JP3381150B2 - Infrared transmission filter and manufacturing method thereof - Google Patents

Infrared transmission filter and manufacturing method thereof

Info

Publication number
JP3381150B2
JP3381150B2 JP24342899A JP24342899A JP3381150B2 JP 3381150 B2 JP3381150 B2 JP 3381150B2 JP 24342899 A JP24342899 A JP 24342899A JP 24342899 A JP24342899 A JP 24342899A JP 3381150 B2 JP3381150 B2 JP 3381150B2
Authority
JP
Japan
Prior art keywords
film
refractive index
metal oxide
infrared transmission
transmission filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24342899A
Other languages
Japanese (ja)
Other versions
JP2001066424A (en
Inventor
博信 坂本
泰司 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP24342899A priority Critical patent/JP3381150B2/en
Publication of JP2001066424A publication Critical patent/JP2001066424A/en
Application granted granted Critical
Publication of JP3381150B2 publication Critical patent/JP3381150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナイトビジョン用
の赤外線照射ランプや可視光カットフィルタなどに使用
される赤外線透過フィルタ及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared transmission filter used for an infrared irradiation lamp for night vision, a visible light cut filter and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図8は、この種の従来の可視光カットフ
ィルタの断面構造を示す図である。このフィルタは、ガ
ラス、セラミック等の基板1上に高屈折率膜Hと低屈折
率膜Lとを交互に積層して13層の多層膜2を形成した
ものである。
2. Description of the Related Art FIG. 8 is a view showing a sectional structure of a conventional visible light cut filter of this type. In this filter, a high-refractive index film H and a low-refractive index film L are alternately laminated on a substrate 1 such as glass or ceramic to form a 13-layer multilayer film 2.

【0003】上記多層膜2は、基板1の片面あるいは両
面に形成され、基板1に近い方から高屈折率膜Hと低屈
折率膜Lが交互に成膜されている。そして、最外層は高
屈折率膜Hとなっている。また、高屈折率膜Hにはa−
Si(アモルファスシリコン)が用いられ、低屈折率膜
LにはSiO2 が用いられ、成膜方法としてはディップ
法、真空蒸着法、スパッタ法、イオンプレーティング法
などが一般的である。
The multilayer film 2 is formed on one side or both sides of the substrate 1, and high refractive index films H and low refractive index films L are alternately formed from the side closer to the substrate 1. The outermost layer is the high refractive index film H. The high refractive index film H has a-
Si (amorphous silicon) is used, SiO 2 is used for the low refractive index film L, and as a film forming method, a dipping method, a vacuum deposition method, a sputtering method, an ion plating method or the like is generally used.

【0004】表1に上記従来のフィルタの膜構成を示
す。この表1では、各層(1〜13)の膜材料、屈折率
及び光学膜厚(nm)を示している。
Table 1 shows the film structure of the conventional filter. In Table 1, the film material, the refractive index, and the optical film thickness (nm) of each layer (1 to 13) are shown.

【0005】[0005]

【表1】 [Table 1]

【0006】また、図2に透過率特性結果を示す。図に
示すように、波長800〜1400nmの赤外線を略9
0%透過し、それ以下の波長の可視光線がカットされて
いる。
Further, FIG. 2 shows the results of transmittance characteristics. As shown in the figure, infrared rays of wavelength 800 to 1400 nm are
It transmits 0% and cuts visible light of wavelengths shorter than that.

【0007】図10は赤外線照射ハロゲンランプの概略
構造を示す図であり、光源11を囲っているガラス管1
2に上記構成のフィルタが使用されている。図11は赤
外線透過フィルタ13を示し、その断面構造が上記の多
層膜構造となっている。
FIG. 10 is a diagram showing a schematic structure of an infrared irradiation halogen lamp, and a glass tube 1 surrounding a light source 11.
2 uses the filter having the above configuration. FIG. 11 shows an infrared transmission filter 13, the cross-sectional structure of which is the above-mentioned multilayer film structure.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の赤外線透過フィルタにあっては、最外層が
a−Siの高屈折率膜であり、経時変化により自然酸化
膜が形成されてしまう。特にランプでは、高温になるた
めに酸化膜が形成され易く、これが原因となって可視光
が透過してしまうという問題点があった。
However, in the conventional infrared transmission filter as described above, the outermost layer is a high refractive index film of a-Si, and a natural oxide film is formed due to aging. . Particularly in the lamp, there is a problem that an oxide film is easily formed due to the high temperature, which causes visible light to pass therethrough.

