WO2020235540A1 - Film-equipped transparent substrate - Google Patents

Film-equipped transparent substrate Download PDF

Info

Publication number
WO2020235540A1
WO2020235540A1 PCT/JP2020/019702 JP2020019702W WO2020235540A1 WO 2020235540 A1 WO2020235540 A1 WO 2020235540A1 JP 2020019702 W JP2020019702 W JP 2020019702W WO 2020235540 A1 WO2020235540 A1 WO 2020235540A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
light absorption
transparent substrate
less
Prior art date
Application number
PCT/JP2020/019702
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 佐原
雄亮 山崎
今村 努
泰祟 田邉
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2021520789A priority Critical patent/JPWO2020235540A1/ja
Publication of WO2020235540A1 publication Critical patent/WO2020235540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a transparent substrate with a film.
  • Patent Document 1 a light absorption layer in which fine particles of a conductive material such as titanium nitride are dispersed is provided on an antireflection film provided on a base material such as a camera lens, and visible light is provided based on the light absorption of the light absorption layer.
  • a technique for reducing the transmittance of light is disclosed.
  • An object of the present invention is to reduce the transmittance of a transparent substrate with a film applied to a display surface or the like of a display by a simple configuration.
  • the transparent substrate with a film includes a transparent base material and an optical film provided on the surface of the transparent base material, and the optical film includes a plurality of dielectric layers and the plurality of said optical films. It is provided with one layer or two or more light absorbing layers sandwiched between the dielectric layers, the light absorbing layer contains metallic tin, and the total physical film thickness of the light absorbing layers is 2 to 30 nm.
  • the physical film thickness of the single layer of the light absorption layer may be 20 nm or less.
  • at least one layer in contact with the light absorption layer may be a layer made of silicon oxide or aluminum oxide.
  • the plurality of dielectric layers may be a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated, and the light absorption layer may be the dielectric multilayer film. It may be provided between the layers of the film.
  • the plurality of dielectric layers may contain one or more selected from inorganic oxides, inorganic nitrides and inorganic oxynitrides.
  • the average value of the light transmittance in the wavelength range of 400 to 700 nm may be 44% or more and 90% or less.
  • the difference between the maximum value and the minimum value of the light transmittance (%) in the wavelength range of 400 to 700 nm may be 30 or less.
  • the average value of the light absorption rate in the wavelength range of 400 to 700 nm may be 10% or more and 55% or less.
  • the difference between the maximum value and the minimum value of the light absorption rate (%) in the wavelength range of 400 to 700 nm may be 30 or less.
  • the transmittance of visible light of a transparent substrate with a film can be reduced by a simple configuration.
  • the transparent substrate 10 with a film includes a plate-shaped transparent base material 11 and an optical film 12 provided on the surface of the transparent base material 11.
  • the transparent base material 11 is a substrate having a second surface 11b located on the opposite side of the first surface 11a and the first surface 11a.
  • the thickness of the transparent base material 11 is not particularly limited, and can be appropriately set in consideration of mechanical properties and the like.
  • the thickness of the transparent base material 11 is, for example, in the range of 0.05 mm or more and 10 mm or less.
  • the transparency of the transparent base material 11 means that, for example, visible light (wavelength range of 400 to 700 nm) is transmitted by 80% or more on average.
  • the material of the transparent base material 11 examples include glass and resin.
  • the glass for example, known glass such as non-alkali glass, aluminosilicate glass, soda-lime glass, and quartz glass can be used. Further, tempered glass such as chemically strengthened glass and crystallized glass such as LAS-based crystallized glass can also be used.
  • the glass is preferably aluminosilicate glass, and the aluminosilicate glass is SiO 2 : 50 to 80% by mass, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15%, It is more preferable to contain Na 2 O: 1 to 20% and K 2 O: 0 to 10%.
  • the resin include acrylic resins such as polymethyl methacrylate, polycarbonate resins, and epoxy resins.
  • the transparent base material 11 is preferably made of glass in that the transmittance of visible light does not easily change with time.
  • the optical film 12 includes a plurality of dielectric layers 13 and one or more light absorbing layers 14 sandwiched between the dielectric layers 13.
  • FIG. 1 illustrates a case where a single layer of light absorption layer 14 is provided.
  • the side closer to the transparent base material 11 in the thickness direction of the optical film 12 will be referred to as the inside, and the side far from the transparent base material 11 will be referred to as the outside.
  • the plurality of dielectric layers 13 are formed from one or more selected from inorganic oxides, inorganic nitrides, inorganic oxynitrides, and inorganic fluorides.
  • the dielectric layer 13 is, for example, a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated.
  • the material constituting the high refractive index layer include titanium oxide, niobium oxide, lanthanum oxide, tantalum oxide, zirconium oxide, hafnium oxide, silicon nitride and the like.
  • Examples of the material constituting the low refractive index layer include silicon oxide, aluminum oxide, and magnesium fluoride.
  • each dielectric layer 13 and the number of layers of the dielectric layer 13 may be designed according to the type (optical characteristics) of the dielectric multilayer film.
  • the number of layers of each dielectric layer 13 can be 1, 2, 3, 4, 5, or more independently of each other.
  • the thickness of each dielectric layer 13 can be, for example, 40 nm or more and 300 nm or less independently of each other.
  • the thickness of each layer in the dielectric layer 13 can be, for example, 5 nm or more and 130 nm or less independently of each other.
  • Examples of the type of dielectric multilayer film include an antireflection film, a half mirror, and a bandpass filter.
  • At least one layer of the dielectric layer 13 in contact with the light absorption layer 14 is made of silicon oxide or aluminum oxide. In this case, it becomes easy to reduce the wavelength dependence of the transmittance of the light absorbing layer 14 in the wavelength range of visible light.
  • the light absorption layer 14 is a layer that reduces the transmittance of visible light by absorbing visible light, contains metallic tin, and is provided between the layers of the dielectric layer 13.
  • the position of the light absorption layer 14 between the layers of the dielectric layer 13 is not particularly limited, and one or more dielectric layers 13 may be located inside the light absorption layer 14 and outside the light absorption layer 14. Just do it.
  • one or more dielectric layers 13 are further provided between the light absorption layer 14 and the light absorption layer 14.
  • the light absorption layer 14 containing metallic tin has a property of further reducing the transmittance of visible light as the total physical film thickness increases.
  • the total physical film thickness of the light absorption layer 14 is 2 to 30 nm. When the total physical film thickness of the light absorption layer 14 is 2 nm or more, the transmittance of visible light can be reliably reduced. Further, when the total physical film thickness of the light absorption layer 14 is 30 nm or less, a visible light transmittance of 20% or more can be obtained.
  • the physical film thickness of the single layer of the light absorption layer 14 is 30 nm or less, preferably 20 nm or less, and more preferably 15 nm or less.
  • the physical film thickness of the single layer of the light absorption layer 14 is 30 nm or less, the decrease in the sheet resistance of the optical film 12 is suppressed, and a high sheet resistance (for example, 1 G ⁇ / ⁇ or more) can be secured. This makes it possible to apply the transparent substrate 10 with a film to a capacitance type touch panel display.
  • the physical film thickness of the single layer of the light absorption layer 14 is preferably 1 nm or more, and more preferably 5 nm or more.
  • the physical film thickness of the single layer of the light absorption layer 14 is 2 nm or more.
  • the physical film thickness of each light absorption layer 14 may be the same or different.
  • the physical film thickness and the number of layers of the single layer of the light absorption layer 14 can be appropriately set according to the visible light transmittance required for the transparent substrate 10 with a film.
  • the visible light transmittance required for the transparent substrate 10 with a film is low (for example, the average value of the transmittance is 50% or less).
  • the average value of the visible light transmittance required for the transparent substrate 10 with a film is 70% or more and 90% or less, it is preferable to provide only one light absorption layer 14 having a physical film thickness of 20 nm or less.
  • the light absorption layer 14 may have a tin oxide layer formed by oxidizing metallic tin on a part of the surface thereof.
  • the physical film thickness of the unoxidized portion of the light absorption layer 14 is configured to be within the above numerical range.
  • the optical film 12 may include a protective layer 15 provided on the outer surface of the light absorption layer 14.
  • the protective layer 15 includes a first layer 15a made of silicon oxide.
  • the physical film thickness of the first layer 15a is, for example, 1 to 20 nm, preferably 2 to 10 nm.
  • the protective layer 15 may further include a second layer 15b made of metallic silicon, and it is preferable that the second layer 15b is in contact with the outside of the light absorption layer 14.
  • the physical film thickness of the second layer 15b is, for example, 0.2 to 1.0 nm.
  • the protective layer 15 is a layer for suppressing deterioration due to oxidation of the light absorption layer 14 when forming the dielectric layer 13 on the outside of the light absorption layer 14 in the manufacturing process of the optical film 12.
  • a part of the light absorption layer 14 may be oxidized and the light absorption layer 14 may be altered.
  • the metal silicon layer is oxidized before the light absorption layer 14 is oxidized, so that oxygen atoms are consumed, and the deterioration of the light absorption layer 14 due to oxidation can be suppressed.
  • the first layer 15a of the protective layer 15 is a layer formed by oxidizing the metallic silicon layer on the outer surface of the light absorption layer 14 to silicon oxide when the first dielectric layer 13 is formed. ..
  • the metallic silicon layer When the metallic silicon layer is completely oxidized when the dielectric layer 13 is formed, it becomes a protective layer including only the first layer 15a composed of silicon oxide, and the first layer 15a is outside the light absorption layer 14. In contact with.
  • the first layer 15a made of silicon oxide and the second layer 15b made of metallic silicon are formed.
  • the protective layer 15 is provided, and the second layer 15b is in contact with the outside of the light absorbing layer 14.
  • the transparent substrate 10 with a film is applied as, for example, a cover member attached to the display surface of a display.
  • the sheet resistance of the optical film 12 is preferably 1 G ⁇ / ⁇ or more, more preferably 5 G ⁇ / ⁇ or more, and further preferably 10 G ⁇ / ⁇ or more.
  • a transparent substrate with a film that can be applied to a capacitance type touch panel display can be obtained.
  • the average value of the transmittance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 20% or more, more preferably 40% or more, and more preferably 60% or more. More preferred.
  • the average value of the transmittance can be, for example, 35% or more, 44% or more, 48% or more, 57% or more, 66% or more, 71% or more, or 77% or more.
  • the visibility of the display to which the transparent substrate 10 with a film is applied as a cover member can be maintained.
  • the average value of the transmittance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 90% or less, more preferably 85% or less.
  • the average value of the transmittance can be, for example, 86% or less, 84% or less, or 78% or less.
  • the contrast of the display to which the transparent substrate 10 with a film is applied as a cover member can be improved.
  • the average value of the visible light transmittance of the transparent substrate 10 with a film can be, for example, 40 to 80% or 44% to 90%.
  • the difference between the maximum value and the minimum value of the transmittance (%) in the visible light wavelength range (400 to 700 nm) of the transparent substrate 10 with a film is, for example, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25. Below, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, It can be 8 or less, or 7 or less.
  • the average value of the absorptance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 75% or less, more preferably 60% or less, and more preferably 40% or less. More preferred.
  • the average value of the absorption rate can be, for example, 55% or less, 51% or less, 42% or less, 33% or less, 28% or less, or 22% or less.
  • the visibility of the display to which the transparent substrate 10 with a film is applied as a cover member can be maintained.
  • the average value of the absorption rate of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 10% or more, and more preferably 15% or more.
  • the average value of the absorption rate can be, for example, 12% or more.
  • the contrast of the display to which the transparent substrate 10 with a film is applied as a cover member can be improved.
  • the average value of the visible light absorption rate of the transparent substrate 10 with a film can be, for example, 10 to 55%.
  • the difference between the maximum value and the minimum value of the absorption rate (%) in the visible light wavelength range (400 to 700 nm) of the transparent substrate 10 with a film is, for example, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25. Below, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, It can be 8 or less, 7 or less, or 6 or less.
  • the film configuration of the optical film 12 are shown in Tables 1 to 4.
  • the numerical values in the table indicate the physical film thickness of each layer.
  • the layer in contact with the inside of the light absorption layer 14 is the dielectric layer 13 made of niobium oxide, and the first layer of the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of silicon oxide.
  • Configuration Example 3 is a configuration example of a light-absorbing antireflection film in which the inner and outer layers of the light-absorbing layer 14 are both a dielectric layer 13 made of silicon oxide and the protective layer 15 is not provided.
  • Configuration Examples 4 to 8 are the dielectric layer 13 in which the layer in contact with the inside of the light absorption layer 14 is made of silicon oxide, and the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of silicon oxide.
  • the light-absorbing antireflection film which is the first layer 15a it is a configuration example of the light-absorbing antireflection film in which the physical film thickness of the light-absorbing layer 14 is made different stepwise.
  • the layer in contact with the inside of the light absorption layer 14 is the dielectric layer 13 made of silicon oxide, and the second layer of the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of metallic silicon.
  • This is a configuration example of a light-absorbing antireflection film which is a layer 15b and has a first layer 15a whose protective layer 15 is further composed of silicon oxide on the outside of the second layer 15b.
