WO2019181421A1 - Glass substrate with layered films and window glass - Google Patents

Glass substrate with layered films and window glass Download PDF

Info

Publication number
WO2019181421A1
WO2019181421A1 PCT/JP2019/007935 JP2019007935W WO2019181421A1 WO 2019181421 A1 WO2019181421 A1 WO 2019181421A1 JP 2019007935 W JP2019007935 W JP 2019007935W WO 2019181421 A1 WO2019181421 A1 WO 2019181421A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
layer
laminated film
thickness
dielectric layer
Prior art date
Application number
PCT/JP2019/007935
Other languages
French (fr)
Japanese (ja)
Inventor
章代 松本
一色 眞誠
正文 秋田
Original Assignee
Agc株式会社
エージーシー グラス ユーロップ
エージーシー フラット グラス ノース アメリカ, インコーポレイテッド
エージーシー ヴィドロ ド ブラジル リミターダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, エージーシー グラス ユーロップ, エージーシー フラット グラス ノース アメリカ, インコーポレイテッド, エージーシー ヴィドロ ド ブラジル リミターダ filed Critical Agc株式会社
Priority to JP2020507480A priority Critical patent/JPWO2019181421A1/en
Publication of WO2019181421A1 publication Critical patent/WO2019181421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • the present invention relates to a glass substrate with laminated film and a window glass.
  • High heat shielding performance is required for building glass panes in hot regions, for example, low-latitude to mid-latitude regions such as Southeast Asia.
  • the window glass In order to have high heat shielding performance, it is necessary for the window glass to have a low thermal emissivity.
  • a window glass having a low thermal emissivity a film laminate having a glass substrate and a laminated film including a first dielectric layer, a crystallinity improving region, a zirconium nitride layer, and a second dielectric layer is proposed. (Patent Document 1).
  • the inventors of the present invention have described that the cause of the peeling of the laminated film at the interface between the glass substrate and the laminated film in the glass substrate with the laminated film is that the compressive stress of the zirconium nitride layer in the laminated film is high and the adhesion of the first dielectric layer
  • the present invention was completed by finding out that it is based on low nature. That is, it discovered that the said subject could be solved by the glass substrate with a laminated film which has the following aspects.
  • the laminated film has a configuration including a first dielectric layer, a crystallinity improving layer, a functional layer, and a second dielectric layer in this order from the glass substrate side,
  • the first dielectric layer and the second dielectric layer comprise silicon nitride;
  • the functional layer includes zirconium nitride having an extinction coefficient of greater than 6.0 at a wavelength of 1500 nm,
  • the crystallinity improving layer includes zirconium nitride having an extinction coefficient of less than 2.0 at a wavelength of 1500 nm,
  • the laminated film has a stress index defined by the following formula (1) of 70 or more,
  • the adhesion layer includes silicon oxide and has a thickness of 3 to 20 nm;
  • a glass substrate with a laminated film is provided in which a value obtained by dividing the thickness of the adhesion layer
  • the glass substrate with a laminated film which is excellent in heat-shielding property and adhesiveness can be provided.
  • the “boundary between the crystallinity improving layer and the functional layer” is defined as follows.
  • a functional layer is formed on the surface of the crystallinity-improving layer, the atoms constituting the crystallinity-improving layer and the atoms constituting the functional layer are mixed, so the boundary between the crystallinity-improving layer and the functional layer is in the thickness direction. It exists with a certain width. Therefore, by alternately repeating etching by ion sputtering and X-ray photoelectron spectroscopy (XPS) measurement, the atomic concentration is analyzed in the thickness direction from the surface of the laminated film to the interface between the laminated film and the glass substrate.
  • XPS X-ray photoelectron spectroscopy
  • Sputter time range in which the metal atoms contained in the crystallinity-improving layer and the metal atoms contained in the functional layer are detected in the graph of sputtering time and atomic concentration (however, one or both metal atoms were detected as noise) Is the boundary between the crystallinity improving layer and the functional layer.
  • Oxygen atom concentration at the boundary between the crystallinity-enhancing layer and the functional layer refers to sputtering in which atoms contained in the crystallinity-improving layer and atoms contained in the functional layer are detected in the above-described graph of sputtering time and atomic concentration. It is the maximum value of oxygen atom concentration in the time range.
  • the “thickness of each layer constituting the laminated film” is calculated from “the boundary between the target layer and the upper layer” to “the boundary between the target layer and the lower layer” in the above-described graph of the sputtering time and the atomic concentration.
  • the sputtering time was a value converted from the sputtering rate of the standard sample to the thickness.
  • “Boundary between the target layer and the layer immediately above” and “Boundary between the target layer and the layer immediately below” are respectively “the median values of the sputtering times during which atoms included in the target layer and atoms included in the layer directly above are detected. And “the median value of the sputtering time during which atoms contained in the target layer and atoms contained in the immediate lower layer are detected”.
  • “Thickness of adhesion layer” is calculated by converting the sputtering time from “boundary between glass substrate and adhesion layer” to “boundary between adhesion layer and first dielectric layer” from the sputtering rate of the standard sample. Value.
  • the “boundary between the glass substrate and the adhesion layer” is the median value of the sputtering time during which atoms contained in the glass substrate and atoms contained in the adhesion layer are detected in the above-described graph of sputtering time and atomic concentration.
  • the “boundary between the adhesion layer and the first dielectric layer” is the median value of the sputtering time during which both atoms contained in the adhesion layer and atoms contained in the first dielectric layer are detected.
  • the value of “pressure” indicates “absolute pressure” unless otherwise specified.
  • the thickness of the glass substrate is a geometric thickness. “ ⁇ ” indicating a numerical range means that numerical values described before and after that are included as a lower limit value and an upper limit value. 1 and 2 are both schematic drawings, and the dimensional ratios thereof are different from actual ones for convenience of explanation.
  • the present invention will be described in detail. The description of the constituent elements described below is made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • FIG. 1 is a cross-sectional view showing an example of a glass substrate with a laminated film of the present invention.
  • the glass substrate with a laminated film 10 includes a glass substrate 21, an adhesion layer 61 provided on one surface of the glass substrate 21, a first laminated film 22, and a second laminated film 23.
  • the 1st laminated film 22 has the structure which has the 1st dielectric material layer 31, the 1st crystallinity improvement layer 41, the 1st functional layer 51, and the 2nd dielectric material layer 32 in order from the glass substrate 21 side. Consists of.
  • the second laminated film 23 includes, from the glass substrate 21 side, a third dielectric layer 33 that also serves as the second dielectric layer 32 of the first laminated film 22, a second crystallinity improving layer 42, 2 functional layers 52 and a fourth dielectric layer 34 in this order.
  • FIG. 2 is a cross-sectional view showing another example of the glass substrate with a laminated film of the present invention.
  • the glass substrate 11 with a laminated film includes a glass substrate 21, an adhesion layer 61 provided on one surface of the glass substrate 21, a first laminated film 22, a second laminated film 23, and a third laminated film 24.
  • the third laminated film 24 includes a fifth dielectric layer 35 that also serves as the fourth dielectric layer 34 of the second laminated film 23, a third crystallinity improving layer 43, a third functional layer 53, and a third functional layer 53. 6 dielectric layers 36 in order.
  • the laminated film 22 may have a sacrificial layer between the first dielectric layer 31 and the first crystallinity improving layer 41, and the first functional layer 51, the second dielectric layer 32, and the like. A sacrificial layer may be provided between them.
  • the laminated films 23 and 24 may have a sacrificial layer.
  • the sacrificial layer is for suppressing diffusion of nitrogen from the first dielectric layer to the crystallinity improving layer and diffusion of nitrogen from the second dielectric layer to the functional layer during the heat treatment. It is preferably a metal layer made of any one of aluminum, titanium, chromium, niobium, molybdenum, hafnium, zirconium, or a combination thereof.
  • the laminated film 23 may have a top layer on the surface of the fourth dielectric layer 34 farthest from the glass substrate 21.
  • the laminated film 24 may have a top layer on the surface of the sixth dielectric layer 36.
  • the laminated films 22 to 24 are provided on at least one surface of the glass substrate 21.
  • the laminated films 22 to 24 may be provided on both surfaces of the glass substrate 21.
  • the glass substrate 21 examples include soda lime glass, aluminosilicate glass, non-alkali glass, and borosilicate glass, and soda lime glass is preferable.
  • the thickness of the glass substrate 21 is appropriately set according to the use of the laminated film-attached glass substrate. When a glass substrate with a laminated film is used as a window glass, the thickness of the glass substrate 21 is preferably 0.5 to 12 mm.
  • the adhesion layer 61 contains silicon oxide and has a thickness of 3 to 20 nm.
  • the silicon oxide is preferably doped with boron, aluminum, titanium, nickel, zinc, molybdenum, tin, tungsten, zirconium or niobium, and more preferably with aluminum or zirconium.
  • silicon oxide doped with aluminum is expressed as Si 1- ⁇ O z ⁇ Al ⁇ , where ⁇ is 0.03 to 0.50 and z is 1.0 to 2.0.
  • Zirconium-doped silicon oxide is expressed as Si 1- ⁇ O z ⁇ Zr ⁇ , where ⁇ is 0.03 to 0.50 and z is 1.0 to 2.0.
  • the thickness of the adhesion layer 61 is 3 nm or more, the glass substrate with a laminated film 10 has excellent adhesion.
  • the thickness is 20 nm or less, the laminated film-attached glass substrate 10 can realize an appearance with few defects.
  • the thickness of the adhesion layer 61 is preferably 5 to 15 nm, and more preferably 7 to 15 nm.
  • the first dielectric layer 31 and the second dielectric layer 32 include silicon nitride.
  • the silicon nitride is preferably doped with boron, aluminum, titanium, nickel, zinc, molybdenum, tin, tungsten, zirconium or niobium, and more preferably with aluminum or zirconium.
  • Silicon nitride doped with aluminum is expressed as Si 1- ⁇ N y ⁇ Al ⁇ , where ⁇ is 0.03 to 0.50 and y is 1.0 to 2.0.
  • Zirconium-doped silicon nitride is expressed as Si 1- ⁇ N y ⁇ Zr ⁇ , where ⁇ is 0.03 to 0.50 and y is 1.0 to 2.0.
  • the first dielectric layer 31 and the second dielectric layer 32 may contain impurities (carbon atoms, oxygen atoms, etc.) that are inevitably introduced during film formation.
  • the first dielectric layer 31 and the second dielectric layer 32 may be a single layer or a combination of two or more different types of layers.
  • the thickness of the first dielectric layer 31 and the second dielectric layer 32 is preferably 1.5 to 200 nm. If this thickness is 1.5 nm or more, the first functional layer 51 is protected from deterioration due to oxygen and moisture, and thus the laminated film-attached glass substrate 10 has excellent durability. If this thickness is 200 nm or less, the glass substrate 10 with a laminated film can obtain good productivity.
