WO2022123699A1 - 車両用変圧器およびそれを備える車両 - Google Patents

車両用変圧器およびそれを備える車両 Download PDF

Info

Publication number
WO2022123699A1
WO2022123699A1 PCT/JP2020/045902 JP2020045902W WO2022123699A1 WO 2022123699 A1 WO2022123699 A1 WO 2022123699A1 JP 2020045902 W JP2020045902 W JP 2020045902W WO 2022123699 A1 WO2022123699 A1 WO 2022123699A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
auxiliary winding
secondary side
load
iron core
Prior art date
Application number
PCT/JP2020/045902
Other languages
English (en)
French (fr)
Inventor
崇之 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20965082.9A priority Critical patent/EP4261856A4/en
Priority to PCT/JP2020/045902 priority patent/WO2022123699A1/ja
Priority to JP2021517056A priority patent/JP6903253B1/ja
Publication of WO2022123699A1 publication Critical patent/WO2022123699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • B60L2210/22AC to AC converters without intermediate conversion to DC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings

Definitions

  • This disclosure relates to a vehicle transformer and a vehicle equipped with the transformer.
  • Patent Document 1 As a prior document disclosing the configuration of a transformer for a vehicle, there is International Publication No. 2009/110061 (Patent Document 1).
  • the vehicle transformer described in Patent Document 1 includes a first high voltage side coil, a first low voltage side coil, a second low voltage side coil, and a first switch.
  • the first low-voltage side coil and the second low-voltage side coil pass through the magnetic flux generated by the current flowing through the first low-voltage side coil and the second low-voltage side coil when a voltage is supplied through the first switch. It is provided so that the magnetic flux generated by the flowing current cancels each other out.
  • the vehicle transformer operates as a transformer which is an AC section device in the AC section, and operates as a reactor which is a DC section device in the DC section.
  • leakage inductance is an important factor that affects the magnitude of loss and the degree of interference with other coils.
  • the leakage inductance value is determined by the configuration of the transformer coil and cannot be changed after the transformer is manufactured.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a vehicle transformer capable of selecting a plurality of leakage inductance values, and a vehicle equipped with the transformer.
  • the vehicle transformer based on the present disclosure includes an iron core, a primary winding, a secondary winding, and a secondary auxiliary winding.
  • the primary winding is wound around an iron core.
  • the secondary winding is wound around the iron core along with the primary winding.
  • the secondary side auxiliary winding is wound around an iron core along with the secondary side winding and can be connected in series with the secondary side winding.
  • the secondary side auxiliary winding includes at least one auxiliary winding unit.
  • the auxiliary winding unit includes a first auxiliary winding and a second auxiliary winding.
  • the first auxiliary winding is wound around the iron core in the same direction as the secondary winding.
  • the second auxiliary winding is wound around the iron core in the direction opposite to that of the secondary winding, and is connected in series with the first auxiliary winding.
  • the total number of turns of the second auxiliary winding included in the secondary side auxiliary winding is the sum of the total number of turns of the first auxiliary winding included in the secondary side auxiliary winding and the number of turns of the secondary side winding. be.
  • the vehicle transformer is in a state where the load is connected to both ends of the secondary winding by switching the electrical connection between each of the secondary winding and the secondary auxiliary winding and the load, and the secondary side.
  • a load is connected to both ends of the auxiliary winding, and a load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. There is.
  • FIG. (A) It is sectional drawing which looked at one window part of the iron core which shows the current and the magnetic flux generated in the vehicle transformer which concerns on Embodiment 1 in the state which the load is connected to both ends of the secondary winding. ..
  • FIG. 5 is a circuit diagram showing a state in which a load is connected to a secondary winding and a secondary auxiliary winding connected in series with each other in the vehicle transformer according to the first embodiment.
  • A An iron core showing a current and a magnetic flux generated in a vehicle transformer according to the first embodiment in a state where a load is connected to a secondary winding and a secondary auxiliary winding connected in series with each other. It is sectional drawing which looked at one window part.
  • FIG. (B) A graph showing the leakage flux generated in the iron core of the vehicle transformer according to the first embodiment in a state where the load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. Is. It is a circuit diagram which shows the state which the load is connected to both ends of the secondary side auxiliary winding in the vehicle transformer which concerns on Embodiment 1.