【0009】本発明は、上記のような問題点に着目して
なされたもので、可視光域の光線の透過率の経時変化を
防止でき、安定した可視光カット及び良好な赤外線透過
特性が得られる赤外線透過フィルタ及びその製造方法を
提供することを目的としている。
The present invention has been made by paying attention to the above problems, and it is possible to prevent a change in transmittance of light rays in the visible light region with time, to obtain a stable visible light cut and a good infrared transmission characteristic. It is an object of the present invention to provide an infrared transmitting filter and a manufacturing method thereof.

【0010】(1)基板上にアモルファスシリコンまた
はポリシリコンよりなる高屈折率膜と低屈折率膜とを交
互に積層して多層膜構造とし、且つ最外層にそれらの中
間屈折率を持つ金属酸化膜を設けたものであり、前記多
層膜は波長800nm以下の可視光を吸収する能力を有
するようにした
(1) Amorphous silicon or
Is a multi-layered structure by laminating a high refractive index film and a low refractive index film of polysilicon alternately, and in and which is provided a metal oxide film with those intermediate refractive index to the outermost layer, the multi
The layer film has the ability to absorb visible light with a wavelength of 800 nm or less.
I decided to do it .

【0011】(2)基板上にアモルファスシリコンまた
はポリシリコンよりなる高屈折率膜と低屈折率膜とを交
互に積層して多層膜構造とし、且つ最外層及び該最外層
から3層目にそれらの中間屈折率を持つ金属酸化膜を設
けたものであり、前記多層膜は波長800nm以下の可
視光を吸収する能力を有するようにした
(2) Amorphous silicon or
Is a multilayer film structure in which high-refractive index films and low-refractive index films made of polysilicon are alternately laminated, and an outermost layer and a metal oxide film having an intermediate refractive index between them are provided as a third layer from the outermost layer. The multilayer film has a wavelength of 800 nm or less.
It has the ability to absorb visible light .

【0012】(2)基板上に高屈折率膜と低屈折率膜と
を交互に積層して多層膜構造とし、且つ最外層及び該最
外層から3層目にそれらの中間屈折率を持つ金属酸化膜
を設けた。
(2) A high refractive index film and a low refractive index film are alternately laminated on a substrate to form a multilayer film structure, and an outermost layer and a metal having an intermediate refractive index between the outermost layer and the third layer. An oxide film was provided.

【0013】(3)上記(1)または(2)の構成にお
いて、最外層の金属酸化膜は略1.9〜2.4の屈折率
を有するようにした。
(3) In the configuration of (1) or (2), the outermost metal oxide film has a refractive index of about 1.9 to 2.4.

【0014】(4)上記(1)ないし(3)何れかの構
成において、最外層の金属酸化膜は透過光の500〜8
00nmの中心波長入に対して1/4入〜3/2入の光
学膜厚を有するようにした。
(4) In any one of the configurations (1) to (3), the outermost metal oxide film has a transmittance of 500 to 8 of transmitted light.
The optical film thickness was set to 1/4 to 3/2 with respect to the center wavelength of 00 nm.