  • the first crystallinity improving layer 41 improves the crystallinity of zirconium nitride contained in the first functional layer 51 formed immediately above.
  • the first crystallinity improving layer 41 includes zirconium nitride having an extinction coefficient of less than 2.0 at a wavelength of 1500 nm.
  • Zirconium nitride is preferably present in the first crystallinity-improving layer 41 at a portion in contact with the first functional layer 51.
  • the thickness of the first crystallinity improving layer 41 is preferably 3 to 30 nm, more preferably 4.5 to 20 nm.
  • the glass substrate with film 10 has excellent heat shielding properties.
  • the first functional layer 51 includes zirconium nitride having an extinction coefficient of more than 6.0 at a wavelength of 1500 nm.
  • the first functional layer 51 may contain impurities (carbon atoms, oxygen atoms, other metal atoms, etc.) that are inevitably introduced during film formation.
  • the first functional layer 51 is formed in contact with the first crystallinity improving layer 41 and immediately above it.
  • the thickness of the first functional layer 51 is preferably 3 to 60 nm, and more preferably 10 to 40 nm. If this thickness is 3 nm or more, the heat-shielding property of the glass substrate 10 with a laminated film is further increased. If this thickness is 60 nm or less, the glass substrate 10 with a laminated film can have moderately visible light transmittance.
  • the materials and thicknesses of the third to sixth dielectric layers 33 to 36 are the same as those of the first dielectric layer 31 and the second dielectric layer 32, and the preferred embodiments are also the same.
  • the third to sixth dielectric layers 33 to 36 may contain impurities (carbon atoms, oxygen atoms, etc.) inevitably introduced at the time of film formation.
  • the materials and thicknesses of the second crystallinity enhancement layer 42 and the third crystallinity enhancement layer 43 are the same as those of the first crystallinity enhancement layer 41, and the preferred forms are also the same.
  • the second and third crystallinity improving layers 42 and 43 may contain impurities (carbon atoms, oxygen atoms, etc.) inevitably introduced during film formation.
  • the materials and thicknesses of the second functional layer 52 and the third functional layer 53 are the same as those of the first functional layer 51, and the preferred forms are also the same.
  • the second and third functional layers 52 and 53 may contain impurities (carbon atoms, oxygen atoms, etc.) that are inevitably introduced during film formation.
  • the glass substrate with a laminated film of the present invention is preferably such that the laminated film does not peel after 4 cycles of the salt spray test specified in JIS C60068-2-52. More preferably, the laminated film does not peel off after 5 cycles of the salt spray test.
  • the glass substrate with a laminated film of the present invention when the total thickness of all functional layers is 30 nm or more, the adhesion in the salt spray test is greatly improved.
  • the glass substrate with a laminated film of the present invention preferably has a solar heat acquisition rate specified in ISO 9050: 2003 of 0.36 or less, more preferably 0.30 or less.
  • the laminated film of the present invention has a stress index defined by the following formula (1) of 70 or more.
  • Stress index total thickness of functional layer (nm) + 0.2 ⁇ total thickness of dielectric layer (nm) + 0.4 ⁇ total thickness of crystallinity improving layer (nm) (1)
  • the present inventors have found that when a laminated film is provided directly on a glass substrate, if the laminated film has a stress index of 70 or more, it is easy to peel in a salt spray test.
  • the laminated film has a configuration in which a first dielectric layer containing silicon nitride, a crystallinity improving layer containing zirconium nitride, a functional layer containing zirconium nitride, and a second dielectric layer containing silicon nitride are sequentially formed, each layer Therefore, the stress of the laminated film tends to be as high as 5000 to 30000 MPa. Furthermore, a laminated film having a stress index of 70 or more calculated in consideration of the thickness of each layer has a stress of 8000 to 35000 MPa, and thus easily peels off in a salt spray test.
  • the stress index of the laminated film is preferably 70 to 230, more preferably 70 to 150, and particularly preferably 70 to 100.
  • the glass substrate with the laminated film has excellent heat shielding properties.
  • the stress index of the laminated film is 230 or less, the glass substrate with the laminated film becomes difficult to peel off in the salt spray test when an adhesion layer is provided.
  • the visible light absorptance of the functional layer can be reduced to a certain value or less, the glass substrate with a laminated film can have a visible light transmittance of 3% or more measured in accordance with ISO 9050: 2003.
  • the present inventors have introduced an adhesion layer 61 containing silicon oxide and having a thickness of 3 to 20 nm between the glass substrate and the laminated film, and the thickness of the adhesion layer 61 is set to the laminated film. It was found that when the value divided by the stress index of 0.04 to 0.29 is within the range, the glass substrate with a laminated film has excellent heat shielding properties and adhesion. The reason is not necessarily clear, but by selecting the thickness of the adhesion layer 61 and the laminated films 22 to 24 in which this value is in the range of 0.04 to 0.29, the laminated films 22 to 24 including the zirconium nitride layer are selected. We believe that we were able to achieve adhesion that can withstand the stress of. This value is preferably in the range of 0.09 to 0.25, and more preferably in the range of 0.09 to 0.20.
  • the ratio of the thickness of the adhesion layer 61 to the total thickness of the laminated film is preferably in the range of 0.009 to 0.102.
  • this ratio is 0.009 or more, the glass substrate with a laminated film can have excellent adhesion in a salt spray test.
  • this ratio is 0.102 or less, the laminated film-attached glass substrate can realize an appearance with few defects.
  • the ratio of the thickness of the second functional layer 52 to the thickness of the first functional layer 51 is preferably in the range of 1.05 to 2.60.
  • This ratio is more preferably in the range of 1.10 to 2.50, and still more preferably in the range of 1.20 to 2.40.
  • the oxygen atom concentration at the boundary between the first crystallinity improving layer 41 and the first functional layer 51 is preferably 20 atomic% or less, more preferably 15 atomic% or less, and 10 atomic% or less. More preferably it is.
  • the oxygen atom concentration is 20 atomic% or less, the crystallinity of zirconium nitride contained in the first functional layer 51 is improved, and the glass substrate with a laminated film can have excellent heat shielding properties.
  • the lower limit is 0 atomic%.
  • the oxygen atom concentration at the boundary between the second and third crystallinity enhancement layers 42 and 43 and the second and third functional layers 52 and 53 is the same as the first crystallinity enhancement layer 41 and the first functional layer 51. It is preferable to be in the same numerical range as the oxygen atom concentration at the boundary.
  • the glass substrate 10 with a laminated film of the present invention has an adhesion layer 61, a first dielectric layer 31, a first crystallinity improving layer 41, a first functional layer 51, a second dielectric on the surface of the glass substrate 21.
  • the body layer 32, the second crystallinity improving layer 42, the second functional layer 52, and the fourth dielectric layer 34 can be manufactured in sequence.
  • the third crystallinity improving layer 43, the third functional layer, and the sixth dielectric layer 36 are sequentially formed on the surface of the fourth dielectric layer 34. Can be manufactured.
  • the film forming method examples include a vacuum deposition method, an ion plating method, a sputtering method, a CVD method, and the like, and the sputtering method is preferable from the viewpoint of excellent thickness uniformity and productivity.
  • the glass substrate 11 with a laminated film of the present invention can be used as a window glass having a single glass substrate.
  • a window glass having a single glass substrate is lightweight and has excellent productivity.
  • the laminated glass is provided in the indoor side in the window glass which has one glass substrate. By providing the laminated film on the indoor side, the heat insulating property of the window glass is improved.
  • Examples 1 to 7 are examples, examples 11, 13, 14, and 15 are comparative examples, and example 12 is a reference example.
  • the thickness of each layer in the laminated film is measured with a spectroscopic ellipsometer (measured at 50 °, 60 °, and 70 ° incident angles using M-2000 manufactured by JA Woollam), and transmission spectrum (manufactured by Hitachi, Ltd.).
  • U-4100 measured in the wavelength range of 250 to 2500 nm
  • film surface reflection spectrum measured in the wavelength range of 250 to 2500 nm at an incident angle of 5 ° using U-4100 manufactured by Hitachi, Ltd.
  • the thickness of the adhesion layer was measured by a method of alternately repeating etching by ion sputtering and X-ray photoelectron spectroscopy (XPS) measurement.
  • XPS X-ray photoelectron spectroscopy
  • the extinction coefficient at a wavelength of 1500 nm of the crystallinity improving layer and the functional layer was determined as follows. With respect to the glass substrate with the laminated film, a spectral spectrum was measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). In addition, polarization information was measured using a spectroscopic ellipsometer (manufactured by JA Woollam Co., Ltd., M-2000). Using the obtained spectral transmission spectrum, spectral reflection spectrum (film surface and glass surface) and polarization information, the optical model was fitted to determine the extinction coefficient.
  • Example 1 As the glass substrate 21, a soda-lime glass plate having a size of 100 mm in length, 100 mm in width, and 3 mm in thickness was prepared. As shown in Table 1 and Table 2, the adhesion layer 61 and the laminated films 22 and 23 were formed on one surface of the glass substrate 21 to obtain the laminated film-attached glass substrate 10. The adhesion layer 61 and the laminated films 22 and 23 were formed by a sputtering method.
  • the adhesion layer 61 Si 1- ⁇ O z ⁇ Al ⁇
  • the pressure during film formation was 0.5 Pa.
  • the first dielectric layer 31 and the second dielectric layer 32 (Si 1- ⁇ N y ⁇ Al ⁇ ) were formed by using a Si (90 mass%)-Al (10 mass%) target and discharging.
  • the pressure during film formation was 0.4 Pa.
  • the first crystallinity improving layer 41 (ZrN x )
  • nitrogen gas was used as a discharge gas.
  • the pressure during film formation was 0.4 Pa.
  • the pressure during film formation was 0.3 Pa.
  • the thicknesses of the second crystallinity improving layer 42, the second functional layer 52, and the fourth dielectric layer 34 were adjusted to the thicknesses shown in Tables 1 and 2 by changing the substrate transport speed.
  • Examples 2-7, Examples 11-15 By carrying out in the same manner as in Example 1 except that each element of the glass substrate, the adhesion layer, and the laminated film in the glass substrate with the laminated film is configured as shown in Table 1 and Table 2, the glass substrate with laminated film 10 or 11 was obtained.
  • the glass substrate with a laminated film of the present invention is useful for architectural window glass, vehicle window glass, and the like as heat shielding glass. It should be noted that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-053485 filed on March 20, 2018 is cited here as disclosure of the specification of the present invention. Incorporate.

