WO2022124030A1 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
WO2022124030A1
WO2022124030A1 PCT/JP2021/042289 JP2021042289W WO2022124030A1 WO 2022124030 A1 WO2022124030 A1 WO 2022124030A1 JP 2021042289 W JP2021042289 W JP 2021042289W WO 2022124030 A1 WO2022124030 A1 WO 2022124030A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
silicon
optical filter
silicon hydride
Prior art date
Application number
PCT/JP2021/042289
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 佐原
正明 伊村
誉子 東條
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2022124030A1 publication Critical patent/WO2022124030A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter capable of selectively transmitting light in a specific wavelength range.
  • an optical filter capable of selectively transmitting light in a specific wavelength range has been widely used in applications such as infrared sensors.
  • a bandpass filter using a multilayer film is known.
  • the multilayer film a high-refractive index film having a relatively high refractive index and a low-refractive index film having a relatively low refractive index are alternately and repeatedly laminated (for example, Patent Document 1).
  • Patent Document 1 describes silicon hydride as a material for a high refractive index film.
  • silicon nitride is described as a material for the low refractive index film. It is described that the silicon hydride film is formed by vapor deposition by plasma CVD (PECVD) using silane gas.
  • An object of the present invention is to provide an optical filter capable of effectively increasing the transmittance.
  • the optical filter according to the present invention is an optical filter having a silicon hydride-containing film, and is characterized in that the spin density of silicon hydride is 1.0 ⁇ 10 18 pieces / cm 2 or less.
  • a filter unit consisting of a transparent substrate and a multilayer film provided on one main surface of the transparent substrate and having a high refractive index film having a relatively high refractive index and a low refractive index film having a relatively low refractive index.
  • the high-refractive index film is a silicon hydride-containing film.
  • the low refractive index film is a silicon oxide-containing film.
  • an antireflection film provided on the other main surface of the transparent substrate and containing silicon hydride is further provided.
  • FIG. 1 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the present invention.
  • 2 (a) and 2 (c) are schematic views showing an example of a bonding state between a Si atom and an H atom, and
  • FIG. 2 (d) is a schematic diagram showing a Si dangling bond.
  • FIG. 3 is a diagram showing the relationship between the spin density of hydrogenated silicon and the absorbance k.
  • FIG. 4 is a diagram showing the relationship between the spin density of hydrogenated silicon and the transmittance.
  • FIG. 5 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the present invention.
  • the optical filter 1 includes a transparent substrate 2 and a filter unit 3.
  • the optical filter 1 is not particularly limited, but is used, for example, in a sensor such as LiDAR.
  • the shape of the transparent substrate 2 is not particularly limited, but in the present embodiment, it is a rectangular plate.
  • the thickness of the transparent substrate 2 can be, for example, 30 ⁇ m or more and 2 mm or less.
  • the transparent substrate 2 is preferably a transparent substrate in the wavelength range used by the optical filter 1.
  • the material of the transparent substrate 2 is not particularly limited, and examples thereof include glass and resin. Further, if the wavelength range used is an infrared region, it may be Si, Ge, or the like. Examples of the glass include soda-lime glass, borosilicate glass, non-alkali glass, crystallized glass, quartz glass and the like. Further, the glass used for the transparent substrate 2 may be aluminosilicate glass used as tempered glass.
  • the transparent substrate 2 has a first main surface 2a as one side main surface and a second main surface 2b as the other side main surface.
  • the first main surface 2a and the second main surface 2b face each other.
  • a filter unit 3 is provided on the first main surface 2a of the transparent substrate 2.
  • the filter unit 3 is a multilayer film having a high refractive index film 4 having a relatively high refractive index and a low refractive index film 5 having a relatively low refractive index.
  • the low-refractive index film 5 and the high-refractive index film 4 are alternately provided on the first main surface 2a of the transparent substrate 2 in this order to form a multilayer film.
  • the high refractive index film 4 is a film containing hydrogenated silicon.
  • the high refractive index film 4 is preferably a silicon hydride film.
  • the material of the high refractive index film 4 is not limited to the above as long as it contains silicon hydride, and may contain Al, Ti, Nb, Ta, Zr, N, C and the like as elements.
  • the low refractive index film 5 is made of silicon oxide.
  • the material of the low refractive index film 5 is not limited to the above, and may be aluminum oxide, titanium oxide, niobium oxide, tantalum oxide, zirconium oxide, tin oxide, silicon nitride and the like.
  • the low refractive index film 5 is preferably a silicon oxide-containing film.
  • the thickness of the high-refractive index film 4 per layer is preferably 10 nm or more, and more preferably 15 nm or more. On the other hand, the thickness of the high refractive index film 4 per layer is preferably 1000 nm or less, more preferably 750 nm or less.
  • the thickness of the low refractive index film 5 per layer is preferably 10 nm or more, and more preferably 20 nm or more. On the other hand, the thickness of the low refractive index film 5 per layer is preferably 500 nm or less, more preferably 300 nm or less.
  • the number of layers of the film constituting the multilayer film in the filter unit 3 is preferably 16 or more, and more preferably 20 or more. On the other hand, the number of layers of the film constituting the multilayer film in the filter unit 3 is preferably 50 or less, and more preferably 40 or less.
  • the optical filter 1 of the present embodiment is a bandpass filter designed to selectively transmit light in a specific wavelength range by light interference by providing a filter unit 3 composed of such a multilayer film. ..
  • the center wavelength of the pass band (transmission band) is designed to be 800 nm to 1000 nm.
  • the central wavelength of the transmission band may be outside the range of 800 nm to 1000 nm.
  • the feature of this embodiment is that in the high refractive index film 4 which is a silicon hydride-containing film, the spin density of silicon hydride is 1.0 ⁇ 10 18 pieces / cm 2 or less. That is, the inventors of the present application can effectively suppress the absorption of light in the silicon hydride-containing film when the amount of Si dangling bonds in the silicon hydride-containing film is small, and even when the silicon hydride-containing film is used. , It has been found that the transmittance of the optical filter 1 can be effectively increased. Details will be described below.
  • FIGS. 2 (a) to 2 (c) are schematic views showing an example of a bonded state between a Si atom and an H atom.
  • FIG. 2D is a schematic diagram showing a Si dangling bond. In the part omitted in FIGS. 2 (a) and 2 (d), the Si atom is bonded to another Si atom. In FIG. 2D, the portion showing an electron is schematically shown as an electron orbital.
  • the silicon hydride-containing film includes the portion in the bonded state shown in FIGS. 2 (a) and 2 (d).
  • one H atom is bonded to the Si atom.
  • two H atoms are bonded to the Si atom.
  • three H atoms are bonded to the Si atom.
  • the Si atom is bonded to an H atom or another Si atom, and all the valence electrons of the Si atom are used for the bond.
  • the silicon hydride-containing film also includes a portion in which all the valence electrons of the Si atom are used for bonding with other Si atoms.
  • the H atom is not bonded to the Si atom, and the unpaired electron e exists.
  • a portion not used for bonding is a Si dangling bond.
  • the spin density of silicon hydride is a value that quantitatively indicates Si dangling bonds. The smaller the spin density of silicon hydride, the less Si dangling bonds.
  • the spin density of silicon hydride can be measured by the electron spin resonance method (ESR).