【0015】(6)基板上にアモルファスシリコンまた
はポリシリコンよりなる高屈折率膜と低屈折率膜とを交
互に積層して多層膜を形成し、且つ最外層にそれらの中
間屈折率を持つ金属酸化膜を形成するようにしたもので
あり、前記多層膜は波長800nm以下の可視光を吸収
する能力を有するようにした
(6) Amorphous silicon or
Obtained by such multilayer film is formed by laminating a high refractive index film and a low refractive index film of polysilicon alternately and forming a metal oxide film with those intermediate refractive index to the outermost layer
Yes, the multilayer film absorbs visible light with a wavelength of 800 nm or less
To have the ability to

【0016】(7)基板上にアモルファスシリコンまた
はポリシリコンよりなる高屈折率膜と低屈折率膜とを交
互に積層して多層膜を形成し、且つ最外層及び該最外層
から3層目にそれらの中間屈折率を持つ金属酸化膜を形
成するようにしたものであり、前記多層膜は波長800
nm以下の可視光を吸収する能力を有するようにした
(7) Amorphous silicon or
Is a multilayer film formed by alternately laminating a high refractive index film and a low refractive index film made of polysilicon , and forming an outermost layer and a metal oxide film having an intermediate refractive index between them in the third layer from the outermost layer. The multilayer film has a wavelength of 800
It has an ability to absorb visible light of nm or less .

【0017】(7)基板上に高屈折率膜と低屈折率膜と
を交互に積層して多層膜を形成し、且つ最外層及び該最
外層から3層目にそれらの中間屈折率を持つ金属酸化膜
を形成するようにした。
(7) A high-refractive index film and a low-refractive index film are alternately laminated on a substrate to form a multilayer film, and an outermost layer and an intermediate refractive index between the outermost layer and the third layer are provided. A metal oxide film is formed.

【0018】(8)上記(6)または(7)の構成にお
いて、最外層の金属酸化膜は略1.9〜2.4の屈折率
を有した金属酸化物で形成するようにした。
(8) In the structure of (6) or (7), the outermost metal oxide film is made of a metal oxide having a refractive index of about 1.9 to 2.4.

【0019】(9)上記(6)ないし(8)何れかの構
成において、最外層の金属酸化膜は透過光の500〜8
00nmの中心波長入に対して1/4入〜3/2入の光
学膜厚を有した金属酸化物で形成するようにした。
(9) In the structure of any of (6) to (8) above, the outermost metal oxide film has 500 to 8 of transmitted light.
A metal oxide having an optical film thickness of 1/4 to 3/2 with respect to a center wavelength of 00 nm is formed.

【0020】(10)上記(7)ないし(9)何れかの
構成において、最外層から3層目の金属酸化膜は透過光
の500〜800nmの中心波長に対して入〜2入の光
学膜厚を有した金属酸化物で形成するようにした。
(10) In any one of the configurations (7) to (9), the metal oxide film from the outermost layer to the third layer is an optical film which is one or two to the center wavelength of transmitted light of 500 to 800 nm. It is made of a metal oxide having a thickness.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施例を図面につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施例1)図1は本発明の実施例1の構
成を示す断面図であり、図10に示す赤外線照射ハロゲ
ンランプのガラス管の断面、若しくは図11に示す赤外
線透過フィルム(可視光カットフィルタ)などの断面の
構造を示している。
(Embodiment 1) FIG. 1 is a sectional view showing the structure of Embodiment 1 of the present invention, which is a sectional view of a glass tube of an infrared irradiation halogen lamp shown in FIG. 10 or an infrared transmitting film (visible) shown in FIG. The structure of a cross section such as a light cut filter is shown.

【0023】本実施例のフィルタは、ガラスやセラミッ
クなどの基板1上に高屈折率膜Hと低屈折率膜Lとを交
互に積層して13層の多層膜3を形成しており、且つ最
外層はそれらの中間の屈折率を持つ金属酸化物で成膜し
た金属酸化膜Mとなっている。また、金属酸化膜Mは略
1.9〜2.4の屈折率を持ち、光学膜厚は透過光の5
00〜800nmの中心波長入に対して1/4入〜3/
2入となっている。
In the filter of this embodiment, a high-refractive index film H and a low-refractive index film L are alternately laminated on a substrate 1 such as glass or ceramic to form a 13-layer multilayer film 3, and The outermost layer is a metal oxide film M formed of a metal oxide having a refractive index intermediate between them. Further, the metal oxide film M has a refractive index of approximately 1.9 to 2.4, and the optical film thickness is 5 for the transmitted light.
1/4 wavelength to 3 / wavelength for the center wavelength of 00 to 800 nm
It is 2 pieces.