  • FIG. (A) A cross-sectional view of one window of the iron core showing the current and magnetic flux generated in the vehicle transformer according to the first embodiment in a state where a load is connected to both ends of the secondary auxiliary winding. be.
  • FIG. (B) It is a graph which shows the leakage flux generated in the iron core of the vehicle transformer which concerns on Embodiment 1 in the state which the load is connected to both ends of the secondary side auxiliary winding. It is a perspective view which shows the appearance of the transformer for a vehicle which concerns on Embodiment 2.
  • FIG. (A) It is sectional drawing which looked at one window part of the iron core which shows the current and the magnetic flux generated in the vehicle transformer which concerns on Embodiment 2 in the state which the load is connected to both ends of the secondary winding. ..
  • (B) It is a graph which shows the leakage flux generated in the iron core of the vehicle transformer which concerns on Embodiment 2 in the state which the load is connected to both ends of the secondary winding.
  • FIG. 1 is a circuit diagram showing a configuration of a railroad vehicle equipped with a vehicle transformer according to the first embodiment.
  • FIG. 2 is a perspective view showing the appearance of the vehicle transformer according to the first embodiment.
  • the railway vehicle 1000 which is an electric vehicle, includes a pantograph 2, a vehicle transformer 100, a converter 7, an inverter 8, a motor 9, and switches SW1 to SW5.
  • the vehicle transformer 100 includes a primary side winding 3, a secondary side winding 4, a secondary side auxiliary winding 5, and an iron core 10.
  • the railroad vehicle 1000 is configured to be capable of traveling in both an AC section in which a single-phase AC voltage is supplied from the overhead wire 1 and a DC section in which a DC voltage is supplied from the overhead wire 1.
  • the pantograph 2 is connected to the overhead wire 1.
  • the primary winding 3 is provided on the first terminal 6a provided on one end side of the primary winding 3 and on the other end side of the primary winding 3 on the ground node to which the ground voltage is supplied. It has a second terminal 6h to be connected.
  • the primary winding 3 is wound around an iron core 10.
  • the iron core 10 has two windows.
  • the secondary winding 4 is magnetically coupled to the primary winding 3. Specifically, the secondary winding 4 is wound around the iron core 10 along with the primary winding 3.
  • the secondary winding 4 has a first terminal 6b provided on one end side of the secondary winding 4 and a second terminal 6c provided on the other end side of the secondary winding 4.
  • the secondary side auxiliary winding 5 includes at least one auxiliary winding unit 5U including the first auxiliary winding 5S and the second auxiliary winding 5T.
  • the secondary side auxiliary winding 5 includes one auxiliary winding unit 5U.
  • the first auxiliary winding 5S is wound around the iron core 10 in the same direction as the secondary winding 4.
  • the second auxiliary winding 5T is wound around the iron core 10 in the direction opposite to that of the secondary winding 4.
  • the second auxiliary winding 5T is connected in series with the first auxiliary winding 5S.
  • the total number of turns of the second auxiliary winding 5T included in the secondary side auxiliary winding 5 is the total number of turns of the first auxiliary winding 5S included in the secondary side auxiliary winding 5 and the number of turns of the secondary side winding 4. It is the sum of the number of turns. In the present embodiment, assuming that the number of turns of the secondary winding 4 is N1 and the number of turns of the first auxiliary winding 5S is N2, the number of turns of the second auxiliary winding 5T is (N1 + N2).
  • the secondary side auxiliary winding 5 includes two auxiliary winding units 5U, the number of turns of the secondary side winding 4 is N1 and the total number of turns of the two first auxiliary windings 5S is N2. Then, the total number of turns of the two second auxiliary windings 5T is (N1 + N2).
  • the secondary side auxiliary winding 5 is magnetically coupled to the primary side winding 3. Specifically, the secondary side auxiliary winding 5 is wound around the iron core 10 along with the primary side winding 3. The secondary side auxiliary winding 5 is wound around the iron core 10 along with the secondary side winding 4. The secondary side auxiliary winding 5 is configured to be connectable in series with the secondary side winding 4.
  • a part of the secondary side auxiliary winding 5 is arranged between the primary side winding 3 and the secondary side winding 4.
  • the first auxiliary winding 5S is arranged between the primary side winding 3 and the secondary side winding 4.
  • the second auxiliary winding 5T is arranged on the side opposite to the first auxiliary winding 5S with respect to the primary side winding 3.
