WO2019151431A1 - Method for manufacturing film-attached transparent substrate - Google Patents
Method for manufacturing film-attached transparent substrate Download PDFInfo
- Publication number
- WO2019151431A1 WO2019151431A1 PCT/JP2019/003468 JP2019003468W WO2019151431A1 WO 2019151431 A1 WO2019151431 A1 WO 2019151431A1 JP 2019003468 W JP2019003468 W JP 2019003468W WO 2019151431 A1 WO2019151431 A1 WO 2019151431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal layer
- transparent substrate
- film
- protective
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Definitions
- the present invention relates to a method of manufacturing a transparent substrate with a film used for a cover member, a half mirror, a band pass filter, and the like.
- Transparent substrates with films are widely used in various fields.
- the present invention provides a transparent substrate with a film that can control a light absorption rate, particularly a visible light absorption rate, even if it is a transparent substrate with a film having a metal layer and a dielectric layer. It is an object to provide a method for producing a transparent substrate.
- alteration of the metal layer can be suppressed by the protective metal layer provided in contact with the metal layer.
- the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
- the thickness of the protective metal layer is preferably 2 to 15 nm. According to such a configuration, it is possible to reduce the visible light absorptance of the light of the dielectric layer while suppressing deterioration of the metal layer. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
- the protective metal layer is made of silicon or aluminum. According to such a configuration, it is possible to reduce the visible light absorptance of the light of the dielectric layer while suppressing deterioration of the metal layer. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
- the sputtering method is preferably a reactive sputtering method. According to such a configuration, it is possible to achieve both improvement in the productivity of the dielectric layer and high-precision control of the film thickness.
- the protective metal layer is reacted to form a protective layer made of any of metal oxide, metal nitride, and metal oxynitride.
- the metal layer is preferably made of silver. Thereby, the absorption factor of visible light of the transparent substrate with a film can be efficiently reduced.
- the metal layer is preferably made of tin. Thereby, the absorption factor of visible light of the transparent substrate with a film can be increased efficiently.
- a protective oxide layer made of silicon oxide or aluminum oxide is formed on the transparent substrate, and in the metal layer forming step, the protective oxide layer is in contact with the protective layer. It is preferable to form the metal layer.
- the present invention it is possible to provide a transparent substrate with a film in which the light absorption rate, particularly the visible light absorption rate is controlled.
- FIG. 5 is a graph showing transmission / reflection / absorption spectra of a transparent substrate with a film according to Comparative Example 1; It is a graph which shows the transmission / reflection / absorption spectrum of the transparent substrate with a film concerning Example 2. It is a graph which shows the transmission / reflection / absorption spectrum of the transparent substrate with a film concerning Example 3.
- 6 is a graph showing transmission / reflection / absorption spectra of a transparent substrate with a film according to Comparative Example 2.
- FIG. 1 is a cross-sectional view showing an example of an embodiment of a transparent substrate 10 with a film of the present invention.
- a transparent substrate 10 with a film shown in FIG. 1 includes a transparent substrate 1, a metal layer 2 disposed on one main surface of the transparent substrate 1, a protective layer 3 disposed in contact with the metal layer 2, and protection.
- the dielectric layer 4 disposed on the layer 3 is a main component.
- the transparent substrate 1 is a substrate having transparency and mechanical strength that can withstand a load that is applied when the transparent substrate 10 with a film is manufactured and used. Transparency means that 80% or more of visible light (400 nm to 700 nm) is transmitted on average.
- glass or a resin material is suitable.
- glass well-known glass, such as alkali free glass, aluminosilicate glass, soda lime glass, quartz glass, can be used, for example.
- tempered glass such as chemically tempered glass or crystallized glass such as LAS-based crystallized glass can also be used.
- the glass is preferably an aluminosilicate glass, and the aluminosilicate glass is SiO 2 : 50 to 80%, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15 by mass%. %, Na 2 O: 1 to 20%, and K 2 O: 0 to 10% are more preferable.
- the resin material include acrylic resins such as polymethyl methacrylate, polycarbonate resins, and epoxy resins.
- the transparent substrate 1 is preferably made of glass in that the visible light transmittance is unlikely to decrease with time.
- the transparent substrate 1 has a first main surface 1a and a second main surface 1b facing the first main surface 1a.
- the thickness of the transparent substrate 1 may be set in consideration of mechanical properties and the like, and is preferably in the range of 0.05 mm or more and 10 mm or less, for example.
- the metal layer 2 is a layer containing as a main component a metal such as silver, tin, indium, nickel, molybdenum, or copper as a material.
- the metal layer 2 containing silver, nickel, molybdenum, or copper as a main component as a material is a low light absorption metal layer having a low visible light absorptivity
- the metal layer 2 containing tin or indium as a main component is a material. It becomes a highly light-absorbing metal layer having a high visible light absorption rate.
- the mass ratio of the metal in the low light absorption metal layer is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more. If the mass ratio of the metal in the low light absorption metal layer is too low, the visible light absorption rate tends to be high.
- the low light absorption metal layer 2 may contain, for example, europium, calcium, praseodymium, samarium, magnesium, terbium, gadolinium, neodymium, lanthanum, cerium, and the like in addition to silver, nickel, molybdenum, and copper.
- the low light absorption metal layer has a very low visible light absorption rate. Therefore, the visible light absorptance of the film-coated transparent substrate 10 can be efficiently reduced. In addition, when the low light absorption metal layer contains a large amount of metal oxide such as silver oxide, the absorption factor of visible light in the low light absorption metal layer is increased. Therefore, it is more preferable that the low light absorption metal layer does not contain a metal oxide.
- the mass ratio of the metal in the high light absorption metal layer is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more. When the mass ratio of the metal in the high light absorption metal layer is too high, the visible light absorption rate tends to be high.
- the high light absorption metal layer has a very high visible light absorption rate. Therefore, the visible light absorption rate of the transparent substrate 10 with a film can be increased efficiently. Note that when the high light absorption metal layer contains a large amount of metal oxide such as tin oxide or indium oxide, the absorption rate of visible light in the high light absorption metal layer is decreased. Therefore, it is more preferable that the high light absorption metal layer does not contain a metal oxide.
- the thickness of the metal layer 2 is preferably 1 to 30 nm. If the thickness of the metal layer 2 is 1 nm or more, the effect of reducing or increasing the absorptivity of visible light is efficiently expressed. If the thickness of the metal layer 2 is 30 nm or less, reflection of visible light by the metal layer 2 is suppressed. The thickness of the metal layer 2 is more preferably 5 to 10 nm.
- the protective layer 3 is made of metal oxide, metal nitride, or metal oxynitride.
- silicon or aluminum is preferable.
- silicon or aluminum it becomes difficult for energy such as plasma to be transmitted by the metal layer 2, and oxygen or nitrogen combined with silicon or aluminum is not easily transmitted to the metal layer 2 even after silicon or aluminum is oxidized or nitrided. An increase in the light absorption rate of the metal layer 2 can be suppressed.
- silicon that can be easily used as a dielectric multilayer film is particularly preferable.
- the thickness of the protective layer 3 is preferably 1 to 20 nm. If the thickness of the protective layer 3 is 1 nm or more, it is possible to efficiently suppress the direct application of energy such as plasma. If the thickness of the protective layer 3 is 20 nm or less, the protective layer 3 can be formed quickly. The thickness of the protective layer 3 is more preferably 2 to 10 nm.
- the dielectric layer 4 is composed of a single-layer dielectric film or a multi-layer dielectric multilayer film.
- the dielectric layer 4 include a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately stacked.
- the high refractive index layer include titanium oxide, niobium oxide, lanthanum oxide, tantalum oxide, zircon oxide, and silicon nitride.
- the low refractive index layer include silicon oxide, aluminum oxide, and magnesium fluoride.
- the thickness, number of layers, and material of the dielectric multilayer film may be designed according to the characteristics required for the transparent substrate 10 with a film.
- a dielectric layer different from the dielectric layer 4 may be provided between the transparent substrate 1 and the metal layer 2.
- the thickness, number of layers, and material of the dielectric multilayer film may be designed according to the characteristics required for the transparent substrate 10 with a film.
- Examples of applications of the transparent substrate 10 with a film include a cover member, a half mirror, a band pass filter, and the like.
- the method for manufacturing a transparent substrate with a film includes a metal layer forming step S11, a protective metal layer forming step S12, and a dielectric layer forming step S13.
- the metal layer 2 can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method.
- a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method.
- a sputtering method is preferable.
- the transparent substrate 1 is prepared. Subsequently, the prepared transparent substrate 1 is set in a sputtering apparatus.
- a metal target made of a metal or a metal alloy is prepared.
- the silver alloy contains at least one of europium, copper, calcium, praseodymium, samarium, magnesium, terbium, gadolinium, neodymium, lanthanum, and cerium in a total amount of 2% by mass or less. And what has a composition which a remainder consists of silver and an unavoidable impurity is preferable.
- an inert gas is introduced into the sputtering apparatus, the metal target is sputtered, and the metal layer 2 made of metal or metal alloy is formed on the first main surface 1a of the transparent substrate 1, and FIG. A substrate with a metal layer as shown in a) is obtained.
- argon gas can be used as the inert gas.
- the inert gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like.
- the metal layer 2 is formed by sputtering using tin or indium that is more easily oxidized or nitrided than silver as a metal target, silicon oxide or aluminum oxide is previously formed on the first main surface 1a of the transparent substrate 1. It is preferable to form a protective oxide layer to be formed, and to form the metal layer 2 in contact with the protective oxide layer. By forming the protective oxide layer, oxidation and nitridation of the metal layer 2 can be further suppressed.
- the protective metal layer 5 can be formed by physical vapor deposition such as sputtering or vacuum vapor deposition.
- the thickness of the protective metal layer 5 is preferably 2 to 15 nm. In order to form the protective metal layer 5 having a thickness of 2 to 15 nm stably with high accuracy, the sputtering method is preferable.
- a substrate with a metal layer is set in a sputtering apparatus.
- a metal target such as silicon, aluminum or zirconium is prepared.
- a metal target made of silicon or aluminum is preferably used, and a silicon target made of silicon is particularly preferably used.