【0024】上記高屈折率膜Hにはa−Siが用いら
れ、低屈折率膜LにはSiO2 が用いられている。そし
て、これらを真空蒸着法により交互に成膜して12層の
多層膜とする。成膜方法としては、他の方法でもよく、
ディップ法、スパッタ法、イオンプレーティング法など
でも良い。
The high refractive index film H is made of a-Si, and the low refractive index film L is made of SiO 2 . Then, these are alternately formed by a vacuum vapor deposition method to form a 12-layer multilayer film. As a film forming method, another method may be used.
A dipping method, a sputtering method, an ion plating method or the like may be used.

【0025】また、中間屈折率の金属酸化膜MにはTa
25 が用いられ、同様に成膜して最外層を形成する。
この金属酸化膜Mは、他にTiO2 ,Nd23 ,Zr
2,SiN,Bi23 ,ZnOでも良く、上記の屈
折率であれば利用することができる。このようにして形
成された多層膜3の光学膜厚、屈折率を含む膜構成を表
2に示す。また、本実施例の透過率特性結果を図2に示
す。
The metal oxide film M having an intermediate refractive index has Ta
2 O 5 is used, and a film is similarly formed to form the outermost layer.
The metal oxide film M is made of TiO 2 , Nd 2 O 3 , Zr.
O 2, SiN, Bi 2 O 3, ZnO , even better, may be employed if the refractive index of the. Table 2 shows the film constitution including the optical film thickness and the refractive index of the multilayer film 3 thus formed. Further, the results of the transmittance characteristics of this example are shown in FIG.

【0026】[0026]

【表2】 [Table 2]

【0027】最外層を金属酸化膜Mに置き換えても、波
長400〜700nmの可視光域の光線は十分にカット
され、しかも800〜1400nmの領域の赤外線は略
94%透過し、従来と比べて赤外線の透過率が上昇して
いる。この透過率は、金属酸化膜Mの光学膜厚ndを調
整することで上昇させることができる。
Even if the outermost layer is replaced by the metal oxide film M, the light rays in the visible light region of wavelength 400 to 700 nm are sufficiently cut off, and the infrared rays in the region of 800 to 1400 nm are transmitted by about 94%. Infrared transmittance is increasing. This transmittance can be increased by adjusting the optical film thickness nd of the metal oxide film M.

【0028】表3に上記本実施例の金属酸化膜Mの光学
膜厚と従来のa−Siの最外層の光学膜厚を変化させた
ときの赤外線の平均透過率を示す。また、図3に本実施
例の光学膜厚と平均透過率との関係を示す。
Table 3 shows the average transmittance of infrared rays when the optical film thickness of the metal oxide film M of the present embodiment and the optical film thickness of the conventional outermost layer of a-Si are changed. Further, FIG. 3 shows the relationship between the optical film thickness and the average transmittance in this example.

【0029】[0029]

【表3】 [Table 3]

【0030】これらの結果より、金属酸化膜Mを用いた
場合、0.75nmの光学膜厚ndで赤外線の透過率が
最大になり、従来よりも高い透過率が得られる。更に、
従来と比べて、中心波長入に対して1/4入<nd<3
/2入であれば透過率が80%以上と高い値が得られ
る。中心波長入は、500〜800nmの範囲である
が、400〜800nmでも良い。
From these results, when the metal oxide film M is used, the transmittance of infrared rays becomes maximum at an optical film thickness nd of 0.75 nm, and a transmittance higher than that of the prior art can be obtained. Furthermore,
Compared with the conventional one, 1/4 wavelength <nd <3 with respect to the center wavelength
If it is / 2, the transmittance is as high as 80% or more. The center wavelength is in the range of 500 to 800 nm, but may be 400 to 800 nm.