  • the secondary side auxiliary winding 5 has a first terminal 6d provided on one end side of the secondary side auxiliary winding 5 and a second terminal 6e provided on the other end side of the secondary side auxiliary winding 5. Have.
  • the first terminal 6d of the secondary side auxiliary winding 5 is electrically connected to the second terminal 6c of the secondary side winding 4.
  • the first terminal 6d of the secondary side auxiliary winding 5 and the second terminal 6c of the secondary side winding 4 may be configured by one shared terminal.
  • the switch SW1 selectively connects the terminal 6p connected to the pantograph 2 to either the first terminal 6a of the primary winding 3 or the first terminal 6b of the secondary winding 4.
  • the switch SW2 selectively connects one of the first input terminal 6q of the converter 7 and the first terminal 6b of the secondary winding 4 and the first terminal 6d of the secondary auxiliary winding 5.
  • the switch SW3 selectively connects one of the second input terminal 6r of the converter 7 and the second terminal 6c of the secondary winding 4 and the second terminal 6e of the secondary auxiliary winding 5.
  • the switch SW4 selectively connects one of the first input terminal 6s of the inverter 8, the second terminal 6e of the secondary auxiliary winding 5, and the first output terminal 6f of the converter 7.
  • the switch SW5 selectively connects the second input terminal 6t of the inverter 8, the second output terminal 6g of the converter 7, or the second terminal 6h of the primary winding 3.
  • the vehicle transformer 100 loads both ends of the secondary winding 4 by switching the electrical connection between each of the secondary winding 4 and the secondary auxiliary winding 5 and the load by switches SW1 to SW5. Is connected, a load is connected to both ends of the secondary auxiliary winding 5, and a load is connected to the secondary winding 4 and the secondary auxiliary winding 5 connected in series with each other. It is configured so that each of them can be selected.
  • FIG. 3 is a circuit diagram showing a state in which a load is connected to both ends of the secondary winding in the vehicle transformer according to the first embodiment.
  • the railway vehicle 1000 is supplied with a single-phase AC voltage from the overhead wire 1, and the vehicle transformer 100 functions as a transformer.
  • the terminal 6p connected to the pantograph 2 by the switch SW1 and the first terminal 6a of the primary winding 3 are electrically connected by the switch SW2, and the converter 7 is connected by the switch SW2.
  • the 1 input terminal 6q and the 1st terminal 6b of the secondary winding 4 are electrically connected, and the 2nd input terminal 6r of the converter 7 and the 2nd terminal 6c of the secondary winding 4 are electrically connected by the switch SW3.
  • the switch SW4 electrically connects the first input terminal 6s of the inverter 8 and the first output terminal 6f of the converter 7, and the switch SW5 electrically connects the second input terminal 6t of the inverter 8 and the second of the converter 7.
  • the output terminal 6g is electrically connected.
  • the vehicle transformer 100 is in a state where the load is connected to both ends of the secondary winding 4. Specifically, the load is connected between the first terminal 6b and the second terminal 6c of the secondary winding 4.
  • the load at this time is a converter 7 that converts a single-phase AC voltage into a DC voltage, an inverter 8 that converts a DC voltage converted by the converter 7 into a 3-phase AC voltage, and a 3-phase AC voltage converted by the inverter 8. It is composed of a motor 9 driven by an inverter.
  • FIG. 4A looks at one window of the iron core showing the current and magnetic flux generated in the vehicle transformer according to the first embodiment in a state where a load is connected to both ends of the secondary winding. It is a sectional view.
  • FIG. 4B is a graph showing the leakage flux generated in the iron core of the vehicle transformer according to the first embodiment in a state where a load is connected to both ends of the secondary winding.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 4A.
  • the leakage flux 3b is generated by the current 3a flowing through the primary winding 3.
  • the leakage flux 4b is generated by the current 4a flowing through the secondary winding 4.
  • the magnetomotive force F as shown in FIG. 4B is generated in the iron core 10, so that a reactance having a leakage inductance value of L1 can be obtained.
  • FIG. 5 is a circuit diagram showing a state in which a load is connected to a secondary winding and a secondary auxiliary winding connected in series with each other in the vehicle transformer according to the first embodiment.
  • the railway vehicle 1000 is supplied with a DC voltage from the overhead wire 1, and the vehicle transformer 100 functions as a reactor.
