TW202403359A - filter - Google Patents

filter Download PDF

Info

Publication number
TW202403359A
TW202403359A TW112137296A TW112137296A TW202403359A TW 202403359 A TW202403359 A TW 202403359A TW 112137296 A TW112137296 A TW 112137296A TW 112137296 A TW112137296 A TW 112137296A TW 202403359 A TW202403359 A TW 202403359A
Authority
TW
Taiwan
Prior art keywords
glass plate
infrared
absorbing glass
optical filter
transmittance
Prior art date
Application number
TW112137296A
Other languages
Chinese (zh)
Other versions
TWI846612B (en
Inventor
若林剛守
坂上貴尋
白鳥誠
吉原明彦
久野一秀
Original Assignee
日商Agc股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Agc股份有限公司 filed Critical 日商Agc股份有限公司
Publication of TW202403359A publication Critical patent/TW202403359A/en
Application granted granted Critical
Publication of TWI846612B publication Critical patent/TWI846612B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Centrifugal Separators (AREA)
  • Glass Compositions (AREA)

Abstract

The invention provides a filter which can cut off infrared light properly and has low incident angle dependence. An optical filter comprises a first infrared-absorbing glass plate having an average transmittance of light having a wavelength of 400 to 550 nm of 80% or more and a second infrared-absorbing glass plate having an average transmittance of light having a wavelength of 400 to 550 nm of 80% or more, wherein when the transmittance at a wavelength of 700 nm of the first infrared-absorbing glass plate is Ta and the transmittance at a wavelength of 700 nm of the second infrared-absorbing glass plate is Tb, the absolute value [Delta]T of the difference between Ta and Tb is 10% or more and 90% or less.

Description

濾光器filter

本發明係關於一種如紅外線截止濾光器般之濾光器。The present invention relates to an optical filter such as an infrared cut filter.

紅外線截止濾光器可將紅外區域之波長之光(以下稱為「紅外光」)截止,使可見光透過,因此廣泛用於固體攝像裝置或感測器等器件。Infrared cut filters can cut off light with wavelengths in the infrared region (hereinafter referred to as "infrared light") and allow visible light to pass through. Therefore, they are widely used in devices such as solid-state imaging devices and sensors.

通常,紅外線截止濾光器係藉由在如透明基板之基板上設置交替地具有高折射率層與低折射率層之光學多層膜而構成(專利文獻1)。 [先前技術文獻] [專利文獻] Generally, an infrared cut filter is configured by providing an optical multilayer film having a high refractive index layer and a low refractive index layer alternately on a substrate such as a transparent substrate (Patent Document 1). [Prior technical literature] [Patent Document]

[專利文獻1]日本專利特開2006-60014號公報[Patent Document 1] Japanese Patent Application Publication No. 2006-60014

[發明所欲解決之問題][Problem to be solved by the invention]

隨著近年來機器之小型化及薄型化,機器內之各種器件逐漸發展為以更接近之狀態配置。因此,具備紅外線截止濾光器之器件有使光以廣角入射之傾向。With the miniaturization and thinning of machines in recent years, various components within the machines have gradually evolved to be arranged in a closer state. Therefore, devices equipped with infrared cutoff filters tend to allow light to be incident at a wide angle.

然而,已知紅外線截止濾光器之光學多層膜具有入射角度依存性。因此,具有光學多層膜之先前之紅外線截止濾光器存在光學特性根據光之入射角度而變化之問題。However, it is known that the optical multilayer film of the infrared cut filter has incident angle dependence. Therefore, the previous infrared cut filter having an optical multilayer film has a problem that the optical characteristics change depending on the incident angle of light.

又,具備紅外線截止濾光器之器件(以下稱為「紅外線截止器件」)以與放射紅外線之器件(以下稱為「紅外線放射器件」)接近之狀態配置的機器中,若利用紅外線截止濾光器截止紅外光之功能不充分,則有紅外線截止器件產生誤動作之虞。Also, in a device in which a device equipped with an infrared cut filter (hereinafter referred to as an "infrared cutoff device") is placed close to a device that emits infrared rays (hereinafter referred to as an "infrared emitting device"), if the infrared cutoff filter is used If the function of the device to cut off infrared light is insufficient, there is a risk that the infrared cutoff device may malfunction.

例如,於智慧型手機或攜帶型遊戲機等中設置有檢測機器周圍之環境光之環境光感測器。藉由利用環境光感測器檢測環境光,可適當調整機器之顯示器之亮度。然而,由於環境光感測器具有紅外線截止濾光器,故而若於環境光感測器附近配置紅外線放射器件,則有來自該紅外線放射器件之紅外線導致環境光感測器產生誤動作之虞。For example, a smartphone or a portable game console is equipped with an ambient light sensor that detects the ambient light around the device. By using the ambient light sensor to detect ambient light, the brightness of the machine's display can be appropriately adjusted. However, since the ambient light sensor has an infrared cutoff filter, if an infrared ray emitting device is disposed near the ambient light sensor, there is a risk that the infrared rays from the infrared ray emitting device may cause the ambient light sensor to malfunction.

由於存在此種問題,故而近年來對可顯著抑制光學特性之角度依存性,並且能夠適當地截止紅外光之紅外線截止濾光器的期待不斷提高。Due to such problems, in recent years, there has been increasing demand for an infrared cut filter that can significantly suppress the angle dependence of optical characteristics and appropriately cut infrared light.

本發明係鑒於此種背景而完成者,本發明之目的在於提供一種可適當地截止紅外光並且光學特性基本不依存於光之入射角度的濾光器。 [解決問題之技術手段] The present invention was made in view of this background, and an object of the present invention is to provide an optical filter that can appropriately cut off infrared light and whose optical characteristics are basically independent of the incident angle of the light. [Technical means to solve problems]

於本發明中,提供一種濾光器,其具備: 第1紅外線吸收玻璃板,其波長400 nm~550 nm之光之平均透過率為80%以上; 第2紅外線吸收玻璃板,其波長400 nm~550 nm之光之平均透過率為80%以上;且 將上述第1紅外線吸收玻璃板之波長700 nm下之透過率設為T a,將上述第2紅外線吸收玻璃板之波長700 nm下之透過率設為T b時,T a與T b之差之絕對值ΔT為10%以上90%以下。 [發明之效果] In the present invention, an optical filter is provided, which includes: a first infrared-absorbing glass plate with an average transmittance of light of a wavelength of 400 nm to 550 nm of more than 80%; a second infrared-absorbing glass plate with a wavelength of 400 nm The average transmittance of light of ~550 nm is more than 80%; and let the transmittance of the above-mentioned first infrared-absorbing glass plate at a wavelength of 700 nm be T a , and let the transmittance of the above-mentioned second infrared-absorbing glass plate at a wavelength of 700 nm be When the transmittance is T b , the absolute value ΔT of the difference between Ta and T b is 10% or more and 90% or less. [Effects of the invention]

於本發明中,可提供一種能夠適當地截止紅外光並且光學特性基本不依存於光之入射角度的濾光器。In the present invention, it is possible to provide an optical filter that can appropriately cut off infrared light and whose optical characteristics are basically independent of the incident angle of the light.

以下,參照圖式對本發明之一實施形態進行說明。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

於本發明之一實施形態中,提供一種濾光器,其具備: 第1紅外線吸收玻璃板,其波長400 nm~550 nm之光之平均透過率為80%以上;及 第2紅外線吸收玻璃板,其波長400 nm~550 nm之光之平均透過率為80%以上;且 將上述第1紅外線吸收玻璃板之波長700 nm下之透過率設為T a,將上述第2紅外線吸收玻璃板之波長700 nm下之透過率設為T b時,T a與T b之差之絕對值ΔT為10%以上90%以下。 In one embodiment of the present invention, an optical filter is provided, which includes: a first infrared-absorbing glass plate with an average transmittance of more than 80% for light with a wavelength of 400 nm to 550 nm; and a second infrared-absorbing glass plate. , the average transmittance of light with a wavelength of 400 nm to 550 nm is more than 80%; and let the transmittance of the above-mentioned first infrared-absorbing glass plate at a wavelength of 700 nm be T a , and let the above-mentioned second infrared-absorbing glass plate When the transmittance at a wavelength of 700 nm is set to T b , the absolute value ΔT of the difference between Ta and T b is 10% or more and 90% or less.

此處,於本案中,將玻璃板之波長400 nm~550 nm之光之平均透過率亦特別稱為「可見光平均透過率」。Here, in this case, the average transmittance of light with a wavelength of 400 nm to 550 nm of the glass plate is also specifically called the "average visible light transmittance."

於本發明之一實施形態中,濾光器包含複數個紅外線吸收玻璃板。又,於本發明之一實施形態之濾光器中,各紅外線吸收玻璃板含有紅外線吸收成分。In one embodiment of the present invention, the optical filter includes a plurality of infrared absorbing glass plates. Furthermore, in the optical filter according to one embodiment of the present invention, each infrared-absorbing glass plate contains an infrared-absorbing component.

因此,於本發明之一實施形態中,與如先前之利用光學多層膜構造所產生之光之干涉來反射紅外光的紅外線截止濾光器不同,可藉由紅外線吸收成分吸收紅外光。因此,於本發明之一實施形態之濾光器中,可顯著抑制光之入射角度對光學特性造成之影響。Therefore, in one embodiment of the present invention, unlike the previous infrared cut filter that uses the interference of light generated by an optical multilayer film structure to reflect infrared light, infrared light can be absorbed by an infrared absorbing component. Therefore, in the optical filter according to one embodiment of the present invention, the influence of the incident angle of light on the optical characteristics can be significantly suppressed.

再者,若僅單純將複數個紅外線吸收玻璃板重合而構成濾光器,則有可見光區域之透過率明顯降低之虞。Furthermore, if a plurality of infrared-absorbing glass plates are simply stacked to form a filter, the transmittance in the visible light region may be significantly reduced.

然而,於本發明之一實施形態中,第1及第2紅外線吸收玻璃板均具有可見光平均透過率為80%以上之特徵。因此,於本發明之一實施形態中,即便將第1及第2紅外線吸收玻璃板重合,亦不易產生可見光區域之透過率之大幅降低。However, in one embodiment of the present invention, both the first and second infrared-absorbing glass plates have an average visible light transmittance of 80% or more. Therefore, in one embodiment of the present invention, even if the first and second infrared-absorbing glass plates are overlapped, the transmittance in the visible light region is unlikely to be greatly reduced.