Abstract

Provided is a glass substrate with layered films that has outstanding heat shielding properties and adhesiveness. The glass substrate with layered films comprises a glass substrate, an adhesive layer disposed on at least one surface of the glass substrate, and at least two layered films; the layered films comprise, in order from the glass substrate side, a first dielectric layer, a crystallinity improvement layer, a functional layer, and a second dielectric layer; the first dielectric layer and the second dielectric layer include silicon nitride; the functional layer includes zirconium nitride with an extinction coefficient of over 6.0 at a wavelength of 1500 nm; the layered films have a stress index, defined by formula (1), of at least 70; the adhesive layer includes silicon oxide and has a thickness of 3–20 nm; and the value found by dividing the thickness of the adhesive layer by the stress index is 0.04–0.29.

Description

積層膜付きガラス基板及び窓ガラスGlass substrate with laminated film and window glass
 本発明は、積層膜付きガラス基板及び窓ガラスに関する。 The present invention relates to a glass substrate with laminated film and a window glass.
 暑熱地域、例えば、東南アジア等の低緯度から中緯度の地域における建築用窓ガラスには、高い遮熱性能が求められている。高い遮熱性能を持つためには、窓ガラスが、熱放射率を低くすることが必要となる。熱放射率の低い窓ガラスとしては、ガラス基板と、第1の誘電体層、結晶性向上領域、窒化ジルコニウム層及び第2の誘電体層を含む積層膜と、を有する膜積層体が提案されている(特許文献1)。 High heat shielding performance is required for building glass panes in hot regions, for example, low-latitude to mid-latitude regions such as Southeast Asia. In order to have high heat shielding performance, it is necessary for the window glass to have a low thermal emissivity. As a window glass having a low thermal emissivity, a film laminate having a glass substrate and a laminated film including a first dielectric layer, a crystallinity improving region, a zirconium nitride layer, and a second dielectric layer is proposed. (Patent Document 1).
国際公開第2016/199676号International Publication No. 2016/199676
 特許文献1における積層膜付きガラス基板の有する遮熱性能をさらに向上させるために、窒化ジルコニウム層の総厚さを厚くすると、ガラス基板と積層膜との界面で剥離しやすく、両者の密着性に課題があることを、本発明者らは見出した。
 そこで、本発明は、遮熱性と密着性とに優れる積層膜付きガラス基板の提供を課題とする。
In order to further improve the heat-shielding performance of the glass substrate with a laminated film in Patent Document 1, if the total thickness of the zirconium nitride layer is increased, the glass substrate and the laminated film are easily peeled off, and the adhesion between the two is improved. The present inventors have found that there is a problem.
Then, this invention makes it a subject to provide the glass substrate with a laminated film which is excellent in heat-shielding property and adhesiveness.
 本発明者らは、積層膜付きガラス基板におけるガラス基板と積層膜との界面での積層膜の剥離原因が、積層膜における窒化ジルコニウム層の圧縮応力が高いこと及び第1の誘電体層の密着性が低いこと、に基因することを見出し、本発明を完成させた。
 すなわち、以下の態様を有する積層膜付きガラス基板により上記課題を解決できることを見出した。
The inventors of the present invention have described that the cause of the peeling of the laminated film at the interface between the glass substrate and the laminated film in the glass substrate with the laminated film is that the compressive stress of the zirconium nitride layer in the laminated film is high and the adhesion of the first dielectric layer The present invention was completed by finding out that it is based on low nature.
That is, it discovered that the said subject could be solved by the glass substrate with a laminated film which has the following aspects.
 ガラス基板と、前記ガラス基板の少なくとも一方の表面に設けられた密着層及び2つ以上の積層膜と、を有する積層膜付きガラス基板であり、
 前記積層膜が、前記ガラス基板側から、第1の誘電体層、結晶性向上層、機能層及び第2の誘電体層を順に有する構成からなり、
 前記第1の誘電体層及び第2の誘電体層は、窒化ケイ素を含み、
 前記機能層は、波長1500nmにおける消衰係数が6.0超である窒化ジルコニウムを含み、
 前記結晶性向上層は、波長1500nmにおける消衰係数が2.0未満である窒化ジルコニウムを含み、
 前記積層膜は、下式(1)で定義される応力指数が70以上であり、
 前記密着層は、酸化ケイ素を含み、厚さが3~20nmであり、
 前記密着層の厚さを前記応力指数で除した値が、0.04~0.29の範囲にある、積層膜付きガラス基板が提供される。
 応力指数=機能層の総厚さ(nm)+0.2×誘電体層の総厚さ(nm)+0.4×結晶性向上層の総厚さ(nm)・・・(1)
A glass substrate, a glass substrate with a laminated film having an adhesion layer and two or more laminated films provided on at least one surface of the glass substrate;
The laminated film has a configuration including a first dielectric layer, a crystallinity improving layer, a functional layer, and a second dielectric layer in this order from the glass substrate side,
The first dielectric layer and the second dielectric layer comprise silicon nitride;
The functional layer includes zirconium nitride having an extinction coefficient of greater than 6.0 at a wavelength of 1500 nm,
The crystallinity improving layer includes zirconium nitride having an extinction coefficient of less than 2.0 at a wavelength of 1500 nm,
The laminated film has a stress index defined by the following formula (1) of 70 or more,
The adhesion layer includes silicon oxide and has a thickness of 3 to 20 nm;
A glass substrate with a laminated film is provided in which a value obtained by dividing the thickness of the adhesion layer by the stress index is in the range of 0.04 to 0.29.
Stress index = total thickness of functional layer (nm) + 0.2 × total thickness of dielectric layer (nm) + 0.4 × total thickness of crystallinity improving layer (nm) (1)
 本発明によれば、遮熱性及び密着性に優れる積層膜付きガラス基板を提供することがで
きる。
ADVANTAGE OF THE INVENTION According to this invention, the glass substrate with a laminated film which is excellent in heat-shielding property and adhesiveness can be provided.
本発明の積層膜付きガラス基板の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the glass substrate with a laminated film of this invention. 本発明の積層膜付きガラス基板の他の例を示す模式的断面図である。It is typical sectional drawing which shows the other example of the glass substrate with a laminated film of this invention.
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
 「結晶性向上層と機能層との境界」は、次のように定義する。結晶性向上層の表面に機能層を成膜した場合、結晶性向上層を構成する原子と機能層を構成する原子とが混ざり合うため、結晶性向上層と機能層との境界は厚さ方向にある程度の幅を持って存在する。したがって、イオンスパッタリングによるエッチングとX線光電子分光(XPS)測定とを交互に繰り返すことによって、積層膜の表面から積層膜とガラス基板との界面まで厚さ方向に原子濃度の分析を行い、得られたスパッタ時間と原子濃度とのグラフにおいて結晶性向上層に含まれる金属原子及び機能層に含まれる金属原子が検出されるスパッタ時間の範囲(ただし、一方又は両方の金属原子がノイズとして検出された部分を除く。)を結晶性向上層と機能層との境界とする。
The following definitions of terms apply throughout this specification and the claims.
The “boundary between the crystallinity improving layer and the functional layer” is defined as follows. When a functional layer is formed on the surface of the crystallinity-improving layer, the atoms constituting the crystallinity-improving layer and the atoms constituting the functional layer are mixed, so the boundary between the crystallinity-improving layer and the functional layer is in the thickness direction. It exists with a certain width. Therefore, by alternately repeating etching by ion sputtering and X-ray photoelectron spectroscopy (XPS) measurement, the atomic concentration is analyzed in the thickness direction from the surface of the laminated film to the interface between the laminated film and the glass substrate. Sputter time range in which the metal atoms contained in the crystallinity-improving layer and the metal atoms contained in the functional layer are detected in the graph of sputtering time and atomic concentration (however, one or both metal atoms were detected as noise) Is the boundary between the crystallinity improving layer and the functional layer.
 「結晶性向上層と機能層との境界における酸素原子濃度」は、上述したスパッタ時間と原子濃度とのグラフにおいて、結晶性向上層に含まれる原子及び機能層に含まれる原子が検出されるスパッタ時間の範囲における酸素原子濃度の最大値である。
 「積層膜を構成する各層の厚さ」は、上述したスパッタ時間と原子濃度とのグラフにおいて、「目的の層と直上層との境界」から「目的の層と直下層との境界」までのスパッタ時間を、標準試料のスパッタレートから厚さに換算した値とした。「目的の層と直上層との境界」及び「目的の層と直下層との境界」は、それぞれ「目的の層に含まれる原子及び直上層に含まれる原子が検出されるスパッタ時間の中央値」及び「目的の層に含まれる原子及び直下層に含まれる原子が検出されるスパッタ時間の中央値」とした。
“Oxygen atom concentration at the boundary between the crystallinity-enhancing layer and the functional layer” refers to sputtering in which atoms contained in the crystallinity-improving layer and atoms contained in the functional layer are detected in the above-described graph of sputtering time and atomic concentration. It is the maximum value of oxygen atom concentration in the time range.
The “thickness of each layer constituting the laminated film” is calculated from “the boundary between the target layer and the upper layer” to “the boundary between the target layer and the lower layer” in the above-described graph of the sputtering time and the atomic concentration. The sputtering time was a value converted from the sputtering rate of the standard sample to the thickness. “Boundary between the target layer and the layer immediately above” and “Boundary between the target layer and the layer immediately below” are respectively “the median values of the sputtering times during which atoms included in the target layer and atoms included in the layer directly above are detected. And “the median value of the sputtering time during which atoms contained in the target layer and atoms contained in the immediate lower layer are detected”.
 「密着層の厚さ」は、「ガラス基板と密着層との境界」から「密着層と第1の誘電体層との境界」までのスパッタ時間を、標準試料のスパッタレートから厚さに換算した値とした。「ガラス基板と密着層との境界」は、上述したスパッタ時間と原子濃度とのグラフにおいて、ガラス基板に含まれる原子及び密着層に含まれる原子が検出されるスパッタ時間の中央値とした。「密着層と第1の誘電体層との境界」は、同様に、密着層に含まれる原子及び第1の誘電体層に含まれる原子の両方が検出されるスパッタ時間の中央値とした。
「圧力」の値は、特に、言及のない限り、「絶対圧」を示す。なお、ガラス基板の厚さは、幾何学的厚さである。
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 図1及び図2は、いずれも模式的図面であり、それらにおける寸法比は、説明の便宜上、実際のものとは異なったものである。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
“Thickness of adhesion layer” is calculated by converting the sputtering time from “boundary between glass substrate and adhesion layer” to “boundary between adhesion layer and first dielectric layer” from the sputtering rate of the standard sample. Value. The “boundary between the glass substrate and the adhesion layer” is the median value of the sputtering time during which atoms contained in the glass substrate and atoms contained in the adhesion layer are detected in the above-described graph of sputtering time and atomic concentration. Similarly, the “boundary between the adhesion layer and the first dielectric layer” is the median value of the sputtering time during which both atoms contained in the adhesion layer and atoms contained in the first dielectric layer are detected.
The value of “pressure” indicates “absolute pressure” unless otherwise specified. The thickness of the glass substrate is a geometric thickness.
“˜” indicating a numerical range means that numerical values described before and after that are included as a lower limit value and an upper limit value.
1 and 2 are both schematic drawings, and the dimensional ratios thereof are different from actual ones for convenience of explanation.