  • ESR electron spin resonance method
  • the spin density of silicon hydride may be measured, for example, for each layer of the silicon hydride-containing film.
  • the filter unit or the like may collectively perform the measurement by ESR. In this case, the spin density of silicon hydride in all the silicon hydride-containing films in the optical filter can be obtained at once.
  • the filter portion 3 as a multilayer film is formed on the first main surface 2a of the transparent substrate 2.
  • the filter portion 3 can be formed by alternately laminating the low refractive index film 5 and the high refractive index film 4 on the first main surface 2a of the transparent substrate 2 in this order.
  • the high refractive index film 4 and the low refractive index film 5 can each be formed by a sputtering method.
  • the silicon hydride-containing film which is the high refractive index film 4 may be formed by reactive sputtering using argon gas and hydrogen gas, or by hydrogenating the formed silicon film after forming the silicon film. good.
  • a silicon hydride-containing film may be formed by forming a silicon film by a sputtering method and then hydrogenating the silicon film using RF plasma.
  • the film formation of the silicon film can be performed, for example, by using a silicon target, setting the flow rate of an inert gas such as argon gas as a sputtering gas to 100 sccm to 500 sccm, and setting the target applied power to 2 kW to 10 kW.
  • the hydrogenation of the silicon film can be performed with the flow rate of an inert gas such as argon gas as a sputtering gas set to 100 sccm to 500 sccm, the flow rate of hydrogen gas set to 5 sccm to 200 sccm, and the RF power set to 1 kW to 5 kW. ..
  • the flow rate ratio (Ar / H 2 ) of the argon (Ar) gas to the hydrogen (H 2 ) gas is preferably 0.83 or more, more preferably 0.96 or more, and 1.4 or more. It is even more preferable, and it is even more preferable that it is 2.4 or more. Thereby, the spin density of the hydrogenated silicon in the obtained silicon hydride-containing film can be further lowered.
  • the upper limit of the flow rate ratio (Ar / H 2 ) is not particularly limited, but may be, for example, 10.
  • the temperature of the transparent substrate 2 when the high refractive index film 4 is formed can be, for example, 15 ° C. or higher and 300 ° C. or lower.
  • the transmittance of the optical filter can be increased. This is shown by comparing Examples and Comparative Examples.
  • Example 1 First, a glass substrate was prepared as a transparent substrate. Next, a filter portion was formed on the first main surface of the transparent substrate. The filter portion was formed by alternately laminating a low refractive index film and a high refractive index film on the first main surface of the transparent substrate in this order. The high refractive index film and the low refractive index film were each formed by a sputtering method.
  • the silicon hydride film which is a high refractive index film, was formed by forming a silicon film by a sputtering method and then hydrogenating the silicon film using RF plasma.
  • a silicon target was used in the film formation of the silicon film, the flow rate of the argon gas sputtered was set to 300 sccm, and the applied power of the target was set to 10 kW.
  • the flow rate of argon gas as a sputtering gas was 170 sccm
  • the flow rate of hydrogen gas was 30 sccm
  • the RF plasma power was 2.5 kW.
  • a silicon oxide film (SiO 2 film) was formed as a low refractive index film.
  • Argon gas and oxygen gas were used as the sputtering gas, and the silicon target was sputtered to form a SiO 2 film.
  • the flow rate of argon gas was set to 300 sccm, and the flow rate of oxygen gas was set to 120 sccm.
  • the target applied power was set to 10 kW.
  • the temperature of the transparent substrate was set to 25 ° C. when the SiO 2 film and the hydrogenated silicon film were formed.
  • the SiO 2 film and the hydrogenated silicon film were alternately laminated on the transparent substrate. As a result, a filter portion having a total of 29 layers of film was formed. From the above, the optical filter of Example 1 was obtained.
  • Example 2 An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 290 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 120 sccm, and the flow rate of hydrogen gas was 10 sccm.
  • Example 3 An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 330 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 84 sccm, and the flow rate of hydrogen gas was 6 sccm.
  • Example 4 An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 360 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was set to 56 sccm, and the flow rate of hydrogen gas was set to 4 sccm.
  • Example 1 An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 370 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 47 sccm, and the flow rate of hydrogen gas was 3 sccm.
  • Example 2 An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 380 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 38 sccm, and the flow rate of hydrogen gas was 2 sccm.
  • Table 1 shows the layer structure of the filter unit in each Example and each Comparative Example.
  • SiO 2 indicates a low refractive index film made of a SiO 2 film
  • Si: H indicates a high refractive index film made of a silicon hydride film
  • glass indicates a transparent substrate.
  • the spin density of hydrogenated silicon in the optical filters of each example and each comparative example was measured by ESR. Further, the refractive index n, the absorbance k and the transmittance of each optical filter at a wavelength of 940 nm were measured. These results are shown in Table 2. Further, the relationship between the spin density of hydrogenated silicon and the absorbance k and the transmittance is shown in FIGS. 3 and 4. Each plot of FIGS. 3 and 4 shows the results of each example and each comparative example.
  • FIG. 3 is a diagram showing the relationship between the spin density of hydrogenated silicon and the absorbance k.
  • FIG. 4 is a diagram showing the relationship between the spin density of hydrogenated silicon and the transmittance.
  • FIG. 5 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the present invention.
  • the antireflection film 6 is provided on the second main surface 2b of the transparent substrate 2.
  • Other points are the same as those of the first embodiment.
  • the antireflection film 6 is a multilayer film having a high refractive index film 7 having a relatively high refractive index and a low refractive index film 8 having a relatively low refractive index.
  • the low refractive index film 8 and the high refractive index film 7 are alternately provided on the second main surface 2b of the transparent substrate 2 in this order to form a multilayer film.
  • the high refractive index film 7 is made of silicon hydride.
  • the material of the high refractive index film 7 is not limited to this.
  • the low refractive index film 8 is made of silicon oxide.
  • aluminum oxide, tantalum oxide, niobium oxide, titanium oxide, hafnium oxide, silicon nitride, zirconium oxide, and tin oxide may be used.
  • the number of layers of the film constituting the multilayer film of the antireflection film 6 is preferably 10 or more. On the other hand, the number of layers of the film constituting the multilayer film of the antireflection film 6 is preferably 40 or less.
  • the spin density of silicon hydride is 1.0 ⁇ 10 18 pieces / cm 2 or less. Therefore, the transmittance in the optical filter 21 can be increased as in the first embodiment.
  • the spin density of the silicon hydride is preferably 1.0 ⁇ 10 18 pieces / cm 2 or less. In this case, the transmittance of the optical filter 21 can be increased more reliably and effectively.
  • Optical filter 1a Main surface 2 ... Transparent substrate 2a ... First main surface 2b ... Second main surface 3 ... Filter unit 4 ... High refractive index film 5 ... Low refractive index film 6 ... Antireflection film 7 ... High Refractive index film 8 ... Low refractive index film 21 ... Optical filter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Provided is an optical filter with which transmittance can be effectively increased. An optical filter 1 according to the present invention has a film containing a hydrogenated silicon, and is characterized by the hydrogenated silicon having a spin density of not more than 1.0 × 1018/cm2.

Description

光学フィルタOptical filter
 本発明は、特定の波長域の光を選択的に透過させることのできる光学フィルタに関する。 The present invention relates to an optical filter capable of selectively transmitting light in a specific wavelength range.
 従来、特定の波長域の光を選択的に透過させることのできる光学フィルタが、赤外線センサなどの用途で広く用いられている。このような光学フィルタとしては、例えば、多層膜を用いたバンドパスフィルタが知られている。多層膜としては、相対的に屈折率が高い高屈折率膜と、相対的に屈折率が低い低屈折率膜とを交互に繰り返し積層されたものが用いられている(例えば、特許文献1)。特許文献1には、高屈折率膜の材料として、水素化シリコンが記載されている。また、低屈折率膜の材料として、窒化シリコンが記載されている。水素化シリコン膜が、シランガスを用いて、プラズマCVD(PECVD)で蒸着することにより形成されていることが記載されている。 Conventionally, an optical filter capable of selectively transmitting light in a specific wavelength range has been widely used in applications such as infrared sensors. As such an optical filter, for example, a bandpass filter using a multilayer film is known. As the multilayer film, a high-refractive index film having a relatively high refractive index and a low-refractive index film having a relatively low refractive index are alternately and repeatedly laminated (for example, Patent Document 1). .. Patent Document 1 describes silicon hydride as a material for a high refractive index film. Further, silicon nitride is described as a material for the low refractive index film. It is described that the silicon hydride film is formed by vapor deposition by plasma CVD (PECVD) using silane gas.
米国特許第5398133号公報U.S. Pat. No. 5,398,133
 近年、自動車等の自動運転化を進めることに伴い、自動車等には、レーザーレーダー、特にレーザー光により物体を検知するLiDAR(Light Detection and Ranging)と呼ばれるセンサ等の数多くのセンサの搭載が検討されている。このようなセンサには、例えば、特許文献1に記載のような、近赤外線用の光学フィルタが用いられている。 In recent years, with the advancement of automatic driving of automobiles and the like, it has been considered to equip automobiles and the like with a large number of sensors such as a laser radar, especially a sensor called LiDAR (Light Detection and Ringing) that detects an object by laser light. ing. For such a sensor, for example, an optical filter for near infrared rays as described in Patent Document 1 is used.
 しかしながら、高屈折率膜として特許文献1に記載の水素化シリコンを用いた場合には、光学フィルタの透過率を十分に高めることが困難である。 However, when silicon hydride described in Patent Document 1 is used as the high refractive index film, it is difficult to sufficiently increase the transmittance of the optical filter.
 本発明の目的は、透過率を効果的に高めることができる、光学フィルタを提供することにある。 An object of the present invention is to provide an optical filter capable of effectively increasing the transmittance.
 本発明に係る光学フィルタは、水素化シリコン含有膜を有する、光学フィルタであって、水素化シリコンのスピン密度が1.0×1018個/cm以下であることを特徴としている。 The optical filter according to the present invention is an optical filter having a silicon hydride-containing film, and is characterized in that the spin density of silicon hydride is 1.0 × 10 18 pieces / cm 2 or less.
 透明基板と、透明基板の一方側主面上に設けられており、かつ相対的に屈折率が高い高屈折率膜及び相対的に屈折率が低い低屈折率膜を有する多層膜からなるフィルタ部とを備え、高屈折率膜が、水素化シリコン含有膜であることが好ましい。この場合、低屈折率膜が、酸化ケイ素含有膜であることがより好ましい。 A filter unit consisting of a transparent substrate and a multilayer film provided on one main surface of the transparent substrate and having a high refractive index film having a relatively high refractive index and a low refractive index film having a relatively low refractive index. It is preferable that the high-refractive index film is a silicon hydride-containing film. In this case, it is more preferable that the low refractive index film is a silicon oxide-containing film.
 透明基板の他方側主面上に設けられており、かつ水素化シリコンを含む反射防止膜をさらに備えることが好ましい。 It is preferable that an antireflection film provided on the other main surface of the transparent substrate and containing silicon hydride is further provided.
 本発明によれば、透過率を効果的に高めることができる、光学フィルタを提供することができる。 According to the present invention, it is possible to provide an optical filter capable of effectively increasing the transmittance.
図1は、本発明の第1の実施形態に係る光学フィルタを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the present invention. 図2(a)~図2(c)は、Si原子とH原子との結合状態の例を示す模式図であり、図2(d)は、Siダングリングボンドを示す模式図である。2 (a) and 2 (c) are schematic views showing an example of a bonding state between a Si atom and an H atom, and FIG. 2 (d) is a schematic diagram showing a Si dangling bond. 図3は、水素化シリコンのスピン密度と、吸光度kとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the spin density of hydrogenated silicon and the absorbance k. 図4は、水素化シリコンのスピン密度と、透過率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the spin density of hydrogenated silicon and the transmittance. 図5は、本発明の第2の実施形態に係る光学フィルタを示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Further, in the drawings, members having substantially the same function may be referred to by the same reference numeral.
 [光学フィルタ]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る光学フィルタを示す模式的断面図である。図1に示すように、光学フィルタ1は、透明基板2と、フィルタ部3とを備える。光学フィルタ1は、特に限定されないが、例えば、LiDARなどのセンサに用いられる。
[Optical filter]
(First Embodiment)
FIG. 1 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the present invention. As shown in FIG. 1, the optical filter 1 includes a transparent substrate 2 and a filter unit 3. The optical filter 1 is not particularly limited, but is used, for example, in a sensor such as LiDAR.
 透明基板2の形状は、特に限定されないが、本実施形態では矩形板状である。透明基板2の厚みは、例えば、30μm以上、2mm以下とすることができる。 The shape of the transparent substrate 2 is not particularly limited, but in the present embodiment, it is a rectangular plate. The thickness of the transparent substrate 2 can be, for example, 30 μm or more and 2 mm or less.
 透明基板2は、光学フィルタ1の使用波長域で透明な基板であることが好ましい。透明基板2の材料としては、特に限定されず、例えば、ガラス、樹脂等が挙げられる。また、使用波長域が赤外域であれば、SiやGe等であってもよい。ガラスとしては、ソーダ石灰ガラス、ホウ珪酸ガラス、無アルカリガラス、結晶化ガラス、石英ガラス等が挙げられる。また、透明基板2に用いられるガラスは、強化ガラスとして用いられるアルミノシリケートガラスであってもよい。 The transparent substrate 2 is preferably a transparent substrate in the wavelength range used by the optical filter 1. The material of the transparent substrate 2 is not particularly limited, and examples thereof include glass and resin. Further, if the wavelength range used is an infrared region, it may be Si, Ge, or the like. Examples of the glass include soda-lime glass, borosilicate glass, non-alkali glass, crystallized glass, quartz glass and the like. Further, the glass used for the transparent substrate 2 may be aluminosilicate glass used as tempered glass.
 透明基板2は、一方側主面としての第1の主面2a及び他方側主面としての第2の主面2bを有する。第1の主面2a及び第2の主面2bは対向し合っている。透明基板2の第1の主面2a上には、フィルタ部3が設けられている。 The transparent substrate 2 has a first main surface 2a as one side main surface and a second main surface 2b as the other side main surface. The first main surface 2a and the second main surface 2b face each other. A filter unit 3 is provided on the first main surface 2a of the transparent substrate 2.
 フィルタ部3は、相対的に屈折率が高い高屈折率膜4と相対的に屈折率が低い低屈折率膜5とを有する、多層膜である。本実施形態では、透明基板2の第1の主面2a上に、低屈折率膜5及び高屈折率膜4がこの順に交互に設けられることにより、多層膜が構成されている。 The filter unit 3 is a multilayer film having a high refractive index film 4 having a relatively high refractive index and a low refractive index film 5 having a relatively low refractive index. In the present embodiment, the low-refractive index film 5 and the high-refractive index film 4 are alternately provided on the first main surface 2a of the transparent substrate 2 in this order to form a multilayer film.
 本実施形態において、高屈折率膜4は、水素化シリコン(hydrogenated silicon)含有膜である。なお、高屈折率膜4は水素化シリコン膜であることが好ましい。もっとも、高屈折率膜4の材料は水素化シリコンを含有しておれば上記に限定されず、元素としてAl、Ti、Nb、Ta、Zr、N、C等を含有してもよい。他方、低屈折率膜5は、酸化ケイ素により構成されている。なお、低屈折率膜5の材料は上記に限定されず、酸化アルミニウム、酸化チタン、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化スズ、窒化シリコン等であってもよい。もっとも、低屈折率膜5は酸化ケイ素含有膜であることが好ましい。 In the present embodiment, the high refractive index film 4 is a film containing hydrogenated silicon. The high refractive index film 4 is preferably a silicon hydride film. However, the material of the high refractive index film 4 is not limited to the above as long as it contains silicon hydride, and may contain Al, Ti, Nb, Ta, Zr, N, C and the like as elements. On the other hand, the low refractive index film 5 is made of silicon oxide. The material of the low refractive index film 5 is not limited to the above, and may be aluminum oxide, titanium oxide, niobium oxide, tantalum oxide, zirconium oxide, tin oxide, silicon nitride and the like. However, the low refractive index film 5 is preferably a silicon oxide-containing film.
 高屈折率膜4の1層当たりの厚みとしては、10nm以上であることが好ましく、15nm以上であることがより好ましい。一方で、高屈折率膜4の1層当たりの厚みとしては、1000nm以下であることが好ましく、750nm以下であることがより好ましい。 The thickness of the high-refractive index film 4 per layer is preferably 10 nm or more, and more preferably 15 nm or more. On the other hand, the thickness of the high refractive index film 4 per layer is preferably 1000 nm or less, more preferably 750 nm or less.
 低屈折率膜5の1層当たりの厚みとしては、10nm以上であることが好ましく、20nm以上であることがより好ましい。一方で、低屈折率膜5の1層当たりの厚みとしては、500nm以下であることが好ましく、300nm以下であることがより好ましい。 The thickness of the low refractive index film 5 per layer is preferably 10 nm or more, and more preferably 20 nm or more. On the other hand, the thickness of the low refractive index film 5 per layer is preferably 500 nm or less, more preferably 300 nm or less.
 フィルタ部3における多層膜を構成する膜の層数は、16層以上であることが好ましく、20層以上であることがより好ましい。一方で、フィルタ部3における多層膜を構成する膜の層数は、50層以下であることが好ましく、40層以下であることがより好ましい。 The number of layers of the film constituting the multilayer film in the filter unit 3 is preferably 16 or more, and more preferably 20 or more. On the other hand, the number of layers of the film constituting the multilayer film in the filter unit 3 is preferably 50 or less, and more preferably 40 or less.
 本実施形態の光学フィルタ1は、このような多層膜からなるフィルタ部3を備えることにより、光の干渉で特定の波長域の光を選択的に透過させるように設計されたバンドパスフィルタである。本実施形態では、通過帯域(透過帯域)の中心波長が800nm~1000nmとなるように設計されている。もっとも、透過帯域の中心波長は、800nm~1000nmの範囲外にあってもよい。 The optical filter 1 of the present embodiment is a bandpass filter designed to selectively transmit light in a specific wavelength range by light interference by providing a filter unit 3 composed of such a multilayer film. .. In this embodiment, the center wavelength of the pass band (transmission band) is designed to be 800 nm to 1000 nm. However, the central wavelength of the transmission band may be outside the range of 800 nm to 1000 nm.
 本実施形態の特徴は、水素化シリコン含有膜である高屈折率膜4において、水素化シリコンのスピン密度が1.0×1018個/cm以下であるという点にある。すなわち、本願発明者らは、水素化シリコン含有膜中のSiダングリングボンドが少ないと、水素化シリコン含有膜における光の吸収を効果的に抑制でき、水素化シリコン含有膜を用いた場合においても、光学フィルタ1の透過率を効果的に高くすることができることを見出した。詳細を以下において説明する。 The feature of this embodiment is that in the high refractive index film 4 which is a silicon hydride-containing film, the spin density of silicon hydride is 1.0 × 10 18 pieces / cm 2 or less. That is, the inventors of the present application can effectively suppress the absorption of light in the silicon hydride-containing film when the amount of Si dangling bonds in the silicon hydride-containing film is small, and even when the silicon hydride-containing film is used. , It has been found that the transmittance of the optical filter 1 can be effectively increased. Details will be described below.
 図2(a)~図2(c)は、Si原子とH原子との結合状態の例を示す模式図である。図2(d)は、Siダングリングボンドを示す模式図である。なお、図2(a)~図2(d)において省略している部分では、Si原子は他のSi原子と結合している。図2(d)においては、電子を示す部分は、電子軌道として模式的に示す。 2 (a) to 2 (c) are schematic views showing an example of a bonded state between a Si atom and an H atom. FIG. 2D is a schematic diagram showing a Si dangling bond. In the part omitted in FIGS. 2 (a) and 2 (d), the Si atom is bonded to another Si atom. In FIG. 2D, the portion showing an electron is schematically shown as an electron orbital.
 水素化シリコン含有膜においては、図2(a)~図2(d)に示す結合の状態の部分が含まれる。図2(a)に示す場合には、Si原子に1個のH原子が結合している。図2(b)に示す場合には、Si原子に2個のH原子が結合している。図2(c)に示す場合には、Si原子に3個のH原子が結合している。図2(a)~図2(c)に示す場合には、Si原子はH原子または他のSi原子と結合しており、Si原子の全ての価電子は結合に用いられている。なお、水素化シリコン含有膜には、Si原子の価電子が全て他のSi原子との結合に用いられている状態の部分も含まれる。 The silicon hydride-containing film includes the portion in the bonded state shown in FIGS. 2 (a) and 2 (d). In the case shown in FIG. 2A, one H atom is bonded to the Si atom. In the case shown in FIG. 2B, two H atoms are bonded to the Si atom. In the case shown in FIG. 2 (c), three H atoms are bonded to the Si atom. In the case shown in FIGS. 2 (a) to 2 (c), the Si atom is bonded to an H atom or another Si atom, and all the valence electrons of the Si atom are used for the bond. The silicon hydride-containing film also includes a portion in which all the valence electrons of the Si atom are used for bonding with other Si atoms.
 他方、図2(d)に示す場合には、Si原子にH原子が結合しておらず、不対電子eが存在している。このような、結合に用いられていない部分がSiダングリングボンドである。水素化シリコンのスピン密度は、Siダングリングボンドを定量的に示す値である。水素化シリコンのスピン密度が小さいほど、Siダングリングボンドが少ない。 On the other hand, in the case shown in FIG. 2D, the H atom is not bonded to the Si atom, and the unpaired electron e exists. Such a portion not used for bonding is a Si dangling bond. The spin density of silicon hydride is a value that quantitatively indicates Si dangling bonds. The smaller the spin density of silicon hydride, the less Si dangling bonds.
 水素化シリコンのスピン密度は、電子スピン共鳴法(ESR)により測定することができる。ここで、Siダングリングボンドのg値は2.0049である。よって、水素化シリコンのスピン密度の定量に際し、g値=2.0049におけるピークの信号強度を用いればよい。 The spin density of silicon hydride can be measured by the electron spin resonance method (ESR). Here, the g value of the Si dangling bond is 2.0049. Therefore, when quantifying the spin density of silicon hydride, the signal intensity of the peak at g value = 2.0049 may be used.
 水素化シリコンのスピン密度は、例えば、水素化シリコン含有膜1層毎に測定すればよい。あるいは、光学フィルタにおける水素化シリコン含有膜以外の膜等が、水素化シリコンのスピン密度の測定に影響を与えない場合には、フィルタ部等において、まとめてESRによる測定を行ってもよい。この場合には、光学フィルタにおける全ての水素化シリコン含有膜における水素化シリコンのスピン密度を一度に求めることができる。 The spin density of silicon hydride may be measured, for example, for each layer of the silicon hydride-containing film. Alternatively, if a film or the like other than the silicon hydride-containing film in the optical filter does not affect the measurement of the spin density of the silicon hydride, the filter unit or the like may collectively perform the measurement by ESR. In this case, the spin density of silicon hydride in all the silicon hydride-containing films in the optical filter can be obtained at once.
 [製造方法]
 以下、光学フィルタ1の製造方法の一例について詳細に説明する。
[Production method]
Hereinafter, an example of a method for manufacturing the optical filter 1 will be described in detail.
 まず、透明基板2を用意する。次に、透明基板2の第1の主面2a上に多層膜としてのフィルタ部3を形成する。フィルタ部3は、透明基板2の第1の主面2a上に、低屈折率膜5及び高屈折率膜4をこの順に交互に積層することにより形成することができる。高屈折率膜4及び低屈折率膜5は、それぞれ、スパッタリング法により形成することができる。 First, prepare the transparent substrate 2. Next, the filter portion 3 as a multilayer film is formed on the first main surface 2a of the transparent substrate 2. The filter portion 3 can be formed by alternately laminating the low refractive index film 5 and the high refractive index film 4 on the first main surface 2a of the transparent substrate 2 in this order. The high refractive index film 4 and the low refractive index film 5 can each be formed by a sputtering method.
 例えば、高屈折率膜4である水素化シリコン含有膜は、アルゴンガスと水素ガスによる反応性スパッタリングや、シリコン膜を成膜した後に、成膜したシリコン膜を水素化することにより形成してもよい。具体的には、スパッタリング法によりシリコン膜を成膜した後に、RFプラズマを用いてシリコン膜を水素化することにより、水素化シリコン含有膜を形成してもよい。 For example, the silicon hydride-containing film which is the high refractive index film 4 may be formed by reactive sputtering using argon gas and hydrogen gas, or by hydrogenating the formed silicon film after forming the silicon film. good. Specifically, a silicon hydride-containing film may be formed by forming a silicon film by a sputtering method and then hydrogenating the silicon film using RF plasma.
 上記シリコン膜の成膜は、例えば、シリコンターゲットを用い、スパッタリングガスとしてのアルゴンガスなどの不活性ガスの流量を100sccm~500sccmとし、ターゲット印加電力を2kW~10kWとして行うことができる。また、上記シリコン膜の水素化は、スパッタリングガスとしてのアルゴンガスなどの不活性ガスの流量を100sccm~500sccmとし、水素ガスの流量を5sccm~200sccmとし、RF電力を1kW~5kWとして行うことができる。 The film formation of the silicon film can be performed, for example, by using a silicon target, setting the flow rate of an inert gas such as argon gas as a sputtering gas to 100 sccm to 500 sccm, and setting the target applied power to 2 kW to 10 kW. Further, the hydrogenation of the silicon film can be performed with the flow rate of an inert gas such as argon gas as a sputtering gas set to 100 sccm to 500 sccm, the flow rate of hydrogen gas set to 5 sccm to 200 sccm, and the RF power set to 1 kW to 5 kW. ..
 アルゴン(Ar)ガスの水素(H)ガスに対する流量比(Ar/H)は、0.83以上であることが好ましく、0.96以上であることがより好ましく、1.4以上であることがさらに好ましく、2.4以上であることがさらにより好ましい。それによって、得られる水素化シリコン含有膜における、水素化シリコンのスピン密度をより一層低くすることができる。なお、流量比(Ar/H)の上限値は、特に限定されないが、例えば、10とすることができる。 The flow rate ratio (Ar / H 2 ) of the argon (Ar) gas to the hydrogen (H 2 ) gas is preferably 0.83 or more, more preferably 0.96 or more, and 1.4 or more. It is even more preferable, and it is even more preferable that it is 2.4 or more. Thereby, the spin density of the hydrogenated silicon in the obtained silicon hydride-containing film can be further lowered. The upper limit of the flow rate ratio (Ar / H 2 ) is not particularly limited, but may be, for example, 10.
 高屈折率膜4を成膜するときの透明基板2の温度は、例えば、15℃以上、300℃以下とすることができる。 The temperature of the transparent substrate 2 when the high refractive index film 4 is formed can be, for example, 15 ° C. or higher and 300 ° C. or lower.
 上記のように、水素化シリコンのスピン密度を1.0×1018個/cm以下とすることにより、光学フィルタの透過率を高めることができる。これを、実施例及び比較例を比較することにより示す。 As described above, by setting the spin density of silicon hydride to 1.0 × 10 18 pieces / cm 2 or less, the transmittance of the optical filter can be increased. This is shown by comparing Examples and Comparative Examples.
 [実施例]
 (実施例1)
 まず、透明基板としてガラス基板を用意した。次に、透明基板の第1の主面上にフィルタ部を形成した。フィルタ部は、透明基板の第1の主面上に、低屈折率膜及び高屈折率膜をこの順に交互に積層することにより形成した。高屈折率膜及び低屈折率膜は、それぞれ、スパッタリング法により形成した。
[Example]
(Example 1)
First, a glass substrate was prepared as a transparent substrate. Next, a filter portion was formed on the first main surface of the transparent substrate. The filter portion was formed by alternately laminating a low refractive index film and a high refractive index film on the first main surface of the transparent substrate in this order. The high refractive index film and the low refractive index film were each formed by a sputtering method.
 なお、高屈折率膜である水素化シリコン膜は、スパッタリング法によりシリコン膜を成膜した後に、RFプラズマを用いてシリコン膜を水素化することにより形成した。水素化シリコン膜の形成に際し、シリコン膜の成膜においては、シリコンターゲットを用い、スパッタリングガスしてのアルゴンガスの流量を300sccmとし、ターゲット印加電力を10kWとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を170sccmとし、水素ガスの流量を30sccmとし、RFプラズマ電力を2.5kWとした。 The silicon hydride film, which is a high refractive index film, was formed by forming a silicon film by a sputtering method and then hydrogenating the silicon film using RF plasma. In forming the silicon hydride film, a silicon target was used in the film formation of the silicon film, the flow rate of the argon gas sputtered was set to 300 sccm, and the applied power of the target was set to 10 kW. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 170 sccm, the flow rate of hydrogen gas was 30 sccm, and the RF plasma power was 2.5 kW.
 他方、低屈折率膜として、酸化ケイ素膜(SiO膜)を形成した。スパッタリングガスとしてアルゴンガス及び酸素ガスを用い、シリコンターゲットをスパッタリングし、SiO膜を成膜した。なお、この際、アルゴンガスの流量を300sccmとし、酸素ガスの流量を120sccmとした。ターゲット印加電力を10kWとした。SiO膜及び水素化シリコン膜の成膜に際し、透明基板の温度は25℃とした。 On the other hand, a silicon oxide film (SiO 2 film) was formed as a low refractive index film. Argon gas and oxygen gas were used as the sputtering gas, and the silicon target was sputtered to form a SiO 2 film. At this time, the flow rate of argon gas was set to 300 sccm, and the flow rate of oxygen gas was set to 120 sccm. The target applied power was set to 10 kW. The temperature of the transparent substrate was set to 25 ° C. when the SiO 2 film and the hydrogenated silicon film were formed.
 これらの操作を繰り返すことにより、透明基板上に、SiO膜と水素化シリコン膜とを交互に積層した。これにより、合計29層の膜を有するフィルタ部を形成した。以上により、実施例1の光学フィルタを得た。 By repeating these operations, the SiO 2 film and the hydrogenated silicon film were alternately laminated on the transparent substrate. As a result, a filter portion having a total of 29 layers of film was formed. From the above, the optical filter of Example 1 was obtained.
 (実施例2)
 水素化シリコン膜の形成におけるスパッタリングガスの流量以外においては、実施例1と同様にして光学フィルタを作製した。具体的には、水素化シリコン膜の形成に際し、シリコン膜の成膜においては、スパッタリングガスしてのアルゴンガスの流量を290sccmとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を120sccmとし、水素ガスの流量を10sccmとした。
(Example 2)
An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 290 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 120 sccm, and the flow rate of hydrogen gas was 10 sccm.
 (実施例3)
 水素化シリコン膜の形成におけるスパッタリングガスの流量以外においては、実施例1と同様にして光学フィルタを作製した。具体的には、水素化シリコン膜の形成に際し、シリコン膜の成膜においては、スパッタリングガスしてのアルゴンガスの流量を330sccmとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を84sccmとし、水素ガスの流量を6sccmとした。
(Example 3)
An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 330 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 84 sccm, and the flow rate of hydrogen gas was 6 sccm.
 (実施例4)
 水素化シリコン膜の形成におけるスパッタリングガスの流量以外においては、実施例1と同様にして光学フィルタを作製した。具体的には、水素化シリコン膜の形成に際し、シリコン膜の成膜においては、スパッタリングガスしてのアルゴンガスの流量を360sccmとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を56sccmとし、水素ガスの流量を4sccmとした。
(Example 4)
An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 360 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was set to 56 sccm, and the flow rate of hydrogen gas was set to 4 sccm.
 (比較例1)
 水素化シリコン膜の形成におけるスパッタリングガスの流量以外においては、実施例1と同様にして光学フィルタを作製した。具体的には、水素化シリコン膜の形成に際し、シリコン膜の成膜においては、スパッタリングガスしてのアルゴンガスの流量を370sccmとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を47sccmとし、水素ガスの流量を3sccmとした。
(Comparative Example 1)
An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 370 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 47 sccm, and the flow rate of hydrogen gas was 3 sccm.