進而,於本發明之一實施形態之濾光器中,以如下方式選定各紅外線吸收玻璃板:將第1紅外線吸收玻璃板之波長700 nm下之透過率設為T a,將第2紅外線吸收玻璃板之波長700 nm下之透過率設為T b時,T a與T b之差之絕對值(以下以「ΔT」表示)成為10%以上90%以下。藉此,要求透過率大幅變化之波長700 nm左右之濾光器之透過率與其中一個紅外線吸收玻璃板之光學特性大致相同,濾光器之設計變得容易。又,可顯著降低濾光器於紅外區域之透過率。 Furthermore, in the optical filter according to one embodiment of the present invention, each infrared-absorbing glass plate is selected as follows: the transmittance of the first infrared-absorbing glass plate at a wavelength of 700 nm is set to Ta, and the transmittance of the second infrared-absorbing glass plate is set to Ta When the transmittance of the glass plate at a wavelength of 700 nm is set to T b , the absolute value of the difference between Ta and T b ( hereinafter expressed as "ΔT") is 10% or more and 90% or less. As a result, the transmittance of a filter with a wavelength of around 700 nm, which requires a large change in transmittance, is approximately the same as the optical characteristics of one of the infrared-absorbing glass plates, making the design of the filter easy. In addition, it can significantly reduce the transmittance of the filter in the infrared region.

藉由以上特徵,於本發明之一實施形態之濾光器中,可在顯著抑制了可見光區域之透過率降低之狀態下,顯著減少紅外光。With the above characteristics, in the optical filter according to one embodiment of the present invention, infrared light can be significantly reduced while significantly suppressing a decrease in transmittance in the visible light region.

以下,參照圖1,對本發明之一實施形態之濾光器之特徵更詳細地進行說明。Hereinafter, the characteristics of the optical filter according to one embodiment of the present invention will be described in more detail with reference to FIG. 1 .

圖1中,模式性地表示本發明之一實施形態之濾光器所包含的第1及第2紅外線吸收玻璃板之光學特性之一例。FIG. 1 schematically shows an example of the optical characteristics of the first and second infrared-absorbing glass plates included in the optical filter according to an embodiment of the present invention.

圖1中,橫軸為波長,縱軸為透過率。又,曲線A模式性地表示第1紅外線吸收玻璃板之透過率特性,曲線B模式性地表示第2紅外線吸收玻璃板之透過率特性。進而,曲線C係曲線A與曲線B之結合,即表示將第1紅外線吸收玻璃板與第2紅外線吸收玻璃板組合時作為濾光器之透過率特性。In Figure 1, the horizontal axis represents wavelength and the vertical axis represents transmittance. Furthermore, curve A schematically represents the transmittance characteristics of the first infrared-absorbing glass plate, and curve B schematically represents the transmittance characteristics of the second infrared-absorbing glass plate. Furthermore, curve C is a combination of curve A and curve B, that is, it represents the transmittance characteristics of a filter when the first infrared absorbing glass plate and the second infrared absorbing glass plate are combined.

如圖1所示,於本發明之一實施形態之濾光器中,第1紅外線吸收玻璃板及第2紅外線吸收玻璃板均於可見光區域中具有超過80%之可見光平均透過率。As shown in FIG. 1 , in the optical filter according to one embodiment of the present invention, both the first infrared absorbing glass plate and the second infrared absorbing glass plate have an average visible light transmittance exceeding 80% in the visible light region.

於該情形時,如曲線C所示,即便將2片紅外線吸收玻璃板組合,於可見光區域中亦可維持相對較高之透過率。於第1紅外線吸收玻璃板及第2紅外線吸收玻璃板均於可見光區域中具有未達80%之可見光平均透過率之情形時,濾光器之可見光之透過率特性降低,因此欠佳。較佳為第1紅外線吸收玻璃板及第2紅外線吸收玻璃板均於可見光區域中具有81%以上之可見光平均透過率,更佳為具有82%以上之可見光平均透過率。In this case, as shown in curve C, even if two infrared-absorbing glass plates are combined, a relatively high transmittance can be maintained in the visible light region. When both the first infrared-absorbing glass plate and the second infrared-absorbing glass plate have an average visible light transmittance of less than 80% in the visible light region, the visible light transmittance characteristics of the filter are reduced and are therefore undesirable. Preferably, both the first infrared absorbing glass plate and the second infrared absorbing glass plate have an average visible light transmittance of more than 81% in the visible light region, and more preferably, have an average visible light transmittance of more than 82%.

例如,本發明之一實施形態之濾光器具有76%以上之可見光平均透過率。於濾光器具有未達76%之可見光平均透過率之情形時,若於光感測器中使用該濾光器,則有感測器之受光量降低之虞,欠佳。濾光器較佳為具有78%以上之可見光平均透過率,更佳為具有80%以上之可見光平均透過率。For example, the optical filter according to one embodiment of the present invention has an average transmittance of visible light of more than 76%. When the filter has an average visible light transmittance of less than 76%, if the filter is used in a light sensor, the amount of light received by the sensor may be reduced, which is undesirable. The optical filter preferably has an average visible light transmittance of more than 78%, and more preferably has an average visible light transmittance of more than 80%.

又,第1紅外線吸收玻璃板於波長700 nm下具有透過率T a,第2紅外線吸收玻璃板於波長700 nm下具有透過率T b。兩紅外線吸收玻璃板係以透過率T a與透過率T b之差之絕對值ΔT成為10%以上之方式選定。換言之,2片紅外線吸收玻璃板中之一者於波長700 nm下具有較另一紅外線吸收玻璃板大(或小)10%以上之透過率。 Moreover, the first infrared absorbing glass plate has a transmittance Ta at a wavelength of 700 nm, and the second infrared absorbing glass plate has a transmittance T b at a wavelength of 700 nm. The two infrared-absorbing glass plates are selected so that the absolute value ΔT of the difference between transmittance Ta and transmittance T b becomes 10% or more. In other words, one of the two infrared absorbing glass plates has a transmittance of more than 10% greater (or less) than the other infrared absorbing glass plate at a wavelength of 700 nm.

於該情形時,波長700 nm下之透過率較高之紅外線吸收玻璃板(於圖1之情形時為第1紅外線吸收玻璃板)與波長700 nm下之透過率較低之紅外線吸收玻璃板(於圖1之情形時為第2紅外線吸收玻璃板)相比,透過率大幅降低之波長存在於高波長側。In this case, an infrared absorbing glass plate with a higher transmittance at a wavelength of 700 nm (the first infrared absorbing glass plate in the case of Figure 1) and an infrared absorbing glass plate with a lower transmittance at a wavelength of 700 nm ( Compared with the second infrared absorbing glass plate in the case of Figure 1), the wavelength where the transmittance is greatly reduced exists on the high wavelength side.

例如,於圖1所示之例中,若將於紅外線吸收玻璃板之透過率成為50%時高波長側之波長表示為半值波長T 50,則第1紅外線吸收玻璃板之半值波長T 50與第2紅外線吸收玻璃板之半值波長T 50相比存在於高波長側。 For example, in the example shown in Figure 1, if the wavelength on the high wavelength side when the transmittance of the infrared-absorbing glass plate is 50% is expressed as the half-value wavelength T 50 , then the half-value wavelength T of the first infrared-absorbing glass plate 50 exists on the higher wavelength side than the half-value wavelength T 50 of the second infrared absorbing glass plate.

並且,於該情形時,如曲線C所示,將各紅外線吸收玻璃板重合時獲得之紅外區域中之透過率變得足夠小。此處,若透過率T a與透過率T b之差之絕對值ΔT未達10%,則作為濾光器之波長700 nm之光之透過率特性變低,因此欠佳。若透過率T a與透過率T b之差之絕對值ΔT超過90%,則必須使其中一個紅外線吸收玻璃基板(波長700 nm下之透過率較低者)之波長700 nm之透過率變低,伴隨於此,有可見光平均透過率降低之虞,欠佳。兩紅外線吸收玻璃板較佳為以透過率T a與透過率T b之差之絕對值ΔT成為15%以上之方式選定,更佳為以成為20%以上之方式選定。又,兩紅外線吸收玻璃板較佳為以透過率T a與透過率T b之差之絕對值ΔT成為89%以下之方式選定,更佳為以成為88%以下之方式選定。 Furthermore, in this case, as shown in the curve C, the transmittance in the infrared region obtained when the respective infrared absorbing glass plates are overlapped becomes sufficiently small. Here, if the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b is less than 10%, the transmittance characteristics of the filter for light with a wavelength of 700 nm will be low, which is not preferable. If the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b exceeds 90%, the transmittance of one of the infrared-absorbing glass substrates (the one with the lower transmittance at the wavelength of 700 nm) at the wavelength of 700 nm must be lowered. , along with this, the average transmittance of visible light may decrease, which is not preferable. The two infrared-absorbing glass plates are preferably selected so that the absolute value ΔT of the difference between transmittance Ta and transmittance T b becomes 15% or more, more preferably 20% or more. Furthermore, the two infrared-absorbing glass plates are preferably selected so that the absolute value ΔT of the difference between transmittance Ta and transmittance T b becomes 89% or less, more preferably 88% or less.

例如,於本發明之一實施形態之濾光器中,波長850 nm~950 nm之範圍內之光學濃度之平均值為2.5以上。波長850 nm~950 nm之範圍內之光學濃度之平均值較佳為3.0以上,更佳為3.5以上。For example, in the optical filter according to one embodiment of the present invention, the average value of the optical density in the wavelength range of 850 nm to 950 nm is 2.5 or more. The average value of the optical concentration within the wavelength range of 850 nm to 950 nm is preferably 3.0 or more, more preferably 3.5 or more.

如此,於本發明之一實施形態之濾光器中,可在將可見光區域中之透過率維持為較高之值之狀態下,顯著降低紅外區域中之透過率。In this way, in the optical filter according to one embodiment of the present invention, the transmittance in the infrared region can be significantly reduced while maintaining the transmittance in the visible light region at a high value.

又,於本發明之一實施形態之濾光器中,由於未利用由光學多層膜產生之紅外光之截止功能,故而可顯著抑制影響透過率之入射光之角度依存性。Furthermore, in the optical filter according to one embodiment of the present invention, since the infrared light-cutting function of the optical multilayer film is not utilized, the angle dependence of incident light that affects the transmittance can be significantly suppressed.

(本發明之一實施形態之濾光器) 其次,參照圖2,對本發明之一實施形態之濾光器之構成進行詳細說明。 (Optical filter according to one embodiment of the present invention) Next, the structure of the optical filter according to one embodiment of the present invention will be described in detail with reference to FIG. 2 .

圖2中,模式性地表示本發明之一實施形態之濾光器(以下稱為「第1濾光器」)之剖面。FIG. 2 schematically shows a cross-section of an optical filter (hereinafter referred to as "first optical filter") according to an embodiment of the present invention.