- a metal such as aluminum or boron may be doped within a range not exceeding 10 wt%.
- a protective metal layer 5 made of silicon is formed by introducing an inert gas into a sputtering apparatus and sputtering a silicon target to obtain a substrate with a protective metal layer as shown in FIG.
- argon gas can be used as the inert gas.
- the inert gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like.
- the dielectric layer 4 is formed by a sputtering method.
- the dielectric layer 4 can be formed accurately and stably by sputtering.
- a reactive sputtering method such as a RAS (Radial Assisted Sputtering) method is particularly preferable because the deposition rate of the dielectric layer 4 is high and the productivity is excellent.
- a substrate with a protective metal layer is set in a sputtering apparatus.
- a metal target such as silicon, aluminum, tantalum, niobium, titanium, hafnium, or zirconium can be used.
- a mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the substrate with the protective metal layer.
- the dielectric layer 4 is formed by reacting with the activated gas activated by the above.
- argon gas can be used as the inert gas.
- oxygen gas, nitrogen gas, hydrogen gas, or a mixed gas thereof can be used.
- the mixed gas of the inert gas and the active gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like.
- the mixing ratio of the inert gas and the active gas is not particularly limited, and can be, for example, in the range of 2: 1 to 8: 1.
- the protective metal layer 5 is also activated by the plasma or the like activated gas.
- the protective layer 3 is formed by reaction.
- the thickness of the protective metal layer 5 is preferably 2 to 15 nm.
- the reaction between the metal layer 2 and the active gas may occur before the reaction between the protective metal layer 5 and the active gas is completed. It is not preferable.
- the transparent substrate with film 10 is preferably a cover member.
- the cover member has, for example, a reasonably high absorption rate in visible light (for example, an average absorption rate of 15 to 30%) and a small wavelength dependency of the absorption rate in the entire visible light range (for example, absorption) The difference between the maximum and minimum rates is 10% or less).
- a cover member that satisfies the requirements can be obtained.
- the cover member is provided with a dielectric layer between the transparent substrate 1 and the metal layer 2 because optical characteristics can be controlled more strictly.
- the transparent substrate 10 with a film is a half mirror.
- the half mirror is required to have a low visible light absorption rate.
- a half mirror that satisfies the requirements can be obtained.
- a half mirror is more preferable if a dielectric layer is provided between the transparent substrate 1 and the metal layer 2 because optical characteristics can be controlled more strictly.
- the film-coated transparent substrate 10 is preferably a band pass filter.
- the metal layer 2 made of silver has a very low average refractive index of visible light of 0.5 or less as compared with the dielectric layer 4. Therefore, even if the incident angle of the visible light incident from the dielectric layer 4 side is very small, the visible light is totally reflected. That is, it is suitable as a band-pass filter that transmits only visible light having an incident angle other than approximately 0 °.
- Example 1 First, as a transparent substrate, a niobium oxide (Nb 2 O 5 ) film having a thickness of 24.6 nm and a silicon oxide (SiO 2 ) having a thickness of 31.2 nm are formed on a quartz glass substrate having a thickness of 1.0 mm as a dielectric layer. A film, an Nb 2 O 5 film having a thickness of 53.3 nm, and an SiO 2 film having a thickness of 10 nm were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
- Nb 2 O 5 niobium oxide
- SiO 2 silicon oxide
- a metal layer made of silver having a thickness of 20 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer.
- the flow rate of argon gas was set to 400 sccm.
- the deposition pressure of the metal layer was 0.1 Pa.
- a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 5 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.4 Pa.
- a mixed gas of argon gas and oxygen gas is introduced into a sputtering apparatus, a niobium target is sputtered, and Nb 2 O 5 having a thickness of 48.4 nm is formed on the protective metal layer.
- a film was formed.
- the flow rate of argon gas was 500 sccm
- the flow rate of oxygen gas was 200 sccm.
- the deposition pressure of the Nb 2 O 5 film was 0.4 Pa.
- an SiO 2 film having a thickness of 80.0 nm is formed on the Nb 2 O 5 film by sputtering a silicon target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. A transparent substrate with a film was obtained. At this time, the deposition pressure of the SiO 2 film was 0.4 Pa.
- a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
- Example 1 A transparent substrate with a film was produced in the same manner as in Example 1 except that the protective metal layer forming step was not performed.
- Table 1 shows the film configurations of Example 1 and Comparative Example 1.
- the transparent substrate with a film of Example 1 had a low absorptivity of 10% or less in the visible light wavelength range (400 nm to 700 nm).
- the transparent substrate with a film of Comparative Example 1 had a high absorption rate of 10% or more at a wavelength of 485 nm or less.
- a part of the metal layer made of silver is considered to be oxidized or colloidalized.
- Example 2 First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 5.3 nm as a dielectric layer on a chemically tempered glass substrate having a thickness of 1.3 mm (T2X-1 manufactured by Nippon Electric Glass Co., Ltd.), a thickness of 57 A 1 nm SiO 2 film, a 21.8 nm thick Nb 2 O 5 film, and a 19.5 nm thick SiO 2 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
- a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer.
- the flow rate of argon gas was 500 sccm.
- the deposition pressure of the metal layer was 0.3 Pa.
- a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 2 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.3 Pa.
- a silicon target is sputtered to form an 8.8 nm thick SiO 2 film on the protective metal layer.
- a film was formed.
- the flow rate of argon gas was 500 sccm
- the flow rate of oxygen gas was 220 sccm.
- the deposition pressure of the SiO 2 film was 0.3 Pa.
- an Nb 2 O 5 film having a thickness of 40.4 nm was formed on the SiO 2 film by sputtering a niobium target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. .
- the deposition pressure of the Nb 2 O 5 film was 0.3 Pa.
- a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
- Example 3 First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 8.7 nm as a dielectric layer on a chemically strengthened glass substrate having a thickness of 1.3 mm (manufactured by Nippon Electric Glass Co., Ltd., T2X-1), a thickness of 53 A .2 nm SiO 2 film and a 25.1 nm thick Nb 2 O 5 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
- a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer.
- the flow rate of argon gas was 500 sccm.
- the deposition pressure of the metal layer was 0.3 Pa.
- a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 2 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.3 Pa.
- a silicon target is sputtered to form a 9 nm thick SiO 2 film on the protective metal layer. did.
- the flow rate of argon gas was 500 sccm
- the flow rate of oxygen gas was 220 sccm.
- the deposition pressure of the SiO 2 film was 0.3 Pa.
- an Nb 2 O 5 film having a thickness of 43.2 nm was formed on the SiO 2 film by sputtering a niobium target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. .
- the deposition pressure of the Nb 2 O 5 film was 0.3 Pa.
- a SiO 2 film having a thickness of 99.2 nm is formed on the Nb 2 O 5 film by sputtering a silicon target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. A transparent substrate with a film was obtained. At this time, the deposition pressure of the SiO 2 film was 0.3 Pa.
- a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
- a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer.
- the flow rate of argon gas was 500 sccm.
- the deposition pressure of the metal layer was 0.3 Pa.
- a silicon target is sputtered as a dielectric layer forming step, and the thickness is formed on the metal layer.
- a 56.3 nm SiO 2 film was formed to obtain a transparent substrate with a film. At this time, the deposition pressure of the SiO 2 film was 0.3 Pa.
- Table 2 shows the film configurations of Examples 2 and 3 and Comparative Example 2.
- the transparent substrate with a film of Example 2 has an average absorptance of 23% in the visible light wavelength range (400 nm to 700 nm), and the maximum and minimum absorptance at each wavelength. The difference was 6%. Further, as shown in FIG. 7, the transparent substrate with film of Example 3 has an average absorptance of 15% in the visible light wavelength range (400 nm to 700 nm), and the maximum absorptance at each wavelength. The minimum difference was 10%. On the other hand, as shown in FIG. 8, the transparent substrate with film of Comparative Example 2 has an average absorptance of 12% in the visible light wavelength range (400 nm to 700 nm), and the maximum absorptance at each wavelength. The minimum difference was 17%. This is probably because a part of the metal layer made of tin was oxidized.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physical Vapour Deposition (AREA)
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
- Laminated Bodies (AREA)
Abstract
The present invention addresses the problem of providing a method for manufacturing a film-attached transparent substrate, the method being capable of preparing a film-attached transparent substrate having a low light absorptance, in particular, a low visible-light absorptance, even in the case of a film-attached transparent substrate having a metal layer and a dielectric layer. Provided is a method for manufacturing a film-attached transparent substrate, the method being characterized by being provided with: a metal-layer forming step for forming a metal layer 2 on a transparent substrate 1; a protective-metal-layer forming step for forming, on the opposite side of the metal layer 2 with respect to the transparent substrate 1, a protective metal layer 5 in contact with the metal layer 2; and a dielectric-layer forming step for forming, on the opposite side of the protective metal layer 5 with respect to the transparent substrate 1, a dielectric layer 4 in contact with the protective metal layer 5, by means of sputtering.
Description
本発明は、カバー部材、ハーフミラー及びバンドパスフィルタ等に用いられる膜付き透明基板の製造方法に関する。
The present invention relates to a method of manufacturing a transparent substrate with a film used for a cover member, a half mirror, a band pass filter, and the like.
膜付き透明基板は、様々な分野にて広く用いられている。
例えば、特許文献1のように、金属膜と誘電体膜からなるハーフミラーを有する観察系(膜付き透明基板)がある。近年、膜付き透明基板の光学特性の高性能化に伴い、膜付き透明基板を構成する膜の膜厚をより高精度に制御することが必要となった。 Transparent substrates with films are widely used in various fields.
For example, there is an observation system (transparent substrate with a film) having a half mirror made of a metal film and a dielectric film, as inPatent Document 1. In recent years, it has become necessary to control the film thickness of the film constituting the transparent substrate with higher precision with the enhancement of the optical characteristics of the transparent substrate with film.
例えば、特許文献1のように、金属膜と誘電体膜からなるハーフミラーを有する観察系(膜付き透明基板)がある。近年、膜付き透明基板の光学特性の高性能化に伴い、膜付き透明基板を構成する膜の膜厚をより高精度に制御することが必要となった。 Transparent substrates with films are widely used in various fields.