【0031】(実施例2)図4は本発明の実施例2の構
成を示す断面図である。図中、4は図1の多層膜3に相
当する多層膜であり、本実施例では最外層と該最外層か
ら3層目とに金属酸化膜Mを設けている。すなわち、基
板1の方から11層目のa−Si膜をTa 25 等の金
属酸化膜Mに置き換えている。
(Second Embodiment) FIG. 4 shows the structure of a second embodiment of the present invention.
It is a sectional view showing composition. In the figure, 4 is the phase of the multilayer film 3 of FIG.
In this embodiment, the outermost layer and the outermost layer
A metal oxide film M is provided on the third layer. I.e.
The 11th layer a-Si film from the plate 1 was Ta. 2 OFive Etc gold
It is replaced with a metal oxide film M.

【0032】表4に本実施例の膜構成を示す。また、図
5に透過率特性結果を示す。
Table 4 shows the film structure of this example. Further, FIG. 5 shows the result of the transmittance characteristic.

【0033】[0033]

【表4】 [Table 4]

【0034】前述の実施例と同様、可視光域の光線は十
分カットされ、赤外線の平均透過率も略94%と高い値
が得られる。
Similar to the above-mentioned embodiment, the light rays in the visible light region are sufficiently cut and the average infrared transmittance is as high as about 94%.

【0035】また実施例1と同様に、本実施例の最外層
の光学膜厚nd1が1/2入、3/4入、1入のとき、
11層目の光学膜厚nd2を変化させた場合の平均透過
率を表5に示す。また、11層目の光学膜厚nd2と平
均透過率との関係を図6に示す。
Similarly to the first embodiment, when the optical film thickness nd1 of the outermost layer of this embodiment is 1/2, 3/4, or 1
Table 5 shows the average transmittances when the optical film thickness nd2 of the 11th layer was changed. FIG. 6 shows the relationship between the optical film thickness nd2 of the 11th layer and the average transmittance.

【0036】[0036]

【表5】 [Table 5]

【0037】これらの結果より、nd1=3/4入のと
き赤外線の平均透過率は最大となる。また、nd1が1
/2入、3/4入、1入のとの場合においても1入<n
d2<2入であれば75%以上の透過率を得ることがで
きる。このときの中心波長も400〜800nmの範囲
である。
From these results, the average infrared transmittance becomes maximum when nd1 = 3/4. Also, nd1 is 1
In case of / 2 entry, 3/4 entry, 1 entry, 1 entry <n
If d2 <2, a transmittance of 75% or more can be obtained. The center wavelength at this time is also in the range of 400 to 800 nm.

【0038】以上、本発明の実施例について述べたが、
上述のように最外層に金属酸化膜を設けることで、可視
光域の透過率の経時変化を防止することができる。図7
はその経時変化の様子を示したもので、従来例と比べて
実施例1では透過率の経時変化は小さいものとなる。実
施例2でも同様である。
The embodiments of the present invention have been described above.
By providing the metal oxide film on the outermost layer as described above, it is possible to prevent the transmittance in the visible light region from changing with time. Figure 7
Shows the state of the change with time, and the change with time of the transmittance is small in Example 1 as compared with the conventional example. The same applies to the second embodiment.

【0039】表6に真空蒸着装置による吸収膜の成膜条
件、表7に同真空蒸着装置によるTa25 とSiO2
の成膜条件をそれぞれ示す。
Table 6 shows the film forming conditions of the absorption film by the vacuum evaporation system, and Table 7 shows Ta 2 O 5 and SiO 2 by the vacuum evaporation system.
The film forming conditions are shown below.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】成膜条件としては、2.0×10- 4 Pa
の雰囲気中で行い、成膜速度はSiが1.0Å/S、T
25 及びSiO2 は共に8.0Å/Sである。ま
た、基板湿度は350℃で行い、Ta25 の成膜時の
酸素分圧は0.05Paとなる。
[0042] As the film forming conditions, 2.0 × 10 - 4 Pa
The film formation rate is 1.0 Å / S, T for Si.
Both a 2 O 5 and SiO 2 are 8.0Å / S. The substrate humidity is 350 ° C., and the oxygen partial pressure during deposition of Ta 2 O 5 is 0.05 Pa.