  • Configuration example 10 is a configuration example of a light-absorbing antireflection film including two light-absorbing layers 14.
  • the first dielectric layer forming step is a step of forming the dielectric layer 13 located inside the light absorption layer 14.
  • the dielectric layer 13 is preferably formed by a sputtering method from the viewpoint that it can be formed accurately and stably. Further, among the sputtering methods, the reactive sputtering method such as the RAS (Radical Assisted Sputtering) method is particularly preferable because the film forming speed of the dielectric layer 13 is high and the productivity is excellent.
  • the transparent base material 11 is set in the sputtering apparatus.
  • a metal target such as silicon, aluminum, tantalum, lantern, niobium, titanium, hafnium, or zirconium can be used.
  • a mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the transparent base material 11.
  • the formed layer reacts with an active gas activated by plasma or the like to form a dielectric layer 13.
  • Argon gas can be used as the inert gas.
  • As the active gas oxygen gas, nitrogen gas, hydrogen gas, or a mixed gas thereof can be used. It is desirable to introduce the mixed gas of the inert gas and the active gas after exhausting the inside of the sputtering apparatus with a vacuum pump or the like.
  • the mixing ratio of the inert gas and the active gas is not particularly limited, and can be, for example, in the range of 2: 1 to 8: 1.
  • the light absorption layer forming step is a step of forming the light absorption layer 14 on the dielectric layer 13 of the first film-forming body.
  • the light absorption layer 14 can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method.
  • a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method.
  • the sputtering method is preferable.
  • the first film-forming body is set in the sputtering apparatus.
  • Metallic tin is prepared as the target of the sputtering apparatus.
  • an inert gas was introduced into the sputtering apparatus to sputter metallic tin, and a second light absorbing layer 14 made of metallic tin was formed on the dielectric layer 13 of the first film-forming body.
  • Argon gas can be used as the inert gas. It is desirable that the inert gas is introduced after the inside of the sputtering apparatus is exhausted by a vacuum pump or the like.
  • the metal silicon layer forming step is a step of forming a metal silicon layer to be a protective layer 15 later on the light absorption layer 14 of the second film-forming body.
  • the metallic silicon layer can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method. In order to form the metallic silicon layer by controlling the film thickness with high accuracy, the sputtering method is preferable.
  • the second film-forming body is set in the sputtering apparatus.
  • Metallic silicon is prepared as the target of the sputtering apparatus.
  • an inert gas is introduced into the sputtering apparatus to sputter metallic silicon to obtain a third film-forming body in which the metallic silicon layer is formed on the dielectric layer 13 of the second film-forming body. ..
  • the metal silicon layer is formed so that the film thickness is the total film thickness of the first layer 15a and the second layer 15b of the protective layer 15.
  • Argon gas can be used as the inert gas. It is desirable that the inert gas is introduced after the inside of the sputtering apparatus is exhausted by a vacuum pump or the like.
  • the second dielectric layer forming step is a step of forming the dielectric layer 13 located outside the light absorption layer 14. In the second dielectric layer forming step, it is preferable to form the dielectric layer 13 by the sputtering method as in the first dielectric layer forming step.
  • the third film-forming body is set in the sputtering apparatus.
  • a metal target such as silicon, aluminum, tantalum, lantern, niobium, titanium, hafnium, or zirconium can be used.
  • a mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the third film-forming body.
  • the formed layer reacts with an active gas activated by plasma or the like to form a dielectric layer 13. In this way, the transparent substrate 10 with a film on which the optical film 12 is formed is obtained.
  • the metallic silicon layer formed on the third dielectric layer is also plasma or the like. Reacts with the active gas activated in (1) to form silicon oxide, and the first layer 15a of the protective layer 15 composed of silicon oxide is formed. At this time, if the inner portion of the metallic silicon layer is left as metallic silicon without being oxidized, the second layer 15b of the protective layer 15 is formed.
  • the light absorption layer forming step, the metal silicon layer forming step, and the second dielectric layer forming step are performed according to the number of layers of the light absorbing layer 14. Repeat. Further, when the transparent substrate 10 with a film not provided with the protective layer 15 is manufactured, the metal silicon layer forming step is omitted.
  • the transparent substrate 10 with a film includes a transparent base material 11 and an optical film 12 provided on the first surface 11a of the transparent base material 11.
  • the optical film 12 includes a plurality of dielectric layers 13 and one or more light absorbing layers 14 sandwiched between the plurality of dielectric layers 13.
  • the light absorption layer 14 contains metallic tin.
  • the total physical film thickness of the light absorption layer 14 is 2 to 30 nm.
  • the light absorbing layer 14 containing metallic tin absorbs visible light, so that the transmittance of visible light is lowered. Then, by reducing the transmittance of visible light, the contrast of the display is improved when the transparent substrate 10 with a film is attached to the display and used.
  • the dielectric layer 13 is provided inside the light absorption layer 14 of the optical film 12, the adhesion of the optical film 12 to the transparent base material 11 is improved as compared with the case where the dielectric layer 13 is not provided. improves.
  • the dielectric layer 13 By providing the dielectric layer 13 on the outside of the light absorption layer 14 in the optical film 12, deterioration of the light absorption layer 14 due to the outside air or the like is suppressed, and the stability of the transmittance with time is improved.
  • the transmittance of the transparent substrate 10 is lowered, the contrast of the display is improved, and the sheet resistance of the optical film is high (for example, 1 G ⁇ / 1 G ⁇ /). ⁇ or more) can be secured.
  • the physical film thickness of the single layer of the light absorption layer 14 is 20 nm or less. According to the above configuration, a decrease in sheet resistance due to the provision of the light absorption layer 14 which is a layer of metallic tin is suppressed, and a high sheet resistance (for example, 1 G ⁇ / ⁇ or more) can be secured. As a result, the transparent substrate 10 with a film can be applied to a capacitive touch panel display.
  • At least one layer in contact with the light absorption layer 14 is a layer made of silicon oxide or aluminum oxide.
  • the layer composed of silicon oxide or aluminum oxide has a property that oxygen atoms constituting the oxide are less likely to be transmitted to the adjacent layer as compared with the layer composed of other oxides. Therefore, according to the above configuration, it is possible to suppress the oxidation of a part of the metallic tin constituting the light absorption layer 14 due to the oxygen atoms contained in the layer in contact with the light absorption layer 14. As a result, the wavelength dependence of the transmittance of the light absorbing layer 14 in the visible light wavelength range can be reduced.
  • the layer made of silicon oxide or aluminum oxide also includes the first layer 15a of the protective layer 15.
  • the plurality of dielectric layers 13 form a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated, and the light absorption layer 14 is provided between the layers of the dielectric multilayer film. There is. According to the above configuration, light absorption can be imparted to the dielectric multilayer film with a simple configuration.
  • the optical film 12 is in contact with the outside of the light absorption layer 14 and includes a protective layer 15 containing silicon oxide. According to the above configuration, deterioration due to oxidation of the light absorption layer 14 in the manufacturing process can be suppressed.
  • the protective layer 15 includes a first layer 15a made of silicon oxide and a second layer 15b made of metallic silicon, and the second layer 15b is in contact with the outside of the light absorption layer 14.
  • the oxygen atom is consumed for the oxidation of the metallic silicon of the second layer 15b before being transmitted to the light absorption layer 14, so that the oxygen atom is hardly transmitted to the light absorption layer 14.
  • the wavelength dependence of the transmittance in the wavelength range of visible light can be further reduced.
  • the stability of the transmittance over time is improved.
  • This embodiment can be modified and implemented as follows.
  • the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • -The plurality of dielectric layers 13 do not have to form a dielectric multilayer film.
  • the transparent substrate 10 with a film may further include a functional layer such as an antiglare layer and an antifouling layer.
  • a functional layer such as an antiglare layer and an antifouling layer.
  • an antiglare layer formed by a treatment of applying a coating agent may be provided on the first surface 11a of the transparent base material 11, and an optical film 12 may be provided on the antiglare layer.
  • an antifouling layer may be further provided on the optical film 12.
  • Example 1 As Example 1, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 1 shown in Table 1 was produced. As a first dielectric layer forming step, an Nb 2 O 5 film, a SiO 2 film, and an Nb 2 O film are placed on a transparent substrate (chemically tempered glass substrate manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) having a thickness of 1.3 mm. The 5 films and the 2 SiO films were sequentially formed by a sputtering method to obtain a first film-forming film. A load-lock type reactive sputtering apparatus was used to form each film by the sputtering method.
  • a light absorption layer made of metallic tin is formed on the dielectric layer of the first film-forming body by using a load-lock type reactive sputtering apparatus, and the second film-forming body is formed. Obtained. At this time, the flow rate of argon gas was set to 500 sccm. The film forming pressure of the light absorption layer was 0.3 Pa.
  • a metallic silicon layer is formed on the light absorbing layer by sputtering a target of metallic silicon while maintaining the same flow rate of argon gas, and a third film-forming body is formed. Obtained. At this time, the film forming pressure of the metallic silicon layer was set to 0.3 Pa.
  • the target of metallic silicon was sputtered to form a SiO 2 film on the metallic silicon layer. ..
  • the flow rate of argon gas was set to 500 sccm
  • the flow rate of oxygen gas was set to 220 sccm.
  • the film formation pressure of the SiO 2 film was 0.3 Pa.
  • the metallic silicon layer is oxidized to form the first layer of the protective layer made of silicon oxide.
  • the niobium target is sputtered while maintaining the mixed gas of argon gas and oxygen gas at the same flow rate to form an Nb 2 O 5 film on the SiO 2 film, and then the metal silicon target.
  • a SiO 2 film was formed on the Nb 2 O 5 film by sputtering, to obtain a transparent substrate with a film of Example 1.
  • the film forming pressure of the Nb 2 O 5 film was 0.3 Pa
  • the film forming pressure of the SiO 2 film was 0.3 Pa.
  • the physical film thickness of each layer of the transparent substrate with a film of Example 1 is as shown in Configuration Example 1 of Table 1.
  • Example 2 As Example 2, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 2 shown in Table 1 was produced.
  • a first dielectric layer forming step an Nb 2 O 5 film, a SiO 2 film, and Nb 2 are placed on a transparent substrate (chemically tempered glass substrate manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) having a thickness of 1.3 mm.
  • O 5 film is formed by the successively sputtering method to obtain a first film-forming material.
  • a transparent substrate with a film of Example 2 was obtained by performing a light absorption layer forming step, a metallic silicon layer forming step, and a second dielectric layer forming step in the same manner as in Example 1.
  • the physical film thickness of each layer of the transparent substrate with a film of Example 2 is as shown in Configuration Example 2 of Table 1.
  • Example 3 As Example 3, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 3 shown in Table 1 was produced. A second film-formed body was obtained by performing the first dielectric layer forming step and the light absorption layer forming step in the same manner as in Example 1. Next, by performing the second dielectric layer forming step in the same manner as in Example 1 (however, only one layer of SiO 2 film was formed), a transparent substrate with a film of Example 3 was obtained.
  • Example 4 to 8 As Examples 4 to 8, transparent substrates with a film provided with the light-absorbing antireflection films of Configuration Examples 4 to 8 shown in Table 2 were produced. The transparent substrate used and the method for forming each layer are the same as in Example 1.
  • Comparative Example 1 As Comparative Example 1, a transparent substrate with a film provided with an antireflection film in which the light absorption layer and the protective layer were omitted was produced from the configuration example 1 shown in Table 1. A first film-forming body was obtained by performing the first dielectric layer forming step in the same manner as in Example 1. Next, by performing the second dielectric layer forming step in the same manner as in Example 1, a transparent substrate with a film of Comparative Example 1 was obtained.
  • the transmittance (Transmittance) and reflectance (Reflectance) in the wavelength range of visible light (400 to 700 nm) were measured by a spectrophotometer (U-4000 manufactured by Hitachi High-Tech). Was measured.
  • the absorption rate (Absorptance) was determined using the following formula (1).
  • Absorption rate (%) 100-transmittance (%) -reflectance (%) ...
  • the transmission / reflection / absorption spectra of the transparent substrate with a film of each Example and Comparative Example are shown in FIGS. 2 to 10.
  • the average values of transmittance, reflectance, and absorptance in the wavelength range of visible light, and the difference between the maximum and minimum values of the transmittance and absorptivity were calculated. The results are shown in Tables 5 and 6.
  • each Example has a lower transmittance than Comparative Example 1 which does not have a light absorption layer. Since the sheet resistance of the transparent substrates with films of Examples 1 to 6 for which the sheet resistance was measured has a sheet resistance of 1 G ⁇ / ⁇ or more, it can be applied as a cover member for a capacitance type touch panel display.
  • Example 1 With reference to the transmittance and the absorptance of Examples 1 to 3 having the same thickness of the light absorption layer, in Example 1 in which the dielectric layer in contact with the inside of the light absorption layer is silicon oxide, the inside of the light absorption layer It can be seen that the wavelength dependence of the transmittance is small because the difference between the maximum value and the minimum value of the transmittance is small as compared with Example 2 in which the dielectric layer in contact with the oxide is niobium oxide. It can be seen that the wavelength dependence of the transmittance is small in Example 1 provided with the protective layer because the difference between the maximum value and the minimum value of the transmittance is small as compared with Example 3 without the protective layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