For example, there is an observation system (transparent substrate with a film) having a half mirror made of a metal film and a dielectric film, as in
ところで、特許文献1に記載の真空蒸着法よりも膜厚をより高精度に制御できる、スパッタリング法を用いて、金属膜と誘電体膜を有する膜付き透明基板を作製する際に、金属膜の成膜後に誘電体膜を成膜したところ、金属膜が変質して光吸収率が大きく変化するという問題点がある。
By the way, when producing a transparent substrate with a film having a metal film and a dielectric film by using a sputtering method, which can control the film thickness with higher accuracy than the vacuum evaporation method described in Patent Document 1, When the dielectric film is formed after the film formation, there is a problem in that the metal film is altered and the light absorptance changes greatly.
そこで、本発明は、金属層及び誘電体層を有する膜付き透明基板であっても、光の吸収率、特に可視光の吸収率を制御した膜付き透明基板を作製することが可能な膜付き透明基板の製造方法を提供することを課題とする。
Therefore, the present invention provides a transparent substrate with a film that can control a light absorption rate, particularly a visible light absorption rate, even if it is a transparent substrate with a film having a metal layer and a dielectric layer. It is an object to provide a method for producing a transparent substrate.
上記課題を解決するために創案された本発明に係る膜付き透明基板の製造方法は、透明基板上に金属層を形成する金属層形成工程と、前記金属層の前記透明基板とは反対側に、前記金属層に接して保護金属層を形成する保護金属層形成工程と、スパッタリング法により、前記保護金属層の前記透明基板とは反対側に、前記保護金属層に接して誘電体層を形成する誘電体層形成工程とを備えることを特徴とする。
The manufacturing method of the transparent substrate with a film concerning the present invention created in order to solve the above-mentioned subject, the metal layer formation process which forms a metal layer on a transparent substrate, and the transparent substrate on the opposite side of the metal layer Forming a protective metal layer in contact with the metal layer, and forming a dielectric layer in contact with the protective metal layer on the side of the protective metal layer opposite to the transparent substrate by a sputtering method; And a dielectric layer forming step.
このような構成によれば、金属層に接して設けられた保護金属層により、金属層の変質を抑制することができる。これにより、膜付き透明基板の可視光の吸収率を効率的に制御できる。
According to such a configuration, alteration of the metal layer can be suppressed by the protective metal layer provided in contact with the metal layer. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
上記の構成において、前記保護金属層の厚みは2~15nmであることが好ましい。このような構成によれば、金属層の変質を抑制することができつつ、誘電体層の光の可視光の吸収率を低減できる。これにより、膜付き透明基板の可視光の吸収率を効率的に制御できる。
In the above configuration, the thickness of the protective metal layer is preferably 2 to 15 nm. According to such a configuration, it is possible to reduce the visible light absorptance of the light of the dielectric layer while suppressing deterioration of the metal layer. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
上記の構成において、前記保護金属層が珪素またはアルミニウムから構成されることが好ましい。このような構成によれば、金属層の変質を抑制することができつつ、誘電体層の光の可視光の吸収率を低減できる。これにより、膜付き透明基板の可視光の吸収率を効率的に制御できる。
In the above configuration, it is preferable that the protective metal layer is made of silicon or aluminum. According to such a configuration, it is possible to reduce the visible light absorptance of the light of the dielectric layer while suppressing deterioration of the metal layer. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
上記の構成において、前記スパッタリング法が、反応性スパッタリング法であることが好ましい。このような構成によれば、誘電体層の生産性の向上と膜厚の高精度制御の両立ができる。
In the above configuration, the sputtering method is preferably a reactive sputtering method. According to such a configuration, it is possible to achieve both improvement in the productivity of the dielectric layer and high-precision control of the film thickness.
上記の構成において、前記誘電体層形成工程において、前記保護金属層を反応させ、金属酸化物、金属窒化物及び金属酸窒化物のいずれかからなる保護層を形成することが好ましい。これにより、膜付き透明基板の可視光の吸収率を効率的に制御できる。
In the above configuration, it is preferable that in the dielectric layer forming step, the protective metal layer is reacted to form a protective layer made of any of metal oxide, metal nitride, and metal oxynitride. Thereby, the absorption factor of visible light of the transparent substrate with a film can be controlled efficiently.
上記の構成において、前記金属層が銀からなることが好ましい。これにより、膜付き透明基板の可視光の吸収率を効率的に低減できる。
In the above configuration, the metal layer is preferably made of silver. Thereby, the absorption factor of visible light of the transparent substrate with a film can be efficiently reduced.
上記の構成において、前記金属層がスズからなることが好ましい。これにより、膜付き透明基板の可視光の吸収率を効率的に高めることができる。
In the above configuration, the metal layer is preferably made of tin. Thereby, the absorption factor of visible light of the transparent substrate with a film can be increased efficiently.
上記の構成において、前記金属層形成工程の前に、透明基板の上に酸化ケイ素や酸化アルミニウムから構成される保護酸化物層を形成し、前記金属層形成工程において、前記保護酸化物層に接して前記金属層を形成することが好ましい。これにより、膜付き透明基板の可視光の吸収率を効率的に高め、可視光全域での吸収率の波長依存性を小さくすることができる。
In the above configuration, before the metal layer forming step, a protective oxide layer made of silicon oxide or aluminum oxide is formed on the transparent substrate, and in the metal layer forming step, the protective oxide layer is in contact with the protective layer. It is preferable to form the metal layer. Thereby, the visible light absorptance of the transparent substrate with a film can be efficiently increased, and the wavelength dependency of the absorptance in the entire visible light region can be reduced.
本発明によれば、光の吸収率、特に可視光の吸収率を制御した膜付き透明基板を提供することが可能となる。
According to the present invention, it is possible to provide a transparent substrate with a film in which the light absorption rate, particularly the visible light absorption rate is controlled.
以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and is based on ordinary knowledge of a person skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.
図1は、本発明の膜付き透明基板10の実施形態の一例を示す断面図である。図1に示す膜付き透明基板10は、透明基板1と、透明基板1の一方の主面に配設された金属層2と、金属層2に接して配設された保護層3と、保護層3上に配設された誘電体層4を主要な構成要素とする。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a transparent substrate 10 with a film of the present invention. A transparent substrate 10 with a film shown in FIG. 1 includes a transparent substrate 1, a metal layer 2 disposed on one main surface of the transparent substrate 1, a protective layer 3 disposed in contact with the metal layer 2, and protection. The dielectric layer 4 disposed on the layer 3 is a main component.
透明基板1は透明性を有し、膜付き透明基板10の製造や使用の際に受ける負荷に耐える機械的強度を有する基板である。透明性とは、可視光(400nm~700nm)を平均して80%以上透過することを意味する。透明基板1は、ガラスまたは樹脂材料が適している。ガラスとしては、例えば、無アルカリガラス、アルミノシリケートガラス、ソーダライムガラス、石英ガラス等の公知のガラスを用いることができる。また、化学強化ガラス等の強化ガラスやLAS系結晶化ガラス等の結晶化ガラスを用いることもできる。なお、ガラスとしては、アルミノシリケートガラスであることが好ましく、アルミノシリケートガラスは、質量%で、SiO2:50~80%、Al2O3:5~25%、B2O3:0~15%、Na2O:1~20%、K2O:0~10%を含有することがより好ましい。樹脂材料としては、例えば、ポリメタクリル酸メチル等のアクリル系樹脂、ポリカーボネート樹脂、及びエポキシ樹脂が挙げられる。可視光の透過率が経時的に低下しにくい点において、透明基板1はガラスからなることが好ましい。
The transparent substrate 1 is a substrate having transparency and mechanical strength that can withstand a load that is applied when the transparent substrate 10 with a film is manufactured and used. Transparency means that 80% or more of visible light (400 nm to 700 nm) is transmitted on average. As the transparent substrate 1, glass or a resin material is suitable. As glass, well-known glass, such as alkali free glass, aluminosilicate glass, soda lime glass, quartz glass, can be used, for example. Further, tempered glass such as chemically tempered glass or crystallized glass such as LAS-based crystallized glass can also be used. The glass is preferably an aluminosilicate glass, and the aluminosilicate glass is SiO 2 : 50 to 80%, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15 by mass%. %, Na 2 O: 1 to 20%, and K 2 O: 0 to 10% are more preferable. Examples of the resin material include acrylic resins such as polymethyl methacrylate, polycarbonate resins, and epoxy resins. The transparent substrate 1 is preferably made of glass in that the visible light transmittance is unlikely to decrease with time.
透明基板1は、第一主面1aと第一主面1aと対向する第二主面1bを有する。透明基板1の厚さは、機械的物性等を考慮して設定すればよく、例えば、0.05mm以上、10mm以下の範囲であることが好ましい。
The transparent substrate 1 has a first main surface 1a and a second main surface 1b facing the first main surface 1a. The thickness of the transparent substrate 1 may be set in consideration of mechanical properties and the like, and is preferably in the range of 0.05 mm or more and 10 mm or less, for example.
透明基板1の第一主面1a上には、金属層2が配設されている。金属層2は、材料として銀、スズ、インジウム、ニッケル、モリブデン、銅などの金属を主成分として含む層である。ここで、材料として銀、ニッケル、モリブデン、銅を主成分として含む金属層2は、可視光の吸収率の低い低光吸収金属層となり、材料としてスズ、インジウムを主成分として含む金属層2は、可視光の吸収率の高い高光吸収金属層となる。
On the first main surface 1a of the transparent substrate 1, a metal layer 2 is disposed. The metal layer 2 is a layer containing as a main component a metal such as silver, tin, indium, nickel, molybdenum, or copper as a material. Here, the metal layer 2 containing silver, nickel, molybdenum, or copper as a main component as a material is a low light absorption metal layer having a low visible light absorptivity, and the metal layer 2 containing tin or indium as a main component is a material. It becomes a highly light-absorbing metal layer having a high visible light absorption rate.