【0043】[0043]

【発明の効果】以上のように、本発明によれば、可視光
域の光線の透過率の経時変化を防止でき、安定した可視
光カット及び良好な赤外線透過特性が得られるという効
果がある。
As described above, according to the present invention, it is possible to prevent changes in the transmittance of light rays in the visible light region over time, and to obtain a stable visible light cut and good infrared transmission characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の構成を示す断面図FIG. 1 is a sectional view showing a configuration of a first embodiment of the present invention.

【図2】 実施例1の透過率特性結果を示す図FIG. 2 is a diagram showing the transmittance characteristic results of Example 1.

【図3】 実施例1の光学膜厚と平均透過率との関係を
示す図
FIG. 3 is a diagram showing the relationship between the optical film thickness and the average transmittance in Example 1.

【図4】 本発明の実施例2の構成を示す断面図FIG. 4 is a sectional view showing a configuration of a second embodiment of the present invention.

【図5】 実施例2の透過率特性結果を示す図FIG. 5 is a diagram showing the transmittance characteristic results of Example 2;

【図6】 実施例2の光学膜厚と平均透過率との関係を
示す図
FIG. 6 is a diagram showing the relationship between the optical film thickness and the average transmittance in Example 2.

【図7】 可視光領域の透過率の経時変化を示す図FIG. 7 is a diagram showing a change with time in transmittance in the visible light region.

【図8】 従来例の構成を示す断面図FIG. 8 is a sectional view showing a configuration of a conventional example.

【図9】 従来の可視光カットフィルタの透過率特性を
示す図
FIG. 9 is a diagram showing a transmittance characteristic of a conventional visible light cut filter.

【図10】 赤外線ランプの構造を示す断面図FIG. 10 is a sectional view showing the structure of an infrared lamp.

【図11】 赤外線透過フィルタを示す斜視図FIG. 11 is a perspective view showing an infrared transmission filter.

【符号の説明】 1 基板 3 多層膜 4 多層膜 H 高屈折率膜 L 低屈折率膜 M 金属酸化膜[Explanation of symbols] 1 substrate 3 multilayer film 4 Multi-layer film H high refractive index film L low refractive index film M metal oxide film