Hereinafter, the present invention will be described in detail. The description of the constituent elements described below is made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
(積層膜付きガラス基板)
 図1は、本発明の積層膜付きガラス基板の一例を示す、断面図である。積層膜付きガラス基板10は、ガラス基板21、ガラス基板21の一方の表面に設けられた密着層61、第1の積層膜22及び第2の積層膜23を有する。第1の積層膜22は、ガラス基板21の側から、第1の誘電体層31、第1の結晶性向上層41、第1の機能層51及び第2の誘電体層32を順に有する構成からなる。第2の積層膜23は、ガラス基板21の側から、第1の積層膜22の第2の誘電体層32を兼ねた第3の誘電体層33、第2の結晶性向上層42、第2の機能層52及び第4の誘電体層34を順に有する構成からなる。
(Glass substrate with laminated film)
FIG. 1 is a cross-sectional view showing an example of a glass substrate with a laminated film of the present invention. The glass substrate with a laminated film 10 includes a glass substrate 21, an adhesion layer 61 provided on one surface of the glass substrate 21, a first laminated film 22, and a second laminated film 23. The 1st laminated film 22 has the structure which has the 1st dielectric material layer 31, the 1st crystallinity improvement layer 41, the 1st functional layer 51, and the 2nd dielectric material layer 32 in order from the glass substrate 21 side. Consists of. The second laminated film 23 includes, from the glass substrate 21 side, a third dielectric layer 33 that also serves as the second dielectric layer 32 of the first laminated film 22, a second crystallinity improving layer 42, 2 functional layers 52 and a fourth dielectric layer 34 in this order.
 図2は、本発明の積層膜付きガラス基板の他の例を示す、断面図である。積層膜付きガラス基板11は、ガラス基板21、ガラス基板21の一方の表面に設けられた密着層61、第1の積層膜22、第2の積層膜23及び第3の積層膜24を有する。第3の積層膜24は、第2の積層膜23の第4の誘電体層34を兼ねた第5の誘電体層35、第3の結晶性向上層43、第3の機能層53及び第6の誘電体層36を順に有する構成からなる。 FIG. 2 is a cross-sectional view showing another example of the glass substrate with a laminated film of the present invention. The glass substrate 11 with a laminated film includes a glass substrate 21, an adhesion layer 61 provided on one surface of the glass substrate 21, a first laminated film 22, a second laminated film 23, and a third laminated film 24. The third laminated film 24 includes a fifth dielectric layer 35 that also serves as the fourth dielectric layer 34 of the second laminated film 23, a third crystallinity improving layer 43, a third functional layer 53, and a third functional layer 53. 6 dielectric layers 36 in order.
 積層膜22は、第1の誘電体層31と第1の結晶性向上層41との間に犠牲層を有していてもよく、第1の機能層51と第2の誘電体層32との間に犠牲層を有していてもよい。積層膜23及び24も、同様に犠牲層を有していてもよい。
 犠牲層は、熱処理時に、第1の誘電体層から結晶性向上層に窒素が拡散することや第2の誘電体層から機能層に窒素が拡散することを抑制するためのものであり、ケイ素、アルミニウム、チタン、クロム、ニオブ、モリブデン、ハフニウム、ジルコニウムのいずれかもしくはこれらの組み合わせからなる金属層であるのが好ましい。
 積層膜23は、ガラス基板21から最も遠い第4の誘電体層34の表面にトップ層を有していてもよい。積層膜24も同様に、第6の誘電体層36の表面にトップ層を有していてもよい。
 積層膜22~24は、ガラス基板21の少なくとも一方の表面に設けられる。積層膜22~24は、ガラス基板21の両面に設けられてもよい。
The laminated film 22 may have a sacrificial layer between the first dielectric layer 31 and the first crystallinity improving layer 41, and the first functional layer 51, the second dielectric layer 32, and the like. A sacrificial layer may be provided between them. Similarly, the laminated films 23 and 24 may have a sacrificial layer.
The sacrificial layer is for suppressing diffusion of nitrogen from the first dielectric layer to the crystallinity improving layer and diffusion of nitrogen from the second dielectric layer to the functional layer during the heat treatment. It is preferably a metal layer made of any one of aluminum, titanium, chromium, niobium, molybdenum, hafnium, zirconium, or a combination thereof.
The laminated film 23 may have a top layer on the surface of the fourth dielectric layer 34 farthest from the glass substrate 21. Similarly, the laminated film 24 may have a top layer on the surface of the sixth dielectric layer 36.
The laminated films 22 to 24 are provided on at least one surface of the glass substrate 21. The laminated films 22 to 24 may be provided on both surfaces of the glass substrate 21.
 ガラス基板21としては、ソーダライムガラス、アルミノケイ酸塩ガラス、無アルカリガラス、ホウケイ酸ガラス等が挙げられ、ソーダライムガラスが好ましい。
 ガラス基板21の厚さは、積層膜付きガラス基板の用途に応じて適宜設定される。積層膜付きガラス基板を窓ガラスとして用いる場合、ガラス基板21の厚さは、0.5~12mmが好ましい。
Examples of the glass substrate 21 include soda lime glass, aluminosilicate glass, non-alkali glass, and borosilicate glass, and soda lime glass is preferable.
The thickness of the glass substrate 21 is appropriately set according to the use of the laminated film-attached glass substrate. When a glass substrate with a laminated film is used as a window glass, the thickness of the glass substrate 21 is preferably 0.5 to 12 mm.
 密着層61は、酸化ケイ素を含み、厚さが3~20nmである。酸化ケイ素は、ホウ素、アルミニウム、チタン、ニッケル、亜鉛、モリブデン、スズ、タングステン、ジルコニウム又はニオブをドープしていることが好ましく、アルミニウム又はジルコニウムをドープしていることがより好ましい。酸化ケイ素がアルミニウム又はジルコニウムをドープすると、スパッタリング法においてスパッタの安定性を高めることができる。アルミニウムをドープした酸化ケイ素は、Si1-α・Alαと表され、αは0.03~0.50であり、zは1.0~2.0である。ジルコニウムをドープした酸化ケイ素は、Si1-α・Zrαと表され、αは0.03~0.50であり、zは1.0~2.0である。
 密着層61の厚さが3nm以上であると、積層膜付きガラス基板10は優れた密着性を有する。該厚さが20nm以下であると、積層膜付きガラス基板10は、欠点の少ない外観を実現できる。密着層61の厚さは、5~15nmであることが好ましく、7~15nmであることがより好ましい。
The adhesion layer 61 contains silicon oxide and has a thickness of 3 to 20 nm. The silicon oxide is preferably doped with boron, aluminum, titanium, nickel, zinc, molybdenum, tin, tungsten, zirconium or niobium, and more preferably with aluminum or zirconium. When silicon oxide is doped with aluminum or zirconium, the sputtering stability can be improved in the sputtering method. The silicon oxide doped with aluminum is expressed as Si 1-α O z · Al α , where α is 0.03 to 0.50 and z is 1.0 to 2.0. Zirconium-doped silicon oxide is expressed as Si 1-α O z · Zr α , where α is 0.03 to 0.50 and z is 1.0 to 2.0.
When the thickness of the adhesion layer 61 is 3 nm or more, the glass substrate with a laminated film 10 has excellent adhesion. When the thickness is 20 nm or less, the laminated film-attached glass substrate 10 can realize an appearance with few defects. The thickness of the adhesion layer 61 is preferably 5 to 15 nm, and more preferably 7 to 15 nm.
 第1の誘電体層31及び第2の誘電体層32は、窒化ケイ素を含む。窒化ケイ素は、ホウ素、アルミニウム、チタン、ニッケル、亜鉛、モリブデン、スズ、タングステン、ジルコニウム又はニオブをドープしていることが好ましく、アルミニウム又はジルコニウムをドープしていることがより好ましい。アルミニウムをドープした窒化ケイ素は、Si1-α・Alαと表され、αは0.03~0.50であり、yは1.0~2.0である。ジルコニウムをドープした窒化ケイ素は、Si1-α・Zrαと表され、αは0.03~0.50であり、yは1.0~2.0である。
 第1の誘電体層31及び第2の誘電体層32には、成膜時に不可避的に導入される不純物(炭素原子、酸素原子等)が含まれてもよい。第1の誘電体層31及び第2の誘電体層32は、単層であってもよく、種類の異なる2種以上の層の組み合わせであってもよい。
The first dielectric layer 31 and the second dielectric layer 32 include silicon nitride. The silicon nitride is preferably doped with boron, aluminum, titanium, nickel, zinc, molybdenum, tin, tungsten, zirconium or niobium, and more preferably with aluminum or zirconium. Silicon nitride doped with aluminum is expressed as Si 1-α N y · Al α , where α is 0.03 to 0.50 and y is 1.0 to 2.0. Zirconium-doped silicon nitride is expressed as Si 1-α N y · Zr α , where α is 0.03 to 0.50 and y is 1.0 to 2.0.
The first dielectric layer 31 and the second dielectric layer 32 may contain impurities (carbon atoms, oxygen atoms, etc.) that are inevitably introduced during film formation. The first dielectric layer 31 and the second dielectric layer 32 may be a single layer or a combination of two or more different types of layers.
 第1の誘電体層31及び第2の誘電体層32の厚さは、1.5~200nmであることが好ましい。この厚さが1.5nm以上であれば、第1の機能層51が酸素や水分による劣化から保護されるため、積層膜付きガラス基板10は優れた耐久性を有する。この厚さが200nm以下であれば、積層膜付きガラス基板10は、良好な生産性を得ることができる。 The thickness of the first dielectric layer 31 and the second dielectric layer 32 is preferably 1.5 to 200 nm. If this thickness is 1.5 nm or more, the first functional layer 51 is protected from deterioration due to oxygen and moisture, and thus the laminated film-attached glass substrate 10 has excellent durability. If this thickness is 200 nm or less, the glass substrate 10 with a laminated film can obtain good productivity.
 第1の結晶性向上層41は、直上に形成される第1の機能層51に含まれる窒化ジルコニウムの結晶性を向上する。
 第1の結晶性向上層41は、波長1500nmにおける消衰係数が2.0未満である窒化ジルコニウムを含む。窒化ジルコニウムは、第1の結晶性向上層41において、第1の機能層51と接する部分に存在することが好ましい。
 第1の結晶性向上層41の厚さは、3~30nmが好ましく、4.5~20nmがより好ましい。この厚さが3~30nmの範囲にあれば、第1の結晶性向上層41の表面凹凸が小さくなり、第1の機能層51に含まれる窒化ジルコニウムの結晶性が充分に高くなるため、積層膜付きガラス基板10は、優れた遮熱性を有する。
The first crystallinity improving layer 41 improves the crystallinity of zirconium nitride contained in the first functional layer 51 formed immediately above.
The first crystallinity improving layer 41 includes zirconium nitride having an extinction coefficient of less than 2.0 at a wavelength of 1500 nm. Zirconium nitride is preferably present in the first crystallinity-improving layer 41 at a portion in contact with the first functional layer 51.
The thickness of the first crystallinity improving layer 41 is preferably 3 to 30 nm, more preferably 4.5 to 20 nm. If this thickness is in the range of 3 to 30 nm, the surface roughness of the first crystallinity-improving layer 41 becomes small, and the crystallinity of zirconium nitride contained in the first functional layer 51 becomes sufficiently high. The glass substrate with film 10 has excellent heat shielding properties.
 第1の機能層51は、波長1500nmにおける消衰係数が6.0超である窒化ジルコニウムを含む。第1の機能層51には、成膜時に不可避的に導入される不純物(炭素原子、酸素原子、他の金属原子等)が含まれていてもよい。第1の機能層51は、第1の結晶性向上層41に接してその直上に形成される。
 第1の機能層51の厚さは、3~60nmが好ましく、10~40nmがより好ましい。この厚さが3nm以上であれば、積層膜付きガラス基板10の遮熱性がさらに高くなる。この厚さが60nm以下であれば、積層膜付きガラス基板10は、可視光透過性を適度に有することができる。
The first functional layer 51 includes zirconium nitride having an extinction coefficient of more than 6.0 at a wavelength of 1500 nm. The first functional layer 51 may contain impurities (carbon atoms, oxygen atoms, other metal atoms, etc.) that are inevitably introduced during film formation. The first functional layer 51 is formed in contact with the first crystallinity improving layer 41 and immediately above it.
The thickness of the first functional layer 51 is preferably 3 to 60 nm, and more preferably 10 to 40 nm. If this thickness is 3 nm or more, the heat-shielding property of the glass substrate 10 with a laminated film is further increased. If this thickness is 60 nm or less, the glass substrate 10 with a laminated film can have moderately visible light transmittance.
 第3~第6の誘電体層33~36の材質及び厚さは、第1の誘電体層31及び第2の誘電体層32と同様のものが挙げられ、好ましい態様も同様である。第3~第6の誘電体層33~36には、成膜時に不可避的に導入される不純物(炭素原子、酸素原子等)が含まれてもよい。 The materials and thicknesses of the third to sixth dielectric layers 33 to 36 are the same as those of the first dielectric layer 31 and the second dielectric layer 32, and the preferred embodiments are also the same. The third to sixth dielectric layers 33 to 36 may contain impurities (carbon atoms, oxygen atoms, etc.) inevitably introduced at the time of film formation.