低光吸収金属層中における金属の質量割合は、95質量%以上であることが好ましく、97質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。低光吸収金属層中における金属の質量割合が低すぎると、可視光の吸収率が高くなりやすい。低光吸収金属層2は、銀、ニッケル、モリブデン、銅以外にも、例えば、ユウロピウム、カルシウム、プラセオジム、サマリウム、マグネシウム、テルビウム、ガドリウム、ネオジム、ランタン、セリウム等を含んでもよい。
The mass ratio of the metal in the low light absorption metal layer is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more. If the mass ratio of the metal in the low light absorption metal layer is too low, the visible light absorption rate tends to be high. The low light absorption metal layer 2 may contain, for example, europium, calcium, praseodymium, samarium, magnesium, terbium, gadolinium, neodymium, lanthanum, cerium, and the like in addition to silver, nickel, molybdenum, and copper.
低光吸収金属層は、可視光の吸収率が非常に低い。そのため、膜付き透明基板10の可視光の吸収率を効率的に低減できる。なお、低光吸収金属層が、酸化銀等の金属酸化物を多く含むことにより、低光吸収金属層における可視光の吸収率が高くなる。そのため、低光吸収金属層は、金属酸化物を含まないことがより好ましい。
The low light absorption metal layer has a very low visible light absorption rate. Therefore, the visible light absorptance of the film-coated transparent substrate 10 can be efficiently reduced. In addition, when the low light absorption metal layer contains a large amount of metal oxide such as silver oxide, the absorption factor of visible light in the low light absorption metal layer is increased. Therefore, it is more preferable that the low light absorption metal layer does not contain a metal oxide.
高光吸収金属層中における金属の質量割合は、95質量%以上であることが好ましく、97質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。高光吸収金属層中における金属の質量割合が高すぎると、可視光の吸収率が高くなりやすい。
The mass ratio of the metal in the high light absorption metal layer is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass or more. When the mass ratio of the metal in the high light absorption metal layer is too high, the visible light absorption rate tends to be high.
高光吸収金属層は、可視光の吸収率が非常に高い。そのため、膜付き透明基板10の可視光の吸収率を効率的に高めることができる。なお、高光吸収金属層が、酸化スズや酸化インジウム等の金属酸化物を多く含むことにより、高光吸収金属層における可視光の吸収率が低下する。そのため、高光吸収金属層は、金属酸化物を含まないことがより好ましい。
The high light absorption metal layer has a very high visible light absorption rate. Therefore, the visible light absorption rate of the transparent substrate 10 with a film can be increased efficiently. Note that when the high light absorption metal layer contains a large amount of metal oxide such as tin oxide or indium oxide, the absorption rate of visible light in the high light absorption metal layer is decreased. Therefore, it is more preferable that the high light absorption metal layer does not contain a metal oxide.
金属層2の厚みは、1~30nmであることが好ましい。金属層2の厚みが1nm以上であれば、可視光の吸収率を低減させたり、高めたりする効果が効率的に発現する。金属層2の厚みが30nm以下であれば、金属層2による可視光の反射が抑えられる。金属層2の厚みは、5~10nmであることがより好ましい。
The thickness of the metal layer 2 is preferably 1 to 30 nm. If the thickness of the metal layer 2 is 1 nm or more, the effect of reducing or increasing the absorptivity of visible light is efficiently expressed. If the thickness of the metal layer 2 is 30 nm or less, reflection of visible light by the metal layer 2 is suppressed. The thickness of the metal layer 2 is more preferably 5 to 10 nm.
保護層3は、金属酸化物、金属窒化物、または金属酸窒化物により構成される。
The protective layer 3 is made of metal oxide, metal nitride, or metal oxynitride.
金属酸化物、金属窒化物、及び金属酸窒化物を構成する金属としては、珪素またはアルミニウムが好ましい。珪素またはアルミニウムを用いることにより、プラズマ等のエネルギーが金属層2により伝わりにくくなるとともに、珪素やアルミニウムが酸化、窒化した後も珪素やアルミニウムと結合した酸素や窒素が金属層2に伝わりにくくなり、金属層2の光吸収率の増加を抑制できる。金属酸化物、金属窒化物、及び金属酸窒化物を構成する金属としては、誘電体多層膜として利用しやすい珪素が特に好ましい。
As the metal constituting the metal oxide, metal nitride, and metal oxynitride, silicon or aluminum is preferable. By using silicon or aluminum, it becomes difficult for energy such as plasma to be transmitted by the metal layer 2, and oxygen or nitrogen combined with silicon or aluminum is not easily transmitted to the metal layer 2 even after silicon or aluminum is oxidized or nitrided. An increase in the light absorption rate of the metal layer 2 can be suppressed. As the metal constituting the metal oxide, metal nitride, and metal oxynitride, silicon that can be easily used as a dielectric multilayer film is particularly preferable.
また、保護層3の厚みは、1~20nmであることが好ましい。保護層3の厚みが1nm以上であれば、プラズマ等のエネルギーが直接加わることを効率的に抑制できる。保護層3の厚みが20nm以下であれば、保護層3の形成が迅速に行える。保護層3の厚みは、2~10nmであることがより好ましい。
The thickness of the protective layer 3 is preferably 1 to 20 nm. If the thickness of the protective layer 3 is 1 nm or more, it is possible to efficiently suppress the direct application of energy such as plasma. If the thickness of the protective layer 3 is 20 nm or less, the protective layer 3 can be formed quickly. The thickness of the protective layer 3 is more preferably 2 to 10 nm.
誘電体層4は、単層の誘電体膜または複数層の誘電体多層膜により構成される。誘電体層4は、例えば、高屈折率層と、低屈折率層が交互に積層された誘電体多層膜が挙げられる。高屈折率層としては、酸化チタン、酸化ニオブ、酸化ランタン、酸化タンタル、酸化ジルコン、窒化珪素等が挙げられる。低屈折率層としては、酸化珪素、酸化アルミニウム、フッ化マグネシウム等が挙げられる。誘電体多層膜の厚みや層数、材質に関しては、膜付き透明基板10に求められる特性に応じて設計すればよい。
The dielectric layer 4 is composed of a single-layer dielectric film or a multi-layer dielectric multilayer film. Examples of the dielectric layer 4 include a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately stacked. Examples of the high refractive index layer include titanium oxide, niobium oxide, lanthanum oxide, tantalum oxide, zircon oxide, and silicon nitride. Examples of the low refractive index layer include silicon oxide, aluminum oxide, and magnesium fluoride. The thickness, number of layers, and material of the dielectric multilayer film may be designed according to the characteristics required for the transparent substrate 10 with a film.
また、透明基板1と金属層2の間に、誘電体層4とは別の誘電体層を設けてもよい。誘電体多層膜の厚みや層数、材質に関しては、膜付き透明基板10に求められる特性に応じて設計すればよい。
Further, a dielectric layer different from the dielectric layer 4 may be provided between the transparent substrate 1 and the metal layer 2. The thickness, number of layers, and material of the dielectric multilayer film may be designed according to the characteristics required for the transparent substrate 10 with a film.
膜付き透明基板10の用途としては、カバー部材、ハーフミラーやバンドパスフィルタ等が挙げられる。
Examples of applications of the transparent substrate 10 with a film include a cover member, a half mirror, a band pass filter, and the like.
以下、図2、3を用いて本実施形態に係る膜付き透明基板の製造方法を説明する。
Hereinafter, a method for manufacturing a transparent substrate with a film according to the present embodiment will be described with reference to FIGS.
膜付き透明基板の製造方法は、図2に示すように金属層形成工程S11と保護金属層形成工程S12と誘電体層形成工程S13とを備える。
As shown in FIG. 2, the method for manufacturing a transparent substrate with a film includes a metal layer forming step S11, a protective metal layer forming step S12, and a dielectric layer forming step S13.
(金属層形成工程)
金属層形成工程S11においては、金属層2は、例えば、スパッタリング法や真空蒸着法などの物理蒸着法やメッキ法により形成することができる。1~30nmの膜厚の金属層2を高精度に膜厚を制御して形成するためには、スパッタリング法が好ましい。 (Metal layer forming process)
In the metal layer forming step S11, themetal layer 2 can be formed by, for example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method, or a plating method. In order to form the metal layer 2 having a thickness of 1 to 30 nm while controlling the film thickness with high accuracy, a sputtering method is preferable.
金属層形成工程S11においては、金属層2は、例えば、スパッタリング法や真空蒸着法などの物理蒸着法やメッキ法により形成することができる。1~30nmの膜厚の金属層2を高精度に膜厚を制御して形成するためには、スパッタリング法が好ましい。 (Metal layer forming process)
In the metal layer forming step S11, the
次に、スパッタリング法による金属層2の形成方法の一例を説明する。
まず、透明基板1を用意する。続いて、用意した透明基板1をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、金属または金属合金からなる金属ターゲットを用意する。金属層2として銀を用いた場合、銀合金としては、ユウロピウム、銅、カルシウム、プラセオジム、サマリウム、マグネシウム、テルビウム、ガドリウム、ネオジム、ランタン、セリウムのうち少なくとも1種以上を合計で2質量%以下含有し、残部が銀および不可避不純物からなる組成を有するものが好ましい。 Next, an example of a method for forming themetal layer 2 by a sputtering method will be described.
First, thetransparent substrate 1 is prepared. Subsequently, the prepared transparent substrate 1 is set in a sputtering apparatus. As a target for the sputtering apparatus, a metal target made of a metal or a metal alloy is prepared. When silver is used for the metal layer 2, the silver alloy contains at least one of europium, copper, calcium, praseodymium, samarium, magnesium, terbium, gadolinium, neodymium, lanthanum, and cerium in a total amount of 2% by mass or less. And what has a composition which a remainder consists of silver and an unavoidable impurity is preferable.