A film-equipped transparent substrate 10 is provided with a transparent base material 11, and an optical film 12 provided on a first surface 11a of the transparent base material 11. The optical film 12 is provided with a plurality of dielectric layers 13, and one or more light absorption layers 14 sandwiched between the dielectric layers 13. The light absorption layers 14 include metallic tin. The total physical film thickness of the light absorption layers 14 is 2 to 30 nm.

Description

膜付き透明基板Transparent substrate with film
 本発明は、膜付き透明基板に関する。 The present invention relates to a transparent substrate with a film.
 ディスプレイのコントラストを向上させる方法として、ディスプレイの表示面に取り付けられるカバー部材の可視光の透過率を低下させる方法が知られている。
 特許文献1には、カメラのレンズ等の基材に設けられる反射防止膜に窒化チタン等の導電材料の微粒子を分散させた光吸収層を設け、光吸収層の光吸収性に基づいて可視光の透過率を低下させる技術が開示されている。
As a method of improving the contrast of a display, a method of reducing the transmittance of visible light of a cover member attached to the display surface of the display is known.
In Patent Document 1, a light absorption layer in which fine particles of a conductive material such as titanium nitride are dispersed is provided on an antireflection film provided on a base material such as a camera lens, and visible light is provided based on the light absorption of the light absorption layer. A technique for reducing the transmittance of light is disclosed.
特開平09-073001号公報Japanese Unexamined Patent Publication No. 09-073001
 本発明は、ディスプレイの表示面等に適用される膜付き透明基板の透過率を、簡易な構成により低下させることを課題とする。 An object of the present invention is to reduce the transmittance of a transparent substrate with a film applied to a display surface or the like of a display by a simple configuration.
 本発明の一態様によれば、膜付き透明基板は、透明基材と、前記透明基材の表面に設けられる光学膜とを備え、前記光学膜は、複数の誘電体層と、前記複数の誘電体層の間に挟まれる一層又は二層以上の光吸収層とを備え、前記光吸収層は金属スズを含み、前記光吸収層の物理膜厚の合計が2~30nmである。 According to one aspect of the present invention, the transparent substrate with a film includes a transparent base material and an optical film provided on the surface of the transparent base material, and the optical film includes a plurality of dielectric layers and the plurality of said optical films. It is provided with one layer or two or more light absorbing layers sandwiched between the dielectric layers, the light absorbing layer contains metallic tin, and the total physical film thickness of the light absorbing layers is 2 to 30 nm.
 上記膜付き透明基板において、前記光吸収層の単層の物理膜厚が20nm以下であってもよい。
 上記膜付き透明基板において、前記光吸収層に接する少なくとも一層は、酸化珪素又は酸化アルミニウムにより構成される層であってもよい。
In the transparent substrate with a film, the physical film thickness of the single layer of the light absorption layer may be 20 nm or less.
In the transparent substrate with a film, at least one layer in contact with the light absorption layer may be a layer made of silicon oxide or aluminum oxide.
 上記膜付き透明基板において、前記複数の誘電体層は、高屈折率層と低屈折率層が交互に積層された誘電体多層膜であってもよく、前記光吸収層は、前記誘電体多層膜の層間に設けられてもよい。 In the transparent substrate with a film, the plurality of dielectric layers may be a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated, and the light absorption layer may be the dielectric multilayer film. It may be provided between the layers of the film.
 上記膜付き透明基板において、前記複数の誘電体層は、無機酸化物、無機窒化物及び無機酸窒化物から選ばれる1種以上を含んでいてもよい。
 上記膜付き透明基板において、400~700nmの波長域における光透過率の平均値が44%以上90%以下であってもよい。
In the transparent substrate with a film, the plurality of dielectric layers may contain one or more selected from inorganic oxides, inorganic nitrides and inorganic oxynitrides.
In the transparent substrate with a film, the average value of the light transmittance in the wavelength range of 400 to 700 nm may be 44% or more and 90% or less.
 上記膜付き透明基板において、400~700nmの波長域における光透過率(%)の最大値と最小値の差が30以下であってもよい。
 上記膜付き透明基板において、400~700nmの波長域における光吸収率の平均値が10%以上55%以下であってもよい。
In the transparent substrate with a film, the difference between the maximum value and the minimum value of the light transmittance (%) in the wavelength range of 400 to 700 nm may be 30 or less.
In the transparent substrate with a film, the average value of the light absorption rate in the wavelength range of 400 to 700 nm may be 10% or more and 55% or less.
 上記膜付き透明基板において、400~700nmの波長域における光吸収率(%)の最大値と最小値の差が30以下であってもよい。 In the transparent substrate with a film, the difference between the maximum value and the minimum value of the light absorption rate (%) in the wavelength range of 400 to 700 nm may be 30 or less.
 本発明によれば、膜付き透明基板の可視光の透過率を簡易な構成により低下させることができる。 According to the present invention, the transmittance of visible light of a transparent substrate with a film can be reduced by a simple configuration.
膜付き透明基板の説明図。Explanatory drawing of a transparent substrate with a film. 実施例1の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 1. 実施例2の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 2. 実施例3の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 3. 実施例4の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 4. 実施例5の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 5. 実施例6の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 6. 実施例7の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 7. 実施例8の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Example 8. 比較例1の透過・反射・吸収スペクトル。Transmission / reflection / absorption spectrum of Comparative Example 1.
 以下、本発明の実施形態を説明する。
 図1に示すように、膜付き透明基板10は、板状の透明基材11と、透明基材11の表面に設けられた光学膜12とを備えている。
Hereinafter, embodiments of the present invention will be described.
As shown in FIG. 1, the transparent substrate 10 with a film includes a plate-shaped transparent base material 11 and an optical film 12 provided on the surface of the transparent base material 11.
 透明基材11は、第1表面11aと第1表面11aの反対側に位置する第2表面11bを有する基板である。透明基材11の厚みは特に限定されるものではなく、機械的物性等を考慮して適宜、設定できる。透明基材11の厚みは、例えば、0.05mm以上、10mm以下の範囲である。なお、透明基材11の透明とは、例えば、可視光(400~700nmの波長域)を平均して80%以上透過することを意味する。 The transparent base material 11 is a substrate having a second surface 11b located on the opposite side of the first surface 11a and the first surface 11a. The thickness of the transparent base material 11 is not particularly limited, and can be appropriately set in consideration of mechanical properties and the like. The thickness of the transparent base material 11 is, for example, in the range of 0.05 mm or more and 10 mm or less. The transparency of the transparent base material 11 means that, for example, visible light (wavelength range of 400 to 700 nm) is transmitted by 80% or more on average.
 透明基材11の材質としては、例えば、ガラス、樹脂が挙げられる。ガラスとしては、例えば、無アルカリガラス、アルミノシリケートガラス、ソーダライムガラス、石英ガラス等の公知のガラスを用いることができる。また、化学強化ガラス等の強化ガラスやLAS系結晶化ガラス等の結晶化ガラスを用いることもできる。ガラスとしては、アルミノシリケートガラスであることが好ましく、アルミノシリケートガラスは、質量%で、SiO:50~80%、Al:5~25%、B:0~15%、NaO:1~20%、KO:0~10%を含有することがより好ましい。樹脂としては、例えば、ポリメタクリル酸メチル等のアクリル系樹脂、ポリカーボネート樹脂、及びエポキシ樹脂が挙げられる。可視光の透過率が経時的に変化し難い点において、透明基材11はガラスからなることが好ましい。 Examples of the material of the transparent base material 11 include glass and resin. As the glass, for example, known glass such as non-alkali glass, aluminosilicate glass, soda-lime glass, and quartz glass can be used. Further, tempered glass such as chemically strengthened glass and crystallized glass such as LAS-based crystallized glass can also be used. The glass is preferably aluminosilicate glass, and the aluminosilicate glass is SiO 2 : 50 to 80% by mass, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15%, It is more preferable to contain Na 2 O: 1 to 20% and K 2 O: 0 to 10%. Examples of the resin include acrylic resins such as polymethyl methacrylate, polycarbonate resins, and epoxy resins. The transparent base material 11 is preferably made of glass in that the transmittance of visible light does not easily change with time.
 図1に示すように、光学膜12は、複数の誘電体層13と、誘電体層13の間に挟まれる一層又は二層以上の光吸収層14とを備えている。図1では、一層の光吸収層14を備える場合を例示している。以下では、光学膜12の厚み方向における透明基材11に近い側を内側、透明基材11から遠い側を外側と記載する。 As shown in FIG. 1, the optical film 12 includes a plurality of dielectric layers 13 and one or more light absorbing layers 14 sandwiched between the dielectric layers 13. FIG. 1 illustrates a case where a single layer of light absorption layer 14 is provided. Hereinafter, the side closer to the transparent base material 11 in the thickness direction of the optical film 12 will be referred to as the inside, and the side far from the transparent base material 11 will be referred to as the outside.
 複数の誘電体層13は、無機酸化物、無機窒化物、無機酸窒化物及び無機フッ化物から選ばれる1種以上から形成される。誘電体層13は、例えば、高屈折率層と低屈折率層とが交互に積層された誘電体多層膜である。高屈折率層を構成する材料としては、例えば、酸化チタン、酸化ニオブ、酸化ランタン、酸化タンタル、酸化ジルコニウム、酸化ハフニウム、窒化珪素等が挙げられる。低屈折率層を構成する材料としては、例えば、酸化珪素、酸化アルミニウム、フッ化マグネシウムが挙げられる。各誘電体層13の物理膜厚及び材質、並びに誘電体層13の層数は、誘電体多層膜の種類(光学特性)に応じて設計すればよい。例えば、各誘電体層13の層数は、互いに独立して1、2、3、4、5、又はそれ以上とすることができる。各誘電体層13の厚さは、互いに独立して、例えば40nm以上300nm以下とすることができる。誘電体層13における各層の厚さは、互いに独立して、例えば5nm以上130nm以下とすることができる。誘電体多層膜の種類としては、例えば、反射防止膜、ハーフミラー、バンドパスフィルタが挙げられる。 The plurality of dielectric layers 13 are formed from one or more selected from inorganic oxides, inorganic nitrides, inorganic oxynitrides, and inorganic fluorides. The dielectric layer 13 is, for example, a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated. Examples of the material constituting the high refractive index layer include titanium oxide, niobium oxide, lanthanum oxide, tantalum oxide, zirconium oxide, hafnium oxide, silicon nitride and the like. Examples of the material constituting the low refractive index layer include silicon oxide, aluminum oxide, and magnesium fluoride. The physical film thickness and material of each dielectric layer 13 and the number of layers of the dielectric layer 13 may be designed according to the type (optical characteristics) of the dielectric multilayer film. For example, the number of layers of each dielectric layer 13 can be 1, 2, 3, 4, 5, or more independently of each other. The thickness of each dielectric layer 13 can be, for example, 40 nm or more and 300 nm or less independently of each other. The thickness of each layer in the dielectric layer 13 can be, for example, 5 nm or more and 130 nm or less independently of each other. Examples of the type of dielectric multilayer film include an antireflection film, a half mirror, and a bandpass filter.
 光吸収層14に接する誘電体層13の少なくとも一層は、酸化珪素又は酸化アルミニウムにより構成されていることが好ましい。この場合には、可視光の波長域における光吸収層14の透過率の波長依存性を小さくすることが容易になる。 It is preferable that at least one layer of the dielectric layer 13 in contact with the light absorption layer 14 is made of silicon oxide or aluminum oxide. In this case, it becomes easy to reduce the wavelength dependence of the transmittance of the light absorbing layer 14 in the wavelength range of visible light.
 光吸収層14は、可視光を吸収することにより、可視光の透過率を低下させる層であり、金属スズを含み、誘電体層13の層間に設けられている。誘電体層13の層間における光吸収層14の位置は特に限定されるものではなく、光吸収層14の内側、光吸収層14の外側のそれぞれに一層以上の誘電体層13が位置していればよい。二層以上の光吸収層14を備える場合には、更に光吸収層14と光吸収層14との間にも一層以上の誘電体層13が設けられる。 The light absorption layer 14 is a layer that reduces the transmittance of visible light by absorbing visible light, contains metallic tin, and is provided between the layers of the dielectric layer 13. The position of the light absorption layer 14 between the layers of the dielectric layer 13 is not particularly limited, and one or more dielectric layers 13 may be located inside the light absorption layer 14 and outside the light absorption layer 14. Just do it. When two or more light absorption layers 14 are provided, one or more dielectric layers 13 are further provided between the light absorption layer 14 and the light absorption layer 14.
 金属スズを含む光吸収層14は、その物理膜厚の合計が大きくなるにしたがって、可視光の透過率をより大きく低下させる性質を有する。光吸収層14の物理膜厚の合計は、2~30nmである。光吸収層14の物理膜厚の合計が2nm以上であることにより、可視光の透過率を確実に低下させることができる。また、光吸収層14の物理膜厚の合計が30nm以下であることにより、20%以上の可視光透過率が得られる。 The light absorption layer 14 containing metallic tin has a property of further reducing the transmittance of visible light as the total physical film thickness increases. The total physical film thickness of the light absorption layer 14 is 2 to 30 nm. When the total physical film thickness of the light absorption layer 14 is 2 nm or more, the transmittance of visible light can be reliably reduced. Further, when the total physical film thickness of the light absorption layer 14 is 30 nm or less, a visible light transmittance of 20% or more can be obtained.
 光吸収層14の単層の物理膜厚は、30nm以下であり、20nm以下であることが好ましく、15nm以下であることがより好ましい。光吸収層14の単層の物理膜厚が30nm以下であることにより、光学膜12のシート抵抗の低下が抑えられて、高いシート抵抗(例えば、1GΩ/□以上)を確保できる。これにより、膜付き透明基板10を静電容量方式のタッチパネルディスプレイに適用可能になる。 The physical film thickness of the single layer of the light absorption layer 14 is 30 nm or less, preferably 20 nm or less, and more preferably 15 nm or less. When the physical film thickness of the single layer of the light absorption layer 14 is 30 nm or less, the decrease in the sheet resistance of the optical film 12 is suppressed, and a high sheet resistance (for example, 1 GΩ / □ or more) can be secured. This makes it possible to apply the transparent substrate 10 with a film to a capacitance type touch panel display.
 光吸収層14の単層の物理膜厚は、1nm以上であることが好ましく、5nm以上であることがより好ましい。光学膜12に設けられる光吸収層14が一層である場合、光吸収層14の単層の物理膜厚は2nm以上である。光学膜12に設けられる光吸収層14が二層以上である場合、各光吸収層14の物理膜厚は同じであってもよいし、異なっていてもよい。 The physical film thickness of the single layer of the light absorption layer 14 is preferably 1 nm or more, and more preferably 5 nm or more. When the light absorption layer 14 provided on the optical film 12 is a single layer, the physical film thickness of the single layer of the light absorption layer 14 is 2 nm or more. When the light absorption layers 14 provided on the optical film 12 are two or more layers, the physical film thickness of each light absorption layer 14 may be the same or different.
 光吸収層14の単層の物理膜厚及び層数は、膜付き透明基板10に求められる可視光の透過率に応じて適宜、設定することができる。例えば、静電容量方式のタッチパネルディスプレイに適用される膜付き透明基板10であり、その膜付き透明基板10に求められる可視光の透過率が低い場合(例えば、透過率の平均値が50%以下)、物理膜厚が20nm以下の光吸収層14を二層以上設けることにより透過率を低下させることが好ましい。一方、その膜付き透明基板10に求められる可視光の透過率の平均値が70%以上90%以下である場合、物理膜厚が20nm以下の光吸収層14を一層のみ設けることが好ましい。 The physical film thickness and the number of layers of the single layer of the light absorption layer 14 can be appropriately set according to the visible light transmittance required for the transparent substrate 10 with a film. For example, when the transparent substrate 10 with a film is applied to a capacitive touch panel display and the visible light transmittance required for the transparent substrate 10 with a film is low (for example, the average value of the transmittance is 50% or less). ), It is preferable to reduce the transmittance by providing two or more light absorbing layers 14 having a physical film thickness of 20 nm or less. On the other hand, when the average value of the visible light transmittance required for the transparent substrate 10 with a film is 70% or more and 90% or less, it is preferable to provide only one light absorption layer 14 having a physical film thickness of 20 nm or less.
 光吸収層14は、その表面の一部に、金属スズが酸化して形成される酸化スズ層を有していてもよい。ただし、この場合には、光吸収層14における酸化されていない部分の物理膜厚が上記の数値範囲となるように構成する。 The light absorption layer 14 may have a tin oxide layer formed by oxidizing metallic tin on a part of the surface thereof. However, in this case, the physical film thickness of the unoxidized portion of the light absorption layer 14 is configured to be within the above numerical range.
 任意選択で、光学膜12は、光吸収層14の外側表面上に設けられる保護層15を備えていてもよい。保護層15は、酸化珪素により構成される第1層15aを備えている。第1層15aの物理膜厚は、例えば、1~20nmであり、2~10nmであることが好ましい。また、保護層15は、金属珪素により構成される第2層15bを更に備えてもよく、第2層15bが光吸収層14の外側に接していることが好ましい。第2層15bの物理膜厚は、例えば、0.2~1.0nmである。 Optionally, the optical film 12 may include a protective layer 15 provided on the outer surface of the light absorption layer 14. The protective layer 15 includes a first layer 15a made of silicon oxide. The physical film thickness of the first layer 15a is, for example, 1 to 20 nm, preferably 2 to 10 nm. Further, the protective layer 15 may further include a second layer 15b made of metallic silicon, and it is preferable that the second layer 15b is in contact with the outside of the light absorption layer 14. The physical film thickness of the second layer 15b is, for example, 0.2 to 1.0 nm.
 保護層15は、光学膜12の製造過程において、光吸収層14の外側に誘電体層13を形成する際における光吸収層14の酸化による変質を抑制するための層である。光学膜12の製造過程において、光吸収層14の外側表面上に誘電体層13を直接、形成した場合、光吸収層14の一部が酸化されて光吸収層14が変質することがある。 The protective layer 15 is a layer for suppressing deterioration due to oxidation of the light absorption layer 14 when forming the dielectric layer 13 on the outside of the light absorption layer 14 in the manufacturing process of the optical film 12. When the dielectric layer 13 is directly formed on the outer surface of the light absorption layer 14 in the manufacturing process of the optical film 12, a part of the light absorption layer 14 may be oxidized and the light absorption layer 14 may be altered.
 そこで、光吸収層14の外側表面上に金属珪素層を形成し、この金属珪素層の上に一層目の誘電体層13を形成することが好ましい。この場合、光吸収層14が酸化される前に金属珪素層が酸化されることにより酸素原子が消費されて、光吸収層14の酸化による変質を抑制できる。 Therefore, it is preferable to form a metallic silicon layer on the outer surface of the light absorption layer 14, and to form the first dielectric layer 13 on the metallic silicon layer. In this case, the metal silicon layer is oxidized before the light absorption layer 14 is oxidized, so that oxygen atoms are consumed, and the deterioration of the light absorption layer 14 due to oxidation can be suppressed.
 保護層15の第1層15aは、一層目の誘電体層13を形成する際に、光吸収層14の外側表面上の金属珪素層が酸化珪素に酸化されることによって形成される層である。誘電体層13を形成する際に、金属珪素層が全て酸化された場合には、酸化珪素により構成される第1層15aのみを備える保護層となり、第1層15aが光吸収層14の外側に接する。 The first layer 15a of the protective layer 15 is a layer formed by oxidizing the metallic silicon layer on the outer surface of the light absorption layer 14 to silicon oxide when the first dielectric layer 13 is formed. .. When the metallic silicon layer is completely oxidized when the dielectric layer 13 is formed, it becomes a protective layer including only the first layer 15a composed of silicon oxide, and the first layer 15a is outside the light absorption layer 14. In contact with.
 誘電体層13を形成する際に、金属珪素層の一部が酸化されずに残存した場合には、酸化珪素により構成される第1層15aと、金属珪素により構成される第2層15bを備える保護層15となり、第2層15bが光吸収層14の外側に接する。 When a part of the metallic silicon layer remains without being oxidized when the dielectric layer 13 is formed, the first layer 15a made of silicon oxide and the second layer 15b made of metallic silicon are formed. The protective layer 15 is provided, and the second layer 15b is in contact with the outside of the light absorbing layer 14.
 膜付き透明基板10は、例えば、ディスプレイの表示面に取り付けられるカバー部材として適用される。
 光学膜12のシート抵抗は、1GΩ/□以上であることが好ましく、5GΩ/□以上であることがより好ましく、10GΩ/□以上であることがさらに好ましい。
The transparent substrate 10 with a film is applied as, for example, a cover member attached to the display surface of a display.
The sheet resistance of the optical film 12 is preferably 1 GΩ / □ or more, more preferably 5 GΩ / □ or more, and further preferably 10 GΩ / □ or more.
 上記構成によれば、静電容量方式のタッチパネルディスプレイにも適用可能な膜付き透明基板が得られる。
 膜付き透明基板10の可視光の波長域(400~700nm)における透過率の平均値は、20%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましい。上記透過率の平均値は、例えば、35%以上、44%以上、48%以上、57%以上、66%以上、71%以上、又は77%以上とすることができる。
According to the above configuration, a transparent substrate with a film that can be applied to a capacitance type touch panel display can be obtained.
The average value of the transmittance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 20% or more, more preferably 40% or more, and more preferably 60% or more. More preferred. The average value of the transmittance can be, for example, 35% or more, 44% or more, 48% or more, 57% or more, 66% or more, 71% or more, or 77% or more.
 上記構成によれば、この膜付き透明基板10をカバー部材として適用したディスプレイの視認性を維持できる。
 また、膜付き透明基板10の可視光の波長域(400~700nm)における透過率の平均値は、90%以下であることが好ましく、85%以下であることがより好ましい。上記透過率の平均値は、例えば、86%以下、84%以下、又は78%以下とすることができる。
According to the above configuration, the visibility of the display to which the transparent substrate 10 with a film is applied as a cover member can be maintained.
Further, the average value of the transmittance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 90% or less, more preferably 85% or less. The average value of the transmittance can be, for example, 86% or less, 84% or less, or 78% or less.
 上記構成によれば、この膜付き透明基板10をカバー部材として適用したディスプレイのコントラストを向上させることができる。
 膜付き透明基板10の可視光の透過率の平均値は、例えば、40~80%又は44%~90%とすることができる。
According to the above configuration, the contrast of the display to which the transparent substrate 10 with a film is applied as a cover member can be improved.
The average value of the visible light transmittance of the transparent substrate 10 with a film can be, for example, 40 to 80% or 44% to 90%.
 膜付き透明基板10の可視光の波長域(400~700nm)における透過率(%)の最大値と最小値の差は、例えば、30以下、29以下、28以下、27以下、26以下、25以下、24以下、23以下、22以下、21以下、20以下、19以下、18以下、17以下、16以下、15以下、14以下、13以下、12以下、11以下、10以下、9以下、8以下、又は7以下とすることができる。 The difference between the maximum value and the minimum value of the transmittance (%) in the visible light wavelength range (400 to 700 nm) of the transparent substrate 10 with a film is, for example, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25. Below, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, It can be 8 or less, or 7 or less.
 膜付き透明基板10の可視光の波長域(400~700nm)における吸収率の平均値は、75%以下であることが好ましく、60%以下であることがより好ましく、40%以下であることがさらに好ましい。上記吸収率の平均値は、例えば、55%以下、51%以下、42%以下、33%以下、28%以下、又は22%以下とすることができる。 The average value of the absorptance of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 75% or less, more preferably 60% or less, and more preferably 40% or less. More preferred. The average value of the absorption rate can be, for example, 55% or less, 51% or less, 42% or less, 33% or less, 28% or less, or 22% or less.
 上記構成によれば、この膜付き透明基板10をカバー部材として適用したディスプレイの視認性を維持できる。
 また、膜付き透明基板10の可視光の波長域(400~700nm)における吸収率の平均値は、10%以上であることが好ましく、15%以上であることがより好ましい。上記吸収率の平均値は、例えば12%以上とすることができる。
According to the above configuration, the visibility of the display to which the transparent substrate 10 with a film is applied as a cover member can be maintained.
The average value of the absorption rate of the transparent substrate 10 with a film in the visible light wavelength range (400 to 700 nm) is preferably 10% or more, and more preferably 15% or more. The average value of the absorption rate can be, for example, 12% or more.
 上記構成によれば、この膜付き透明基板10をカバー部材として適用したディスプレイのコントラストを向上させることができる。
 膜付き透明基板10の可視光の吸収率の平均値は、例えば、10~55%とすることができる。
According to the above configuration, the contrast of the display to which the transparent substrate 10 with a film is applied as a cover member can be improved.
The average value of the visible light absorption rate of the transparent substrate 10 with a film can be, for example, 10 to 55%.
 膜付き透明基板10の可視光の波長域(400~700nm)における吸収率(%)の最大値と最小値の差は、例えば、30以下、29以下、28以下、27以下、26以下、25以下、24以下、23以下、22以下、21以下、20以下、19以下、18以下、17以下、16以下、15以下、14以下、13以下、12以下、11以下、10以下、9以下、8以下、7以下、又は6以下とすることができる。 The difference between the maximum value and the minimum value of the absorption rate (%) in the visible light wavelength range (400 to 700 nm) of the transparent substrate 10 with a film is, for example, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25. Below, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, It can be 8 or less, 7 or less, or 6 or less.
 光学膜12の膜構成の具体的な構成例を表1から表4に示す。表中の数値は、各層の物理膜厚を示している。
 構成例1は、光吸収層14の内側に接する層が酸化珪素により構成される誘電体層13であり、光吸収層14の外側に接する層が酸化珪素により構成される保護層15の第1層15aである光吸収性反射防止膜の構成例である。
Specific examples of the film configuration of the optical film 12 are shown in Tables 1 to 4. The numerical values in the table indicate the physical film thickness of each layer.
In the first configuration example, the first layer of the protective layer 15 in which the layer in contact with the inside of the light absorption layer 14 is a dielectric layer 13 made of silicon oxide and the layer in contact with the outside of the light absorption layer 14 is made of silicon oxide. This is a configuration example of the light-absorbing antireflection film which is the layer 15a.
 構成例2は、光吸収層14の内側に接する層が酸化ニオブにより構成される誘電体層13であり、光吸収層14の外側に接する層が酸化珪素により構成される保護層15の第1層15aである光吸収性反射防止膜の構成例である。 In the second configuration example, the layer in contact with the inside of the light absorption layer 14 is the dielectric layer 13 made of niobium oxide, and the first layer of the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of silicon oxide. This is a configuration example of the light absorbing antireflection film which is the layer 15a.
 構成例3は、光吸収層14の内側及び外側に接する層が共に酸化珪素により構成される誘電体層13であり、保護層15を備えていない光吸収性反射防止膜の構成例である。
 構成例4~8は、光吸収層14の内側に接する層が酸化珪素により構成される誘電体層13であり、光吸収層14の外側に接する層が酸化珪素により構成される保護層15の第1層15aである光吸収性反射防止膜において、特に光吸収層14の物理膜厚を段階的に異ならせた光吸収性反射防止膜の構成例である。
Configuration Example 3 is a configuration example of a light-absorbing antireflection film in which the inner and outer layers of the light-absorbing layer 14 are both a dielectric layer 13 made of silicon oxide and the protective layer 15 is not provided.
Configuration Examples 4 to 8 are the dielectric layer 13 in which the layer in contact with the inside of the light absorption layer 14 is made of silicon oxide, and the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of silicon oxide. In the light-absorbing antireflection film which is the first layer 15a, it is a configuration example of the light-absorbing antireflection film in which the physical film thickness of the light-absorbing layer 14 is made different stepwise.
 構成例9は、光吸収層14の内側に接する層が酸化珪素により構成される誘電体層13であり、光吸収層14の外側に接する層が金属珪素により構成される保護層15の第2層15bであり、保護層15がさらに酸化珪素により構成される第1層15aを第2層15bの外側に備える光吸収性反射防止膜の構成例である。 In the configuration example 9, the layer in contact with the inside of the light absorption layer 14 is the dielectric layer 13 made of silicon oxide, and the second layer of the protective layer 15 in which the layer in contact with the outside of the light absorption layer 14 is made of metallic silicon. This is a configuration example of a light-absorbing antireflection film which is a layer 15b and has a first layer 15a whose protective layer 15 is further composed of silicon oxide on the outside of the second layer 15b.
 構成例10は、二層の光吸収層14を備える光吸収性反射防止膜の構成例である。 Configuration example 10 is a configuration example of a light-absorbing antireflection film including two light-absorbing layers 14.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 次に、膜付き透明基板10の製造方法について説明する。
Figure JPOXMLDOC01-appb-T000004
Next, a method of manufacturing the transparent substrate 10 with a film will be described.
 膜付き透明基板10の製造方法の一例は、以下に記載する第1誘電体層形成工程、光吸収層形成工程、金属珪素層形成工程、及び第2誘電体層形成工程をこの順で含む。
 (第1誘電体層形成工程)
 第1誘電体層形成工程は、光吸収層14の内側に位置する誘電体層13を形成する工程である。誘電体層13は、精度よく安定して形成できる点から、スパッタリング法により形成することが好ましい。また、スパッタリング法の中でも、RAS(Radical Assisted Sputtering)法等の反応性スパッタリング法は、誘電体層13の成膜速度が速く生産性に優れるため、特に好ましい。
An example of the method for manufacturing the transparent substrate 10 with a film includes the first dielectric layer forming step, the light absorption layer forming step, the metal silicon layer forming step, and the second dielectric layer forming step described below in this order.
(First Dielectric Layer Forming Step)
The first dielectric layer forming step is a step of forming the dielectric layer 13 located inside the light absorption layer 14. The dielectric layer 13 is preferably formed by a sputtering method from the viewpoint that it can be formed accurately and stably. Further, among the sputtering methods, the reactive sputtering method such as the RAS (Radical Assisted Sputtering) method is particularly preferable because the film forming speed of the dielectric layer 13 is high and the productivity is excellent.
 反応性スパッタリング法による誘電体層13の形成方法の一例を説明する。透明基材11をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、例えば、珪素、アルミニウム、タンタル、ランタン、ニオブ、チタン、ハフニウム、ジルコニウム等の金属ターゲットを用いることができる。 An example of a method for forming the dielectric layer 13 by the reactive sputtering method will be described. The transparent base material 11 is set in the sputtering apparatus. As the target of the sputtering apparatus, for example, a metal target such as silicon, aluminum, tantalum, lantern, niobium, titanium, hafnium, or zirconium can be used.
 スパッタリング装置内に、不活性ガス及び活性ガスの混合ガスを導入して、所定のターゲットをスパッタリングし、透明基材11上にその所定のターゲット成分からなる層を形成する。形成された層がプラズマ等で活性化された活性ガスと反応することによって、誘電体層13を成膜する。このようにして、透明基材11上に誘電体層13が形成された第1成膜体を得る。不活性ガスとしては、アルゴンガスを用いることができる。活性ガスとしては、酸素ガス、窒素ガス、水素ガス、又はこれらの混合ガスを用いることができる。不活性ガス及び活性ガスの混合ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。不活性ガスと活性ガスとの混合比(不活性ガス:活性ガス)は、特に限定されず、例えば、2:1~8:1の範囲内とすることができる。 A mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the transparent base material 11. The formed layer reacts with an active gas activated by plasma or the like to form a dielectric layer 13. In this way, a first film-forming body in which the dielectric layer 13 is formed on the transparent base material 11 is obtained. Argon gas can be used as the inert gas. As the active gas, oxygen gas, nitrogen gas, hydrogen gas, or a mixed gas thereof can be used. It is desirable to introduce the mixed gas of the inert gas and the active gas after exhausting the inside of the sputtering apparatus with a vacuum pump or the like. The mixing ratio of the inert gas and the active gas (inert gas: active gas) is not particularly limited, and can be, for example, in the range of 2: 1 to 8: 1.
 (光吸収層形成工程)
 光吸収層形成工程は、第1成膜体の誘電体層13の上に光吸収層14を形成する工程である。光吸収層14は、例えば、スパッタリング法や真空蒸着法等の物理蒸着法やメッキ法により形成することができる。1~30nmの膜厚の光吸収層14を高精度に膜厚を制御して形成するためには、スパッタリング法が好ましい。
(Light absorption layer forming process)
The light absorption layer forming step is a step of forming the light absorption layer 14 on the dielectric layer 13 of the first film-forming body. The light absorption layer 14 can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method. In order to form the light absorption layer 14 having a film thickness of 1 to 30 nm by controlling the film thickness with high accuracy, the sputtering method is preferable.
 スパッタリング法による光吸収層14の形成方法の一例を説明する。第1成膜体をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、金属スズを用意する。次に、スパッタリング装置内に、不活性ガスを導入して、金属スズをスパッタリングし、第1成膜体の誘電体層13の上に金属スズからなる光吸収層14が成膜された第2成膜体を得る。不活性ガスとしては、アルゴンガスを用いることができる。不活性ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。 An example of a method of forming the light absorption layer 14 by the sputtering method will be described. The first film-forming body is set in the sputtering apparatus. Metallic tin is prepared as the target of the sputtering apparatus. Next, an inert gas was introduced into the sputtering apparatus to sputter metallic tin, and a second light absorbing layer 14 made of metallic tin was formed on the dielectric layer 13 of the first film-forming body. Obtain a film-forming body. Argon gas can be used as the inert gas. It is desirable that the inert gas is introduced after the inside of the sputtering apparatus is exhausted by a vacuum pump or the like.
 (金属珪素層形成工程)
 金属珪素層形成工程は、第2成膜体の光吸収層14の上に、後に保護層15となる金属珪素層を形成する工程である。金属珪素層は、例えば、スパッタリング法や真空蒸着法等の物理蒸着法やメッキ法により形成することができる。金属珪素層を高精度に膜厚を制御して形成するためには、スパッタリング法が好ましい。
(Metallic silicon layer forming process)
The metal silicon layer forming step is a step of forming a metal silicon layer to be a protective layer 15 later on the light absorption layer 14 of the second film-forming body. The metallic silicon layer can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method. In order to form the metallic silicon layer by controlling the film thickness with high accuracy, the sputtering method is preferable.
 スパッタリング法による保護層15の形成方法の一例を説明する。第2成膜体をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、金属珪素を用意する。次に、スパッタリング装置内に、不活性ガスを導入して、金属珪素をスパッタリングし、第2成膜体の誘電体層13の上に金属珪素層が成膜された第3成膜体を得る。ここで、金属珪素層は、その膜厚が、保護層15の第1層15a及び第2層15bの合計膜厚となるように成膜する。不活性ガスとしては、アルゴンガスを用いることができる。不活性ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。 An example of a method of forming the protective layer 15 by the sputtering method will be described. The second film-forming body is set in the sputtering apparatus. Metallic silicon is prepared as the target of the sputtering apparatus. Next, an inert gas is introduced into the sputtering apparatus to sputter metallic silicon to obtain a third film-forming body in which the metallic silicon layer is formed on the dielectric layer 13 of the second film-forming body. .. Here, the metal silicon layer is formed so that the film thickness is the total film thickness of the first layer 15a and the second layer 15b of the protective layer 15. Argon gas can be used as the inert gas. It is desirable that the inert gas is introduced after the inside of the sputtering apparatus is exhausted by a vacuum pump or the like.
 (第2誘電体層形成工程)
 第2誘電体層形成工程は、光吸収層14の外側に位置する誘電体層13を形成する工程である。第2誘電体層形成工程では、第1誘電体層形成工程と同様にスパッタリング法により誘電体層13を形成することが好ましい。
(Second dielectric layer forming step)
The second dielectric layer forming step is a step of forming the dielectric layer 13 located outside the light absorption layer 14. In the second dielectric layer forming step, it is preferable to form the dielectric layer 13 by the sputtering method as in the first dielectric layer forming step.
 反応性スパッタリング法による誘電体層13の形成方法の一例を説明する。第3成膜体をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、例えば、珪素、アルミニウム、タンタル、ランタン、ニオブ、チタン、ハフニウム、ジルコニウム等の金属ターゲットを用いることができる。 An example of a method for forming the dielectric layer 13 by the reactive sputtering method will be described. The third film-forming body is set in the sputtering apparatus. As the target of the sputtering apparatus, for example, a metal target such as silicon, aluminum, tantalum, lantern, niobium, titanium, hafnium, or zirconium can be used.
 スパッタリング装置内に、不活性ガス及び活性ガスの混合ガスを導入して、所定のターゲットをスパッタリングし、第3成膜体上にその所定のターゲット成分からなる層を形成する。形成された層がプラズマ等で活性化された活性ガスと反応することによって、誘電体層13を成膜する。このようにして、光学膜12が形成された膜付き透明基板10を得る。 A mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the third film-forming body. The formed layer reacts with an active gas activated by plasma or the like to form a dielectric layer 13. In this way, the transparent substrate 10 with a film on which the optical film 12 is formed is obtained.
 第2誘電体層形成工程において、誘電体層13となる所定のターゲット成分がプラズマ等で活性化された活性ガスと反応する際に、第3成膜体に形成された金属珪素層もプラズマ等で活性化された活性ガスと反応して酸化珪素となり、酸化珪素により構成される保護層15の第1層15aが形成される。このとき、金属珪素層の内側の部分を酸化させずに金属珪素として残存させると、保護層15の第2層15bが形成される。 In the second dielectric layer forming step, when a predetermined target component to be the dielectric layer 13 reacts with an active gas activated by plasma or the like, the metallic silicon layer formed on the third dielectric layer is also plasma or the like. Reacts with the active gas activated in (1) to form silicon oxide, and the first layer 15a of the protective layer 15 composed of silicon oxide is formed. At this time, if the inner portion of the metallic silicon layer is left as metallic silicon without being oxidized, the second layer 15b of the protective layer 15 is formed.
 複数の光吸収層14を有する光学膜12を形成する場合には、光吸収層14の層数に応じて、光吸収層形成工程、金属珪素層形成工程、及び第2誘電体層形成工程を繰り返し行う。また、保護層15を備えない膜付き透明基板10を製造する場合には、金属珪素層形成工程は省略される。 When forming the optical film 12 having a plurality of light absorption layers 14, the light absorption layer forming step, the metal silicon layer forming step, and the second dielectric layer forming step are performed according to the number of layers of the light absorbing layer 14. Repeat. Further, when the transparent substrate 10 with a film not provided with the protective layer 15 is manufactured, the metal silicon layer forming step is omitted.
 次に、上記実施形態の作用及び効果について説明する。
 (1)膜付き透明基板10は、透明基材11と、透明基材11の第1表面11aに設けられる光学膜12とを備えている。光学膜12は、複数の誘電体層13と、複数の誘電体層13の間に挟まれる一層又は二層以上の光吸収層14とを備えている。光吸収層14は金属スズを含む。光吸収層14の物理膜厚の合計が2~30nmである。
Next, the operation and effect of the above embodiment will be described.
(1) The transparent substrate 10 with a film includes a transparent base material 11 and an optical film 12 provided on the first surface 11a of the transparent base material 11. The optical film 12 includes a plurality of dielectric layers 13 and one or more light absorbing layers 14 sandwiched between the plurality of dielectric layers 13. The light absorption layer 14 contains metallic tin. The total physical film thickness of the light absorption layer 14 is 2 to 30 nm.
 上記構成によれば、金属スズを含む光吸収層14が可視光を吸収することにより、可視光の透過率が低下する。そして、可視光の透過率が低下することにより、膜付き透明基板10をディスプレイに取り付けて使用した場合にディスプレイのコントラストが向上する。 According to the above configuration, the light absorbing layer 14 containing metallic tin absorbs visible light, so that the transmittance of visible light is lowered. Then, by reducing the transmittance of visible light, the contrast of the display is improved when the transparent substrate 10 with a film is attached to the display and used.
 光学膜12における光吸収層14の内側に誘電体層13が設けられていることにより、当該誘電体層13を設けていない場合と比較して、透明基材11に対する光学膜12の密着性が向上する。光学膜12における光吸収層14の外側に誘電体層13が設けられていることにより、外気等に起因する光吸収層14の変質が抑制されて、透過率の経時的安定性が向上する。 Since the dielectric layer 13 is provided inside the light absorption layer 14 of the optical film 12, the adhesion of the optical film 12 to the transparent base material 11 is improved as compared with the case where the dielectric layer 13 is not provided. improves. By providing the dielectric layer 13 on the outside of the light absorption layer 14 in the optical film 12, deterioration of the light absorption layer 14 due to the outside air or the like is suppressed, and the stability of the transmittance with time is improved.
 光吸収層14の物理膜厚の合計を2~30nmとすることにより、透明基板10の透過率を低下させて、ディスプレイのコントラストを向上させ、かつ、光学膜の高いシート抵抗(例えば、1GΩ/□以上)を確保できる。 By setting the total physical film thickness of the light absorption layer 14 to 2 to 30 nm, the transmittance of the transparent substrate 10 is lowered, the contrast of the display is improved, and the sheet resistance of the optical film is high (for example, 1 GΩ / 1 GΩ /). □ or more) can be secured.
 (2)光吸収層14の単層の物理膜厚が20nm以下である。
 上記構成によれば、金属スズの層である光吸収層14を設けることによるシート抵抗の低下が抑えられて、高いシート抵抗(例えば、1GΩ/□以上)を確保できる。これにより、静電容量方式のタッチパネルディスプレイにも適用可能な膜付き透明基板10になる。
(2) The physical film thickness of the single layer of the light absorption layer 14 is 20 nm or less.
According to the above configuration, a decrease in sheet resistance due to the provision of the light absorption layer 14 which is a layer of metallic tin is suppressed, and a high sheet resistance (for example, 1 GΩ / □ or more) can be secured. As a result, the transparent substrate 10 with a film can be applied to a capacitive touch panel display.
 (3)光吸収層14に接する少なくとも一層は、酸化珪素又は酸化アルミニウムにより構成される層である。
 酸化珪素又は酸化アルミニウムにより構成される層は、他の酸化物からなる層と比較して、酸化物を構成する酸素原子が隣接する層に伝わり難い性質を有している。そのため、上記構成によれば、光吸収層14に接する層に含まれる酸素原子に起因して、光吸収層14を構成する金属スズの一部が酸化してしまうことを抑制できる。その結果、可視光の波長域における光吸収層14の透過率の波長依存性を小さくできる。なお、酸化珪素又は酸化アルミニウムにより構成される層には、保護層15の第1層15aも含まれる。
(3) At least one layer in contact with the light absorption layer 14 is a layer made of silicon oxide or aluminum oxide.
The layer composed of silicon oxide or aluminum oxide has a property that oxygen atoms constituting the oxide are less likely to be transmitted to the adjacent layer as compared with the layer composed of other oxides. Therefore, according to the above configuration, it is possible to suppress the oxidation of a part of the metallic tin constituting the light absorption layer 14 due to the oxygen atoms contained in the layer in contact with the light absorption layer 14. As a result, the wavelength dependence of the transmittance of the light absorbing layer 14 in the visible light wavelength range can be reduced. The layer made of silicon oxide or aluminum oxide also includes the first layer 15a of the protective layer 15.
 (4)複数の誘電体層13は、高屈折率層と低屈折率層が交互に積層された誘電体多層膜を構成し、光吸収層14は、誘電体多層膜の層間に設けられている。
 上記構成によれば、簡易な構成で、誘電体多層膜に光吸収性を付与できる。
(4) The plurality of dielectric layers 13 form a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated, and the light absorption layer 14 is provided between the layers of the dielectric multilayer film. There is.
According to the above configuration, light absorption can be imparted to the dielectric multilayer film with a simple configuration.