  • the terminal 6p connected to the pantograph 2 by the switch SW1 and the first terminal 6b of the secondary winding 4 are electrically connected by the switch SW4, and the inverter 8 is connected by the switch SW4.
  • the 1 input terminal 6s and the 2nd terminal 6e of the secondary auxiliary winding 5 are electrically connected, and are connected to the 2nd input terminal 6t of the inverter 8 and the grounding node to which the grounding voltage is supplied by the switch SW5.
  • the second terminal 6h of the primary winding 3 is electrically connected.
  • the vehicle transformer 100 is in a state where the load is connected to the secondary side winding 4 and the secondary side auxiliary winding 5 connected in series with each other.
  • a motor driven by an inverter 8 that converts a DC voltage into a three-phase AC voltage and a three-phase AC voltage converted by the inverter 8 on the secondary side winding 4 and the secondary side auxiliary winding 5.
  • a load consisting of 9 is connected.
  • FIG. 6A shows the current and magnetic flux generated in the vehicle transformer according to the first embodiment in a state where the load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. It is sectional drawing which looked at one window part of the iron core which shows.
  • FIG. 6B shows a leakage generated in the iron core of the vehicle transformer according to the first embodiment in a state where the load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. It is a graph which shows the magnetic flux.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 6A.
  • FIG. 7 is a circuit diagram showing a state in which a load is connected to both ends of the secondary side auxiliary winding in the vehicle transformer according to the first embodiment.
  • the railway vehicle 1000 is supplied with a single-phase AC voltage from the overhead wire 1, and the vehicle transformer 100 functions as a transformer.
  • the terminal 6p connected to the pantograph 2 by the switch SW1 and the first terminal 6a of the primary winding 3 are electrically connected by the switch SW2, and the converter 7 is connected by the switch SW2.
  • the 1 input terminal 6q and the first terminal 6d of the secondary side auxiliary winding 5 are electrically connected, and the second input terminal 6r of the converter 7 and the second terminal 6e of the secondary side auxiliary winding 5 are connected by the switch SW3.
  • the first input terminal 6s of the inverter 8 and the first output terminal 6f of the converter 7 are electrically connected by the switch SW4, and the second input terminal 6t of the inverter 8 and the converter 7 are electrically connected by the switch SW5.
  • the second output terminal 6g is electrically connected.
  • the vehicle transformer 100 is in a state where the load is connected to both ends of the secondary side auxiliary winding 5. Specifically, the load is connected between the first terminal 6d and the second terminal 6e of the secondary side auxiliary winding 5.
  • the load at this time is a converter 7 that converts a single-phase AC voltage into a DC voltage, an inverter 8 that converts a DC voltage converted by the converter 7 into a 3-phase AC voltage, and a 3-phase AC voltage converted by the inverter 8. It is composed of a motor 9 driven by an inverter.
  • FIG. 8A looks at one window portion of the iron core showing the current and the magnetic flux generated in the vehicle transformer according to the first embodiment in a state where a load is connected to both ends of the secondary side auxiliary winding. It is a cross-sectional view.
  • FIG. 8B is a graph showing the leakage flux generated in the iron core of the vehicle transformer according to the first embodiment in a state where a load is connected to both ends of the secondary side auxiliary winding.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 8A.
  • the leakage flux 3b is generated by the current 3a flowing through the primary winding 3.
  • the leakage flux 5Sb is generated by the current 5Sa flowing through the first auxiliary winding 5S.
  • the leakage flux 5Tb is generated by the current 5Ta flowing through the second auxiliary winding 5T.
  • the magnetomotive force F as shown in FIG. 8B is generated in the iron core 10, so that a reactance having a leakage inductance value of L2 can be obtained.
  • the first auxiliary winding 5S is wound around the iron core 10 in the same direction as the secondary winding 4, and the second auxiliary winding 5T is wound around the iron core 10 in the opposite direction to the secondary winding 4.
  • the number of turns of the secondary winding 4 is N1 and the number of turns of the first auxiliary winding 5S is N2
  • the number of turns of the second auxiliary winding 5T is (N1 + N2).
  • the current 5Sa flowing through the first auxiliary winding 5S induced by the main magnetic flux generated in the iron core 10 becomes the current 5Ta flowing through the second auxiliary winding 5T induced by the main magnetic flux generated in the iron core 10. Since the current flows in the opposite direction, it is canceled in the secondary side auxiliary winding 5.