まず、透明基板1を用意する。続いて、用意した透明基板1をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、金属または金属合金からなる金属ターゲットを用意する。金属層2として銀を用いた場合、銀合金としては、ユウロピウム、銅、カルシウム、プラセオジム、サマリウム、マグネシウム、テルビウム、ガドリウム、ネオジム、ランタン、セリウムのうち少なくとも1種以上を合計で2質量%以下含有し、残部が銀および不可避不純物からなる組成を有するものが好ましい。 Next, an example of a method for forming the
First, the
次に、スパッタリング装置内に、不活性ガスを導入して、金属ターゲットをスパッタリングし、透明基板1の第一主面1a上に金属または金属合金からなる金属層2を成膜し、図3(a)に示すような金属層付き基板を得る。なお、不活性ガスとしては、アルゴンガスを用いることができる。なお、不活性ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。
Next, an inert gas is introduced into the sputtering apparatus, the metal target is sputtered, and the metal layer 2 made of metal or metal alloy is formed on the first main surface 1a of the transparent substrate 1, and FIG. A substrate with a metal layer as shown in a) is obtained. Note that argon gas can be used as the inert gas. Note that the inert gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like.
なお、金属ターゲットとして、銀よりも酸化又は窒化されやすいスズやインジウムを用いてスパッタリングし、金属層2を成膜する場合、あらかじめ透明基板1の第一主面1a上に酸化ケイ素や酸化アルミニウムから構成される保護酸化物層を形成し、その保護酸化物層に接して金属層2を成膜することが好ましい。保護酸化物層を形成することで、金属層2の酸化や窒化をさらに抑制することができる。
When the metal layer 2 is formed by sputtering using tin or indium that is more easily oxidized or nitrided than silver as a metal target, silicon oxide or aluminum oxide is previously formed on the first main surface 1a of the transparent substrate 1. It is preferable to form a protective oxide layer to be formed, and to form the metal layer 2 in contact with the protective oxide layer. By forming the protective oxide layer, oxidation and nitridation of the metal layer 2 can be further suppressed.
(保護金属層形成工程)
保護金属層形成工程S12において、保護金属層5は、例えば、スパッタリング法や真空蒸着法などの物理蒸着法により形成することができる。保護金属層5の厚みは2~15nmであることが好ましい。2~15nmの膜厚の保護金属層5を精度よく安定して形成するためには、スパッタリング法が好ましい。 (Protective metal layer formation process)
In the protective metal layer forming step S12, theprotective metal layer 5 can be formed by physical vapor deposition such as sputtering or vacuum vapor deposition. The thickness of the protective metal layer 5 is preferably 2 to 15 nm. In order to form the protective metal layer 5 having a thickness of 2 to 15 nm stably with high accuracy, the sputtering method is preferable.
保護金属層形成工程S12において、保護金属層5は、例えば、スパッタリング法や真空蒸着法などの物理蒸着法により形成することができる。保護金属層5の厚みは2~15nmであることが好ましい。2~15nmの膜厚の保護金属層5を精度よく安定して形成するためには、スパッタリング法が好ましい。 (Protective metal layer formation process)
In the protective metal layer forming step S12, the
スパッタリング法による保護金属層5の形成方法の一例を説明する。
金属層付き基板をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、珪素、アルミニウム、ジルコニウム等の金属ターゲットを用意する。珪素またはアルミニウムからなる金属ターゲットを用いることが好ましく、珪素からなる珪素ターゲットを用いることが特に好ましい。珪素ターゲットの導電性を高めるために10wt%を超えない範囲でアルミニウムやホウ素などの金属をドープしてもよい。 An example of a method for forming theprotective metal layer 5 by sputtering will be described.
A substrate with a metal layer is set in a sputtering apparatus. As a target for the sputtering apparatus, a metal target such as silicon, aluminum or zirconium is prepared. A metal target made of silicon or aluminum is preferably used, and a silicon target made of silicon is particularly preferably used. In order to increase the conductivity of the silicon target, a metal such as aluminum or boron may be doped within a range not exceeding 10 wt%.
金属層付き基板をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、珪素、アルミニウム、ジルコニウム等の金属ターゲットを用意する。珪素またはアルミニウムからなる金属ターゲットを用いることが好ましく、珪素からなる珪素ターゲットを用いることが特に好ましい。珪素ターゲットの導電性を高めるために10wt%を超えない範囲でアルミニウムやホウ素などの金属をドープしてもよい。 An example of a method for forming the
A substrate with a metal layer is set in a sputtering apparatus. As a target for the sputtering apparatus, a metal target such as silicon, aluminum or zirconium is prepared. A metal target made of silicon or aluminum is preferably used, and a silicon target made of silicon is particularly preferably used. In order to increase the conductivity of the silicon target, a metal such as aluminum or boron may be doped within a range not exceeding 10 wt%.
スパッタリング装置内に、不活性ガスを導入して、珪素ターゲットをスパッタリングすることにより、珪素からなる保護金属層5を成膜し、図3(b)に示すような保護金属層付き基板を得る。なお、不活性ガスとしては、アルゴンガスを用いることができる。なお、不活性ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。
A protective metal layer 5 made of silicon is formed by introducing an inert gas into a sputtering apparatus and sputtering a silicon target to obtain a substrate with a protective metal layer as shown in FIG. Note that argon gas can be used as the inert gas. Note that the inert gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like.
(誘電体層形成工程)
誘電体層4は、スパッタリング法により形成する。スパッタリング法により、誘電体層4を精度よく安定して形成できる。また、スパッタリング法の中でも、RAS(Radical Assisted Sputtering)法等の反応性スパッタリング法は、誘電体層4の成膜速度が速く生産性に優れるため、特に好ましい。 (Dielectric layer forming process)
Thedielectric layer 4 is formed by a sputtering method. The dielectric layer 4 can be formed accurately and stably by sputtering. Among sputtering methods, a reactive sputtering method such as a RAS (Radial Assisted Sputtering) method is particularly preferable because the deposition rate of the dielectric layer 4 is high and the productivity is excellent.
誘電体層4は、スパッタリング法により形成する。スパッタリング法により、誘電体層4を精度よく安定して形成できる。また、スパッタリング法の中でも、RAS(Radical Assisted Sputtering)法等の反応性スパッタリング法は、誘電体層4の成膜速度が速く生産性に優れるため、特に好ましい。 (Dielectric layer forming process)
The
反応性スパッタリング法による誘電体層4の形成方法の一例を説明する。
保護金属層付き基板をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、珪素、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウムなどの金属ターゲットを用いることができる。 An example of a method for forming thedielectric layer 4 by the reactive sputtering method will be described.
A substrate with a protective metal layer is set in a sputtering apparatus. As a target of the sputtering apparatus, a metal target such as silicon, aluminum, tantalum, niobium, titanium, hafnium, or zirconium can be used.
保護金属層付き基板をスパッタリング装置にセットする。スパッタリング装置のターゲットとしては、珪素、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウムなどの金属ターゲットを用いることができる。 An example of a method for forming the
A substrate with a protective metal layer is set in a sputtering apparatus. As a target of the sputtering apparatus, a metal target such as silicon, aluminum, tantalum, niobium, titanium, hafnium, or zirconium can be used.
スパッタリング装置内に、不活性ガス及び活性ガスの混合ガスを導入して、所定のターゲットをスパッタリングし、保護金属層付き基板上にその所定のターゲット成分からなる層を形成するとともに、その層がプラズマ等で活性化された活性ガスと反応することによって、誘電体層4を成膜する。なお、不活性ガスとしては、アルゴンガスを用いることができる。また、活性ガスとしては、酸素ガス、窒素ガス、水素ガス、又はこれらの混合ガスを用いることができる。なお、不活性ガス及び活性ガスの混合ガスは、スパッタリング装置内を真空ポンプなどによって排気した後で導入することが望ましい。また、不活性ガスと活性ガスとの混合比(不活性ガス:活性ガス)は、特に限定されず、例えば、2:1~8:1の範囲内とすることができる。
A mixed gas of an inert gas and an active gas is introduced into the sputtering apparatus, a predetermined target is sputtered, and a layer composed of the predetermined target component is formed on the substrate with the protective metal layer. The dielectric layer 4 is formed by reacting with the activated gas activated by the above. Note that argon gas can be used as the inert gas. As the active gas, oxygen gas, nitrogen gas, hydrogen gas, or a mixed gas thereof can be used. Note that the mixed gas of the inert gas and the active gas is desirably introduced after the inside of the sputtering apparatus is evacuated by a vacuum pump or the like. Further, the mixing ratio of the inert gas and the active gas (inert gas: active gas) is not particularly limited, and can be, for example, in the range of 2: 1 to 8: 1.
ここで、誘電体層形成工程において、誘電体層となる所定のターゲット成分がプラズマ等で活性化された活性ガスと反応する際に、保護金属層5もプラズマ等で活性化された活性ガスと反応し、保護層3が形成される。このとき、保護金属層5の厚みが小さすぎると、保護金属層5による保護効果が得られず、金属層2が活性ガスと反応して金属層2が酸化または窒化される。一方、保護金属層3の厚みが大きすぎると、保護金属層5と活性ガスとの反応が不十分となり、保護層3の光吸収率が高くなる。そのため、保護金属層5の厚みは2~15nmとすることが好ましい。
Here, in the dielectric layer forming step, when the predetermined target component that becomes the dielectric layer reacts with the active gas activated by plasma or the like, the protective metal layer 5 is also activated by the plasma or the like activated gas. The protective layer 3 is formed by reaction. At this time, if the thickness of the protective metal layer 5 is too small, the protective effect by the protective metal layer 5 cannot be obtained, and the metal layer 2 reacts with the active gas and the metal layer 2 is oxidized or nitrided. On the other hand, when the thickness of the protective metal layer 3 is too large, the reaction between the protective metal layer 5 and the active gas becomes insufficient, and the light absorption rate of the protective layer 3 increases. Therefore, the thickness of the protective metal layer 5 is preferably 2 to 15 nm.
なお、保護金属層5の金属成分としてニオブ等の遷移金属を用いた場合、保護金属層5と活性ガスの反応が完了する前に、金属層2と活性ガスとの反応が起きる恐れがあるため、好ましくない。
Note that when a transition metal such as niobium is used as the metal component of the protective metal layer 5, the reaction between the metal layer 2 and the active gas may occur before the reaction between the protective metal layer 5 and the active gas is completed. It is not preferable.