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上にアモルファスシリコンまたはポ
リシリコンよりなる高屈折率膜と低屈折率膜とを交互に
積層して多層膜構造とし、且つ最外層にそれらの中間屈
折率を持つ金属酸化膜を設けたものであり、前記多層膜
は波長800nm以下の可視光を吸収する能力を有する
ことを特徴とする赤外線透過フィルタ。
1. Amorphous silicon or porosity is formed on a substrate.
A high-refractive index film and a low-refractive index film made of silicon are alternately laminated to form a multilayer film structure, and a metal oxide film having an intermediate refractive index between them is provided in the outermost layer.
Is an infrared transmission filter having a capability of absorbing visible light having a wavelength of 800 nm or less .
【請求項2】 基板上にアモルファスシリコンまたはポ
リシリコンよりなる高屈折率膜と低屈折率膜とを交互に
積層して多層膜構造とし、且つ最外層及び該最外層から
3層目にそれらの中間屈折率を持つ金属酸化膜を設けた
ものであり、前記多層膜は波長800nm以下の可視光
を吸収する能力を有することを特徴とする赤外線透過フ
ィルタ。
2. Amorphous silicon or porosity is formed on a substrate.
A high-refractive-index film and a low-refractive-index film made of silicon are alternately laminated to form a multilayer film structure, and an outermost layer and a metal oxide film having an intermediate refractive index between them are provided on the third layer from the outermost layer.
The multilayer film is a visible light having a wavelength of 800 nm or less.
An infrared transmission filter having the ability to absorb light.
【請求項3】 最外層の金属酸化膜は略1.9〜2.4
の屈折率を有していることを特徴とする請求項1または
2記載の赤外線透過フィルタ。
3. The outermost metal oxide film is approximately 1.9 to 2.4.
The infrared transmission filter according to claim 1 or 2, having a refractive index of.
【請求項4】 最外層の金属酸化膜は透過光の500〜
800nmの中心波長入に対して1/4入〜3/2入の
光学膜厚を有していることを特徴とする請求項1ないし
3何れか記載の赤外線透過フィルタ。
4. The outermost metal oxide film has a thickness of 500 to 500 for transmitted light.
4. The infrared transmission filter according to claim 1, which has an optical film thickness of 1/4 to 3/2 with respect to a center wavelength of 800 nm.
【請求項5】 最外層から3層目の金属酸化膜は透過光
の500〜800nmの中心波長に対して入〜2入の光
学膜厚を有していることを特徴とする請求項2ないし4
記載の赤外線透過フィルタ。
5. The metal oxide film of the third layer from the outermost layer has an optical film thickness of 1 to 2 with respect to the central wavelength of transmitted light of 500 to 800 nm. Four
Infrared transmission filter described.
【請求項6】 基板上にアモルファスシリコンまたはポ
リシリコンよりなる高屈折率膜と低屈折率膜とを交互に
積層して多層膜を形成し、且つ最外層にそれらの中間屈
折率を持つ金属酸化膜を形成するようにしたことを特徴
とするものであり、前記多層膜は波長800nm以下の
可視光を吸収する能力を有する赤外線透過フィルタの製
造方法。
6. Amorphous silicon or porosity on a substrate
A high-refractive index film and a low-refractive index film made of silicon are alternately laminated to form a multilayer film, and a metal oxide film having an intermediate refractive index between them is formed in the outermost layer. The multilayer film has a wavelength of 800 nm or less.
A method for manufacturing an infrared transmission filter having the ability to absorb visible light .
【請求項7】 基板上にアモルファスシリコンまたはポ
リシリコンよりなる高屈折率膜と低屈折率膜とを交互に
積層して多層膜を形成し、且つ最外層及び該最外層から
3層目にそれらの中間屈折率を持つ金属酸化膜を形成す
るようにしたことを特徴とするものであり、前記多層膜
は波長800nm以下の可視光を吸収する能力を有する
赤外線透過フィルタの製造方法。
7. Amorphous silicon or a porous film on a substrate.
A high refractive index film and a low refractive index film made of silicon are alternately laminated to form a multilayer film, and an outermost layer and a metal oxide film having an intermediate refractive index between them are formed in the third layer from the outermost layer. The multi-layer film is characterized in that
Is a method for manufacturing an infrared transmission filter having an ability to absorb visible light having a wavelength of 800 nm or less .
【請求項8】 最外層の金属酸化膜は略1.9〜2.4
の屈折率を有した金属酸化物で形成するようにしたこと
を特徴とする請求項6または7記載の赤外線透過フィル
タの製造方法。
8. The outermost metal oxide film is approximately 1.9 to 2.4.
The method of manufacturing an infrared transmission filter according to claim 6 or 7, wherein the infrared transmission filter is formed of a metal oxide having a refractive index of.
【請求項9】 最外層の金属酸化膜は透過光の500〜
800nmの中心波長入に対して1/4入〜3/2入の
光学膜厚を有した金属酸化物で形成するようにしたこと
を特徴とする請求項6ないし8何れか記載の赤外線透過
フィルタの製造方法。
9. The outermost metal oxide film has a thickness of 500 to 500 for transmitted light.
9. The infrared transmission filter according to claim 6, wherein the infrared transmission filter is formed of a metal oxide having an optical film thickness of 1/4 to 3/2 with respect to a center wavelength of 800 nm. Manufacturing method.
【請求項10】 最外層から3層目の金属酸化膜は透過
光の500〜800nmの中心波長に対して入〜2入の
光学膜厚を有した金属酸化物で形成するようにしたこと
を特徴とする請求項7ないし9記載の赤外線透過フィル
タの製造方法。
10. The third to third outermost metal oxide films are formed of a metal oxide having an optical thickness of 1 to 2 with respect to a center wavelength of transmitted light of 500 to 800 nm. The method for manufacturing an infrared transmission filter according to claim 7, wherein the infrared transmission filter is manufactured.
JP24342899A 1999-08-30 1999-08-30 Infrared transmission filter and manufacturing method thereof Expired - Fee Related JP3381150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24342899A JP3381150B2 (en) 1999-08-30 1999-08-30 Infrared transmission filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24342899A JP3381150B2 (en) 1999-08-30 1999-08-30 Infrared transmission filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001066424A JP2001066424A (en) 2001-03-16
JP3381150B2 true JP3381150B2 (en) 2003-02-24