如圖2所示,第1濾光器100係藉由將第1紅外線吸收玻璃板110與第2紅外線吸收玻璃板130相互積層而構成。第1紅外線吸收玻璃板110之外表面成為第1濾光器100之第1側102,第2紅外線吸收玻璃板130之外表面成為第1濾光器100之第2側104。As shown in FIG. 2 , the first optical filter 100 is configured by laminating a first infrared-absorbing glass plate 110 and a second infrared-absorbing glass plate 130 on each other. The outer surface of the first infrared absorbing glass plate 110 becomes the first side 102 of the first filter 100 , and the outer surface of the second infrared absorbing glass plate 130 becomes the second side 104 of the first filter 100 .

再者,於本案中,「紅外線吸收玻璃板」意為含有0.05陽離子%以上之紅外線吸收成分之玻璃板。又,作為紅外線吸收成分,例如可列舉鐵及銅等。又,作為玻璃板,只要為含有上述紅外線吸收成分之玻璃,則構成之玻璃組成系統並無特別限定。作為玻璃組成,例如可列舉磷酸玻璃、氟磷酸玻璃、矽磷酸玻璃、硫磷酸玻璃、鈉鈣玻璃、硼矽酸玻璃、無鹼玻璃、鋁矽酸鹽玻璃等。Furthermore, in this case, "infrared-absorbing glass plate" means a glass plate containing an infrared-absorbing component of more than 0.05 cationic %. Examples of infrared absorbing components include iron, copper, and the like. Moreover, as long as the glass plate contains the above-mentioned infrared absorbing component, the glass composition system is not particularly limited. Examples of the glass composition include phosphate glass, fluorophosphate glass, silicophosphate glass, sulfophosphate glass, soda-lime glass, borosilicate glass, alkali-free glass, aluminosilicate glass, and the like.

第1紅外線吸收玻璃板110具有80%以上之可見光平均透過率。又,第2紅外線吸收玻璃板130具有80%以上之可見光平均透過率。The first infrared absorbing glass plate 110 has an average visible light transmittance of more than 80%. In addition, the second infrared absorbing glass plate 130 has an average visible light transmittance of more than 80%.

進而,將第1紅外線吸收玻璃板110之波長700 nm下之透過率設為T a,將第2紅外線吸收玻璃板130之波長700 nm下之透過率設為T b時,第1紅外線吸收玻璃板110及第2紅外線吸收玻璃板130係以透過率T a與透過率T b之差之絕對值ΔT成為10%以上90%以下之方式選定。 Furthermore, when the transmittance of the first infrared absorbing glass plate 110 at a wavelength of 700 nm is set to Ta, and the transmittance of the second infrared absorbing glass plate 130 at a wavelength of 700 nm is set to T b , the first infrared absorbing glass The plate 110 and the second infrared absorbing glass plate 130 are selected so that the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b becomes 10% or more and 90% or less.

再者,以下記載中,出於方便,假定T a>T bIn addition, in the following description, for convenience, it is assumed that T a >T b .

此種第1濾光器100中,如上所述,可在將可見光區域中之透過率維持為較高之值之狀態下,顯著降低紅外區域中之透過率。又,第1濾光器100可顯著抑制影響透過率之入射光之角度依存性。In this first optical filter 100, as described above, the transmittance in the infrared region can be significantly reduced while maintaining the transmittance in the visible light region at a high value. In addition, the first optical filter 100 can significantly suppress the angle dependence of incident light that affects transmittance.

以下,對構成第1濾光器100之各構件更詳細地進行說明。Hereinafter, each member constituting the first optical filter 100 will be described in more detail.

(第1紅外線吸收玻璃板110) 如上所述,第1紅外線吸收玻璃板110具有80%以上之可見光平均透過率。可見光平均透過率較佳為81%以上,更佳為82%以上。 (First infrared absorbing glass plate 110) As mentioned above, the first infrared absorbing glass plate 110 has an average visible light transmittance of more than 80%. The average visible light transmittance is preferably 81% or more, more preferably 82% or more.

又,第1紅外線吸收玻璃板110具有0.05陽離子%以上之紅外線吸收成分。紅外線吸收成分例如可為鐵及/或銅。Furthermore, the first infrared absorbing glass plate 110 has an infrared absorbing component of 0.05 cation % or more. The infrared absorbing component may be iron and/or copper, for example.

再者,第1紅外線吸收玻璃板110只要與第2紅外線吸收玻璃板130之間滿足上述T a與T b關係,則可具有任意組成。 Furthermore, the first infrared absorbing glass plate 110 may have any composition as long as the above-mentioned relationship between Ta and T b is satisfied between the first infrared absorbing glass plate 110 and the second infrared absorbing glass plate 130 .

但,於第1紅外線吸收玻璃板110成為第1濾光器100之一外表面之情形時、即第1紅外線吸收玻璃板110之一表面露出之情形時,第1紅外線吸收玻璃板110亦可具有氟。藉此,至少於第1紅外線吸收玻璃板110之側,可提昇第1濾光器100之耐侯性。However, when the first infrared absorbing glass plate 110 becomes an outer surface of the first filter 100, that is, when one surface of the first infrared absorbing glass plate 110 is exposed, the first infrared absorbing glass plate 110 may also be used. Has fluorine. Thereby, the weather resistance of the first optical filter 100 can be improved at least on the side of the first infrared absorbing glass plate 110 .

第1紅外線吸收玻璃板110之厚度並無特別限制。但,於第1濾光器100用於如環境光感測器之小型器件之情形時,為了使第1濾光器100厚度變薄,厚度較佳為0.05 mm~2 mm之範圍。The thickness of the first infrared absorbing glass plate 110 is not particularly limited. However, when the first optical filter 100 is used in a small device such as an ambient light sensor, in order to reduce the thickness of the first optical filter 100, the thickness is preferably in the range of 0.05 mm to 2 mm.

(第2紅外線吸收玻璃板130) 關於第2紅外線吸收玻璃板130,可以說除組成以外與第1紅外線吸收玻璃板110相同。 (Second infrared absorbing glass plate 130) The second infrared absorbing glass plate 130 can be said to be the same as the first infrared absorbing glass plate 110 except for the composition.

第2紅外線吸收玻璃板130具有0.05陽離子%以上之紅外線吸收成分。紅外線吸收成分例如可為銅。The second infrared absorbing glass plate 130 has an infrared absorbing component of 0.05 cation % or more. The infrared absorbing component may be copper, for example.

第2紅外線吸收玻璃板130只要與第1紅外線吸收玻璃板110之間滿足上述T a與T b關係,則可具有任意組成。 The second infrared absorbing glass plate 130 may have any composition as long as it satisfies the above-described relationship between Ta and T b and the first infrared absorbing glass plate 110 .

但,於第2紅外線吸收玻璃板130成為第1濾光器100之一外表面之情形時、即第2紅外線吸收玻璃板130之一表面露出之情形時,第2紅外線吸收玻璃板130亦可具有氟。藉此,至少於第2紅外線吸收玻璃板130之側,可提昇第1濾光器100之耐侯性。However, when the second infrared absorbing glass plate 130 becomes an outer surface of the first filter 100, that is, when one surface of the second infrared absorbing glass plate 130 is exposed, the second infrared absorbing glass plate 130 may also be used. Has fluorine. Thereby, the weather resistance of the first optical filter 100 can be improved at least on the side of the second infrared absorbing glass plate 130 .

(其他) 圖2中雖未圖示,但第1濾光器100亦可進而於第1側102及/或第2側104具有抗反射膜。藉由設置抗反射膜,能夠顯著抑制入射至第1濾光器100之光量之損耗。 (other) Although not shown in FIG. 2 , the first optical filter 100 may further have an anti-reflection film on the first side 102 and/or the second side 104 . By providing the anti-reflection film, the loss of the amount of light incident on the first optical filter 100 can be significantly suppressed.

抗反射膜例如亦可藉由交替積層低折射率層與高折射率層而構成。作為低折射率層,較佳為折射率為1.7以下之層,例如,低折射率層亦可包含SiO 2、MgF 2、Al 2O 3等。另一方面,作為高折射率層,較佳為折射率為2.0以上之層,例如,高折射率層亦可包含TiO 2、Nb 2O 5、Ta 2O 5等。 The antireflection film may be formed by alternately laminating low refractive index layers and high refractive index layers, for example. The low refractive index layer is preferably a layer with a refractive index of 1.7 or less. For example, the low refractive index layer may also include SiO 2 , MgF 2 , Al 2 O 3 , etc. On the other hand, the high refractive index layer is preferably a layer with a refractive index of 2.0 or more. For example, the high refractive index layer may include TiO 2 , Nb 2 O 5 , Ta 2 O 5 and the like.

再者,第1紅外線吸收玻璃板110與第2紅外線吸收玻璃板130之接合方法並無特別限制。Furthermore, the method of joining the first infrared absorbing glass plate 110 and the second infrared absorbing glass plate 130 is not particularly limited.

第1紅外線吸收玻璃板110與第2紅外線吸收玻璃板130例如可藉由在其等之間介置接著層而接合。The first infrared absorbing glass plate 110 and the second infrared absorbing glass plate 130 can be joined by interposing an adhesive layer between them, for example.

作為接著層,較佳為折射率接近第1紅外線吸收玻璃板110及第2紅外線吸收玻璃板130者。作為接著層,例如可使用丙烯酸系樹脂或環氧系樹脂。The adhesive layer preferably has a refractive index close to that of the first infrared absorbing glass plate 110 and the second infrared absorbing glass plate 130 . As the adhesive layer, for example, acrylic resin or epoxy resin can be used.

或者,第1紅外線吸收玻璃板110與第2紅外線吸收玻璃板130亦可藉由以下方式等接合:氟接合(利用氟使表面熔融而接著)、光接觸、利用蝕刻之活化、藉由介置金屬薄膜(藉由濺鍍而形成)而進行之接合、利用電漿之活化、陽極接合、藉由介置玻璃料而進行之接合、以及藉由利用雷射使表面熔融而進行之接合。Alternatively, the first infrared-absorbing glass plate 110 and the second infrared-absorbing glass plate 130 can also be joined by the following methods: fluorine bonding (the surfaces are melted and bonded using fluorine), light contact, activation by etching, or by interposing metal Bonding by thin film (formed by sputtering), activation by plasma, anodic bonding, bonding by interposing glass frit, and bonding by melting the surface with laser.

(本發明之另一實施形態之濾光器) 其次,參照圖3,對本發明之另一實施形態之濾光器之構成進行詳細說明。 (Optical filter according to another embodiment of the present invention) Next, the structure of an optical filter according to another embodiment of the present invention will be described in detail with reference to FIG. 3 .