 第2の結晶性向上層42及び第3の結晶性向上層43の材質及び厚さは、第1の結晶性向上層41と同様のものが挙げられ、好ましい形態も同様である。第2及び第3の結晶性向上層42及び43には、成膜時に不可避的に導入される不純物(炭素原子、酸素原子等)が含まれてもよい。 The materials and thicknesses of the second crystallinity enhancement layer 42 and the third crystallinity enhancement layer 43 are the same as those of the first crystallinity enhancement layer 41, and the preferred forms are also the same. The second and third crystallinity improving layers 42 and 43 may contain impurities (carbon atoms, oxygen atoms, etc.) inevitably introduced during film formation.
 第2の機能層52及び第3の機能層53の材質及び厚さは、第1の機能層51と同様のものが挙げられ、好ましい形態も同様である。第2及び第3の機能層52及び53には、成膜時に不可避的に導入される不純物(炭素原子、酸素原子等)が含まれてもよい。 The materials and thicknesses of the second functional layer 52 and the third functional layer 53 are the same as those of the first functional layer 51, and the preferred forms are also the same. The second and third functional layers 52 and 53 may contain impurities (carbon atoms, oxygen atoms, etc.) that are inevitably introduced during film formation.
 本発明の積層膜付きガラス基板は、JIS C60068-2-52に規定された塩水噴霧試験を4サイクル行った後に、積層膜が剥離しないことが好ましい。該積層膜付きガラス基板は、該塩水噴霧試験を5サイクル行った後に、積層膜が剥離しないことがより好ましい。本発明の積層膜付きガラス基板は、全ての機能層の厚さの合計値が30nm以上である場合に、該塩水噴霧試験における密着性が大幅に向上する。
 本発明の積層膜付きガラス基板は、ISO9050:2003に規定された日射熱取得率が0.36以下であることが好ましく、0.30以下がより好ましい。
The glass substrate with a laminated film of the present invention is preferably such that the laminated film does not peel after 4 cycles of the salt spray test specified in JIS C60068-2-52. More preferably, the laminated film does not peel off after 5 cycles of the salt spray test. In the glass substrate with a laminated film of the present invention, when the total thickness of all functional layers is 30 nm or more, the adhesion in the salt spray test is greatly improved.
The glass substrate with a laminated film of the present invention preferably has a solar heat acquisition rate specified in ISO 9050: 2003 of 0.36 or less, more preferably 0.30 or less.
(密着層の厚さ/応力指数の比)
 本発明の積層膜は、下式(1)で定義される応力指数が70以上である。
 応力指数=機能層の総厚さ(nm)+0.2×誘電体層の総厚さ(nm)+0.4×結晶性向上層の総厚さ(nm)・・・(1)
 本発明者らは、ガラス基板上に直接積層膜を設けた場合、積層膜の応力指数が70以上であると、塩水噴霧試験において剥離しやすいことを見出した。積層膜が、窒化ケイ素を含む第1の誘電体層、窒化ジルコニウムを含む結晶性向上層、窒化ジルコニウムを含む機能層及び窒化ケイ素を含む第2の誘電体層を順に有する構成からなる場合、各層の応力が比較的高いため、積層膜の応力が5000~30000MPaと高くなりやすい。さらに、各層の厚さを考慮して算出した応力指数が70以上である積層膜は、応力が8000~35000MPaとなるため、塩水噴霧試験において剥離しやすくなる。
(Adhesion layer thickness / stress index ratio)
The laminated film of the present invention has a stress index defined by the following formula (1) of 70 or more.
Stress index = total thickness of functional layer (nm) + 0.2 × total thickness of dielectric layer (nm) + 0.4 × total thickness of crystallinity improving layer (nm) (1)
The present inventors have found that when a laminated film is provided directly on a glass substrate, if the laminated film has a stress index of 70 or more, it is easy to peel in a salt spray test. When the laminated film has a configuration in which a first dielectric layer containing silicon nitride, a crystallinity improving layer containing zirconium nitride, a functional layer containing zirconium nitride, and a second dielectric layer containing silicon nitride are sequentially formed, each layer Therefore, the stress of the laminated film tends to be as high as 5000 to 30000 MPa. Furthermore, a laminated film having a stress index of 70 or more calculated in consideration of the thickness of each layer has a stress of 8000 to 35000 MPa, and thus easily peels off in a salt spray test.
 積層膜の応力指数は、70~230であることが好ましく、70~150であることがより好ましく、70~100であることが特に好ましい。積層膜の応力指数が70以上であると、積層膜付きガラス基板は、優れた遮熱性を有する。積層膜の応力指数が230以下であると、積層膜付きガラス基板は、密着層を設けた場合に、塩水噴霧試験において剥離しにくくなる。さらに、機能層の可視光吸収率を一定値以下にできるので、積層膜付きガラス基板は、ISO9050:2003に準拠して測定された可視光透過率を3%以上にできる。 The stress index of the laminated film is preferably 70 to 230, more preferably 70 to 150, and particularly preferably 70 to 100. When the stress index of the laminated film is 70 or more, the glass substrate with the laminated film has excellent heat shielding properties. When the stress index of the laminated film is 230 or less, the glass substrate with the laminated film becomes difficult to peel off in the salt spray test when an adhesion layer is provided. Furthermore, since the visible light absorptance of the functional layer can be reduced to a certain value or less, the glass substrate with a laminated film can have a visible light transmittance of 3% or more measured in accordance with ISO 9050: 2003.
 本発明者らは、鋭意検討した結果、酸化ケイ素を含み、厚さが3~20nmである密着層61を、ガラス基板と積層膜との間に導入し、密着層61の厚さを積層膜の応力指数で除した値が、0.04~0.29の範囲にすることで、積層膜付きガラス基板が、優れた遮熱性及び密着性を有することを見出した。その理由は必ずしも明らかでないが、この値が0.04~0.29の範囲となる密着層61及び積層膜22~24の厚さを選定することで、窒化ジルコニウム層を含む積層膜22~24の応力に耐える密着性を実現できたと考えている。この値は、0.09~0.25の範囲にあることが好ましく、0.09~0.20の範囲にあることがより好ましい。 As a result of intensive studies, the present inventors have introduced an adhesion layer 61 containing silicon oxide and having a thickness of 3 to 20 nm between the glass substrate and the laminated film, and the thickness of the adhesion layer 61 is set to the laminated film. It was found that when the value divided by the stress index of 0.04 to 0.29 is within the range, the glass substrate with a laminated film has excellent heat shielding properties and adhesion. The reason is not necessarily clear, but by selecting the thickness of the adhesion layer 61 and the laminated films 22 to 24 in which this value is in the range of 0.04 to 0.29, the laminated films 22 to 24 including the zirconium nitride layer are selected. We believe that we were able to achieve adhesion that can withstand the stress of. This value is preferably in the range of 0.09 to 0.25, and more preferably in the range of 0.09 to 0.20.
(密着層の厚さ/積層膜の総厚さの比)
 密着層61の厚さの、積層膜の総厚さに対する比は、0.009~0.102の範囲にあることが好ましい。この比が0.009以上であると、積層膜付きガラス基板は、塩水噴霧試験において優れた密着性を有することができる。この比が0.102以下であると、積層膜付きガラス基板は、欠点の少ない外観を実現できる。
(Ratio of adhesion layer thickness / total thickness of laminated film)
The ratio of the thickness of the adhesion layer 61 to the total thickness of the laminated film is preferably in the range of 0.009 to 0.102. When this ratio is 0.009 or more, the glass substrate with a laminated film can have excellent adhesion in a salt spray test. When this ratio is 0.102 or less, the laminated film-attached glass substrate can realize an appearance with few defects.
(第2の機能層の厚さ/第1の機能層の厚さの比)
 第2の機能層52の厚さの、第1の機能層51の厚さに対する比は、1.05~2.60の範囲にあることが好ましい。この比が1.05以上であると、ガラスと積層膜の界面に応力が集中するのを防ぎ、積層膜付きガラス基板は、優れた密着性を有する。一方、この比が2.60以下であると、成膜速度のバランスを保つことができ、積層膜付きガラス基板は、良好な生産性を維持することができる。この比は、1.10~2.50の範囲にあることがより好ましく、1.20~2.40の範囲にあることがさらに好ましい。
(Ratio of thickness of second functional layer / thickness of first functional layer)
The ratio of the thickness of the second functional layer 52 to the thickness of the first functional layer 51 is preferably in the range of 1.05 to 2.60. When this ratio is 1.05 or more, stress is prevented from concentrating on the interface between the glass and the laminated film, and the glass substrate with the laminated film has excellent adhesion. On the other hand, when this ratio is 2.60 or less, the balance of film formation speed can be maintained, and the glass substrate with a laminated film can maintain good productivity. This ratio is more preferably in the range of 1.10 to 2.50, and still more preferably in the range of 1.20 to 2.40.
(結晶性向上層と機能層との境界における酸素原子濃度の値)
 第1の結晶性向上層41と第1の機能層51との境界における酸素原子濃度は、20原子%以下であることが好ましく、15原子%以下であることがより好ましく、10原子%以下であることがさらに好ましい。この酸素原子濃度が20原子%以下であると、第1の機能層51に含まれる窒化ジルコニウムの結晶性が向上し、積層膜付きガラス基板は優れた遮熱性を有することができる。この酸素原子濃度は低ければ低いほどよく、その下限値は0原子%である。
 第2及び第3の結晶性向上層42及び43と、第2及び第3の機能層52及び53との境界における酸素原子濃度は、第1の結晶性向上層41と第1の機能層51との境界における酸素原子濃度と同様な数値範囲にあることが好ましい。
(Value of oxygen atom concentration at the boundary between the crystallinity improving layer and the functional layer)
The oxygen atom concentration at the boundary between the first crystallinity improving layer 41 and the first functional layer 51 is preferably 20 atomic% or less, more preferably 15 atomic% or less, and 10 atomic% or less. More preferably it is. When the oxygen atom concentration is 20 atomic% or less, the crystallinity of zirconium nitride contained in the first functional layer 51 is improved, and the glass substrate with a laminated film can have excellent heat shielding properties. The lower the oxygen atom concentration, the better. The lower limit is 0 atomic%.
The oxygen atom concentration at the boundary between the second and third crystallinity enhancement layers 42 and 43 and the second and third functional layers 52 and 53 is the same as the first crystallinity enhancement layer 41 and the first functional layer 51. It is preferable to be in the same numerical range as the oxygen atom concentration at the boundary.
(積層膜付きガラス基板の製造方法)
 本発明の積層膜付きガラス基板10は、ガラス基板21の表面に、密着層61、第1の誘電体層31、第1の結晶性向上層41、第1の機能層51、第2の誘電体層32、第2の結晶性向上層42、第2の機能層52及び第4の誘電体層34を、順次成膜することで製造できる。
 本発明の積層膜付きガラス基板11は、第4の誘電体層34の表面に、第3の結晶性向上層43、第3の機能層及び第6の誘電体層36を、順次成膜することで製造できる。
 成膜方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法等が挙げられ、厚さの均一性及び生産性に優れる点から、スパッタリング法が好ましい。
(窓ガラス)
 本発明の積層膜付きガラス基板11は、ガラス基板が1枚である窓ガラスとして使用できる。ガラス基板が1枚である窓ガラスは、軽量であり生産性に優れる。また、ガラス基板が1枚である窓ガラスは、積層膜が室内側に設けられていることが好ましい。積層膜が室内側に設けられていることで、窓ガラスの断熱性が向上する。
(Manufacturing method of glass substrate with laminated film)
The glass substrate 10 with a laminated film of the present invention has an adhesion layer 61, a first dielectric layer 31, a first crystallinity improving layer 41, a first functional layer 51, a second dielectric on the surface of the glass substrate 21. The body layer 32, the second crystallinity improving layer 42, the second functional layer 52, and the fourth dielectric layer 34 can be manufactured in sequence.
In the glass substrate 11 with a laminated film of the present invention, the third crystallinity improving layer 43, the third functional layer, and the sixth dielectric layer 36 are sequentially formed on the surface of the fourth dielectric layer 34. Can be manufactured.
Examples of the film forming method include a vacuum deposition method, an ion plating method, a sputtering method, a CVD method, and the like, and the sputtering method is preferable from the viewpoint of excellent thickness uniformity and productivity.
(Window glass)
The glass substrate 11 with a laminated film of the present invention can be used as a window glass having a single glass substrate. A window glass having a single glass substrate is lightweight and has excellent productivity. Moreover, it is preferable that the laminated glass is provided in the indoor side in the window glass which has one glass substrate. By providing the laminated film on the indoor side, the heat insulating property of the window glass is improved.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。例1~7は実施例であり、例11、13、14、15は比較例であり、例12は参考例である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Examples 1 to 7 are examples, examples 11, 13, 14, and 15 are comparative examples, and example 12 is a reference example.