 (5)光学膜12は、光吸収層14の外側に接するとともに、酸化珪素を含む保護層15を備えている。
 上記構成によれば、製造過程における光吸収層14の酸化による変質を抑制できる。
(5) The optical film 12 is in contact with the outside of the light absorption layer 14 and includes a protective layer 15 containing silicon oxide.
According to the above configuration, deterioration due to oxidation of the light absorption layer 14 in the manufacturing process can be suppressed.
 (6)保護層15は、酸化珪素により構成される第1層15aと、金属珪素により構成される第2層15bとを備え、第2層15bが光吸収層14の外側に接している。
 上記構成によれば、酸素原子が光吸収層14に伝わる前に第2層15bの金属珪素の酸化に消費されることにより、酸素原子が光吸収層14に伝わり難くなる。これにより、可視光の波長域における透過率の波長依存性を更に小さくできる。また、透過率の経時的安定性が向上する。
(6) The protective layer 15 includes a first layer 15a made of silicon oxide and a second layer 15b made of metallic silicon, and the second layer 15b is in contact with the outside of the light absorption layer 14.
According to the above configuration, the oxygen atom is consumed for the oxidation of the metallic silicon of the second layer 15b before being transmitted to the light absorption layer 14, so that the oxygen atom is hardly transmitted to the light absorption layer 14. As a result, the wavelength dependence of the transmittance in the wavelength range of visible light can be further reduced. In addition, the stability of the transmittance over time is improved.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・複数の誘電体層13は、誘電体多層膜を構成するものでなくてもよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The plurality of dielectric layers 13 do not have to form a dielectric multilayer film.
 ・膜付き透明基板10は、防眩層や防汚層等の機能層を更に備えていてもよい。例えば、透明基材11の第1表面11aに、コーティング剤を塗布する処理により形成される防眩層を設け、防眩層の上に光学膜12が設けられていてもよい。また、光学膜12の上に防汚層が更に設けられていてもよい。 -The transparent substrate 10 with a film may further include a functional layer such as an antiglare layer and an antifouling layer. For example, an antiglare layer formed by a treatment of applying a coating agent may be provided on the first surface 11a of the transparent base material 11, and an optical film 12 may be provided on the antiglare layer. Further, an antifouling layer may be further provided on the optical film 12.
 以下に実施例及び比較例を挙げ、上記実施形態をさらに具体的に説明する。なお、本発明はこれらに限定されるものではない。
 (実施例1)
 実施例1として、表1に示す構成例1の光吸収性反射防止膜を備える膜付き透明基板を作製した。第1誘電体層形成工程として、厚さ1.3mmの透明基板(日本電気硝子株式会社製化学強化ガラス基板:T2X-1)の上に、Nb膜、SiO膜、Nb膜、及びSiO膜を順にスパッタリング法で形成し、第1成膜体を得た。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。
The above-described embodiment will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited thereto.
(Example 1)
As Example 1, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 1 shown in Table 1 was produced. As a first dielectric layer forming step, an Nb 2 O 5 film, a SiO 2 film, and an Nb 2 O film are placed on a transparent substrate (chemically tempered glass substrate manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) having a thickness of 1.3 mm. The 5 films and the 2 SiO films were sequentially formed by a sputtering method to obtain a first film-forming film. A load-lock type reactive sputtering apparatus was used to form each film by the sputtering method.
 次に、光吸収層形成工程として、ロードロック式反応性スパッタリング装置を用いて、第1成膜体の誘電体層の上に金属スズからなる光吸収層を形成し、第2成膜体を得た。この際、アルゴンガスの流量は500sccmとした。光吸収層の成膜圧力は、0.3Paとした。 Next, as a light absorption layer forming step, a light absorption layer made of metallic tin is formed on the dielectric layer of the first film-forming body by using a load-lock type reactive sputtering apparatus, and the second film-forming body is formed. Obtained. At this time, the flow rate of argon gas was set to 500 sccm. The film forming pressure of the light absorption layer was 0.3 Pa.
 次に、金属珪素層形成工程として、アルゴンガスを同じ流量に保った状態で、金属珪素のターゲットをスパッタリングすることにより、光吸収層の上に金属珪素層を形成し、第3成膜体を得た。この際、金属珪素層の成膜圧力は、0.3Paとした。 Next, as a step of forming the metallic silicon layer, a metallic silicon layer is formed on the light absorbing layer by sputtering a target of metallic silicon while maintaining the same flow rate of argon gas, and a third film-forming body is formed. Obtained. At this time, the film forming pressure of the metallic silicon layer was set to 0.3 Pa.
 次に、第2誘電体層形成工程として、スパッタリング装置内に、アルゴンガス及び酸素ガスの混合ガスを導入した後、金属珪素のターゲットをスパッタリングし、金属珪素層上にSiO膜を成膜した。この際、アルゴンガスの流量を500sccmとし、酸素ガスの流量を220sccmとした。SiO膜の成膜圧力は、0.3Paとした。このSiO膜を形成する工程において、金属珪素層が酸化されることにより、酸化珪素により構成される保護層の第1層が形成される。 Next, as a second dielectric layer forming step, after introducing a mixed gas of argon gas and oxygen gas into the sputtering apparatus, the target of metallic silicon was sputtered to form a SiO 2 film on the metallic silicon layer. .. At this time, the flow rate of argon gas was set to 500 sccm, and the flow rate of oxygen gas was set to 220 sccm. The film formation pressure of the SiO 2 film was 0.3 Pa. In the step of forming the SiO 2 film, the metallic silicon layer is oxidized to form the first layer of the protective layer made of silicon oxide.
 続いて、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、ニオブのターゲットをスパッタリングすることにより、SiO膜上に、Nb膜を成膜した後、金属珪素のターゲットをスパッタリングすることにより、Nb膜上に、SiO膜を成膜し、実施例1の膜付き透明基板を得た。この際、Nb膜の成膜圧力は、0.3Paとし、SiO膜の成膜圧力は、0.3Paとした。実施例1の膜付き透明基板の各層の物理膜厚は、表1の構成例1に示すとおりである。 Subsequently, the niobium target is sputtered while maintaining the mixed gas of argon gas and oxygen gas at the same flow rate to form an Nb 2 O 5 film on the SiO 2 film, and then the metal silicon target. A SiO 2 film was formed on the Nb 2 O 5 film by sputtering, to obtain a transparent substrate with a film of Example 1. At this time, the film forming pressure of the Nb 2 O 5 film was 0.3 Pa, and the film forming pressure of the SiO 2 film was 0.3 Pa. The physical film thickness of each layer of the transparent substrate with a film of Example 1 is as shown in Configuration Example 1 of Table 1.
 (実施例2)
 実施例2として、表1に示す構成例2の光吸収性反射防止膜を備える膜付き透明基板を作製した。第1誘電体層形成工程として、厚さ1.3mmの透明基板(日本電気硝子株式会社製化学強化ガラス基板:T2X-1)の上に、Nb膜、SiO膜、及びNb膜を順にスパッタリング法で形成し、第1成膜体を得た。
(Example 2)
As Example 2, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 2 shown in Table 1 was produced. As a first dielectric layer forming step, an Nb 2 O 5 film, a SiO 2 film, and Nb 2 are placed on a transparent substrate (chemically tempered glass substrate manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) having a thickness of 1.3 mm. O 5 film is formed by the successively sputtering method to obtain a first film-forming material.
 次に、実施例1と同様にして、光吸収層形成工程、金属珪素層形成工程、及び第2誘電体層形成工程を行うことにより、実施例2の膜付き透明基板を得た。実施例2の膜付き透明基板の各層の物理膜厚は、表1の構成例2に示すとおりである。 Next, a transparent substrate with a film of Example 2 was obtained by performing a light absorption layer forming step, a metallic silicon layer forming step, and a second dielectric layer forming step in the same manner as in Example 1. The physical film thickness of each layer of the transparent substrate with a film of Example 2 is as shown in Configuration Example 2 of Table 1.
 (実施例3)
 実施例3として、表1に示す構成例3の光吸収性反射防止膜を備える膜付き透明基板を作製した。実施例1と同様にして、第1誘電体層形成工程及び光吸収層形成工程を行うことにより、第2成膜体を得た。次に、実施例1と同様にして、第2誘電体層形成工程を行うことにより(ただし、一層のSiO膜のみ成膜した)、実施例3の膜付き透明基板を得た。
(Example 3)
As Example 3, a transparent substrate with a film provided with the light-absorbing antireflection film of Configuration Example 3 shown in Table 1 was produced. A second film-formed body was obtained by performing the first dielectric layer forming step and the light absorption layer forming step in the same manner as in Example 1. Next, by performing the second dielectric layer forming step in the same manner as in Example 1 (however, only one layer of SiO 2 film was formed), a transparent substrate with a film of Example 3 was obtained.
 (実施例4~8)
 実施例4~8として、それぞれ表2に示す構成例4~8の光吸収性反射防止膜を備える膜付き透明基板を作製した。使用した透明基板及び各層の形成方法は実施例1と同様である。
(Examples 4 to 8)
As Examples 4 to 8, transparent substrates with a film provided with the light-absorbing antireflection films of Configuration Examples 4 to 8 shown in Table 2 were produced. The transparent substrate used and the method for forming each layer are the same as in Example 1.
 (比較例1)
 比較例1として、表1に示す構成例1から光吸収層及び保護層を省略した反射防止膜を備える膜付き透明基板を作製した。実施例1と同様にして、第1誘電体層形成工程を行うことにより、第1成膜体を得た。次に、実施例1と同様にして、第2誘電体層形成工程を行うことにより、比較例1の膜付き透明基板を得た。
(Comparative Example 1)
As Comparative Example 1, a transparent substrate with a film provided with an antireflection film in which the light absorption layer and the protective layer were omitted was produced from the configuration example 1 shown in Table 1. A first film-forming body was obtained by performing the first dielectric layer forming step in the same manner as in Example 1. Next, by performing the second dielectric layer forming step in the same manner as in Example 1, a transparent substrate with a film of Comparative Example 1 was obtained.
 (透過率、反射率、吸収率の評価)
 各実施例及び比較例の膜付き透明基板について、可視光の波長域(400~700nm)における透過率(Transmittance)及び反射率(Reflectance)を、分光光度計(日立ハイテク社製U-4000)にて測定した。また、下記式(1)を用いて、吸収率(Absorptance)を求めた。
(Evaluation of transmittance, reflectance, absorption rate)
For the transparent substrate with a film of each example and comparative example, the transmittance (Transmittance) and reflectance (Reflectance) in the wavelength range of visible light (400 to 700 nm) were measured by a spectrophotometer (U-4000 manufactured by Hitachi High-Tech). Was measured. In addition, the absorption rate (Absorptance) was determined using the following formula (1).
 吸収率(%)=100-透過率(%)-反射率(%)・・・(1)
 各実施例及び比較例の膜付き透明基板の透過・反射・吸収スペクトルを図2~10に示す。また、可視光の波長域における透過率、反射率、及び吸収率の各平均値、並びに透過率及び吸収率の最大値と最小値との差を算出した。その結果を表5及び6に示す。
Absorption rate (%) = 100-transmittance (%) -reflectance (%) ... (1)
The transmission / reflection / absorption spectra of the transparent substrate with a film of each Example and Comparative Example are shown in FIGS. 2 to 10. In addition, the average values of transmittance, reflectance, and absorptance in the wavelength range of visible light, and the difference between the maximum and minimum values of the transmittance and absorptivity were calculated. The results are shown in Tables 5 and 6.
 (シート抵抗の評価)
 実施例1~6の膜付き透明基板については、光学膜のシート抵抗を測定した。
 膜付き透明基板の光学膜に、光学膜の表面から透明基板に接する誘電体層に達するはんだからなる一対の電極を形成した。一対の電極は、互いに平行となるように離間した直線状であり、一対の電極の間隔及び長さは、80mmである。一対の電極にテスター(三菱化学社製Loresta MP)を接続し、光学膜の電気抵抗を測定して、シート抵抗を算出した。その結果を表5及び6に示す。
(Evaluation of sheet resistance)
For the transparent substrates with films of Examples 1 to 6, the sheet resistance of the optical film was measured.
On the optical film of the transparent substrate with a film, a pair of electrodes made of solder reaching from the surface of the optical film to the dielectric layer in contact with the transparent substrate were formed. The pair of electrodes are linearly separated so as to be parallel to each other, and the distance and length of the pair of electrodes are 80 mm. A tester (Loresta MP manufactured by Mitsubishi Chemical Corporation) was connected to the pair of electrodes, and the electrical resistance of the optical film was measured to calculate the sheet resistance. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5及び6に示すように、各実施例は、光吸収層を備えていない比較例1と比較して、透過率が低下している。シート抵抗を測定した実施例1~6の膜付き透明基板については、シート抵抗はいずれも1GΩ/□以上であることから、静電容量方式のタッチパネルディスプレイ用のカバー部材として適用できる。
Figure JPOXMLDOC01-appb-T000006
As shown in Tables 5 and 6, each Example has a lower transmittance than Comparative Example 1 which does not have a light absorption layer. Since the sheet resistance of the transparent substrates with films of Examples 1 to 6 for which the sheet resistance was measured has a sheet resistance of 1 GΩ / □ or more, it can be applied as a cover member for a capacitance type touch panel display.
 光吸収層の厚さが同じである実施例1~3の透過率及び吸収率を参照すると、光吸収層の内側に接する誘電体層が酸化珪素である実施例1は、光吸収層の内側に接する誘電体層が酸化ニオブである実施例2と比較して、透過率の最大値と最小値との差が小さいため、透過率の波長依存性が小さいことが分かる。保護層を備える実施例1は、保護層を備えない実施例3と比較して、透過率の最大値と最小値との差が小さいため、透過率の波長依存性が小さいことが分かる。 With reference to the transmittance and the absorptance of Examples 1 to 3 having the same thickness of the light absorption layer, in Example 1 in which the dielectric layer in contact with the inside of the light absorption layer is silicon oxide, the inside of the light absorption layer It can be seen that the wavelength dependence of the transmittance is small because the difference between the maximum value and the minimum value of the transmittance is small as compared with Example 2 in which the dielectric layer in contact with the oxide is niobium oxide. It can be seen that the wavelength dependence of the transmittance is small in Example 1 provided with the protective layer because the difference between the maximum value and the minimum value of the transmittance is small as compared with Example 3 without the protective layer.
 光吸収層の厚さを段階的に異ならせた実施例4~8の透過率及び吸収率を参照すると、光吸収層の厚さが増加するに従い、透過率は低下し、吸収率は上昇することが分かる。 With reference to the transmittance and the absorption rate of Examples 4 to 8 in which the thickness of the light absorption layer is changed stepwise, the transmittance decreases and the absorption rate increases as the thickness of the light absorption layer increases. You can see that.
 10…膜付き透明基板、11…透明基材、12…光学膜、13…誘電体層、14…光吸収層、15…保護層、15a…第1層、15b…第2層。 10 ... Transparent substrate with film, 11 ... Transparent substrate, 12 ... Optical film, 13 ... Dielectric layer, 14 ... Light absorption layer, 15 ... Protective layer, 15a ... First layer, 15b ... Second layer.

Claims (9)

  1.  透明基材と、前記透明基材の表面に設けられる光学膜とを備え、
     前記光学膜は、複数の誘電体層と、前記複数の誘電体層の間に挟まれる一層又は二層以上の光吸収層とを備え、
     前記光吸収層は金属スズを含み、
     前記光吸収層の物理膜厚の合計が2~30nmである膜付き透明基板。
    A transparent base material and an optical film provided on the surface of the transparent base material are provided.
    The optical film includes a plurality of dielectric layers and one layer or two or more light absorption layers sandwiched between the plurality of dielectric layers.
    The light absorbing layer contains metallic tin and contains
    A transparent substrate with a film having a total physical film thickness of the light absorption layer of 2 to 30 nm.
  2.  前記光吸収層の単層の物理膜厚が20nm以下である請求項1に記載の膜付き透明基板。 The transparent substrate with a film according to claim 1, wherein the physical film thickness of the single layer of the light absorption layer is 20 nm or less.
  3.  前記光吸収層に接する少なくとも一層は、酸化珪素又は酸化アルミニウムにより構成される層である請求項1又は請求項2に記載の膜付き透明基板。 The transparent substrate with a film according to claim 1 or 2, wherein at least one layer in contact with the light absorption layer is a layer made of silicon oxide or aluminum oxide.
  4.  前記複数の誘電体層は、高屈折率層と低屈折率層が交互に積層された誘電体多層膜であり、
     前記光吸収層は、前記誘電体多層膜の層間に設けられている請求項1~3のいずれか一項に記載の膜付き透明基板。
    The plurality of dielectric layers are dielectric multilayer films in which high refractive index layers and low refractive index layers are alternately laminated.
    The transparent substrate with a film according to any one of claims 1 to 3, wherein the light absorption layer is provided between layers of the dielectric multilayer film.
  5.  前記複数の誘電体層は、無機酸化物、無機窒化物及び無機酸窒化物から選ばれる1種以上を含む請求項1~4のいずれか一項に記載の膜付き透明基板。 The transparent substrate with a film according to any one of claims 1 to 4, wherein the plurality of dielectric layers include one or more selected from inorganic oxides, inorganic nitrides and inorganic oxynitrides.
  6.  400~700nmの波長域における光透過率の平均値が44%以上90%以下である請求項1~5のいずれか一項に記載の膜付き透明基板。 The transparent substrate with a film according to any one of claims 1 to 5, wherein the average value of the light transmittance in the wavelength range of 400 to 700 nm is 44% or more and 90% or less.
  7.  400~700nmの波長域における光透過率(%)の最大値と最小値の差が30以下である請求項1~6のいずれか一項に記載の膜付き透明基板。 The transparent substrate with a film according to any one of claims 1 to 6, wherein the difference between the maximum value and the minimum value of the light transmittance (%) in the wavelength range of 400 to 700 nm is 30 or less.
  8.  400~700nmの波長域における光吸収率の平均値が10%以上55%以下である請求項1~7のいずれか一項に記載の膜付き透明基板。 The transparent substrate with a film according to any one of claims 1 to 7, wherein the average value of the light absorption rate in the wavelength range of 400 to 700 nm is 10% or more and 55% or less.
  9.  400~700nmの波長域における光吸収率(%)の最大値と最小値の差が30以下である請求項1~8のいずれか一項に記載の膜付き透明基板。 The transparent substrate with a film according to any one of claims 1 to 8, wherein the difference between the maximum value and the minimum value of the light absorption rate (%) in the wavelength range of 400 to 700 nm is 30 or less.
PCT/JP2020/019702 2019-05-21 2020-05-19 Film-equipped transparent substrate WO2020235540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520789A JPWO2020235540A1 (en) 2019-05-21 2020-05-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-095384 2019-05-21
JP2019095384 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235540A1 true WO2020235540A1 (en) 2020-11-26