Family

ID=17103735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24342899A Expired - Fee Related JP3381150B2 (en) 1999-08-30 1999-08-30 Infrared transmission filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3381150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119612A (en) * 2004-09-22 2006-05-11 Iwasaki Electric Co Ltd Infrared ray transmitting filter and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319008A1 (en) * 2003-04-25 2004-11-11 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Infrared heater and radiation device
JP2005266538A (en) * 2004-03-19 2005-09-29 Stanley Electric Co Ltd Infrared transmission filter
JP2005266537A (en) * 2004-03-19 2005-09-29 Stanley Electric Co Ltd Infrared transmission filter and infrared projector equipped with the same
JP2009156954A (en) * 2007-12-25 2009-07-16 Nippon Electric Glass Co Ltd Wavelength separation film, and optical communication filter using the same
JP2010185916A (en) * 2009-02-10 2010-08-26 Nippon Electric Glass Co Ltd Beam splitting film and beamsplitter using the same
JPWO2011007435A1 (en) * 2009-07-16 2012-12-20 株式会社山野光学 Aperture stop
CA2773258A1 (en) * 2009-09-07 2011-03-10 Asahi Glass Company, Limited Article having low-reflection film on surface of base material
JP2018022042A (en) * 2016-08-03 2018-02-08 三菱マテリアル株式会社 Infrared filter, Zn-Sn containing oxide film and Zn-Sn containing oxide sputtering target
US10802185B2 (en) * 2017-08-16 2020-10-13 Lumentum Operations Llc Multi-level diffractive optical element thin film coating
JPWO2022065000A1 (en) * 2020-09-23 2022-03-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119612A (en) * 2004-09-22 2006-05-11 Iwasaki Electric Co Ltd Infrared ray transmitting filter and manufacturing method thereof
JP4678268B2 (en) * 2004-09-22 2011-04-27 岩崎電気株式会社 Infrared transmission filter and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001066424A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
JP6003895B2 (en) Near-infrared cut filter
JP3332879B2 (en) Dichroic mirror
JP3381150B2 (en) Infrared transmission filter and manufacturing method thereof
JP2007183525A (en) Dielectric multilayer film filter
JPH0763915A (en) Thin film nd filter and its production
JP2004354735A (en) Light ray cut filter
JP2000329933A (en) Multilayered film filter
JP2003029027A (en) Near ir ray cut filter
US6034820A (en) Dielectric optical filter with absorptive metal layer
JP4434491B2 (en) Electric lamp
JP3917261B2 (en) Optical absorber and optical apparatus using the same
JP4914955B2 (en) ND filter with IR cut function
JP2691651B2 (en) Reflector
JP4171362B2 (en) Transparent substrate with antireflection film
JPH11202127A (en) Dichroic mirror
JP2006259124A (en) Cold mirror
JPH07209516A (en) Optical multilayer film filter
JP4981456B2 (en) ND filter
JP5066644B2 (en) Multilayer ND filter
WO2022124030A1 (en) Optical filter
JPH10332919A (en) Low pass filter for uv region of electromagnetic spectrum
JP2003121637A (en) Fabry-perot filter
WO2020090615A1 (en) Band-pass filter and manufacturing method therefor
JP2010175838A (en) Light cut filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees