,89は、ロータ72の回転角に応じて、励磁コイル81,86で生じた磁場の影響を受ける面積が変化する形状に形成される。具体的には、円環を周方向に多分割するとともに、その多分割された円盤片を周方向に沿って交互に削除したような形状(一つ飛ばしで円盤片を取り除くことによって、残った円盤片も一つ飛ばしで配置される形状)に形成される。図8に示す第一導体84は、軸倍角が32Xである場合のレイアウト例である。この第一導体84は、周方向に64等分された円環を交互に取り除いたレイアウトを有し、樹脂板上において合計32箇所に分散配置されている。また、図8に示す第二導体89は、軸倍角が31Xであるため、周方向に62等分された円環を交互に取り除いたレイアウト(周方向に等間隔で31箇所に導体が分散配置されたレイアウト)となっている。なお、各導体84,89の形状は、図8に示すような「塗りつぶし状」でなくてもよく、例えば「外周のみを囲った閉じた環形状」であってもよい。
 図9は、ステータ73に設けられる第一励磁コイル81,第一正弦検出コイル82,第一余弦検出コイル83,第二励磁コイル86,第二正弦検出コイル87,第二余弦検出コイル88のレイアウト例を示す図である。ここでは、第一正弦検出コイル82,第一余弦検出コイル83のうちのいずれか一つのみについて、往路または復路のいずれか一つのみを示している。同様に、第二正弦検出コイル87,第二余弦検出コイル88のうちのいずれか一つのみについて、往路または復路のいずれか一つのみを示している。第一励磁コイル81,第一正弦検出コイル82,第一余弦検出コイル83,第二励磁コイル86,第二正弦検出コイル87,第二余弦検出コイル88の各々は、回転軸Cの周囲を囲むように環状に設けられる。
 本実施例では、第一励磁コイル81が、円盤状をなすロータ72との対向面において外周側を複数回にわたって周回する形状に配索されている。一方、第二励磁コイル86は、この対向面において回転軸Cに近い内周側を複数回にわたって周回する形状に配索されている。これらの励磁コイル81,86は、それぞれが第一コイル群80,第二コイル群85に専用のコイルというわけではなく、合わせて一つの励磁用コイルとして機能している。第一励磁コイル81よりも外側の領域と第二励磁コイル86よりも内側の領域では、互いに打ち消し合うような磁場が形成される。一方、第一励磁コイル81の内側かつ第二励磁コイル86の外側の領域では、互いに強め合うような磁場が形成される。このように、二つの励磁コイル81,86によって生成される磁場が、第一コイル群80,第二コイル群85の双方で利用される。また、第一コイル群80の検出コイル82,83は、第一励磁コイル81と第二励磁コイル86とに囲まれた円環状の領域のうち外周側に配置されている。一方、第二コイル群85の検出コイル87,88は、この円環状の領域のうち内周側に配置されている。
 図9に示すように、第一正弦検出コイル82および第一余弦検出コイル83は、第一実施例の第一正弦励磁コイル11および第一余弦励磁コイル12と同様のレイアウトで配置される。すなわち、第一正弦検出コイル82および第一余弦検出コイル83の各々は、ロータ72に対するステータ73の対向面において、ロータ72の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。第一正弦検出コイル82および第一余弦検出コイル83の各々は、n個ずつの磁極対が周方向に交互に配置された形状を有する。なお、第一正弦検出コイル82と第一余弦検出コイル83とを基材の一側面上で重ねて配置してもよいし、基材の表面と裏面とに配置してもよい。また、第一正弦検出コイル82,第一余弦検出コイル83のそれぞれについて、往路コイル及び復路コイルは、基材の一側面において二層に重ねて配置してもよいし、基材の両側面に分離して配置してもよい。
 第一正弦検出コイル82および第一余弦検出コイル83の内側には、第二正弦検出コイル87および第二余弦検出コイル88が設けられる。第二正弦検出コイル87および第二余弦検出コイル88は、第一実施例の第二正弦励磁コイル21および第二余弦励磁コイル22と同様のレイアウトで配置される。すなわち、第二正弦検出コイル87および第二余弦検出コイル88の各々は、ロータ72に対するステータ73の対向面において、ロータ72の回転中心と同軸な円の円周に沿って矩形波を配置したような形状に形成される。第二正弦検出コイル87および第二余弦検出コイル88の各々は、(n-1)個ずつの磁極対が周方向に交互に配置された形状を有する。なお、第二正弦検出コイル87と第二余弦検出コイル88とを基材の一側面上で重ねて配置してもよいし、基材の表面と裏面とに分散配置してもよい。また、第二正弦検出コイル87,第二余弦検出コイル88のそれぞれについて、往路コイル及び復路コイルは、基材の一側面において二層に重ねて配置してもよいし、基材の両側面に分離して配置してもよい。
 第二実施例のレゾルバ71には、図7~図9に示すように、第一コイル群80と第二コイル群85とが設けられる。第一コイル群80は、軸倍角がnX(ただしnは3以上の自然数)であって、ロータ72の回転軸と同軸に配置されるとともに、それぞれが環状に形成される第一励磁コイル81及び第一検出コイル82,83を有する。また、第二コイル群85は、軸倍角が(n-1)Xであって、ロータ72の回転軸と同軸に配置されるとともに、それぞれが環状に形成される第二励磁コイル86及び第二検出コイル87,88を有する。また、第一コイル群80及び第二コイル群85は、径方向に互いに異なる位置に設けられる。
 このような構成により、第一実施例と同様に、軸倍角が1X分だけ相違する二系統のコイルを経由して得られる交流信号を取得することができ、位相差の情報をロータ72の絶対角に対して一対一に対応させることができる。したがって、バーニアの原理を利用して、簡素な構成で回転角の検出性能を改善できる。また、軸倍角が1Xのコイルを使用せず、代わりに多極コイルを使用することで、外来磁場の影響を受けにくくすることができる。これにより、磁気ノイズへの耐性を高めることができ、検出誤差の増大を防ぐことができる。また、第一コイル群80と第二コイル群85とを径方向に互いに異なる位置に設けることで、これらを同一平面内に収めることができる。さらに、軸倍角がnXのコイルと1Xのコイルとを用いた場合と比較して、磁極サイズ差を小さくすることができ、励磁コイルと検出コイルの磁気結合をほぼ均一にすることができる。なお、第一実施例と同様に、第一検出コイル82,83や第二検出コイル87,88のコイル形状の設定に際し、図5~図6に示すようなコイル形状を適用してもよい。
1,71 レゾルバ
2,72 ロータ
3,73 ステータ
4,74 制御装置
5,75 信号生成回路
6,76 信号処理回路
7,8 基材
10 第一コイル群
11 第一正弦励磁コイル(第一励磁コイル,正弦励磁コイル)
12 第一余弦励磁コイル(第一励磁コイル,余弦励磁コイル)
13 第一検出コイル(検出コイル)
14 第一送信アンテナコイル
15 第一受信アンテナコイル
20 第二コイル群
21 第二正弦励磁コイル(第二励磁コイル,正弦励磁コイル)
22 第二余弦励磁コイル(第二励磁コイル,余弦励磁コイル)
23 第二検出コイル(検出コイル)
24 第二送信アンテナコイル
25 第二受信アンテナコイル
80 第一コイル群
81 第一励磁コイル
82 第一正弦検出コイル(第一検出コイル)
83 第一余弦検出コイル(第一検出コイル)
84 第一導体
85 第二コイル群
86 第二励磁コイル
87 第二正弦検出コイル(第二検出コイル)
88 第二余弦検出コイル(第二検出コイル)
89 第二導体
 