また、保護金属層5がない場合、金属層2が活性ガスと反応して金属層2の光吸収率が高くなることが問題となる。
Further, when the protective metal layer 5 is not provided, there is a problem that the metal layer 2 reacts with the active gas to increase the light absorption rate of the metal layer 2.
膜付き透明基板10は、カバー部材であることが好ましい。カバー部材には、例えば、可視光における吸収率が適度に高い(例えば、平均吸収率が15~30%である)ことと、可視光全域での吸収率の波長依存性が小さい(例えば、吸収率の最大と最小の差が10%以下である)ことが要求される。本発明の金属層2として、高光吸収金属層を用いることにより、当該要求を満たすカバー部材を得ることができる。
The transparent substrate with film 10 is preferably a cover member. The cover member has, for example, a reasonably high absorption rate in visible light (for example, an average absorption rate of 15 to 30%) and a small wavelength dependency of the absorption rate in the entire visible light range (for example, absorption) The difference between the maximum and minimum rates is 10% or less). By using a highly light-absorbing metal layer as the metal layer 2 of the present invention, a cover member that satisfies the requirements can be obtained.
カバー部材は、透明基板1と金属層2との間に誘電体層を設けると、光学特性をより厳密に制御できるためより好ましい。
It is more preferable that the cover member is provided with a dielectric layer between the transparent substrate 1 and the metal layer 2 because optical characteristics can be controlled more strictly.
また、膜付き透明基板10は、ハーフミラーであることが好ましい。ハーフミラーには、低い可視光吸収率が要求される。本発明の金属層2として、低光吸収金属層を用いることにより、当該要求を満たすハーフミラーを得ることができる。
Moreover, it is preferable that the transparent substrate 10 with a film is a half mirror. The half mirror is required to have a low visible light absorption rate. By using a low light absorption metal layer as the metal layer 2 of the present invention, a half mirror that satisfies the requirements can be obtained.
ハーフミラーは、透明基板1と金属層2との間に誘電体層を設けると、光学特性をより厳密に制御できるためより好ましい。
A half mirror is more preferable if a dielectric layer is provided between the transparent substrate 1 and the metal layer 2 because optical characteristics can be controlled more strictly.
また、膜付き透明基板10は、バンドパスフィルタであることが好ましい。銀からなる金属層2は、誘電体層4と比較して可視光の平均屈折率が0.5以下と非常に低い。そのため、誘電体層4側から入射された可視光の入射角が非常に小さい場合でも、可視光が全反射する。すなわち、入射角が略0°以外の可視光のみを透過するバンドパスフィルタとして好適である。
The film-coated transparent substrate 10 is preferably a band pass filter. The metal layer 2 made of silver has a very low average refractive index of visible light of 0.5 or less as compared with the dielectric layer 4. Therefore, even if the incident angle of the visible light incident from the dielectric layer 4 side is very small, the visible light is totally reflected. That is, it is suitable as a band-pass filter that transmits only visible light having an incident angle other than approximately 0 °.
次に、実施例及び比較例について説明する。
(実施例1)
まず透明基板として、厚さ1.0mmの石英ガラス基板の上に、誘電体層として厚さ24.6nmの酸化ニオブ(Nb2O5)膜、厚さ31.2nmの酸化珪素(SiO2)膜、厚さ53.3nmのNb2O5膜及び厚さ10nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 Next, examples and comparative examples will be described.
(Example 1)
First, as a transparent substrate, a niobium oxide (Nb 2 O 5 ) film having a thickness of 24.6 nm and a silicon oxide (SiO 2 ) having a thickness of 31.2 nm are formed on a quartz glass substrate having a thickness of 1.0 mm as a dielectric layer. A film, an Nb 2 O 5 film having a thickness of 53.3 nm, and an SiO 2 film having a thickness of 10 nm were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
(実施例1)
まず透明基板として、厚さ1.0mmの石英ガラス基板の上に、誘電体層として厚さ24.6nmの酸化ニオブ(Nb2O5)膜、厚さ31.2nmの酸化珪素(SiO2)膜、厚さ53.3nmのNb2O5膜及び厚さ10nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 Next, examples and comparative examples will be described.
(Example 1)
First, as a transparent substrate, a niobium oxide (Nb 2 O 5 ) film having a thickness of 24.6 nm and a silicon oxide (SiO 2 ) having a thickness of 31.2 nm are formed on a quartz glass substrate having a thickness of 1.0 mm as a dielectric layer. A film, an Nb 2 O 5 film having a thickness of 53.3 nm, and an SiO 2 film having a thickness of 10 nm were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
続いて、金属層形成工程として、厚さ20nmの銀からなる金属層を、ロードロック式反応性スパッタリング装置を用いて形成し、金属層付き基板を得た。この際、アルゴンガスの流量400sccmとした。金属層の成膜圧力は、0.1Paとした。
Subsequently, as a metal layer forming step, a metal layer made of silver having a thickness of 20 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer. At this time, the flow rate of argon gas was set to 400 sccm. The deposition pressure of the metal layer was 0.1 Pa.
次に、保護金属層形成工程として、アルゴンガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、金属層上に、珪素からなる保護金属層を厚さが5nmとなるように形成した。この際、保護金属層の成膜圧力は、0.4Paとした。
Next, as a protective metal layer forming step, a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 5 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.4 Pa.
次に、誘電体層形成工程として、スパッタリング装置内に、アルゴンガス及び酸素ガスの混合ガスを導入して、ニオブのターゲットをスパッタリングし、保護金属層上に厚さ48.4nmのNb2O5膜を成膜した。この際、アルゴンガスの流量を500sccmとし、酸素ガスの流量を200sccmとした。Nb2O5膜の成膜圧力は、0.4Paとした。
Next, as a dielectric layer forming step, a mixed gas of argon gas and oxygen gas is introduced into a sputtering apparatus, a niobium target is sputtered, and Nb 2 O 5 having a thickness of 48.4 nm is formed on the protective metal layer. A film was formed. At this time, the flow rate of argon gas was 500 sccm, and the flow rate of oxygen gas was 200 sccm. The deposition pressure of the Nb 2 O 5 film was 0.4 Pa.
次に、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、Nb2O5膜上に、厚さ80.0nmのSiO2膜を成膜し、膜付き透明基板を得た。この際、SiO2膜の成膜圧力は、0.4Paとした。
Next, an SiO 2 film having a thickness of 80.0 nm is formed on the Nb 2 O 5 film by sputtering a silicon target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. A transparent substrate with a film was obtained. At this time, the deposition pressure of the SiO 2 film was 0.4 Pa.
誘電体層形成工程において、珪素からなる保護金属層から、SiO2からなる保護層を形成した。
In the dielectric layer forming step, a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
(比較例1)
保護金属層形成工程を行わなかった以外は、実施例1と同様にして膜付き透明基板を作製した。 (Comparative Example 1)
A transparent substrate with a film was produced in the same manner as in Example 1 except that the protective metal layer forming step was not performed.
保護金属層形成工程を行わなかった以外は、実施例1と同様にして膜付き透明基板を作製した。 (Comparative Example 1)
A transparent substrate with a film was produced in the same manner as in Example 1 except that the protective metal layer forming step was not performed.
実施例1及び比較例1の膜構成を表1に示す。
Table 1 shows the film configurations of Example 1 and Comparative Example 1.
(評価)
実施例1及び比較例1で得られた膜付き透明基板について、透過率(Transmittance)及び反射率(Reflectance)を、日立ハイテク社製、商品名「U-4000」にて測定した。また、吸収率(Absorptance)を、式(1)によって計算して求めた。
吸収率(%) = 100-透過率(%)-反射率(%) ・・・(1)
それぞれの透過・反射・吸収スペクトルを図4及び5に示す。 (Evaluation)
With respect to the transparent substrate with a film obtained in Example 1 and Comparative Example 1, the transmittance and the reflectance were measured under the trade name “U-4000” manufactured by Hitachi High-Tech. Moreover, the absorption rate (Absorpance) was calculated | required and calculated by Formula (1).
Absorptivity (%) = 100-Transmittance (%)-Reflectance (%) (1)
The respective transmission / reflection / absorption spectra are shown in FIGS.
実施例1及び比較例1で得られた膜付き透明基板について、透過率(Transmittance)及び反射率(Reflectance)を、日立ハイテク社製、商品名「U-4000」にて測定した。また、吸収率(Absorptance)を、式(1)によって計算して求めた。
吸収率(%) = 100-透過率(%)-反射率(%) ・・・(1)
それぞれの透過・反射・吸収スペクトルを図4及び5に示す。 (Evaluation)
With respect to the transparent substrate with a film obtained in Example 1 and Comparative Example 1, the transmittance and the reflectance were measured under the trade name “U-4000” manufactured by Hitachi High-Tech. Moreover, the absorption rate (Absorpance) was calculated | required and calculated by Formula (1).
Absorptivity (%) = 100-Transmittance (%)-Reflectance (%) (1)
The respective transmission / reflection / absorption spectra are shown in FIGS.
図4に示すように、実施例1の膜付き透明基板は、可視光の波長範囲(400nm~700nm)において、吸収率が10%以下と低かった。一方、図5に示すように、比較例1の膜付き透明基板は、波長485nm以下の吸収率が10%以上と高かった。銀からなる金属層の一部が、酸化されたため、又は、コロイド化したためであると考えられる。
As shown in FIG. 4, the transparent substrate with a film of Example 1 had a low absorptivity of 10% or less in the visible light wavelength range (400 nm to 700 nm). On the other hand, as shown in FIG. 5, the transparent substrate with a film of Comparative Example 1 had a high absorption rate of 10% or more at a wavelength of 485 nm or less. A part of the metal layer made of silver is considered to be oxidized or colloidalized.