  • the voltage induced in the secondary side auxiliary winding 5 by the main magnetic flux generated in the iron core 10 is obtained by subtracting the number of turns N2 of the first auxiliary winding 5S from the number of turns (N1 + N2) of the second auxiliary winding 5T.
  • the voltage corresponds to the ratio of the number of turns N1 to the number of turns of the primary winding 3. That is, the transformation ratio of the secondary side auxiliary winding 5 in the circuit shown in FIG. 7 is the same as the transformation ratio of the secondary side winding 4 in the circuit shown in FIG.
  • a plurality of leakage inductance values can be selected, and reactances having different leakage inductance values can be obtained while maintaining the transformation ratio. Further, as the number of auxiliary winding units 5U included in the secondary side auxiliary winding 5 increases, the number of selectable leakage inductance values can be increased. Further, in the vehicle transformer 100 according to the present embodiment, the vehicle transformer 100 has a secondary side auxiliary winding 5 connected in series with the secondary side winding 4, so that the reactor device can be mounted on the vehicle. Since it is not necessary to arrange the transformer 100 separately from the transformer 100, the size can be reduced.
  • a part of the secondary side auxiliary winding 5 is arranged between the primary side winding 3 and the secondary side winding 4.
  • the distance between the primary winding 3 and the secondary winding 4 can be widened as shown in FIG. 4 (A), so that a large leakage inductance value is secured as shown in FIG. 4 (B). can do.
  • Embodiment 2 the vehicle transformer according to the second embodiment will be described with reference to the drawings. Since the vehicle transformer according to the second embodiment is different from the vehicle transformer 100 according to the first embodiment only in the arrangement of windings, the configuration is the same as that of the vehicle transformer 100 according to the first embodiment. Does not repeat the explanation.
  • FIG. 9 is a perspective view showing the appearance of the vehicle transformer according to the second embodiment.
  • the secondary side winding 4 is arranged between the primary side winding 3 and the secondary side auxiliary winding 5.
  • the secondary winding 4 is arranged between the primary winding 3 and the first auxiliary winding 5S.
  • the second auxiliary winding 5T is arranged on the side opposite to the secondary winding 4 with respect to the first auxiliary winding 5S.
  • FIG. 10A looks at one window of the iron core showing the current and magnetic flux generated in the vehicle transformer according to the second embodiment in a state where a load is connected to both ends of the secondary winding. It is a sectional view.
  • FIG. 10B is a graph showing the leakage flux generated in the iron core of the vehicle transformer according to the second embodiment in a state where a load is connected to both ends of the secondary winding.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 10A.
  • the leakage flux 3b is generated by the current 3a flowing through the primary winding 3.
  • the leakage flux 4b is generated by the current 4a flowing through the secondary winding 4.
  • the magnetomotive force F as shown in FIG. 10B is generated in the iron core 10, so that a reactance having a leakage inductance value of L3 can be obtained.
  • FIG. 11A shows the current and magnetic flux generated in the vehicle transformer according to the second embodiment in a state where the load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. It is sectional drawing which looked at one window part of the iron core which shows.
  • FIG. 11B shows a leak generated in the iron core of the vehicle transformer according to the second embodiment in a state where the load is connected to the secondary winding and the secondary auxiliary winding connected in series with each other. It is a graph which shows the magnetic flux.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 11A.
  • the leakage flux 4b is generated by the current 4a flowing through the secondary winding 4.
  • the leakage flux 5Sb is generated by the current 5Sa flowing through the first auxiliary winding 5S.
  • the leakage flux 5Tb is generated by the current 5Ta flowing through the second auxiliary winding 5T.
  • the magnetomotive force F as shown in FIG. 11B is generated in the iron core 10, so that an inductance can be obtained and flows through each of the secondary winding 4 and the secondary auxiliary winding 5.
  • the alternating current component contained in the direct current can be attenuated.
  • FIG. 12A shows one window portion of the iron core showing the current and the magnetic flux generated in the vehicle transformer according to the second embodiment in a state where the load is connected to both ends of the secondary side auxiliary winding. It is a cross-sectional view.