Claims (7)

  1.  ロータのステータに対する回転角を検出するレゾルバであって、
     軸倍角がnX(ただしnは3以上の自然数)であって、前記ロータの回転軸と同軸に配置され、それぞれ環状に形成される第一励磁コイル及び第一検出コイルを有する第一コイル群と、
     軸倍角が(n-1)Xであって、前記ロータの回転軸と同軸に配置され、それぞれ環状に形成される第二励磁コイル及び第二検出コイルを有する第二コイル群とを備え、
     前記第一コイル群と前記第二コイル群とが、径方向に互いに異なる位置に設けられる
    ことを特徴とする、レゾルバ。
  2.  前記第一コイル群及び前記第二コイル群の各々が、シート状に形成され、
     前記第二コイル群が、前記第一コイル群の径方向内側に配置される
    ことを特徴とする、請求項1記載のレゾルバ。
  3.  前記第二コイル群が配置される領域の径方向寸法が、前記第一コイル群が配置される領域の径方向寸法よりも大きい
    ことを特徴とする、請求項2記載のレゾルバ。
  4.  請求項1~3のいずれか1項に記載のレゾルバであって、
     前記第一コイル群の前記第一励磁コイル及び前記第一検出コイルと前記第二コイル群の前記第二励磁コイル及び前記第二検出コイルとが前記ステータに設けられ、
     前記ロータが、前記回転角に応じた大きさで前記第一励磁コイルの磁界を打ち消す方向に反磁界を生成する第一導体と、前記回転角に応じた大きさで前記第二励磁コイルの磁界を打ち消す方向に反磁界を生成する第二導体と、を有する
    ことを特徴とする、レゾルバ。
  5.  前記第一検出コイル及び前記第二検出コイルの各々が、前記ステータに設けられ振幅変調されたサイン波に対応する第一信号を検出する正弦検出コイルと、前記ステータに設けられ振幅変調されたコサイン波に対応する第二信号を検出する余弦検出コイルとを含む
    ことを特徴とする、請求項4に記載のレゾルバ。
  6.  請求項1~3のいずれか1項に記載のレゾルバであって、
     前記第一コイル群の前記第一励磁コイル及び前記第一検出コイルが前記ロータ及び前記ステータに対向配置され、
     前記第二コイル群の前記第二励磁コイル及び前記第二検出コイルが前記ロータ及び前記ステータに対向配置される
    ことを特徴とする、レゾルバ。
  7.  前記第一コイル群及び前記第二コイル群の各々が、前記ステータに設けられ振幅変調されたサイン波に対応する第一信号によって励磁される正弦励磁コイルと、前記ステータに設けられ振幅変調されたコサイン波に対応する第二信号によって励磁される余弦励磁コイルと、前記ロータに設けられ前記回転角に応じた位相変位を含む変調波を出力する検出コイルとを含む
    ことを特徴とする、請求項6項に記載のレゾルバ。
     