(実施例2)
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ5.3nmのNb2O5膜、厚さ57.1nmのSiO2膜、厚さ21.8nmのNb2O5膜及び厚さ19.5nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 (Example 2)
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 5.3 nm as a dielectric layer on a chemically tempered glass substrate having a thickness of 1.3 mm (T2X-1 manufactured by Nippon Electric Glass Co., Ltd.), a thickness of 57 A 1 nm SiO 2 film, a 21.8 nm thick Nb 2 O 5 film, and a 19.5 nm thick SiO 2 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ5.3nmのNb2O5膜、厚さ57.1nmのSiO2膜、厚さ21.8nmのNb2O5膜及び厚さ19.5nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 (Example 2)
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 5.3 nm as a dielectric layer on a chemically tempered glass substrate having a thickness of 1.3 mm (T2X-1 manufactured by Nippon Electric Glass Co., Ltd.), a thickness of 57 A 1 nm SiO 2 film, a 21.8 nm thick Nb 2 O 5 film, and a 19.5 nm thick SiO 2 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
続いて、金属層形成工程として、厚さ6nmのスズからなる金属層を、ロードロック式反応性スパッタリング装置を用いて形成し、金属層付き基板を得た。この際、アルゴンガスの流量500sccmとした。金属層の成膜圧力は、0.3Paとした。
Subsequently, as a metal layer forming step, a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer. At this time, the flow rate of argon gas was 500 sccm. The deposition pressure of the metal layer was 0.3 Pa.
次に、保護金属層形成工程として、アルゴンガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、金属層上に、珪素からなる保護金属層を厚さが2nmとなるように形成した。この際、保護金属層の成膜圧力は、0.3Paとした。
Next, as a protective metal layer forming step, a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 2 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.3 Pa.
次に、スパッタリング装置内に、アルゴンガス及び酸素ガスの混合ガスを導入した後、誘電体層形成工程として、珪素のターゲットをスパッタリングし、保護金属層上に厚さ8.8nmのSiO2膜を成膜した。この際、アルゴンガスの流量を500sccmとし、酸素ガスの流量を220sccmとした。SiO2膜の成膜圧力は、0.3Paとした。
Next, after introducing a mixed gas of argon gas and oxygen gas into the sputtering apparatus, as a dielectric layer forming step, a silicon target is sputtered to form an 8.8 nm thick SiO 2 film on the protective metal layer. A film was formed. At this time, the flow rate of argon gas was 500 sccm, and the flow rate of oxygen gas was 220 sccm. The deposition pressure of the SiO 2 film was 0.3 Pa.
次に、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、ニオブのターゲットをスパッタリングすることにより、SiO2膜上に、厚さ40.4nmのNb2O5膜を成膜した。この際、Nb2O5膜の成膜圧力は、0.3Paとした。
Next, an Nb 2 O 5 film having a thickness of 40.4 nm was formed on the SiO 2 film by sputtering a niobium target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. . At this time, the deposition pressure of the Nb 2 O 5 film was 0.3 Pa.
次に、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、Nb2O5膜上に、厚さ93.2nmのSiO2膜を成膜し、膜付き透明基板を得た。この際、SiO2膜の成膜圧力は、0.3Paとした。
Then, while maintaining the mixed gas of argon gas and oxygen gas in the same flow rate, by sputtering a target of silicon, Nb 2 O on 5 film, and a SiO 2 film having a thickness of 93.2nm A transparent substrate with a film was obtained. At this time, the deposition pressure of the SiO 2 film was 0.3 Pa.
誘電体層形成工程において、珪素からなる保護金属層から、SiO2からなる保護層を形成した。
In the dielectric layer forming step, a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
(実施例3)
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ8.7nmのNb2O5膜、厚さ53.2nmのSiO2膜及び厚さ25.1nmのNb2O5膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 Example 3
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 8.7 nm as a dielectric layer on a chemically strengthened glass substrate having a thickness of 1.3 mm (manufactured by Nippon Electric Glass Co., Ltd., T2X-1), a thickness of 53 A .2 nm SiO 2 film and a 25.1 nm thick Nb 2 O 5 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ8.7nmのNb2O5膜、厚さ53.2nmのSiO2膜及び厚さ25.1nmのNb2O5膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 Example 3
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 8.7 nm as a dielectric layer on a chemically strengthened glass substrate having a thickness of 1.3 mm (manufactured by Nippon Electric Glass Co., Ltd., T2X-1), a thickness of 53 A .2 nm SiO 2 film and a 25.1 nm thick Nb 2 O 5 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
続いて、金属層形成工程として、厚さ6nmのスズからなる金属層を、ロードロック式反応性スパッタリング装置を用いて形成し、金属層付き基板を得た。この際、アルゴンガスの流量500sccmとした。金属層の成膜圧力は、0.3Paとした。
Subsequently, as a metal layer forming step, a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer. At this time, the flow rate of argon gas was 500 sccm. The deposition pressure of the metal layer was 0.3 Pa.
次に、保護金属層形成工程として、アルゴンガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、金属層上に、珪素からなる保護金属層を厚さが2nmとなるように形成した。この際、保護金属層の成膜圧力は、0.3Paとした。
Next, as a protective metal layer forming step, a silicon target is sputtered with argon gas kept at the same flow rate so that the thickness of the protective metal layer made of silicon is 2 nm on the metal layer. Formed. At this time, the deposition pressure of the protective metal layer was 0.3 Pa.
次に、スパッタリング装置内に、アルゴンガス及び酸素ガスの混合ガスを導入した後、誘電体層形成工程として、珪素のターゲットをスパッタリングし、保護金属層上に厚さ9nmのSiO2膜を成膜した。この際、アルゴンガスの流量を500sccmとし、酸素ガスの流量を220sccmとした。SiO2膜の成膜圧力は、0.3Paとした。
Next, after introducing a mixed gas of argon gas and oxygen gas into the sputtering apparatus, as a dielectric layer forming step, a silicon target is sputtered to form a 9 nm thick SiO 2 film on the protective metal layer. did. At this time, the flow rate of argon gas was 500 sccm, and the flow rate of oxygen gas was 220 sccm. The deposition pressure of the SiO 2 film was 0.3 Pa.
次に、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、ニオブのターゲットをスパッタリングすることにより、SiO2膜上に、厚さ43.2nmのNb2O5膜を成膜した。この際、Nb2O5膜の成膜圧力は、0.3Paとした。
Next, an Nb 2 O 5 film having a thickness of 43.2 nm was formed on the SiO 2 film by sputtering a niobium target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. . At this time, the deposition pressure of the Nb 2 O 5 film was 0.3 Pa.
次に、アルゴンガス及び酸素ガスの混合ガスを同じ流量に保った状態で、珪素のターゲットをスパッタリングすることにより、Nb2O5膜上に、厚さ99.2nmのSiO2膜を成膜し、膜付き透明基板を得た。この際、SiO2膜の成膜圧力は、0.3Paとした。
Next, a SiO 2 film having a thickness of 99.2 nm is formed on the Nb 2 O 5 film by sputtering a silicon target while maintaining a mixed gas of argon gas and oxygen gas at the same flow rate. A transparent substrate with a film was obtained. At this time, the deposition pressure of the SiO 2 film was 0.3 Pa.
誘電体層形成工程において、珪素からなる保護金属層から、SiO2からなる保護層を形成した。
In the dielectric layer forming step, a protective layer made of SiO 2 was formed from a protective metal layer made of silicon.
(比較例2)
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ13.2nmのNb2O5膜、厚さ32.7nmのSiO2膜、厚さ107.3nmのNb2O5膜及び厚さ30.2nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 (Comparative Example 2)
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 13.2 nm as a dielectric layer on a chemically strengthened glass substrate having a thickness of 1.3 mm (T2X-1 manufactured by Nippon Electric Glass Co., Ltd.), a thickness of 32 A 0.7 nm SiO 2 film, a 107.3 nm thick Nb 2 O 5 film, and a 30.2 nm thick SiO 2 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
まず透明基板として、厚さ1.3mmの化学強化ガラス基板(日本電気硝子株式会社製、T2X-1)の上に、誘電体層として厚さ13.2nmのNb2O5膜、厚さ32.7nmのSiO2膜、厚さ107.3nmのNb2O5膜及び厚さ30.2nmのSiO2膜を、順にスパッタリング法で形成した。スパッタリング法によるそれぞれの膜の形成には、ロードロック式反応性スパッタリング装置を用いた。 (Comparative Example 2)
First, as a transparent substrate, an Nb 2 O 5 film having a thickness of 13.2 nm as a dielectric layer on a chemically strengthened glass substrate having a thickness of 1.3 mm (T2X-1 manufactured by Nippon Electric Glass Co., Ltd.), a thickness of 32 A 0.7 nm SiO 2 film, a 107.3 nm thick Nb 2 O 5 film, and a 30.2 nm thick SiO 2 film were sequentially formed by a sputtering method. A load-lock type reactive sputtering apparatus was used for forming each film by the sputtering method.
続いて、金属層形成工程として、厚さ6nmのスズからなる金属層を、ロードロック式反応性スパッタリング装置を用いて形成し、金属層付き基板を得た。この際、アルゴンガスの流量500sccmとした。金属層の成膜圧力は、0.3Paとした。
Subsequently, as a metal layer forming step, a metal layer made of tin having a thickness of 6 nm was formed using a load-lock type reactive sputtering apparatus to obtain a substrate with a metal layer. At this time, the flow rate of argon gas was 500 sccm. The deposition pressure of the metal layer was 0.3 Pa.
次に、保護金属層を形成せずに、スパッタリング装置内に、アルゴンガス及び酸素ガスの混合ガスを導入した後、誘電体層形成工程として、珪素のターゲットをスパッタリングし、金属層上に厚さ56.3nmのSiO2膜を成膜し、膜付き透明基板を得た。この際、SiO2膜の成膜圧力は、0.3Paとした。
Next, after a mixed gas of argon gas and oxygen gas is introduced into the sputtering apparatus without forming a protective metal layer, a silicon target is sputtered as a dielectric layer forming step, and the thickness is formed on the metal layer. A 56.3 nm SiO 2 film was formed to obtain a transparent substrate with a film. At this time, the deposition pressure of the SiO 2 film was 0.3 Pa.
実施例2、3及び比較例2の膜構成を表2に示す。
Table 2 shows the film configurations of Examples 2 and 3 and Comparative Example 2.