圖3中,模式性地表示本發明之另一實施形態之濾光器(以下稱為「第2濾光器」)之剖面。FIG. 3 schematically shows a cross-section of an optical filter (hereinafter referred to as a "second optical filter") according to another embodiment of the present invention.

如圖3所示,第2濾光器200具有第1紅外線吸收玻璃板210、第2紅外線吸收玻璃板230、及設置於兩者之間之透明玻璃板270。As shown in FIG. 3 , the second filter 200 includes a first infrared absorbing glass plate 210 , a second infrared absorbing glass plate 230 , and a transparent glass plate 270 disposed between them.

於第2濾光器200中,第1紅外線吸收玻璃板210之外表面成為第2濾光器200之第1側202,第2紅外線吸收玻璃板230之外表面成為第2濾光器200之第2側204。In the second optical filter 200, the outer surface of the first infrared absorbing glass plate 210 becomes the first side 202 of the second optical filter 200, and the outer surface of the second infrared absorbing glass plate 230 becomes the second optical filter 200. Side 204.

於第2濾光器200中,作為第1紅外線吸收玻璃板210及第2紅外線吸收玻璃板230之構成,可參照上述第1濾光器100中之第1紅外線吸收玻璃板110及第2紅外線吸收玻璃板130之記載。因此,此處不做過多說明。In the second optical filter 200, as the structure of the first infrared ray absorbing glass plate 210 and the second infrared ray absorbing glass plate 230, reference can be made to the first infrared ray absorbing glass plate 110 and the second infrared ray absorbing glass plate 110 in the first optical filter 100 described above. Recording of absorbing glass plate 130. Therefore, no further explanation will be given here.

另一方面,透明玻璃板270並非紅外線吸收玻璃板,而是由不含有紅外線吸收成分之透明玻璃構成。On the other hand, the transparent glass plate 270 is not an infrared absorbing glass plate, but is made of transparent glass that does not contain infrared absorbing components.

透明玻璃板270係為了抑制第1紅外線吸收玻璃板210與第2紅外線吸收玻璃板230之間之剝離而設置於第2濾光器200中。即,將第1紅外線吸收玻璃板210之25℃~250℃之平均熱膨脹係數設為α a,將第2紅外線吸收玻璃板230之25℃~250℃之平均熱膨脹係數設為α b,將透明玻璃板270之25℃~250℃之平均熱膨脹係數設為α c時,透明玻璃板270係以α c成為α a與α b之間之方式選定。 The transparent glass plate 270 is provided in the second filter 200 in order to suppress peeling between the first infrared absorbing glass plate 210 and the second infrared absorbing glass plate 230 . That is, let the average thermal expansion coefficient of the first infrared absorbing glass plate 210 at 25°C to 250°C be α a , let the average thermal expansion coefficient of the second infrared absorbing glass plate 230 between 25°C and 250°C be α b , and let the transparent When the average thermal expansion coefficient of the glass plate 270 at 25° C. to 250° C. is α c , the transparent glass plate 270 is selected so that α c is between α a and α b .

藉由設置此種透明玻璃板270,能夠抑制第1紅外線吸收玻璃板210與第2紅外線吸收玻璃板230之間之溫度變化引起之剝離。By providing such a transparent glass plate 270, peeling due to temperature change between the first infrared absorbing glass plate 210 and the second infrared absorbing glass plate 230 can be suppressed.

於第2濾光器200中,第1紅外線吸收玻璃板210及第2紅外線吸收玻璃板230亦以透過率T a與透過率T b之差之絕對值ΔT成為10%以上90%以下之方式選定。 In the second filter 200, the first infrared absorbing glass plate 210 and the second infrared absorbing glass plate 230 are also configured such that the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b is 10% or more and 90% or less. selected.

因此,於第2濾光器200中,亦可在將可見光區域中之透過率維持為較高之值之狀態下,顯著降低紅外區域中之透過率。又,第2濾光器200可顯著抑制影響透過率之入射光之角度依存性。Therefore, in the second filter 200, the transmittance in the infrared region can be significantly reduced while maintaining the transmittance in the visible light region at a high value. In addition, the second optical filter 200 can significantly suppress the angle dependence of incident light that affects transmittance.

再者,圖3中雖未圖示,但第2濾光器200亦可進而於第1側202及/或第2側204具有抗反射膜。Furthermore, although not shown in FIG. 3 , the second optical filter 200 may further have an anti-reflective film on the first side 202 and/or the second side 204 .

再者,第2濾光器200所包含之透明玻璃板270亦可具有如下特徵。Furthermore, the transparent glass plate 270 included in the second optical filter 200 may also have the following characteristics.

(透明玻璃板270) 透明玻璃板270只要不阻礙上述第2濾光器200之功能,則可具有任意組成。作為玻璃組成,例如可列舉磷酸玻璃、氟磷酸玻璃、矽磷酸玻璃、硫磷酸玻璃、鈉鈣玻璃、硼矽酸玻璃、無鹼玻璃、鋁矽酸鹽玻璃等。 (Transparent glass plate 270) The transparent glass plate 270 may have any composition as long as it does not hinder the function of the second optical filter 200 . Examples of the glass composition include phosphate glass, fluorophosphate glass, silicophosphate glass, sulfophosphate glass, soda-lime glass, borosilicate glass, alkali-free glass, aluminosilicate glass, and the like.

透明玻璃板270具有80%以上之可見光平均透過率。透明玻璃板270較佳為具有81%以上之可見光平均透過率,更佳為具有82%以上之可見光平均透過率。The transparent glass plate 270 has an average transmittance of visible light of more than 80%. The transparent glass plate 270 preferably has an average visible light transmittance of more than 81%, and more preferably has an average visible light transmittance of more than 82%.

透明玻璃板270例如可具有0.05 mm~2 mm之厚度。The transparent glass plate 270 may have a thickness of 0.05 mm to 2 mm, for example.

再者,如上所述,透明玻璃板270實質上不包含紅外線吸收成分。但,存在製造步驟上於透明玻璃板270中包含未達0.01質量%之紅外線吸收成分作為不可避免之雜質的情形。Furthermore, as mentioned above, the transparent glass plate 270 substantially does not contain infrared absorbing components. However, there may be cases where the transparent glass plate 270 contains less than 0.01 mass % of infrared absorbing components as unavoidable impurities during the manufacturing process.

(本發明之又一實施形態之濾光器) 其次,參照圖4,對本發明之又一實施形態之濾光器之構成進行詳細說明。 (Optical filter according to another embodiment of the present invention) Next, the structure of an optical filter according to another embodiment of the present invention will be described in detail with reference to FIG. 4 .

圖4中,模式性地表示本發明之又一實施形態之濾光器(以下稱為「第3濾光器」)之剖面。FIG. 4 schematically shows a cross-section of an optical filter (hereinafter referred to as a "third optical filter") according to another embodiment of the present invention.

如圖4所示,第3濾光器300依序具有第2紅外線吸收玻璃板330、第1紅外線吸收玻璃板310、及第3紅外線吸收玻璃板350。As shown in FIG. 4 , the third optical filter 300 includes a second infrared absorbing glass plate 330 , a first infrared absorbing glass plate 310 , and a third infrared absorbing glass plate 350 in this order.

此處,第3紅外線吸收玻璃板350具有與第2紅外線吸收玻璃板330相同之組成。因此,第3濾光器300具有第1紅外線吸收玻璃板310由兩側之第2紅外線吸收玻璃板330夾著之構成。Here, the third infrared absorbing glass plate 350 has the same composition as the second infrared absorbing glass plate 330 . Therefore, the third optical filter 300 has a structure in which the first infrared absorbing glass plate 310 is sandwiched between the second infrared absorbing glass plates 330 on both sides.

於第3濾光器300中,第2紅外線吸收玻璃板330之外表面成為第3濾光器300之第1側302,第3紅外線吸收玻璃板350之外表面成為第3濾光器300之第2側304。In the third optical filter 300, the outer surface of the second infrared absorbing glass plate 330 becomes the first side 302 of the third optical filter 300, and the outer surface of the third infrared absorbing glass plate 350 becomes the third optical filter 300. Side 2 304.

於第3濾光器300中,作為第1紅外線吸收玻璃板310及第2紅外線吸收玻璃板330之構成,可參照上述第1濾光器100中之第1紅外線吸收玻璃板110及第2紅外線吸收玻璃板130之記載。In the third optical filter 300, as the structure of the first infrared ray absorbing glass plate 310 and the second infrared ray absorbing glass plate 330, reference can be made to the first infrared ray absorbing glass plate 110 and the second infrared ray absorbing glass plate 110 in the above-mentioned first optical filter 100. Recording of absorbing glass plate 130.

再者,於第3濾光器300中,第2紅外線吸收玻璃板330及第3紅外線吸收玻璃板350較佳為含有氟。藉此,可提昇第3濾光器300之耐侯性。Furthermore, in the third optical filter 300, the second infrared absorbing glass plate 330 and the third infrared absorbing glass plate 350 preferably contain fluorine. Thereby, the weather resistance of the third optical filter 300 can be improved.

於第3濾光器300中,第1紅外線吸收玻璃板310及第2紅外線吸收玻璃板330亦以透過率T a與透過率T b之差之絕對值ΔT成為10%以上90%以下之方式選定。於如第3濾光器300般使用3片紅外線吸收玻璃板之情形時,將使玻璃組成或透過率特性大致相同之2片紅外線吸收玻璃板重合時之透過率特性定義為透過率T a或透過率T b。例如,於第3濾光器300中,使用將組成相同之第2紅外線吸收玻璃板330與第3紅外線吸收玻璃板350重合時之透過率特性,定義透過率T bIn the third optical filter 300, the first infrared absorbing glass plate 310 and the second infrared absorbing glass plate 330 are also configured so that the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b is 10% or more and 90% or less. selected. When three infrared-absorbing glass plates are used like the third filter 300, the transmittance characteristics when two infrared-absorbing glass plates with substantially the same glass composition or transmittance characteristics are overlapped are defined as transmittance T a or Transmittance T b . For example, in the third filter 300, the transmittance T b is defined using the transmittance characteristics when the second infrared absorbing glass plate 330 and the third infrared absorbing glass plate 350 having the same composition are overlapped.

因此,於第3濾光器300中,亦可在將可見光區域中之透過率維持為較高之值之狀態下,顯著降低紅外區域中之透過率。又,第3濾光器300可顯著抑制影響透過率之入射光之角度依存性。Therefore, in the third optical filter 300, the transmittance in the infrared region can be significantly reduced while maintaining the transmittance in the visible light region at a high value. In addition, the third optical filter 300 can significantly suppress the angle dependence of incident light that affects transmittance.