  • FIG. 12B is a graph showing the leakage flux generated in the iron core of the vehicle transformer according to the second embodiment in a state where a load is connected to both ends of the secondary side auxiliary winding.
  • the vertical axis indicates the magnitude of the magnetomotive force F
  • the horizontal axis corresponds to the position on the iron core shown in FIG. 12A.
  • the leakage flux 3b is generated by the current 3a flowing through the primary winding 3.
  • the leakage flux 5Sb is generated by the current 5Sa flowing through the first auxiliary winding 5S.
  • the leakage flux 5Tb is generated by the current 5Ta flowing through the second auxiliary winding 5T.
  • the magnetomotive force F as shown in FIG. 12B is generated in the iron core 10, so that a reactance having a leakage inductance value of L4 can be obtained.
  • the secondary winding 4 is arranged between the primary winding 3 and the secondary auxiliary winding 5.
  • the distance between the primary winding 3 and the secondary auxiliary winding 5 can be widened as shown in FIG. 12 (A), so that the leakage inductance value is increased as shown in FIG. 12 (B). Can be secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

2次側補助巻線(5)は、2次側巻線(4)と並んで鉄心に巻回され、2次側巻線(4)と直列に接続可能である。第1補助巻線(5S)は、2次側巻線(4)と同じ向きに鉄心に巻回されている。第2補助巻線(5T)は、2次側巻線(4)と逆向きに鉄心に巻回され、第1補助巻線(5S)と直列に接続されている。2次側補助巻線(5)に含まれる第2補助巻線(5T)の巻数の総数は、2次側補助巻線(5)に含まれる第1補助巻線(5S)の巻数の総数と2次側巻線(4)の巻数との和である。車両用変圧器は、2次側巻線(4)および2次側補助巻線(5)の各々と負荷との電気的接続を切り替えることにより、2次側巻線(4)の両端に負荷が接続された状態、2次側補助巻線(5)の両端に負荷が接続された状態、および、互いに直列に接続された2次側巻線(4)および2次側補助巻線(5)に負荷が接続された状態の、各々を選択可能に構成されている。

Description

車両用変圧器およびそれを備える車両
 本開示は、車両用変圧器およびそれを備える車両に関する。
 車両用変圧器の構成を開示した先行文献として、国際公開第2009/110061号(特許文献1)がある。特許文献1に記載された車両用変圧器は、第1の高圧側コイルと、第1の低圧側コイルと、第2の低圧側コイルと、第1のスイッチとを備える。第1の低圧側コイルおよび第2の低圧側コイルは、第1のスイッチを介して電圧が供給された場合に第1の低圧側コイルを通して流れる電流によって発生する磁束と第2の低圧側コイルを通して流れる電流によって発生する磁束とが打ち消し合うように設けられている。車両用変圧器は、交流区間では交流区間用装置である変圧器として動作し、かつ直流区間では直流区間用装置であるリアクトルとして動作する。
国際公開第2009/110061号
 車両用変圧器において、漏れインダクタンスは損失の大きさおよび他のコイルへの干渉度合いに影響する重要なファクタである。漏れインダクタンス値は変圧器のコイルの構成によって定まり、変圧器の製造後に変更することができない。
 本開示は上記の問題点に鑑みてなされたものであって、複数の漏れインダクタンス値を選択可能な車両用変圧器、およびそれを備える車両を提供することを目的とする。
 本開示に基づく車両用変圧器は、鉄心と、1次側巻線と、2次側巻線と、2次側補助巻線とを備える。1次側巻線は、鉄心に巻回されている。2次側巻線は、1次側巻線と並んで鉄心に巻回されている。2次側補助巻線は、2次側巻線と並んで鉄心に巻回され、2次側巻線と直列に接続可能である。2次側補助巻線は、少なくとも1つの補助巻線ユニットを含む。補助巻線ユニットは、第1補助巻線および第2補助巻線からなる。第1補助巻線は、2次側巻線と同じ向きに鉄心に巻回されている。第2補助巻線は、2次側巻線と逆向きに鉄心に巻回され、第1補助巻線と直列に接続されている。2次側補助巻線に含まれる第2補助巻線の巻数の総数は、2次側補助巻線に含まれる第1補助巻線の巻数の総数と2次側巻線の巻数との和である。車両用変圧器は、2次側巻線および2次側補助巻線の各々と負荷との電気的接続を切り替えることにより、2次側巻線の両端に負荷が接続された状態、2次側補助巻線の両端に負荷が接続された状態、および、互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態の、各々を選択可能に構成されている。
 本開示によれば、車両用変圧器において、複数の漏れインダクタンス値を選択することが可能となる。
実施の形態1に係る車両用変圧器を搭載した鉄道車両の構成を示す回路図である。 実施の形態1に係る車両用変圧器の外観を示す斜視図である。 実施の形態1に係る車両用変圧器における2次側巻線の両端に負荷が接続された状態を示す回路図である。 (A)2次側巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)2次側巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。 実施の形態1に係る車両用変圧器における互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態を示す回路図である。 (A)互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。 実施の形態1に係る車両用変圧器における2次側補助巻線の両端に負荷が接続された状態を示す回路図である。 (A)2次側補助巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)2次側補助巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。 実施の形態2に係る車両用変圧器の外観を示す斜視図である。 (A)2次側巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)2次側巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。 (A)互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。 (A)2次側補助巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。(B)2次側補助巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。
 以下、各実施の形態に係る車両用変圧器およびそれを備える車両について図面を参照して説明する。以下の実施の形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 実施の形態1.