PCT/JP2021/045683 2020-12-11 2021-12-10 レゾルバ WO2022124411A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180082221.6A CN116568995B (zh) 2020-12-11 2021-12-10 旋转变压器
JP2022568358A JP7314426B2 (ja) 2020-12-11 2021-12-10 レゾルバ
US18/256,208 US11901780B2 (en) 2020-12-11 2021-12-10 Resolver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-205911 2020-12-11
JP2020205911 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124411A1 true WO2022124411A1 (ja) 2022-06-16

Family

ID=81974535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045683 WO2022124411A1 (ja) 2020-12-11 2021-12-10 レゾルバ

Country Status (4)

Country Link
US (1) US11901780B2 (ja)
JP (1) JP7314426B2 (ja)
CN (1) CN116568995B (ja)
WO (1) WO2022124411A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4418475B2 (ja) * 2007-03-05 2010-02-17 ミネベア株式会社 回転角度センサー
JP2011226874A (ja) * 2010-04-19 2011-11-10 Aisan Ind Co Ltd 位置センサ
WO2014037024A1 (en) * 2012-09-10 2014-03-13 Cameron International Corporation Disc resolver and brushless direct current motor including the same
WO2018190019A1 (ja) * 2017-04-13 2018-10-18 ソニー株式会社 位置検出装置及び位置検出方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755751A (en) * 1986-12-29 1988-07-05 Allen-Bradley Company, Inc. Brushless rotary position transducer
JP3274597B2 (ja) * 1995-12-28 2002-04-15 ミネベア株式会社 パルスジェネレータ
JP2001183169A (ja) 1999-12-24 2001-07-06 Oriental Motor Co Ltd 位置検出装置
US6515471B1 (en) * 2000-10-11 2003-02-04 The Torrington Company Absolute position hall string sensor
EP1217334A3 (en) * 2000-12-21 2004-06-23 The Furukawa Electric Co., Ltd. Rotation sensor
US7053602B2 (en) * 2002-03-25 2006-05-30 The Furukawa Electric Co., Limited Rotation sensor and method for detecting a rotation angle of a rotating member
JP4034691B2 (ja) 2003-05-09 2008-01-16 ミネベア株式会社 回転角度センサー
JP4142607B2 (ja) * 2004-03-26 2008-09-03 ミネベア株式会社 バリアブルリラクタンスレゾルバ
JP5450948B2 (ja) * 2007-02-23 2014-03-26 Ntn株式会社 回転検出装置付き車輪用軸受
JP5342963B2 (ja) * 2009-08-25 2013-11-13 ミネベア株式会社 シートコイル型レゾルバ
JP5494662B2 (ja) * 2009-07-24 2014-05-21 トヨタ自動車株式会社 回転角検出装置
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor
CN102223046B (zh) 2010-04-19 2013-10-09 爱三工业株式会社 位置传感器
JP5652181B2 (ja) * 2010-12-10 2015-01-14 株式会社ジェイテクト 回転角検出装置、トルク検出装置、及び電動パワーステアリング装置
JP2012130223A (ja) * 2010-12-17 2012-07-05 Samsung Electronics Co Ltd 同期モータ
JP5174945B2 (ja) * 2011-09-02 2013-04-03 日本航空電子工業株式会社 バリアブルリラクタンス型レゾルバ及び回転角検出装置
JP5270735B2 (ja) * 2011-09-13 2013-08-21 トヨタ自動車株式会社 回転電機及び動力伝達装置
JP2013096930A (ja) * 2011-11-04 2013-05-20 Jtekt Corp 回転角検出装置、及びトルクセンサ
JP5699972B2 (ja) * 2012-03-28 2015-04-15 トヨタ自動車株式会社 ツインレゾルバ式トルクセンサ及び電動パワーアシスト装置
JP2013221740A (ja) * 2012-04-12 2013-10-28 Jtekt Corp レゾルバ
JP5274702B1 (ja) * 2012-06-28 2013-08-28 株式会社一宮電機 モータ駆動システム