 (比較例2)
 水素化シリコン膜の形成におけるスパッタリングガスの流量以外においては、実施例1と同様にして光学フィルタを作製した。具体的には、水素化シリコン膜の形成に際し、シリコン膜の成膜においては、スパッタリングガスしてのアルゴンガスの流量を380sccmとした。上記シリコン膜の水素化においては、スパッタリングガスとしてのアルゴンガスの流量を38sccmとし、水素ガスの流量を2sccmとした。
(Comparative Example 2)
An optical filter was produced in the same manner as in Example 1 except for the flow rate of the sputtering gas in the formation of the silicon hydride film. Specifically, in the formation of the silicon hydride film, the flow rate of the argon gas as the sputtering gas was set to 380 sccm in the film formation of the silicon film. In the hydrogenation of the silicon film, the flow rate of argon gas as a sputtering gas was 38 sccm, and the flow rate of hydrogen gas was 2 sccm.
 各実施例及び各比較例におけるフィルタ部の層構成を、表1に示す。なお、表1において、SiOはSiO膜からなる低屈折率膜を示し、Si:Hは水素化シリコン膜からなる高屈折率膜を示し、glassは透明基板を示す。 Table 1 shows the layer structure of the filter unit in each Example and each Comparative Example. In Table 1, SiO 2 indicates a low refractive index film made of a SiO 2 film, Si: H indicates a high refractive index film made of a silicon hydride film, and glass indicates a transparent substrate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (評価)
 各実施例及び各比較例の光学フィルタにおける水素化シリコンのスピン密度をESRにより測定した。さらに、各光学フィルタの、波長940nmにおける屈折率n、吸光度k及び透過率を測定した。これらの結果を表2に示す。さらに、水素化シリコンのスピン密度と、吸光度k及び透過率との関係を、図3及び図4に示す。図3及び図4の各プロットは、各実施例及び各比較例の結果を示す。
(evaluation)
The spin density of hydrogenated silicon in the optical filters of each example and each comparative example was measured by ESR. Further, the refractive index n, the absorbance k and the transmittance of each optical filter at a wavelength of 940 nm were measured. These results are shown in Table 2. Further, the relationship between the spin density of hydrogenated silicon and the absorbance k and the transmittance is shown in FIGS. 3 and 4. Each plot of FIGS. 3 and 4 shows the results of each example and each comparative example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3は、水素化シリコンのスピン密度と、吸光度kとの関係を示す図である。図4は、水素化シリコンのスピン密度と、透過率との関係を示す図である。 FIG. 3 is a diagram showing the relationship between the spin density of hydrogenated silicon and the absorbance k. FIG. 4 is a diagram showing the relationship between the spin density of hydrogenated silicon and the transmittance.
 図3に示すように、水素化シリコンのスピン密度が低いほど、吸光度kが低くなっていることがわかる。さらに、図4に示すように、水素化シリコンのスピン密度が低いほど、透過率が高くなっていることがわかる。特に、水素化シリコンのスピン密度が1.0×1018個/cm以下である場合には、透過率が90%を超えて高くなっていることがわかる。 As shown in FIG. 3, it can be seen that the lower the spin density of the hydrogenated silicon, the lower the absorbance k. Further, as shown in FIG. 4, it can be seen that the lower the spin density of the hydrogenated silicon, the higher the transmittance. In particular, when the spin density of hydrogenated silicon is 1.0 × 10 18 pieces / cm 2 or less, it can be seen that the transmittance is higher than 90%.
 図3及び図4に示す結果から、水素化シリコンのスピン密度が低いほど、水素化シリコン膜に光が吸収され難くなり、光が透過し易くなることがわかる。これは、Siダングリングボンドが光の吸収に寄与していたためと考えられる。水素の導入によりSiダングリングボンドが減少することによって、吸光度kが低下し、透過率が高くなったものと考えられる。 From the results shown in FIGS. 3 and 4, it can be seen that the lower the spin density of silicon hydride, the more difficult it is for light to be absorbed by the silicon hydride film, and the easier it is for light to pass through. It is considered that this is because the Si dangling bond contributed to the absorption of light. It is probable that the introduction of hydrogen reduced the Si dangling bonds, resulting in a decrease in the absorbance k and an increase in the transmittance.
 なお、実施例1~4の結果から、シリコン膜の水素化における流量比(Ar/H)が、0.96以上、1.44以上、2.43以上である場合に、水素化シリコンのスピン密度がより一層低くなり、透過率がより一層高くなっていることがわかる。 From the results of Examples 1 to 4, when the flow rate ratio (Ar / H 2 ) in hydrogenation of the silicon film is 0.96 or more, 1.44 or more and 2.43 or more, the hydrogenated silicon is used. It can be seen that the spin density is further lowered and the transmittance is further increased.
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る光学フィルタを示す模式的断面図である。光学フィルタ21では、透明基板2の第2の主面2b上に反射防止膜6が設けられている。その他の点は、第1の実施形態と同様である。
(Second embodiment)
FIG. 5 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the present invention. In the optical filter 21, the antireflection film 6 is provided on the second main surface 2b of the transparent substrate 2. Other points are the same as those of the first embodiment.
 反射防止膜6は、相対的に屈折率が高い高屈折率膜7と相対的に屈折率が低い低屈折率膜8とを有する、多層膜である。本実施形態では、透明基板2の第2の主面2b上に、低屈折率膜8及び高屈折率膜7がこの順に交互に設けられることにより、多層膜が構成されている。本実施形態において、高屈折率膜7は、水素化シリコンにより構成されている。もっとも、高屈折率膜7の材料はこれに限定されるものではない。また、低屈折率膜8は、酸化ケイ素により構成されている。なお、低屈折率膜8の材料としては、酸化アルミニウム、酸化タンタル、酸化ニオブ、酸化チタン、酸化ハフニウム、窒化シリコン、酸化ジルコニウム、酸化スズを用いてもよい。 The antireflection film 6 is a multilayer film having a high refractive index film 7 having a relatively high refractive index and a low refractive index film 8 having a relatively low refractive index. In the present embodiment, the low refractive index film 8 and the high refractive index film 7 are alternately provided on the second main surface 2b of the transparent substrate 2 in this order to form a multilayer film. In the present embodiment, the high refractive index film 7 is made of silicon hydride. However, the material of the high refractive index film 7 is not limited to this. Further, the low refractive index film 8 is made of silicon oxide. As the material of the low refractive index film 8, aluminum oxide, tantalum oxide, niobium oxide, titanium oxide, hafnium oxide, silicon nitride, zirconium oxide, and tin oxide may be used.
 反射防止膜6の多層膜を構成する膜の層数は、10層以上であることが好ましい。一方で、反射防止膜6の多層膜を構成する膜の層数は、40層以下であることが好ましい。 The number of layers of the film constituting the multilayer film of the antireflection film 6 is preferably 10 or more. On the other hand, the number of layers of the film constituting the multilayer film of the antireflection film 6 is preferably 40 or less.
 第2の実施形態の光学フィルタ21においても、フィルタ部3の高屈折率膜4においては、水素化シリコンのスピン密度が1.0×1018個/cm以下である。よって、第1の実施形態と同様に、光学フィルタ21における透過率を高くすることができる。 Also in the optical filter 21 of the second embodiment, in the high refractive index film 4 of the filter unit 3, the spin density of silicon hydride is 1.0 × 10 18 pieces / cm 2 or less. Therefore, the transmittance in the optical filter 21 can be increased as in the first embodiment.
 反射防止膜6の高屈折率膜7としての水素化シリコン含有膜においても、水素化シリコンのスピン密度が1.0×1018個/cm以下であることが好ましい。この場合には、光学フィルタ21における透過率をより確実に、効果的に高くすることができる。 Even in the silicon hydride-containing film as the high refractive index film 7 of the antireflection film 6, the spin density of the silicon hydride is preferably 1.0 × 10 18 pieces / cm 2 or less. In this case, the transmittance of the optical filter 21 can be increased more reliably and effectively.
1…光学フィルタ
1a…主面
2…透明基板
2a…第1の主面
2b…第2の主面
3…フィルタ部
4…高屈折率膜
5…低屈折率膜
6…反射防止膜
7…高屈折率膜
8…低屈折率膜
21…光学フィルタ
1 ... Optical filter 1a ... Main surface 2 ... Transparent substrate 2a ... First main surface 2b ... Second main surface 3 ... Filter unit 4 ... High refractive index film 5 ... Low refractive index film 6 ... Antireflection film 7 ... High Refractive index film 8 ... Low refractive index film 21 ... Optical filter