 図1は、実施の形態1に係る車両用変圧器を搭載した鉄道車両の構成を示す回路図である。図2は、実施の形態1に係る車両用変圧器の外観を示す斜視図である。
 図1および図2に示すように、電動車両である鉄道車両1000は、パンタグラフ2と、車両用変圧器100と、コンバータ7と、インバータ8と、モータ9と、スイッチSW1~SW5とを備える。車両用変圧器100は、1次側巻線3と、2次側巻線4と、2次側補助巻線5と、鉄心10とを含む。鉄道車両1000は、架線1から単相交流電圧が供給される交流区間、および、架線1から直流電圧が供給される直流区間の、両方を走行可能に構成されている。
 パンタグラフ2は、架線1に接続されている。1次側巻線3は、1次側巻線3の一端側に設けられた第1端子6aと、1次側巻線3の他端側に設けられ、接地電圧が供給される接地ノードに接続される第2端子6hとを有する。1次側巻線3は、鉄心10に巻回されている。鉄心10は、2つの窓部を有している。
 2次側巻線4は、1次側巻線3と磁気結合される。具体的には、2次側巻線4は、1次側巻線3と並んで鉄心10に巻回されている。2次側巻線4は、2次側巻線4の一端側に設けられた第1端子6bと、2次側巻線4の他端側に設けられた第2端子6cとを有する。
 2次側補助巻線5は、第1補助巻線5Sおよび第2補助巻線5Tからなる少なくとも1つの補助巻線ユニット5Uを含む。本実施の形態においては、2次側補助巻線5は、1つの補助巻線ユニット5Uを含んでいる。第1補助巻線5Sは、2次側巻線4と同じ向きに鉄心10に巻回されている。第2補助巻線5Tは、2次側巻線4と逆向きに鉄心10に巻回されている。第2補助巻線5Tは、第1補助巻線5Sと直列に接続されている。
 2次側補助巻線5に含まれる第2補助巻線5Tの巻数の総数は、2次側補助巻線5に含まれる第1補助巻線5Sの巻数の総数と2次側巻線4の巻数との和である。本実施の形態においては、2次側巻線4の巻数がN1、および、第1補助巻線5Sの巻数がN2とすると、第2補助巻線5Tの巻数は(N1+N2)である。
 仮に、2次側補助巻線5が2つの補助巻線ユニット5Uを含んでいる場合、2次側巻線4の巻数がN1、および、2つの第1補助巻線5Sの巻数の総数がN2とすると、2つの第2補助巻線5Tの巻数の総数は(N1+N2)である。
 2次側補助巻線5は、1次側巻線3と磁気結合される。具体的には、2次側補助巻線5は、1次側巻線3と並んで鉄心10に巻回されている。2次側補助巻線5は、2次側巻線4と並んで鉄心10に巻回されている。2次側補助巻線5は、2次側巻線4と直列に接続可能に構成されている。
 本実施の形態においては、2次側補助巻線5の一部は、1次側巻線3と2次側巻線4との間に配置されている。具体的には、第1補助巻線5Sは、1次側巻線3と2次側巻線4との間に配置されている。第2補助巻線5Tは、1次側巻線3に対して第1補助巻線5Sとは反対側に配置されている。
 2次側補助巻線5は、2次側補助巻線5の一端側に設けられた第1端子6dと、2次側補助巻線5の他端側に設けられた第2端子6eとを有する。2次側補助巻線5の第1端子6dは、2次側巻線4の第2端子6cと電気的に接続されている。なお、2次側補助巻線5の第1端子6dと、2次側巻線4の第2端子6cとが、1つの共有端子で構成されていてもよい。
 スイッチSW1は、パンタグラフ2に接続された端子6pと、1次側巻線3の第1端子6aおよび2次側巻線4の第1端子6bのいずれか一方とを選択的に接続する。スイッチSW2は、コンバータ7の第1入力端子6qと、2次側巻線4の第1端子6bおよび2次側補助巻線5の第1端子6dのいずれか一方とを選択的に接続する。スイッチSW3は、コンバータ7の第2入力端子6rと、2次側巻線4の第2端子6cおよび2次側補助巻線5の第2端子6eのいずれか一方とを選択的に接続する。スイッチSW4は、インバータ8の第1入力端子6sと、2次側補助巻線5の第2端子6eおよびコンバータ7の第1出力端子6fのいずれか一方とを選択的に接続する。スイッチSW5は、インバータ8の第2入力端子6tと、コンバータ7の第2出力端子6gおよび1次側巻線3の第2端子6hのいずれか一方とを選択的に接続する。