Family

ID=73459412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019702 WO2020235540A1 (en) 2019-05-21 2020-05-19 Film-equipped transparent substrate

Country Status (2)

Country Link
JP (1) JPWO2020235540A1 (en)
WO (1) WO2020235540A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154595A (en) * 1999-12-01 2001-06-08 Teijin Ltd Laminated body for plasma display front plate
US20110299167A1 (en) * 2010-06-07 2011-12-08 General Atomics Reflective coating, pigment, colored composition, and process of producing a reflective pigment
JP2016079051A (en) * 2014-10-14 2016-05-16 旭硝子株式会社 Laminated film-equipped transparent substrate, and method for producing the same
JP2018189898A (en) * 2017-05-10 2018-11-29 富士フイルム株式会社 Laminate structure and molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154595A (en) * 1999-12-01 2001-06-08 Teijin Ltd Laminated body for plasma display front plate
US20110299167A1 (en) * 2010-06-07 2011-12-08 General Atomics Reflective coating, pigment, colored composition, and process of producing a reflective pigment
JP2016079051A (en) * 2014-10-14 2016-05-16 旭硝子株式会社 Laminated film-equipped transparent substrate, and method for producing the same
JP2018189898A (en) * 2017-05-10 2018-11-29 富士フイルム株式会社 Laminate structure and molded body

Also Published As

Publication number Publication date
JPWO2020235540A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR101843302B1 (en) Infrared reflecting substrate and method for producing same
US20180203354A1 (en) Transparent substrate with antireflective film
JP6950103B2 (en) A coated article having an IR reflective layer (s) and a silicon nitride zirconium layer (s), and a method for producing the same.
EP3203274B1 (en) Ophthalmic lens comprising a thin antireflective coating with a very low reflection in the visible
WO2009131206A1 (en) Low reflection glass and protective plate for display
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
RU2578071C1 (en) Ir-reflecting and transparent system of layers having colour stability, and method of making same manufacture, glass block
KR101797426B1 (en) Coating Glass and Method for Preparing the Same
JP6767661B2 (en) Gray tones low emissivity glass
JP6853486B2 (en) Solar shielding member
KR20170086419A (en) Low-emissivity Glass and Process for Preparing the Same
JP6024369B2 (en) Glass laminate for windows
KR20200125245A (en) Coated article and method for manufacturing the same
WO2020235540A1 (en) Film-equipped transparent substrate
JP4793056B2 (en) Sputter deposition method of antireflection film
JP6611192B2 (en) Glass plate with low reflection coating and laminated glass using the same
JP7303496B2 (en) METHOD FOR MANUFACTURING TRANSPARENT SUBSTRATE WITH FILM
EP3393991A1 (en) Reflective panel
WO2022124030A1 (en) Optical filter
CN108290780B (en) Ultraviolet light resistant articles and methods of making the same
CN114728497B (en) Laminate and door or wall
WO2022181371A1 (en) Transparent substrate with multilayer film and image display device
JPH01145351A (en) Infrared shielding glass
WO2019181421A1 (en) Glass substrate with layered films and window glass
JP7156312B2 (en) heat insulating glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809613

Country of ref document: EP

Kind code of ref document: A1