再者,圖4中雖未圖示,但第3濾光器300亦可進而於第1側302及/或第2側304具有抗反射膜。Furthermore, although not shown in FIG. 4 , the third optical filter 300 may further have an anti-reflective film on the first side 302 and/or the second side 304 .

(本發明之又一實施形態之濾光器) 其次,參照圖5,對本發明之又一實施形態之濾光器之構成進行詳細說明。 (Optical filter according to another embodiment of the present invention) Next, the structure of an optical filter according to another embodiment of the present invention will be described in detail with reference to FIG. 5 .

圖5中,模式性地表示本發明之又一實施形態之濾光器(以下稱為「第4濾光器」)之剖面。FIG. 5 schematically shows a cross-section of an optical filter (hereinafter referred to as "the fourth optical filter") according to another embodiment of the present invention.

如圖5所示,第4濾光器400具有於上述第3濾光器300中在各紅外線吸收玻璃板之間設置有透明玻璃板之構成。即,第4濾光器400具有將第2紅外線吸收玻璃板430、第1透明玻璃板470、第1紅外線吸收玻璃板410、第2透明玻璃板480、及第3紅外線吸收玻璃板450依序積層而成之構成。As shown in FIG. 5 , the fourth optical filter 400 has a structure in which a transparent glass plate is provided between the infrared absorbing glass plates in the third optical filter 300 . That is, the fourth optical filter 400 has the second infrared absorbing glass plate 430, the first transparent glass plate 470, the first infrared absorbing glass plate 410, the second transparent glass plate 480, and the third infrared absorbing glass plate 450 in this order. Made up of layers.

於第4濾光器400中,第2紅外線吸收玻璃板430之外表面成為第4濾光器400之第1側402,第3紅外線吸收玻璃板450之外表面成為第4濾光器400之第2側404。In the fourth optical filter 400, the outer surface of the second infrared absorbing glass plate 430 becomes the first side 402 of the fourth optical filter 400, and the outer surface of the third infrared absorbing glass plate 450 becomes the first side of the fourth optical filter 400. Side 2 404.

於第4濾光器400中,作為第1、第2及第3紅外線吸收玻璃板410、430、450之構成,可參照上述第3濾光器300中之第1、第2及第3紅外線吸收玻璃板310、330、350之記載。進而,作為第1透明玻璃板470之構成,可參照上述第2濾光器200中之透明玻璃板270之記載。In the fourth optical filter 400, as the structures of the first, second and third infrared absorbing glass plates 410, 430 and 450, reference can be made to the first, second and third infrared rays in the above-mentioned third optical filter 300. The records of the glass plates 310, 330 and 350 are absorbed. Furthermore, as the structure of the first transparent glass plate 470, the description of the transparent glass plate 270 in the second optical filter 200 can be referred to.

另一方面,第2透明玻璃板480並非紅外線吸收玻璃板,而是由不含有紅外線吸收成分之玻璃構成。On the other hand, the second transparent glass plate 480 is not an infrared absorbing glass plate, but is made of glass that does not contain an infrared absorbing component.

又,第2透明玻璃板480係為了抑制第1紅外線吸收玻璃板410與第3紅外線吸收玻璃板450之間之剝離而設置於第4濾光器400中。In addition, the second transparent glass plate 480 is provided in the fourth filter 400 in order to suppress peeling between the first infrared absorbing glass plate 410 and the third infrared absorbing glass plate 450 .

即,將第1紅外線吸收玻璃板410之25℃~250℃之平均熱膨脹係數設為α a,將第3紅外線吸收玻璃板450之25℃~250℃之平均熱膨脹係數設為α b'(α b'與第2紅外線吸收玻璃板430之25℃~250℃之平均熱膨脹係數α b相等),將第2透明玻璃板480之25℃~250℃之平均熱膨脹係數設為α d時,第2透明玻璃板480係以α d成為α a與α b'之間之方式選定。 That is, let the average thermal expansion coefficient of the first infrared absorbing glass plate 410 between 25°C and 250°C be α a , and let the average thermal expansion coefficient of the third infrared absorbing glass plate 450 between 25°C and 250°C be α b '(α b ' is equal to the average thermal expansion coefficient α b of the second infrared absorbing glass plate 430 at 25°C to 250°C), and when the average thermal expansion coefficient of the second transparent glass plate 480 at 25°C to 250°C is α d , the second The transparent glass plate 480 is selected such that α d is between α a and α b ′.

藉由設置此種第2透明玻璃板480,亦能夠顯著抑制第1紅外線吸收玻璃板410與第3紅外線吸收玻璃板450之間之剝離。By providing such a second transparent glass plate 480, peeling between the first infrared-absorbing glass plate 410 and the third infrared-absorbing glass plate 450 can also be significantly suppressed.

於第4濾光器400中,第1紅外線吸收玻璃板410及第2紅外線吸收玻璃板430係以透過率T a與透過率T b之差之絕對值ΔT成為10%以上90%以下之方式選定。第4濾光器400由於與第3濾光器300同樣地使用3片紅外線吸收玻璃板,故而如上所述,使用將組成相同之第2紅外線吸收玻璃板430與第3紅外線吸收玻璃板450重合時之透過率特性,定義透過率T bIn the fourth optical filter 400, the first infrared absorbing glass plate 410 and the second infrared absorbing glass plate 430 are configured such that the absolute value ΔT of the difference between the transmittance Ta and the transmittance T b is 10% or more and 90% or less. selected. The fourth filter 400 uses three infrared-absorbing glass plates like the third filter 300. Therefore, as mentioned above, the second infrared-absorbing glass plate 430 and the third infrared-absorbing glass plate 450 having the same composition are overlapped. The transmittance characteristics at this time are defined as transmittance T b .

因此,於第4濾光器400中,亦可在將可見光區域中之透過率維持為較高之值之狀態下,顯著降低紅外區域中之透過率。又,第4濾光器400可顯著抑制影響透過率之入射光之角度依存性。Therefore, in the fourth optical filter 400, the transmittance in the infrared region can be significantly reduced while maintaining the transmittance in the visible light region at a high value. In addition, the fourth optical filter 400 can significantly suppress the angle dependence of incident light that affects transmittance.

再者,圖5中雖未圖示,但第4濾光器400亦可進而於第1側402及/或第2側404具有抗反射膜。Furthermore, although not shown in FIG. 5 , the fourth optical filter 400 may further have an anti-reflection film on the first side 402 and/or the second side 404 .

以上,參照圖2~圖5對本發明之一實施形態之濾光器進行了說明。然而,該等構成僅為一例,顯然本發明之一實施形態之濾光器只要具有如上所述之第1及第2紅外線吸收玻璃板,可獲得如上所述之效果,便可具有任意構成。 [實施例] As above, the optical filter according to one embodiment of the present invention has been described with reference to FIGS. 2 to 5 . However, these structures are only examples, and it is obvious that the optical filter according to an embodiment of the present invention may have any structure as long as it has the first and second infrared-absorbing glass plates as described above and can obtain the above-mentioned effects. [Example]

以下,對本發明之實施例進行說明。再者,於以下之記載中,例1~例6為實施例,例11及例12為比較例。Hereinafter, examples of the present invention will be described. In addition, in the following description, Examples 1 to 6 are examples, and Examples 11 and 12 are comparative examples.

(例1) 構成如上述圖2所示之包含2片紅外線吸收玻璃板之濾光器(稱為「例1之濾光器」),並對其特性進行評估。 (example 1) An optical filter including two infrared-absorbing glass plates as shown in Figure 2 above was constructed (referred to as "the optical filter of Example 1"), and its characteristics were evaluated.

作為第1紅外線吸收玻璃板,使用具有以下表1中之「玻璃A」之組成之玻璃板。厚度為1.06 mm。As the first infrared absorbing glass plate, a glass plate having the composition of “Glass A” in Table 1 below was used. Thickness is 1.06 mm.

又,作為第2紅外線吸收玻璃板,使用具有表1中之「玻璃B」之組成之玻璃板。厚度為0.38 mm。因此,例1之濾光器之總厚度為1.44 mm。In addition, as the second infrared absorbing glass plate, a glass plate having the composition of “Glass B” in Table 1 was used. Thickness is 0.38 mm. Therefore, the total thickness of the filter of Example 1 is 1.44 mm.

[表1]    玻璃A 玻璃B 玻璃C 玻璃D 玻璃E 玻璃F 陽離子(%) P 62.2 43.9 43.1 63.5 45.3 45.2 B 0.0 0.0 0.0 2.4 0.0 0.0 Al 16.2 9.2 9.1 10.3 9.5 9.5 Li 2.6 24.4 24.0 0.0 25.2 25.2 Na 2.6 0.0 0.0 15.6 0.0 0.0 K 1.8 0.0 0.0 0.0 0.0 0.0 Mg 2.2 3.3 3.3 0.0 3.4 3.4 Ca 0.0 4.5 4.4 0.0 4.7 4.7 Sr 0.0 5.6 5.5 0.0 5.8 5.8 Ba 1.1 5.8 5.7 1.9 6.0 6.0 Zn 3.8 0.0 0.0 0.0 0.0 0.0 Cu 0.0 3.2 5.0 6.3 0.1 0.2 Fe 7.6 0.0 0.0 0.0 0.0 0.0 陽離子合計 100.0 100.0 100.0 100.0 100.0 100.0 陰離子(%) O 100.0 85.4 85.3 100.0 85.8 85.8 F 0.0 14.6 14.7 0.0 14.2 14.2 陰離子合計 100.0 100.0 100.0 100.0 100.0 100.0 熱膨脹係數 (50~250℃) [×10 -7/℃] 76 129 129 106 129 129 第1紅外線吸收玻璃板之可見光平均透過率為84.4%,波長700 nm下之透過率T a為61.0%。又,透過率成為50%之長波長側之波長、即半值波長T 50為724 nm。 [Table 1] Glass A Glass B Glass C Glass D Glass E Glass F Cation(%) P 62.2 43.9 43.1 63.5 45.3 45.2 B 0.0 0.0 0.0 2.4 0.0 0.0 Al 16.2 9.2 9.1 10.3 9.5 9.5 Li 2.6 24.4 24.0 0.0 25.2 25.2 Na 2.6 0.0 0.0 15.6 0.0 0.0 K 1.8 0.0 0.0 0.0 0.0 0.0 Mg 2.2 3.3 3.3 0.0 3.4 3.4 Ca 0.0 4.5 4.4 0.0 4.7 4.7 Sr 0.0 5.6 5.5 0.0 5.8 5.8 Ba 1.1 5.8 5.7 1.9 6.0 6.0 Zn 3.8 0.0 0.0 0.0 0.0 0.0 Cu 0.0 3.2 5.0 6.3 0.1 0.2 Fe 7.6 0.0 0.0 0.0 0.0 0.0 Total cations 100.0 100.0 100.0 100.0 100.0 100.0 Anion(%) O 100.0 85.4 85.3 100.0 85.8 85.8 F 0.0 14.6 14.7 0.0 14.2 14.2 Total anions 100.0 100.0 100.0 100.0 100.0 100.0 Thermal expansion coefficient (50~250℃) [×10 -7 /℃] 76 129 129 106 129 129 The average visible light transmittance of the first infrared absorbing glass plate is 84.4%, and the transmittance Ta at a wavelength of 700 nm is 61.0%. In addition, the wavelength on the longer wavelength side at which the transmittance becomes 50%, that is, the half-value wavelength T 50 is 724 nm.