(各層の厚さ)
 積層膜における各層の厚さは、分光エリプソメーター(ジェー・エー・ウーラム社製のM-2000を用いて、50°、60°、70°の入射角において測定)、透過スペクトル(日立製作所社製のU-4100を用いて、250~2500nmの波長域において測定)、膜面反射スペクトル(日立製作所社製のU-4100を用いて、入射角5°、250~2500nmの波長域において測定)、ガラス面反射スペクトル(日立製作所社製のU-4100を用いて、入射角5°、250~2500nmの波長域において測定)をすべて満たすように得られた複素屈折率・膜厚の解から決定した。
 密着層の厚さは、イオンスパッタリングによるエッチングとX線光電子分光(XPS)測定とを交互に繰り返す方法により測定した。
(Thickness of each layer)
The thickness of each layer in the laminated film is measured with a spectroscopic ellipsometer (measured at 50 °, 60 °, and 70 ° incident angles using M-2000 manufactured by JA Woollam), and transmission spectrum (manufactured by Hitachi, Ltd.). U-4100, measured in the wavelength range of 250 to 2500 nm), film surface reflection spectrum (measured in the wavelength range of 250 to 2500 nm at an incident angle of 5 ° using U-4100 manufactured by Hitachi, Ltd.), It was determined from the solution of the complex refractive index and film thickness obtained to satisfy all of the glass surface reflection spectrum (measured in the wavelength range of 250 to 2500 nm at an incident angle of 5 ° using U-4100 manufactured by Hitachi, Ltd.). .
The thickness of the adhesion layer was measured by a method of alternately repeating etching by ion sputtering and X-ray photoelectron spectroscopy (XPS) measurement.
(消衰係数)
 結晶性向上層及び機能層の波長1500nmにおける消衰係数は、以下のようにして求めた。
 積層膜付きガラス基板について、分光光度計(日立製作所社製、U-4100)を用いて分光スペクトルを測定した。また、分光エリプソメーター(ジェー・エー・ウーラム社製、M-2000)を用いて偏光情報の測定を行った。得られた分光透過スペクトル、分光反射スペクトル(膜面及びガラス面)及び偏光情報を用いて、光学モデルのフィッティングを行い、消衰係数を決定した。
(Extinction coefficient)
The extinction coefficient at a wavelength of 1500 nm of the crystallinity improving layer and the functional layer was determined as follows.
With respect to the glass substrate with the laminated film, a spectral spectrum was measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). In addition, polarization information was measured using a spectroscopic ellipsometer (manufactured by JA Woollam Co., Ltd., M-2000). Using the obtained spectral transmission spectrum, spectral reflection spectrum (film surface and glass surface) and polarization information, the optical model was fitted to determine the extinction coefficient.
(結晶性向上層と機能層との境界における酸素原子濃度)
 走査型X線光電子分光装置(アルバック・ファイ社製、PHI 5000 VersaProbe)を用いてビーム径100μmとし、積層膜の表面から積層膜とガラス基板との界面まで厚さ方向に原子濃度の分析を行った。このとき、エッチングガスとしてアルゴンガスを用い、ガス圧を1.5×10-2Pa、加速電圧を1kV、イオンビーム径を1×1mmとした。測定結果から結晶性向上層と機能層との境界における酸素原子濃度を求めた。
 積層膜が2つ以上ある場合は、結晶性向上層と機能層との境界における酸素原子濃度をそれぞれ求め、最も小さい値を採用した。
(Oxygen atom concentration at the boundary between the crystallinity enhancement layer and the functional layer)
Using a scanning X-ray photoelectron spectrometer (PHI 5000 VersaProbe manufactured by ULVAC-PHI), the beam diameter is 100 μm, and the atomic concentration is analyzed in the thickness direction from the surface of the laminated film to the interface between the laminated film and the glass substrate. It was. At this time, argon gas was used as an etching gas, the gas pressure was 1.5 × 10 −2 Pa, the acceleration voltage was 1 kV, and the ion beam diameter was 1 × 1 mm. The oxygen atom concentration at the boundary between the crystallinity enhancement layer and the functional layer was determined from the measurement results.
When there were two or more laminated films, the oxygen atom concentration at the boundary between the crystallinity improving layer and the functional layer was determined, and the smallest value was adopted.
(例1)
 ガラス基板21として、縦100mm、横100mm、厚さ3mmのサイズのソーダライムガラス板を用意した。
 ガラス基板21の一方の表面に、表1及び表2に示す通り、密着層61、積層膜22及び23を成膜し、積層膜付きガラス基板10を得た。密着層61、積層膜22及び23は、スパッタリング法によって成膜した。
 密着層61(Si1-α・Alα)の成膜には、Si-Al(10質量%)ターゲットを用い、放電ガスとしてアルゴンガスと酸素ガスとの混合ガス(アルゴンガス:酸素ガス=7:5(sccm))を用いた。成膜時の圧力は0.5Paであった。
 第1の誘電体層31及び第2の誘電体層32(Si1-α・Alα)の成膜には、Si(90質量%)-Al(10質量%)ターゲットを用い、放電ガスとしてアルゴンガスと窒素ガスとの混合ガス(アルゴンガス:窒素ガス=3:2(sccm))を用いた。成膜時の圧力は、0.4Paであった。
(Example 1)
As the glass substrate 21, a soda-lime glass plate having a size of 100 mm in length, 100 mm in width, and 3 mm in thickness was prepared.
As shown in Table 1 and Table 2, the adhesion layer 61 and the laminated films 22 and 23 were formed on one surface of the glass substrate 21 to obtain the laminated film-attached glass substrate 10. The adhesion layer 61 and the laminated films 22 and 23 were formed by a sputtering method.
The adhesion layer 61 (Si 1-α O z · Al α ) is formed using a Si—Al (10 mass%) target and a mixed gas of argon gas and oxygen gas (argon gas: oxygen gas) as a discharge gas. = 7: 5 (sccm)). The pressure during film formation was 0.5 Pa.
The first dielectric layer 31 and the second dielectric layer 32 (Si 1-α N y · Al α ) were formed by using a Si (90 mass%)-Al (10 mass%) target and discharging. A mixed gas of argon gas and nitrogen gas (argon gas: nitrogen gas = 3: 2 (sccm)) was used as the gas. The pressure during film formation was 0.4 Pa.
 第1の結晶性向上層41(ZrN)の成膜には、Zrターゲットを用い、放電ガスとして窒素ガスを用いた。成膜時の圧力は、0.4Paであった。
 第1の機能層51(ZrN)の成膜には、Zrターゲットを用い、放電ガスとしてアルゴンガスと窒素ガスとの混合ガス(アルゴンガス:窒素ガス=4.9:1(sccm))を用いた。成膜時の圧力は、0.3Paであった。
 第2の結晶性向上層42、第2の機能層52及び第4の誘電体層34の厚さは、基板搬送速度を変えることで表1及び表2に示す厚さとなるよう調整した。
In forming the first crystallinity improving layer 41 (ZrN x ), a Zr target was used and nitrogen gas was used as a discharge gas. The pressure during film formation was 0.4 Pa.
For forming the first functional layer 51 (ZrN), a Zr target is used, and a mixed gas of argon gas and nitrogen gas (argon gas: nitrogen gas = 4.9: 1 (sccm)) is used as a discharge gas. It was. The pressure during film formation was 0.3 Pa.
The thicknesses of the second crystallinity improving layer 42, the second functional layer 52, and the fourth dielectric layer 34 were adjusted to the thicknesses shown in Tables 1 and 2 by changing the substrate transport speed.
(例2~7、例11~15)
 積層膜付きガラス基板におけるガラス基板、密着層、積層膜の各要素を表1及び表2に記載する構成にせしめた以外は、例1と同様に実施することにより、積層膜付きガラス基板10又は11を得た。
(Examples 2-7, Examples 11-15)
By carrying out in the same manner as in Example 1 except that each element of the glass substrate, the adhesion layer, and the laminated film in the glass substrate with the laminated film is configured as shown in Table 1 and Table 2, the glass substrate with laminated film 10 or 11 was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(遮熱性)
 積層膜付きガラス基板10、11について、分光光度計(日立製作所社製、U-4100)を用いて測定された分光スペクトルと、全半球放射率測定装置(興栄社製、PM-E2)を用いて測定された放射率の値を用いて、ISO9050:2003に基づき日射熱取得率(g値)、及び可視光透過率を算出した。g値が0.36以下であれば、実用上十分な遮熱性を有すると考えられる。可視光透過率が3~45%であれば、実用上十分な透明性を有すると考えられる。結果を表3に示す。
(Heat insulation)
Spectral spectrum measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) and a total hemispherical emissivity measuring apparatus (manufactured by Koei Co., Ltd., PM-E2) Using the measured emissivity value, the solar heat acquisition rate (g value) and the visible light transmittance were calculated based on ISO 9050: 2003. A g value of 0.36 or less is considered to have practically sufficient heat shielding properties. A visible light transmittance of 3 to 45% is considered to have sufficient transparency for practical use. The results are shown in Table 3.
(密着性)
 積層膜付きガラス基板10、11について、JIS C60068-2-52塩水噴霧試験方法に記載の厳しさ(6)により、評価を行った。評価は、目視及び光学顕微鏡の観察により行った。耐性0又は1であれば、実用上十分な密着性を有すると考えられる。結果を表3に示す。
 耐性0:5サイクルまで剥離が生じなかった。
 耐性1:4サイクルまで剥離が生じなかったが、5サイクル後に剥離が生じた。
 耐性2:3サイクルまで剥離が生じなかったが、4サイクル後に剥離が生じた。
 耐性3:2サイクルまで剥離が生じなかったが、3サイクル後に剥離が生じた。
 耐性4:1サイクル後に剥離が生じなかったが、2サイクル後に剥離が生じた。
 耐性5:1サイクル後に剥離が生じた。
(Adhesion)
The glass substrates 10 and 11 with laminated films were evaluated according to the severity (6) described in JIS C60068-2-52 salt spray test method. Evaluation was performed by visual observation and observation with an optical microscope. A tolerance of 0 or 1 is considered to have practically sufficient adhesion. The results are shown in Table 3.
Resistance 0: No peeling occurred until 5 cycles.
Resistance 1: Peeling did not occur until 4 cycles, but peeling occurred after 5 cycles.
Resistance 2: No peeling occurred until 3 cycles, but peeling occurred after 4 cycles.
Resistance 3: Peeling did not occur until 2 cycles, but peeling occurred after 3 cycles.
Resistance: No peeling occurred after 4: 1 cycle, but peeling occurred after 2 cycles.
Resistance: Delamination occurred after 5: 1 cycle.
(外観)
 積層膜付きガラス基板10、11について、目視により、評価を行った。剥離の有無については、レーザー顕微鏡を用いて確認を行った。結果を表3に示す。
 ○:白点などの変色及び剥離が確認できなかった。
 ×:白点などの変色又は剥離が確認できた。
(appearance)
The glass substrates 10 and 11 with laminated films were evaluated visually. The presence or absence of peeling was confirmed using a laser microscope. The results are shown in Table 3.
A: Discoloration such as white spots and peeling were not confirmed.
X: Discoloration or peeling such as white spots was confirmed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3において、「-」は、該当する層又はデータがないことを示す。
 例1~7の積層膜付きガラス基板は、遮熱性及び密着性に優れていた。例11、例13~例15の積層膜付きガラス基板は、密着性が低く、例14の積層膜付きガラス基板は、外観に課題があった。
In Table 3, “-” indicates that there is no corresponding layer or data.
The glass substrates with laminated films of Examples 1 to 7 were excellent in heat shielding properties and adhesion. The glass substrates with laminated films of Examples 11 and 13 to 15 had low adhesion, and the glass substrates with laminated films of Example 14 had problems in appearance.
 本発明の積層膜付きガラス基板は、遮熱ガラスとして建築用窓ガラス、車両用窓ガラス等に有用である。
 なお、2018年3月20日に出願された日本特許出願2018-053485号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The glass substrate with a laminated film of the present invention is useful for architectural window glass, vehicle window glass, and the like as heat shielding glass.
It should be noted that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-053485 filed on March 20, 2018 is cited here as disclosure of the specification of the present invention. Incorporate.
10、11:積層膜付きガラス基板、21:ガラス基板、22:第1の積層膜、23:第2の積層膜、31:第1の誘電体層、41:第1の結晶性向上層、51:第1の機能層、32:第2の誘電体層、42:第2の結晶性向上層、52:第2の機能層、34:第4の誘電体層、43:第3の結晶性向上層、53:第3の機能層、36:第6の誘電体層 10, 11: Glass substrate with laminated film, 21: Glass substrate, 22: First laminated film, 23: Second laminated film, 31: First dielectric layer, 41: First crystallinity improving layer, 51: first functional layer, 32: second dielectric layer, 42: second crystallinity improving layer, 52: second functional layer, 34: fourth dielectric layer, 43: third crystal Improvement layer, 53: third functional layer, 36: sixth dielectric layer