図6に示すように、実施例2の膜付き透明基板は、可視光の波長範囲(400nm~700nm)において、平均の吸収率が23%であり、各波長での吸収率の最大と最小の差が6%であった。また、図7に示すように、実施例3の膜付き透明基板は、可視光の波長範囲(400nm~700nm)において、平均の吸収率が15%であり、各波長での吸収率の最大と最小の差が10%であった。一方、図8に示すように、比較例2の膜付き透明基板は、可視光の波長範囲(400nm~700nm)において、平均の吸収率が12%であり、各波長での吸収率の最大と最小の差が17%であった。スズからなる金属層の一部が酸化されたためであると考えられる。
As shown in FIG. 6, the transparent substrate with a film of Example 2 has an average absorptance of 23% in the visible light wavelength range (400 nm to 700 nm), and the maximum and minimum absorptance at each wavelength. The difference was 6%. Further, as shown in FIG. 7, the transparent substrate with film of Example 3 has an average absorptance of 15% in the visible light wavelength range (400 nm to 700 nm), and the maximum absorptance at each wavelength. The minimum difference was 10%. On the other hand, as shown in FIG. 8, the transparent substrate with film of Comparative Example 2 has an average absorptance of 12% in the visible light wavelength range (400 nm to 700 nm), and the maximum absorptance at each wavelength. The minimum difference was 17%. This is probably because a part of the metal layer made of tin was oxidized.
1…透明基板
1a…第一主面
1b…第二主面
2…金属層
3…保護層
4…誘電体層
5…保護金属層
10…膜付き透明基板
DESCRIPTION OFSYMBOLS 1 ... Transparent substrate 1a ... 1st main surface 1b ... 2nd main surface 2 ... Metal layer 3 ... Protective layer 4 ... Dielectric layer 5 ... Protective metal layer 10 ... Transparent substrate with a film | membrane
1a…第一主面
1b…第二主面
2…金属層
3…保護層
4…誘電体層
5…保護金属層
10…膜付き透明基板
DESCRIPTION OF
Claims (8)
- 透明基板上に金属層を形成する金属層形成工程と、
前記金属層の前記透明基板とは反対側に、前記金属層に接して保護金属層を形成する保護金属層形成工程と、
スパッタリング法により、前記保護金属層の前記透明基板とは反対側に、前記保護金属層に接して誘電体層を形成する誘電体層形成工程とを備える、
膜付き透明基板の製造方法。 A metal layer forming step of forming a metal layer on the transparent substrate;
A protective metal layer forming step of forming a protective metal layer in contact with the metal layer on the side opposite to the transparent substrate of the metal layer;
A dielectric layer forming step of forming a dielectric layer in contact with the protective metal layer on a side opposite to the transparent substrate of the protective metal layer by sputtering;
Manufacturing method of transparent substrate with film. - 前記保護金属層の厚さが2~15nmである、請求項1に記載の膜付き透明基板の製造方法。 The method for producing a transparent substrate with a film according to claim 1, wherein the thickness of the protective metal layer is 2 to 15 nm.
- 前記保護金属層が珪素またはアルミニウムから構成される、請求項1または2に記載の膜付き透明基板の製造方法。 The method for producing a transparent substrate with a film according to claim 1 or 2, wherein the protective metal layer is composed of silicon or aluminum.
- 前記スパッタリング法が、反応性スパッタリング法である、請求項1~3いずれかに記載の膜付き透明基板の製造方法。 The method for producing a transparent substrate with a film according to any one of claims 1 to 3, wherein the sputtering method is a reactive sputtering method.
- 前記誘電体層形成工程において、前記保護金属層を反応させ、金属酸化物、金属窒化物及び金属酸窒化物のいずれかからなる保護層を形成する、請求項1~4いずれかに記載の膜付き透明基板の製造方法。 The film according to any one of claims 1 to 4, wherein in the dielectric layer forming step, the protective metal layer is reacted to form a protective layer made of any one of a metal oxide, a metal nitride, and a metal oxynitride. Of manufacturing a transparent substrate with a substrate.
- 前記金属層が銀からなる、請求項1~5に記載の膜付き透明基板の製造方法。 The method for producing a transparent substrate with a film according to any one of claims 1 to 5, wherein the metal layer is made of silver.
- 前記金属層がスズからなる、請求項1~5に記載の膜付き透明基板の製造方法。 The method for producing a transparent substrate with a film according to any one of claims 1 to 5, wherein the metal layer is made of tin.
- 前記金属層形成工程の前に、透明基板の上に酸化ケイ素や酸化アルミニウムから構成される保護酸化物層を形成し、前記金属層形成工程において、前記保護酸化物層に接して前記金属層を形成する、請求項7に記載の膜付き透明基板の製造方法。
Before the metal layer forming step, a protective oxide layer composed of silicon oxide or aluminum oxide is formed on a transparent substrate, and in the metal layer forming step, the metal layer is in contact with the protective oxide layer. The manufacturing method of the transparent substrate with a film | membrane of Claim 7 formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019569573A JP7303496B2 (en) | 2018-02-02 | 2019-01-31 | METHOD FOR MANUFACTURING TRANSPARENT SUBSTRATE WITH FILM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-017154 | 2018-02-02 | ||
JP2018017154 | 2018-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151431A1 true WO2019151431A1 (en) | 2019-08-08 |
Family
ID=67479348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003468 WO2019151431A1 (en) | 2018-02-02 | 2019-01-31 | Method for manufacturing film-attached transparent substrate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7303496B2 (en) |
WO (1) | WO2019151431A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251475A1 (en) * | 2020-06-12 | 2021-12-16 | 日東電工株式会社 | Film mirror laminate and mirror member |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62235232A (en) * | 1986-01-29 | 1987-10-15 | ピルキントン・ブラザ−ズ・ピ−エルシ− | Bended and/or tempered silver-coated glass substrate and manufacture |
JP2000229381A (en) * | 1998-12-18 | 2000-08-22 | Asahi Glass Co Ltd | Glass laminate and production thereof |
JP2006317603A (en) * | 2005-05-11 | 2006-11-24 | Central Glass Co Ltd | Front surface mirror |
JP2011515714A (en) * | 2008-03-26 | 2011-05-19 | サウスウォール テクノロジーズ、 インク. | Robust optical filter using a pair of dielectric and metal layers |
WO2014129297A1 (en) * | 2013-02-19 | 2014-08-28 | 富士フイルム株式会社 | Method for producing film mirror, and film mirror |
JP2016540310A (en) * | 2013-09-05 | 2016-12-22 | アップル インコーポレイテッド | Opaque white coating with non-conductive mirror |
DE102016125042A1 (en) * | 2015-12-28 | 2017-06-29 | Oerlikon Surface Solutions Ag, Pfäffikon | Infrared mirror with a thermally stable layer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103443559A (en) | 2011-03-17 | 2013-12-11 | 冯·阿德纳设备有限公司 | Reflection layer system for solar applications and method for the production thereof |
-
2019
- 2019-01-31 WO PCT/JP2019/003468 patent/WO2019151431A1/en active Application Filing
- 2019-01-31 JP JP2019569573A patent/JP7303496B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62235232A (en) * | 1986-01-29 | 1987-10-15 | ピルキントン・ブラザ−ズ・ピ−エルシ− | Bended and/or tempered silver-coated glass substrate and manufacture |
JP2000229381A (en) * | 1998-12-18 | 2000-08-22 | Asahi Glass Co Ltd | Glass laminate and production thereof |
JP2006317603A (en) * | 2005-05-11 | 2006-11-24 | Central Glass Co Ltd | Front surface mirror |
JP2011515714A (en) * | 2008-03-26 | 2011-05-19 | サウスウォール テクノロジーズ、 インク. | Robust optical filter using a pair of dielectric and metal layers |
WO2014129297A1 (en) * | 2013-02-19 | 2014-08-28 | 富士フイルム株式会社 | Method for producing film mirror, and film mirror |
JP2016540310A (en) * | 2013-09-05 | 2016-12-22 | アップル インコーポレイテッド | Opaque white coating with non-conductive mirror |
DE102016125042A1 (en) * | 2015-12-28 | 2017-06-29 | Oerlikon Surface Solutions Ag, Pfäffikon | Infrared mirror with a thermally stable layer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251475A1 (en) * | 2020-06-12 | 2021-12-16 | 日東電工株式会社 | Film mirror laminate and mirror member |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019151431A1 (en) | 2021-01-28 |
JP7303496B2 (en) | 2023-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111796353B (en) | Optical filter and method of forming the same | |
EP3467552B1 (en) | Optical filter and sensor system | |
JP5527482B2 (en) | Anti-reflection laminate | |
TW201447002A (en) | Light absorbing layer, and layer system comprising said layer, method for the production of said layer system and sputtering target suitable for that purpose | |
EP1557479A1 (en) | Substrate having multilayer film and method for manufacturing the same | |
WO1991002102A1 (en) | Film based on silicon dioxide and production thereof | |
US20050205998A1 (en) | Multilayer film-coated substrate and process for its production | |
JP6853486B2 (en) | Solar shielding member | |
WO2019187416A1 (en) | Antireflection film and optical member | |
TW202009529A (en) | Infrared bandpass filter | |
US10641927B2 (en) | Optical thin film, optical element, optical system, and method for producing optical thin film | |
JP6767661B2 (en) | Gray tones low emissivity glass | |
WO2019151431A1 (en) | Method for manufacturing film-attached transparent substrate | |
WO2019150741A1 (en) | Optical thin film, optical element, and optical system | |
JP2006317603A (en) | Front surface mirror | |
JP5549342B2 (en) | Antireflection film and optical member having the same | |
WO2022124030A1 (en) | Optical filter | |
JP7216471B2 (en) | Plastic lens for in-vehicle lens and manufacturing method thereof | |
JP2007270279A (en) | Sputtering film deposition method and antireflection film | |
WO2021117598A1 (en) | Optical filter and method for manufacturing same | |
JP7563380B2 (en) | Transparent substrate with film | |
JP2019133078A (en) | Optical element, half mirror, and band-pass filter | |
JP7156312B2 (en) | heat insulating glass | |
JPH03187955A (en) | Permselective article and production thereof | |
WO2019181421A1 (en) | Glass substrate with layered films and window glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748385 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019569573 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19748385 Country of ref document: EP Kind code of ref document: A1 |