Claims (4)

  1.  水素化シリコン含有膜を有する、光学フィルタであって、
     水素化シリコンのスピン密度が1.0×1018個/cm以下である、光学フィルタ。
    An optical filter having a silicon hydride-containing film.
    An optical filter having a spin density of silicon hydride of 1.0 × 10 18 pieces / cm 2 or less.
  2.  透明基板と、
     前記透明基板の一方側主面上に設けられており、かつ相対的に屈折率が高い高屈折率膜及び相対的に屈折率が低い低屈折率膜を有する多層膜からなるフィルタ部と、
    を備え、
     前記高屈折率膜が、前記水素化シリコン含有膜である、請求項1に記載の光学フィルタ。
    With a transparent board
    A filter unit provided on one main surface of the transparent substrate and composed of a multilayer film having a high refractive index film having a relatively high refractive index and a low refractive index film having a relatively low refractive index.
    Equipped with
    The optical filter according to claim 1, wherein the high-refractive index film is the silicon hydride-containing film.
  3.  前記低屈折率膜が、酸化ケイ素含有膜である、請求項2に記載の光学フィルタ。 The optical filter according to claim 2, wherein the low refractive index film is a silicon oxide-containing film.
  4.  前記透明基板の他方側主面上に設けられており、かつ水素化シリコンを含む反射防止膜をさらに備える、請求項2または3に記載の光学フィルタ。 The optical filter according to claim 2 or 3, which is provided on the other side main surface of the transparent substrate and further includes an antireflection film containing silicon hydride.
PCT/JP2021/042289 2020-12-11 2021-11-17 Optical filter WO2022124030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-205756 2020-12-11
JP2020205756A JP7528762B2 (en) 2020-12-11 2020-12-11 Optical Filters