Claims (15)

  1.  ガラス基板と、前記ガラス基板の少なくとも一方の表面に設けられた密着層及び2つ以上の積層膜と、を有する積層膜付きガラス基板であり、
     前記積層膜が、前記ガラス基板側から、第1の誘電体層、結晶性向上層、機能層及び第2の誘電体層を順に有する構成からなり、
     前記第1の誘電体層及び第2の誘電体層は、窒化ケイ素を含み、
     前記機能層は、波長1500nmにおける消衰係数が6.0超である窒化ジルコニウムを含み、
     前記結晶性向上層は、波長1500nmにおける消衰係数が2.0未満である窒化ジルコニウムを含み、
     前記積層膜は、下式(1)で定義される応力指数が70以上であり、
     前記密着層は、酸化ケイ素を含み、厚さが3~20nmであり、
     前記密着層の厚さを前記応力指数で除した値が、0.04~0.29の範囲にある、積層膜付きガラス基板。
       応力指数=機能層の総厚さ(nm)+0.2×誘電体層の総厚さ(nm)+0.4×結晶性向上層の総厚さ(nm)・・・(1)
     機能層の総厚さは、全ての機能層の厚さの合計値であり、誘電体層の総厚さは、全ての誘電体層の厚さの合計値であり、結晶性向上層の総厚さは、全ての結晶性向上層の厚さの合計値である。
    A glass substrate, a glass substrate with a laminated film having an adhesion layer and two or more laminated films provided on at least one surface of the glass substrate;
    The laminated film has a configuration including a first dielectric layer, a crystallinity improving layer, a functional layer, and a second dielectric layer in this order from the glass substrate side,
    The first dielectric layer and the second dielectric layer comprise silicon nitride;
    The functional layer includes zirconium nitride having an extinction coefficient of greater than 6.0 at a wavelength of 1500 nm,
    The crystallinity improving layer includes zirconium nitride having an extinction coefficient of less than 2.0 at a wavelength of 1500 nm,
    The laminated film has a stress index defined by the following formula (1) of 70 or more,
    The adhesion layer includes silicon oxide and has a thickness of 3 to 20 nm;
    A glass substrate with a laminated film, wherein a value obtained by dividing the thickness of the adhesion layer by the stress index is in the range of 0.04 to 0.29.
    Stress index = total thickness of functional layer (nm) + 0.2 × total thickness of dielectric layer (nm) + 0.4 × total thickness of crystallinity improving layer (nm) (1)
    The total thickness of the functional layers is the total thickness of all the functional layers, and the total thickness of the dielectric layers is the total thickness of all the dielectric layers. The thickness is a total value of the thicknesses of all the crystallinity improving layers.
  2.  前記機能層は、前記ガラス基板に最も近い第1の機能層と、前記ガラス基板から2番目に近い第2の機能層と、を順に有し、
     前記第2の機能層の厚さ(nm)の、前記第1の機能層の厚さ(nm)に対する比が、1.05~2.60の範囲にある、請求項1に記載の積層膜付きガラス基板。
    The functional layer has, in order, a first functional layer closest to the glass substrate and a second functional layer closest to the glass substrate;
    The laminated film according to claim 1, wherein the ratio of the thickness (nm) of the second functional layer to the thickness (nm) of the first functional layer is in the range of 1.05 to 2.60. With glass substrate.
  3.  前記結晶性向上層と前記機能層との境界における酸素原子濃度が、20原子%以下である、請求項1又は2に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to claim 1 or 2, wherein an oxygen atom concentration at a boundary between the crystallinity improving layer and the functional layer is 20 atomic% or less.
  4.  前記密着層は、アルミニウム又はジルコニウムを含む、請求項1~3のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of claims 1 to 3, wherein the adhesion layer contains aluminum or zirconium.
  5.  前記密着層は、Si1-α・Alα(但し、αは0.03~0.50であり、zは1.0~2.0である。)、又はSi1-α・Zrα(但し、αは0.03~0.50であり、zは1.0~2.0である。)を含む、請求項1~4のいずれか1項に記載の積層膜付きガラス基板。 The adhesion layer is made of Si 1-α O z · Al α (where α is 0.03 to 0.50 and z is 1.0 to 2.0), or Si 1-α O z. 5. With a laminated film according to any one of claims 1 to 4, comprising Zr α (where α is 0.03 to 0.50 and z is 1.0 to 2.0). Glass substrate.
  6.  前記第1の誘電体層及び第2の誘電体層が、アルミニウム又はジルコニウムをドープした窒化ケイ素を含む、請求項1~5のいずれか1項に記載の積層膜付きガラス基板。 6. The glass substrate with a laminated film according to claim 1, wherein the first dielectric layer and the second dielectric layer contain silicon nitride doped with aluminum or zirconium.
  7.  前記第1の誘電体層及び第2の誘電体層が、Si1-α・Alα(但し、αは0.03~0.50であり、yは1.0~2.0である。)又はSi1-α・Zrα(但し、αは0.03~0.50であり、yは1.0~2.0である。)を含む、請求項6に記載の積層膜付きガラス基板。 The first dielectric layer and the second dielectric layer are Si 1−α N y · Al α (where α is 0.03 to 0.50 and y is 1.0 to 2.0). Or Si 1-α N y · Zr α (where α is 0.03 to 0.50 and y is 1.0 to 2.0). Glass substrate with laminated film.
  8.  前記密着層の厚さ(nm)の、前記積層膜の総厚さ(nm)に対する比が、0.009~0.102の範囲にある、請求項1~7のいずれか1項に記載の積層膜付きガラス基板。 The ratio of the thickness (nm) of the adhesion layer to the total thickness (nm) of the stacked film is in the range of 0.009 to 0.102. Glass substrate with laminated film.
  9.  前記機能層の総厚さが30nm以上である、請求項1~8のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of claims 1 to 8, wherein the total thickness of the functional layers is 30 nm or more.
  10.  前記各機能層の厚さが、3~60nmの範囲にあり、前記各誘電体層の厚さが、1.5~200nmの範囲にあり、前記各結晶性向上層の厚さが、3~30nmの範囲にある、請求項1~9のいずれか1項に記載の積層膜付きガラス基板。 The thickness of each functional layer is in the range of 3 to 60 nm, the thickness of each dielectric layer is in the range of 1.5 to 200 nm, and the thickness of each crystallinity improving layer is 3 to The glass substrate with a laminated film according to any one of claims 1 to 9, which is in a range of 30 nm.
  11.  ISO9050(2003)に基づき求められた日射熱取得率(g値)が0.36以下である、請求項1~10のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of claims 1 to 10, wherein the solar heat gain (g value) obtained based on ISO 9050 (2003) is 0.36 or less.
  12.  ISO9050(2003)に基づき求められた可視光透過率が3%~45%である、請求項1~11のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of Claims 1 to 11, wherein the visible light transmittance determined based on ISO 9050 (2003) is 3% to 45%.
  13.  JIS C60068-2-52に規定された塩水噴霧試験を4サイクル行った後に、積層膜が剥離しない、請求項1~12のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of claims 1 to 12, wherein the laminated film does not peel after 4 cycles of the salt spray test specified in JIS C60068-2-52.
  14.  請求項1~13のいずれか1項に記載の積層膜付きガラス基板を有する窓ガラスであって、前記ガラス基板が1枚である窓ガラス。 A window glass having the glass substrate with a laminated film according to any one of claims 1 to 13, wherein the glass substrate is a single sheet.
  15.  前記積層膜が室内側に設けられている、請求項14に記載の窓ガラス。 The window glass according to claim 14, wherein the laminated film is provided on the indoor side.
PCT/JP2019/007935 2018-03-20 2019-02-28 Glass substrate with layered films and window glass WO2019181421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507480A JPWO2019181421A1 (en) 2018-03-20 2019-02-28 Glass substrate with laminated film and window glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053485 2018-03-20
JP2018-053485 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181421A1 true WO2019181421A1 (en) 2019-09-26