另一方面,第2紅外線吸收玻璃板之可見光平均透過率為87.3%,波長700 nm下之透過率T b為7.1%。又,半值波長T 50為614 nm。 On the other hand, the average visible light transmittance of the second infrared absorbing glass plate is 87.3%, and the transmittance T b at a wavelength of 700 nm is 7.1%. In addition, the half-value wavelength T 50 is 614 nm.

因此,兩者之波長700 nm下之透過率差之絕對值ΔT(=|T a-T b|)為53.9%。 Therefore, the absolute value ΔT (= |T a -T b |) of the transmittance difference between the two at a wavelength of 700 nm is 53.9%.

於以下表2中之「例1」之欄中彙總示出例1之濾光器之構成及ΔT等。The structure and ΔT of the optical filter of Example 1 are summarized in the "Example 1" column in Table 2 below.

[表2]    例1 例2 例3 例4 例5 例6 例11 第1紅外線吸收玻璃板 種類 A A A A D D C 厚度(mm) 1.06 1.37 1.32 1.43 0.45 0.51 0.63 可見光平均透過率(%) 84.4 82.5 82.8 82.1 86.2 85.6 75.8 700 nm下之透過率T a(%) 61.0 54.1 55.2 52.8 4.5 3.0 0.1 T 50(nm) 724 708 710 705 614 609 579 第2紅外線吸收玻璃板 種類 B C B C F E - 厚度(mm) 0.38 0.23 0.27 0.17 0.87 0.10 - 可見光平均透過率(%) 87.3 85.2 88.4 86.7 90.0 90.9 - 700 nm下之透過率T b(%) 7.1 8.0 15.0 15.6 64.2 89.0 - T 50(nm) 614 616 629 630 793 - - ΔT(%) 53.9 46.1 40.2 37.2 59.7 86.0 - 其次,利用以下方法對例1之濾光器之光學特性進行評估。 [Table 2] example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 11 1st infrared absorbing glass plate Kind A A A A D D C Thickness(mm) 1.06 1.37 1.32 1.43 0.45 0.51 0.63 Visible light average transmittance (%) 84.4 82.5 82.8 82.1 86.2 85.6 75.8 Transmittance T a (%) at 700 nm 61.0 54.1 55.2 52.8 4.5 3.0 0.1 T 50 (nm) 724 708 710 705 614 609 579 The second infrared absorbing glass plate Kind B C B C F E - Thickness(mm) 0.38 0.23 0.27 0.17 0.87 0.10 - Visible light average transmittance (%) 87.3 85.2 88.4 86.7 90.0 90.9 - Transmittance T b (%) at 700 nm 7.1 8.0 15.0 15.6 64.2 89.0 - T 50 (nm) 614 616 629 630 793 - - ΔT(%) 53.9 46.1 40.2 37.2 59.7 86.0 - Next, the optical characteristics of the optical filter of Example 1 were evaluated using the following method.

首先,使用日本分光股份有限公司製造之V-570,實際測定第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性。First, the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate were actually measured using V-570 manufactured by JASCO Corporation.

其次,根據所得之測定結果,算出將2片紅外線吸收玻璃板積層時之透過率特性。此處,假設各紅外線吸收玻璃板之間之界面反射為零。又,假設於各紅外線吸收玻璃板之界面存在接著層,且假設該接著層之透過率損耗為0.1%。Next, based on the obtained measurement results, the transmittance characteristics when two infrared-absorbing glass plates are laminated are calculated. Here, it is assumed that the interface reflection between the infrared absorbing glass plates is zero. Furthermore, it is assumed that an adhesive layer exists at the interface of each infrared-absorbing glass plate, and the transmittance loss of the adhesive layer is 0.1%.

於圖6中表示藉由此種方法算出之例1之濾光器之透過率特性。再者,於該圖6中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the optical filter of Example 1 calculated by this method are shown in FIG. 6 . In addition, in FIG. 6 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖6可知,例1之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 6 , the filter of Example 1 maintains a sufficiently high transmittance in the visible light region.

再者,對於例1之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=3.72。由此可知,例1之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 1, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 3.72. It can be seen from this that the optical filter of Example 1 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例2) 藉由與例1同樣之方法構成濾光器(稱為「例2之濾光器」)。 (Example 2) An optical filter (referred to as "the optical filter of Example 2") was constructed in the same manner as in Example 1.

但,於該例2中,第1紅外線吸收玻璃板(玻璃A)之厚度設為1.37 mm。又,作為第2紅外線吸收玻璃板,使用具有表1中之「玻璃C」之組成之玻璃板。厚度為0.23 mm。因此,例2之濾光器之總厚度為1.60 mm。However, in this Example 2, the thickness of the first infrared-absorbing glass plate (glass A) is 1.37 mm. Moreover, as the 2nd infrared absorption glass plate, the glass plate which has the composition of "Glass C" in Table 1 was used. Thickness is 0.23 mm. Therefore, the total thickness of the filter in Example 2 is 1.60 mm.

於上述表2中之「例2」之欄中彙總示出例2之濾光器之構成及ΔT等。The structure and ΔT of the optical filter of Example 2 are summarized in the "Example 2" column in the above-mentioned Table 2.

其次,利用上述方法對例2之濾光器之光學特性進行評估。Next, the optical characteristics of the optical filter of Example 2 were evaluated using the above method.

於圖7中表示所得之例2之濾光器之透過率特性。再者,於該圖7中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the obtained optical filter of Example 2 are shown in FIG. 7 . In addition, in FIG. 7 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖7可知,例2之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 7 , the filter of Example 2 maintains a sufficiently high transmittance in the visible light region.

再者,對於例2之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=4.23。由此可知,例2之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 2, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 4.23. It can be seen from this that the optical filter of Example 2 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例3) 藉由與例1同樣之方法構成濾光器(稱為「例3之濾光器」)。 (Example 3) An optical filter (referred to as "the optical filter of Example 3") was constructed in the same manner as in Example 1.

但,於該例3中,第1紅外線吸收玻璃板(玻璃A)之厚度設為1.32 mm。又,第2紅外線吸收玻璃板(玻璃B)之厚度設為0.27 mm。因此,例3之濾光器之總厚度為1.59 mm。However, in this Example 3, the thickness of the first infrared absorbing glass plate (glass A) is 1.32 mm. In addition, the thickness of the second infrared absorbing glass plate (glass B) is 0.27 mm. Therefore, the total thickness of the filter of Example 3 is 1.59 mm.

於上述表2中之「例3」之欄中彙總示出例3之濾光器之構成及ΔT等。The structure and ΔT of the optical filter of Example 3 are summarized in the "Example 3" column in the above-mentioned Table 2.

其次,利用上述方法對例3之濾光器之光學特性進行評估。Secondly, the optical characteristics of the optical filter of Example 3 were evaluated using the above method.

於圖8中表示所得之例3之濾光器之透過率特性。再者,於該圖8中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the obtained optical filter of Example 3 are shown in FIG. 8 . In addition, in FIG. 8 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖8可知,例3之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 8 , the filter of Example 3 maintains a sufficiently high transmittance in the visible light region.

再者,對於例3之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=3.57。由此可知,例3之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 3, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 3.57. It can be seen from this that the optical filter of Example 3 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例4) 藉由與例1同樣之方法構成濾光器(稱為「例4之濾光器」)。 (Example 4) An optical filter (referred to as "the optical filter of Example 4") was constructed in the same manner as in Example 1.

但,於該例4中,第1紅外線吸收玻璃板(玻璃A)之厚度設為1.43 mm。又,作為第2紅外線吸收玻璃板,使用具有表1中之「玻璃C」之組成之玻璃板。厚度為0.17 mm。因此,例4之濾光器之總厚度為1.60 mm。However, in this Example 4, the thickness of the first infrared absorbing glass plate (glass A) is 1.43 mm. Moreover, as the 2nd infrared absorption glass plate, the glass plate which has the composition of "Glass C" in Table 1 was used. Thickness is 0.17 mm. Therefore, the total thickness of the filter of Example 4 is 1.60 mm.

於上述表2中之「例4」之欄中彙總示出例4之濾光器之構成及ΔT等。The structure of the optical filter of Example 4, ΔT, etc. are summarized in the "Example 4" column in the above-mentioned Table 2.

其次,利用上述方法對例4之濾光器之光學特性進行評估。Next, the optical characteristics of the optical filter of Example 4 were evaluated using the above method.

於圖9中表示所得之例4之濾光器之透過率特性。再者,於該圖9中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the obtained optical filter of Example 4 are shown in FIG. 9 . In addition, in FIG. 9 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖9可知,例4之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 9 , the filter of Example 4 maintains a sufficiently high transmittance in the visible light region.

再者,對於例4之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=3.79。由此可知,例4之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 4, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 3.79. It can be seen from this that the optical filter of Example 4 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例5) 藉由與例1同樣之方法構成濾光器(稱為「例5之濾光器」)。 (Example 5) An optical filter (referred to as "the optical filter of Example 5") was constructed in the same manner as in Example 1.

但,於該例5中,作為第1紅外線吸收玻璃板,使用表1之「玻璃D」。厚度為0.45 mm。又,作為第2紅外線吸收玻璃板,使用具有表1中之「玻璃F」之組成之玻璃板。厚度為0.87 mm。因此,例5之濾光器之總厚度為1.32 mm。However, in this Example 5, "Glass D" in Table 1 was used as the first infrared-absorbing glass plate. Thickness is 0.45 mm. Moreover, as the second infrared-absorbing glass plate, a glass plate having the composition of “Glass F” in Table 1 was used. Thickness is 0.87 mm. Therefore, the total thickness of the filter of Example 5 is 1.32 mm.