Publications (1)

Publication Number Publication Date
WO2022124030A1 true WO2022124030A1 (en) 2022-06-16

Family

ID=81974387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042289 WO2022124030A1 (en) 2020-12-11 2021-11-17 Optical filter

Country Status (2)

Country Link
JP (1) JP7528762B2 (en)
WO (1) WO2022124030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859454A (en) * 2022-07-06 2022-08-05 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398133A (en) * 1993-10-27 1995-03-14 Industrial Technology Research Institute High endurance near-infrared optical window
JPH10217377A (en) * 1997-02-05 1998-08-18 Japan Aviation Electron Ind Ltd Dielectric multi-layer film
JP2009035780A (en) * 2007-08-02 2009-02-19 Sfc:Kk Method for producing hydrogenated amorphous silicon and apparatus for forming film thereof
CN109932773A (en) * 2017-12-19 2019-06-25 张家港康得新光电材料有限公司 A kind of visible light cut film, preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398133A (en) * 1993-10-27 1995-03-14 Industrial Technology Research Institute High endurance near-infrared optical window
JPH10217377A (en) * 1997-02-05 1998-08-18 Japan Aviation Electron Ind Ltd Dielectric multi-layer film
JP2009035780A (en) * 2007-08-02 2009-02-19 Sfc:Kk Method for producing hydrogenated amorphous silicon and apparatus for forming film thereof
CN109932773A (en) * 2017-12-19 2019-06-25 张家港康得新光电材料有限公司 A kind of visible light cut film, preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859454A (en) * 2022-07-06 2022-08-05 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window
CN114859454B (en) * 2022-07-06 2022-10-18 宁波永新光学股份有限公司 Black optical filter for vehicle-mounted laser radar window

Also Published As

Publication number Publication date
JP7528762B2 (en) 2024-08-06
JP2022092825A (en) 2022-06-23

Similar Documents

Publication Publication Date Title
TWI648561B (en) Optical filter and sensor system
TWI380057B (en) Absorption type multi-layer film no filter
US20080199671A1 (en) Glass sheet with antireflection film and laminated glass for windows
CN111796353B (en) Optical filter and method of forming the same
WO2022124030A1 (en) Optical filter
JP4171362B2 (en) Transparent substrate with antireflection film
JP3381150B2 (en) Infrared transmission filter and manufacturing method thereof
WO2014010401A1 (en) Laminate precursor, laminate, and laminated auto glass
WO2021117598A1 (en) Optical filter and method for manufacturing same
JP2014016459A (en) Production method of laminate
JP2003098340A (en) Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film
JP2023119592A (en) optical filter
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
JP7303496B2 (en) METHOD FOR MANUFACTURING TRANSPARENT SUBSTRATE WITH FILM
WO2014010400A1 (en) Method for manufacturing laminate body and laminate body
CN115877494A (en) Optical filter
WO2022181371A1 (en) Transparent substrate with multilayer film and image display device
WO2020235540A1 (en) Film-equipped transparent substrate
US20230178347A1 (en) Preparation method of hydrogenated composite film and optical filter
JP2023021037A (en) optical filter
JP2000275402A (en) Optical element with antireflection film
JPH06180401A (en) Edge filter
TWI855290B (en) Optical filter and sensor system
TW202403359A (en) filter
JPS6295501A (en) Optical filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903134

Country of ref document: EP

Kind code of ref document: A1