Family

ID=67987738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007935 WO2019181421A1 (en) 2018-03-20 2019-02-28 Glass substrate with layered films and window glass

Country Status (2)

Country Link
JP (1) JPWO2019181421A1 (en)
WO (1) WO2019181421A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513057A (en) * 2013-02-20 2016-05-12 サン−ゴバン グラス フランス Sheet glass with thermal radiation reflective coating
JP2016515950A (en) * 2013-02-27 2016-06-02 サン−ゴバン グラス フランス Low-emissivity multilayer coated substrate
WO2016199676A1 (en) * 2015-06-11 2016-12-15 旭硝子株式会社 Film laminate and laminated glass
JP2017529305A (en) * 2014-09-12 2017-10-05 ショット アクチエンゲゼルシャフトSchott AG Coated chemically strengthened thin flexible glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513057A (en) * 2013-02-20 2016-05-12 サン−ゴバン グラス フランス Sheet glass with thermal radiation reflective coating
JP2016515950A (en) * 2013-02-27 2016-06-02 サン−ゴバン グラス フランス Low-emissivity multilayer coated substrate
JP2017529305A (en) * 2014-09-12 2017-10-05 ショット アクチエンゲゼルシャフトSchott AG Coated chemically strengthened thin flexible glass
WO2016199676A1 (en) * 2015-06-11 2016-12-15 旭硝子株式会社 Film laminate and laminated glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, JIAN-PING: "Influence of ion-atom arrival ratio on structure and optical properties of ZrNx films", MATERIALS LETTERS, vol. 164, February 2016 (2016-02-01), pages 291 - 293, XP055640764 *

Also Published As

Publication number Publication date
JPWO2019181421A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
TWI589448B (en) Temperature and corrosion stable surface reflector
JP5262110B2 (en) Base with antireflection film
BE1019346A3 (en) GLAZING OF SOLAR CONTROL.
TWI289139B (en) Reflective, solar control coated glass article
AU2012232886B2 (en) Transparent substrate equipped with a thin-film multilayer
US20150355382A1 (en) Hard anti-reflective coatings and manufacturing and use thereof
US20080199671A1 (en) Glass sheet with antireflection film and laminated glass for windows
JP6673349B2 (en) Film laminate and laminated glass
JPWO2009131206A1 (en) Low reflection glass and protective plate for display
RU2578071C1 (en) Ir-reflecting and transparent system of layers having colour stability, and method of making same manufacture, glass block
WO2014109368A1 (en) Optical multilayer film, laminated body, and double-glazed glass
WO2014185420A1 (en) Protective film, reflective member, and production method for protective film
WO2019187416A1 (en) Antireflection film and optical member
JP2020510591A (en) Coated article having a LOW-E coating with a doped silver IR reflective layer
JP6853486B2 (en) Solar shielding member
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
WO2019181421A1 (en) Glass substrate with layered films and window glass
WO2016063503A1 (en) Glass plate with low reflection coating and laminated glass using same
JP6767661B2 (en) Gray tones low emissivity glass
JP7380708B2 (en) door or wall
EP3365295B1 (en) Ultraviolet light-resistant articles and methods for making the same
JP7241699B2 (en) Transparent substrate with laminated film
WO2019151431A1 (en) Method for manufacturing film-attached transparent substrate
JP5125251B2 (en) Optical thin film laminate
WO2020235540A1 (en) Film-equipped transparent substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020507480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770978

Country of ref document: EP

Kind code of ref document: A1