於上述表2中之「例5」之欄中彙總示出例5之濾光器之構成及ΔT等。The structure and ΔT of the optical filter of Example 5 are summarized in the column of "Example 5" in the above-mentioned Table 2.

其次,利用上述方法對例5之濾光器之光學特性進行評估。Next, the optical characteristics of the optical filter of Example 5 were evaluated using the above method.

於圖10中表示所得之例5之濾光器之透過率特性。再者,於該圖10中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the obtained optical filter of Example 5 are shown in FIG. 10 . In addition, in FIG. 10 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖10可知,例5之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 10 , the filter of Example 5 maintains a sufficiently high transmittance in the visible light region.

再者,對於例5之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=4.06。由此可知,例5之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 5, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 4.06. It can be seen from this that the optical filter of Example 5 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例6) 藉由與例1同樣之方法構成濾光器(稱為「例6之濾光器」)。 (Example 6) An optical filter (referred to as "the optical filter of Example 6") was constructed in the same manner as in Example 1.

但,於該例6中,作為第1紅外線吸收玻璃板,使用表1之「玻璃D」。厚度為0.51 mm。又,作為第2紅外線吸收玻璃板,使用具有表1中之「玻璃E」之組成之玻璃板。厚度為0.10 mm。因此,例6之濾光器之總厚度為0.61 mm。However, in this Example 6, "Glass D" in Table 1 was used as the first infrared-absorbing glass plate. Thickness is 0.51 mm. In addition, as the second infrared absorbing glass plate, a glass plate having the composition of “Glass E” in Table 1 was used. Thickness is 0.10 mm. Therefore, the total thickness of the filter of Example 6 is 0.61 mm.

於上述表2中之「例6」之欄中彙總示出例6之濾光器之構成及ΔT等。The structure and ΔT of the optical filter of Example 6 are summarized in the "Example 6" column in Table 2 above.

其次,利用上述方法對例6之濾光器之光學特性進行評估。Next, the optical characteristics of the optical filter of Example 6 were evaluated using the above method.

於圖11中表示所得之例6之濾光器之透過率特性。再者,於該圖11中,將第1紅外線吸收玻璃板之透過率特性及第2紅外線吸收玻璃板之透過率特性合併表示。The transmittance characteristics of the obtained optical filter of Example 6 are shown in FIG. 11 . In addition, in FIG. 11 , the transmittance characteristics of the first infrared-absorbing glass plate and the transmittance characteristics of the second infrared-absorbing glass plate are shown together.

根據圖11可知,例6之濾光器將可見光區域中之透過率維持得充分高。As can be seen from FIG. 11 , the filter of Example 6 maintains a sufficiently high transmittance in the visible light region.

再者,對於例6之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=4.37。由此可知,例6之濾光器可顯著抑制紅外區域、尤其是波長850 nm~950 nm下之透過率。 Furthermore, for the optical filter of Example 6, the average value OD ave of the optical density in the wavelength range of 850 nm to 950 nm was calculated, and the result was OD ave = 4.37. It can be seen from this that the optical filter of Example 6 can significantly suppress the transmittance in the infrared region, especially at wavelengths of 850 nm to 950 nm.

(例11) 使用單一紅外線吸收玻璃板製成濾光器(稱為「例11之濾光器」)。再者,於該例11中,作為單一紅外線吸收玻璃板,使用表1之「玻璃C」。厚度為0.63 mm。 (Example 11) A single infrared-absorbing glass plate was used to make a filter (referred to as the "filter of Example 11"). In addition, in this Example 11, "Glass C" in Table 1 was used as a single infrared-absorbing glass plate. Thickness is 0.63 mm.

對例11之濾光器之光學特性進行評估。The optical properties of the filter of Example 11 were evaluated.

於圖12中表示實際測定之例11之濾光器之透過率特性。FIG. 12 shows the actually measured transmittance characteristics of the optical filter of Example 11.

對於例11之濾光器,求出波長850 nm~950 nm之範圍內之光學濃度之平均值OD ave,結果為OD ave=5.41。 For the optical filter of Example 11, the average value OD ave of the optical concentration in the wavelength range of 850 nm to 950 nm was calculated. The result is OD ave = 5.41.

再者,根據圖12可知,例11之濾光器於可見光區域中之透過率並不太高。Furthermore, as can be seen from Figure 12, the transmittance of the optical filter in Example 11 is not very high in the visible light region.

於以下表3中彙總示出各例之濾光器之特性。The characteristics of the optical filters of each example are summarized in Table 3 below.

[表3]    例1 例2 例3 例4 例5 例6 例11 例12 濾光器 厚度(mm) 1.44 1.60 1.59 1.60 1.32 0.61 0.63 0.29 可見光平均 透過率(%) 80.6 76.9 80.1 78.2 85 85.2 75.8 79.3 700nm下之 透過率(%) 4.7 4.8 9.1 9.0 3.1 2.9 0.1 4.3 T 50(nm) 609 609 620 620 609 609 579 609 平均光學濃度 (OD ave) 3.72 4.23 3.57 3.79 4.06 4.37 5.41 6.86 再者,於表3中亦示出下述例12之濾光器之特性。 [table 3] example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 11 Example 12 filter Thickness(mm) 1.44 1.60 1.59 1.60 1.32 0.61 0.63 0.29 Visible light average transmittance (%) 80.6 76.9 80.1 78.2 85 85.2 75.8 79.3 Transmittance at 700nm (%) 4.7 4.8 9.1 9.0 3.1 2.9 0.1 4.3 T 50 (nm) 609 609 620 620 609 609 579 609 Average optical density (OD ave ) 3.72 4.23 3.57 3.79 4.06 4.37 5.41 6.86 In addition, Table 3 also shows the characteristics of the optical filter of Example 12 below.

(例12) 於紅外線吸收玻璃板積層光學多層膜(交替積層TiO 2與SiO 2(合計40層)而成之紅外線反射膜),製造濾光器(稱為「例12之濾光器」)。但,於該例12中,作為紅外線吸收玻璃板,使用表1之「玻璃C」。厚度為0.29 mm。 (Example 12) An optical multilayer film (an infrared reflective film formed by alternately stacking TiO 2 and SiO 2 (40 layers in total)) was laminated on an infrared absorbing glass plate to produce an optical filter (referred to as "the optical filter of Example 12") . However, in this Example 12, "Glass C" in Table 1 was used as the infrared absorbing glass plate. Thickness is 0.29 mm.

其次,使用例12之濾光器,用光學薄膜模擬軟體(TFCalc,Software Spectra公司製造)針對光之入射角度對光學特性產生之影響進行評估。Next, using the optical filter of Example 12, optical film simulation software (TFCalc, manufactured by Software Spectra Co., Ltd.) was used to evaluate the impact of the incident angle of light on the optical characteristics.

於圖13中表示例12之濾光器之透過率特性。光之入射角度設為0°、30°、及40°。The transmittance characteristics of the optical filter of Example 12 are shown in FIG. 13 . The incident angle of light is set to 0°, 30°, and 40°.

根據圖13可知,例12之濾光器隨著光之入射角度變大,於可見光之波長區域產生透過漣波(透過率之變動),可見光平均透過率降低。According to Figure 13, it can be seen that as the incident angle of light becomes larger, the optical filter of Example 12 generates transmission ripples (changes in transmittance) in the wavelength region of visible light, and the average transmittance of visible light decreases.

其次,使用上述例1~例6之濾光器,用光學薄膜模擬軟體(TFCalc,Software Spectra公司製造)對光學特性之光之入射角度依存性進行評估。Next, using the optical filters of Examples 1 to 6 described above, the dependence of the optical characteristics on the incident angle of light was evaluated using optical film simulation software (TFCalc, manufactured by Software Spectra Co., Ltd.).

於圖14中表示例1之濾光器之各入射角度下之透過率特性。Figure 14 shows the transmittance characteristics of the optical filter of Example 1 at various incident angles.

於圖15中表示例2之濾光器之各入射角度下之透過率特性。Figure 15 shows the transmittance characteristics of the optical filter of Example 2 at each incident angle.

於圖16中表示例3之濾光器之各入射角度下之透過率特性。Figure 16 shows the transmittance characteristics of the optical filter of Example 3 at various incident angles.

於圖17中表示例4之濾光器之各入射角度下之透過率特性。Figure 17 shows the transmittance characteristics of the optical filter of Example 4 at various incident angles.

於圖18中表示例5之濾光器之各入射角度下之透過率特性。Figure 18 shows the transmittance characteristics of the optical filter of Example 5 at various incident angles.

於圖19中表示例6之濾光器之各入射角度下之透過率特性。Figure 19 shows the transmittance characteristics of the optical filter of Example 6 at various incident angles.

於該等圖中,光之入射角度均設為0°、30°、及40°。In these figures, the incident angles of light are set to 0°, 30°, and 40°.

如圖14~圖19所示,可知於例1~例6之濾光器中,即便光之入射角度發生變化,透過率特性亦幾乎未觀察到變化。即,可以說例1~例6之濾光器於可見光之波長區域中顯著抑制了透過漣波(透過率之變動)之產生,光學特性基本不依存於光之入射角度。As shown in FIGS. 14 to 19 , it can be seen that in the optical filters of Examples 1 to 6, even if the incident angle of light changes, almost no change in transmittance characteristics is observed. That is, it can be said that the filters of Examples 1 to 6 significantly suppress the occurrence of transmission ripples (changes in transmittance) in the visible light wavelength range, and the optical characteristics are basically independent of the incident angle of light.

認為例12之濾光器與例1~例6之濾光器之透過率特性(光之入射角度)之不同係由以下原因造成。It is considered that the difference in transmittance characteristics (light incident angle) between the filter of Example 12 and the filters of Examples 1 to 6 is caused by the following reasons.

即,例12之濾光器係藉由紅外線吸收玻璃板與光學多層膜之組合表現出光學特性,因此受到利用光之干涉作用之光學多層膜之光入射角度引起的特性變化之影響。與此相對,認為例1~例6之濾光器由於藉由紅外線吸收玻璃板表現出光學特性,因此不易因光之入射角度產生特性變化。That is, the optical filter of Example 12 exhibits optical characteristics by a combination of an infrared-absorbing glass plate and an optical multilayer film, and is therefore affected by changes in characteristics caused by the light incident angle of the optical multilayer film that utilizes the interference of light. On the other hand, it is considered that the optical filters of Examples 1 to 6 exhibit optical characteristics due to the infrared-absorbing glass plate, and therefore are less likely to have characteristics change depending on the incident angle of light.