JP6059620B2 (ja) * 2013-09-12 2017-01-11 Ntn株式会社 トルクセンサユニット
JP6192854B2 (ja) * 2014-10-20 2017-09-06 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
EP3290886B1 (en) * 2015-06-26 2020-11-25 NSK Ltd. Relative angle detection apparatus, torque sensor, electric power steering apparatus, and vehicle
KR20170056313A (ko) * 2015-11-13 2017-05-23 엘에스오토모티브 주식회사 레졸버
JP6283860B2 (ja) * 2015-12-14 2018-02-28 ミネベアミツミ株式会社 角度検出装置および角度検出システム
DE102016211832B3 (de) * 2016-06-30 2017-08-17 Robert Bosch Gmbh Drehwinkelsensor, Statorelement sowie Rotorelement für diesen
US11289979B2 (en) * 2017-05-23 2022-03-29 Mitsubishi Electric Corporation Rotary electric machine
JP7076962B2 (ja) * 2017-07-31 2022-05-30 マブチモーター株式会社 レゾルバ及びモータ
JP6359747B1 (ja) * 2017-08-03 2018-07-18 株式会社空 回転電機
JP2019033575A (ja) * 2017-08-07 2019-02-28 マブチモーター株式会社 位置センサ及びモータ
JP2019215220A (ja) * 2018-06-12 2019-12-19 有限会社ワイエスデイ 変調波レゾルバ装置
JP7388071B2 (ja) * 2019-09-11 2023-11-29 株式会社デンソー 車輪駆動装置
JP7347123B2 (ja) * 2019-10-30 2023-09-20 株式会社アイシン 回転角度センサ
US20230013379A1 (en) * 2020-01-17 2023-01-19 Mitsubishi Electric Corporation Resolver and electric power steering device
JP7467147B2 (ja) * 2020-02-07 2024-04-15 キヤノン株式会社 モータおよび物品
JP6963857B1 (ja) * 2021-02-26 2021-11-10 株式会社一宮電機 バリアブルリラクタンス型レゾルバ
JP2023074404A (ja) * 2021-11-17 2023-05-29 株式会社プロテリアル ストロークセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4418475B2 (ja) * 2007-03-05 2010-02-17 ミネベア株式会社 回転角度センサー
JP2011226874A (ja) * 2010-04-19 2011-11-10 Aisan Ind Co Ltd 位置センサ
WO2014037024A1 (en) * 2012-09-10 2014-03-13 Cameron International Corporation Disc resolver and brushless direct current motor including the same
WO2018190019A1 (ja) * 2017-04-13 2018-10-18 ソニー株式会社 位置検出装置及び位置検出方法

Also Published As

Publication number Publication date
US20230344327A1 (en) 2023-10-26
CN116568995A (zh) 2023-08-08
JP7314426B2 (ja) 2023-07-25
CN116568995B (zh) 2024-09-06
JPWO2022124411A1 (ja) 2022-06-16
US11901780B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JPH04222447A (ja) 平坦な巻線を有するレゾルバー
US20100321007A1 (en) Sheet coil type resolver
JP6849188B2 (ja) 角度検出器
WO2022124413A1 (ja) レゾルバ
CA2852740A1 (en) Magnetic flux enhancer system for reluctance type sensors
US20130193957A1 (en) Resolver
JP2021025851A (ja) 回転センサ
WO2022124415A1 (ja) レゾルバ
JP5342963B2 (ja) シートコイル型レゾルバ
WO2022124411A1 (ja) レゾルバ
US20240361153A1 (en) Resolver
US12007257B2 (en) Resolver
WO2022124416A1 (ja) レゾルバ
WO2024203770A1 (ja) レゾルバ
JP7527603B2 (ja) 角度検出器
WO2018114004A1 (en) Resolver
JP2000352501A (ja) 磁気誘導式回転位置センサ
JPS61122504A (ja) 回転位置検出装置
WO2018114005A1 (en) Resolver
WO2018114008A1 (en) Resolver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180082221.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903507

Country of ref document: EP

Kind code of ref document: A1