100:第1濾光器 102:第1側 104:第2側 110:第1紅外線吸收玻璃板 130:第2紅外線吸收玻璃板 200:第2濾光器 202:第1側 204:第2側 210:第1紅外線吸收玻璃板 230:第2紅外線吸收玻璃板 270:透明玻璃板 300:第3濾光器 302:第1側 304:第2側 310:第1紅外線吸收玻璃板 330:第2紅外線吸收玻璃板 350:第3紅外線吸收玻璃板 400:第4濾光器 402:第1側 404:第2側 410:第1紅外線吸收玻璃板 430:第2紅外線吸收玻璃板 450:第3紅外線吸收玻璃板 470:第1透明玻璃板 480:第2透明玻璃板 100: 1st filter 102: Side 1 104: Side 2 110: The first infrared absorbing glass plate 130: The second infrared absorbing glass plate 200: 2nd filter 202: Side 1 204: Side 2 210: The first infrared absorbing glass plate 230: The second infrared absorbing glass plate 270:Transparent glass plate 300: 3rd filter 302: Side 1 304: Side 2 310: The first infrared absorbing glass plate 330: The second infrared absorbing glass plate 350: The third infrared absorbing glass plate 400: 4th filter 402: Side 1 404: Side 2 410: The first infrared absorbing glass plate 430: The second infrared absorbing glass plate 450: The third infrared absorbing glass plate 470: 1st transparent glass plate 480: 2nd transparent glass plate

圖1係用以對本發明之一實施形態之濾光器之特徵進行說明的模式圖。 圖2係模式性地表示本發明之一實施形態之濾光器之構成的剖視圖。 圖3係模式性地表示本發明之另一實施形態之濾光器之構成的剖視圖。 圖4係模式性地表示本發明之又一實施形態之濾光器之構成的剖視圖。 圖5係模式性地表示本發明之又一實施形態之濾光器之構成的剖視圖。 圖6係將例1之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖7係將例2之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖8係將例3之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖9係將例4之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖10係將例5之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖11係將例6之濾光器之透過率特性與第1紅外線吸收玻璃板及第2紅外線吸收玻璃板之透過率特性合併表示的曲線圖。 圖12係表示例11之濾光器之透過率特性之曲線圖。 圖13係表示例12之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖14係表示例1之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖15係表示例2之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖16係表示例3之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖17係表示例4之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖18係表示例5之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 圖19係表示例6之濾光器之透過率特性(光之入射角度依存性)之曲線圖。 FIG. 1 is a schematic diagram for explaining the characteristics of an optical filter according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the structure of an optical filter according to an embodiment of the present invention. 3 is a cross-sectional view schematically showing the structure of an optical filter according to another embodiment of the present invention. FIG. 4 is a cross-sectional view schematically showing the structure of an optical filter according to another embodiment of the present invention. FIG. 5 is a cross-sectional view schematically showing the structure of an optical filter according to another embodiment of the present invention. 6 is a graph that combines the transmittance characteristics of the optical filter of Example 1 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. 7 is a graph that combines the transmittance characteristics of the optical filter of Example 2 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. 8 is a graph that combines the transmittance characteristics of the optical filter of Example 3 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. 9 is a graph that combines the transmittance characteristics of the optical filter of Example 4 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. 10 is a graph that combines the transmittance characteristics of the optical filter of Example 5 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. 11 is a graph that combines the transmittance characteristics of the optical filter of Example 6 with the transmittance characteristics of the first infrared-absorbing glass plate and the second infrared-absorbing glass plate. FIG. 12 is a graph showing the transmittance characteristics of the optical filter of Example 11. FIG. 13 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 12. FIG. 14 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 1. FIG. 15 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 2. FIG. 16 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 3. FIG. 17 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 4. FIG. 18 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 5. FIG. 19 is a graph showing the transmittance characteristics (dependence on the incident angle of light) of the optical filter of Example 6.

100:第1濾光器 100: 1st filter

102:第1側 102: Side 1

104:第2側 104: Side 2

110:第1紅外線吸收玻璃板 110: The first infrared absorbing glass plate

130:第2紅外線吸收玻璃板 130: The second infrared absorbing glass plate

Claims (8)

一種濾光器,其具備第1紅外線吸收玻璃板及第2紅外線吸收玻璃板; 於波長850 nm~950 nm之範圍內之光學濃度之平均值為2.5以上; 波長400 nm~550 nm之光之平均透過率為76%以上;且 上述第1紅外線吸收玻璃板及上述第2紅外線吸收玻璃板各自獨立地包含選自由磷酸玻璃、氟磷酸玻璃、矽磷酸玻璃、硫磷酸玻璃、鈉鈣玻璃、硼矽酸玻璃、無鹼玻璃、及鋁矽酸鹽玻璃所組成之群中之至少1種。 An optical filter having a first infrared-absorbing glass plate and a second infrared-absorbing glass plate; The average optical concentration within the wavelength range of 850 nm to 950 nm is above 2.5; The average transmittance of light with a wavelength of 400 nm to 550 nm is more than 76%; and The above-mentioned first infrared-absorbing glass plate and the above-mentioned second infrared-absorbing glass plate each independently include a product selected from the group consisting of phosphate glass, fluorophosphate glass, silicophosphate glass, sulfophosphate glass, soda-lime glass, borosilicate glass, alkali-free glass, and At least one of the group consisting of aluminosilicate glasses. 如請求項1之濾光器,其於波長850 nm~950 nm之範圍內之光學濃度之平均值為3.0以上。For example, the optical filter of claim 1 has an average optical concentration of more than 3.0 in the wavelength range of 850 nm to 950 nm. 如請求項1或2之濾光器,其中上述第1紅外線吸收玻璃板及上述第2紅外線吸收玻璃板各自獨立地包含選自磷酸玻璃、氟磷酸玻璃中之至少1種。The optical filter of claim 1 or 2, wherein the first infrared absorbing glass plate and the second infrared absorbing glass plate each independently include at least one selected from the group consisting of phosphate glass and fluorophosphate glass. 如請求項1或2之濾光器,其中上述第1紅外線吸收玻璃板及上述第2紅外線吸收玻璃板含有銅或鐵。The optical filter of claim 1 or 2, wherein the first infrared absorbing glass plate and the second infrared absorbing glass plate contain copper or iron. 如請求項1或2之濾光器,其中上述第1紅外線吸收玻璃板含有鐵,且 上述第2紅外線吸收玻璃板含有銅。 The optical filter of claim 1 or 2, wherein the first infrared absorbing glass plate contains iron, and The above-mentioned second infrared absorbing glass plate contains copper. 如請求項1或2之濾光器,其中上述第1紅外線吸收玻璃板及上述第2紅外線吸收玻璃板於波長700 nm下之透過率不同。The optical filter of claim 1 or 2, wherein the above-mentioned first infrared-absorbing glass plate and the above-mentioned second infrared-absorbing glass plate have different transmittances at a wavelength of 700 nm. 如請求項1或2之濾光器,其中於上述第1紅外線吸收玻璃板之兩面側設置有上述第2紅外線吸收玻璃板。The optical filter of claim 1 or 2, wherein the second infrared absorbing glass plate is provided on both sides of the first infrared absorbing glass plate. 如請求項1或2之濾光器,其於至少一外表面具有抗反射膜。The optical filter of claim 1 or 2, which has an anti-reflective film on at least one outer surface.
TW112137296A 2018-11-30 2019-10-02 Optical Filter TWI846612B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224489 2018-11-30
JP2018224489A JP7135794B2 (en) 2018-11-30 2018-11-30 optical filter

Publications (2)

Publication Number Publication Date
TW202403359A true TW202403359A (en) 2024-01-16
TWI846612B TWI846612B (en) 2024-06-21

Family

ID=70907945

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108135633A TWI816898B (en) 2018-11-30 2019-10-02 filter
TW112137296A TWI846612B (en) 2018-11-30 2019-10-02 Optical Filter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108135633A TWI816898B (en) 2018-11-30 2019-10-02 filter

Country Status (3)

Country Link
JP (1) JP7135794B2 (en)
CN (2) CN117170002A (en)
TW (2) TWI816898B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122095B (en) * 2013-04-10 2017-07-21 旭硝子株式会社 Infrared ray masking wave filter, solid-state imager, camera device and display device
KR102313259B1 (en) * 2013-12-27 2021-10-14 니폰 제온 가부시키가이샤 Multilayer film, polarization plate, and multilayer film production method
KR101900530B1 (en) * 2014-11-26 2018-09-20 삼성에스디아이 주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
JP6595610B2 (en) * 2015-09-28 2019-10-23 富士フイルム株式会社 Near-infrared cut filter, manufacturing method of near-infrared cut filter, and solid-state imaging device

Also Published As

Publication number Publication date
CN117170002A (en) 2023-12-05
JP7135794B2 (en) 2022-09-13
JP2020086335A (en) 2020-06-04
TW202022415A (en) 2020-06-16
TWI816898B (en) 2023-10-01
TWI846612B (en) 2024-06-21
CN111257981A (en) 2020-06-09
CN111257981B (en) 2023-09-08

Similar Documents

Publication Publication Date Title
JP5013022B2 (en) Infrared cut filter
US20090002830A1 (en) Dichroic Filter
JP5163742B2 (en) Low reflection glass and protective plate for display
JPWO2016125792A1 (en) Light selective transmission glass and laminated substrate
WO2020017495A1 (en) Optical member
US20130135747A1 (en) Half mirror and image display apparatus
JP7024711B2 (en) Optical glass and near infrared cut filter
JP2021534457A (en) Vehicle projection assembly with side panes
JP6552260B2 (en) Optical filter device and method of manufacturing the optical filter device
KR20210069569A (en) Near-infrared cut-off filter and imaging device including the same
JP2010032867A (en) Infrared ray cutoff filter
US10927038B2 (en) Glass article
JP6611192B2 (en) Glass plate with low reflection coating and laminated glass using the same
EP1628146B1 (en) Optical low pass filter
JP2024041789A (en) Optical filter, near-infrared cut filter, and imaging device
TWI816898B (en) filter
JP2019053268A (en) Glass laminate that transmits visible light and cuts near-infrared ray and infrared ray
JP2023119592A (en) optical filter
JP4447393B2 (en) Glass member with optical multilayer film, and optical element using the glass member
JP2020109496A (en) Optical filter and near-infrared cut filter
WO2022124030A1 (en) Optical filter
JPH07209516A (en) Optical multilayer film filter
KR20200082791A (en) Transparent substrate with a multilayer thin film and multyple glazing unit comprising the same
JP5126089B2 (en) Ray cut filter
WO2020262296A1 (en) Near infrared cut filter glass and optical filter