 車両用変圧器100は、2次側巻線4および2次側補助巻線5の各々と負荷との電気的接続をスイッチSW1~SW5によって切り替えることにより、2次側巻線4の両端に負荷が接続された状態、2次側補助巻線5の両端に負荷が接続された状態、および、互いに直列に接続された2次側巻線4および2次側補助巻線5に負荷が接続された状態の、各々を選択可能に構成されている。
 図3は、実施の形態1に係る車両用変圧器における2次側巻線の両端に負荷が接続された状態を示す回路図である。この状態においては、鉄道車両1000が架線1から単相交流電圧を供給されており、車両用変圧器100は変圧器として機能する。
 具体的には、図3に示すように、スイッチSW1によってパンタグラフ2に接続された端子6pと1次側巻線3の第1端子6aとが電気的に接続され、スイッチSW2によってコンバータ7の第1入力端子6qと2次側巻線4の第1端子6bとが電気的に接続され、スイッチSW3によってコンバータ7の第2入力端子6rと2次側巻線4の第2端子6cとが電気的に接続され、スイッチSW4によってインバータ8の第1入力端子6sとコンバータ7の第1出力端子6fとが電気的に接続され、スイッチSW5によってインバータ8の第2入力端子6tとコンバータ7の第2出力端子6gとが電気的に接続される。
 これにより、車両用変圧器100は、2次側巻線4の両端に負荷が接続された状態となる。具体的には、2次側巻線4の第1端子6bと第2端子6cとの間に負荷が接続された状態となる。このときの負荷は、単相交流電圧を直流電圧に変換するコンバータ7、コンバータ7により変換された直流電圧を3相交流電圧に変換するインバータ8、および、インバータ8により変換された3相交流電圧により駆動するモータ9からなる。
 図4(A)は、2次側巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図4(B)は、2次側巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図4(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図4(A)に示す鉄心上の位置に対応している。
 図4(A)に示すように、1次側巻線3に電流3aが流れることにより、漏れ磁束3bが発生する。2次側巻線4に電流4aが流れることにより、漏れ磁束4bが発生する。その結果、図4(B)に示すような起磁力Fが鉄心10内に発生することにより、漏れインダクタンス値がL1であるリアクタンスを得ることができる。
 図5は、実施の形態1に係る車両用変圧器における互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態を示す回路図である。この状態においては、鉄道車両1000が架線1から直流電圧を供給されており、車両用変圧器100はリアクトルとして機能する。
 具体的には、図5に示すように、スイッチSW1によってパンタグラフ2に接続された端子6pと2次側巻線4の第1端子6bとが電気的に接続され、スイッチSW4によってインバータ8の第1入力端子6sと2次側補助巻線5の第2端子6eとが電気的に接続され、スイッチSW5によってインバータ8の第2入力端子6tと、接地電圧が供給される接地ノードに接続された1次側巻線3の第2端子6hとが電気的に接続される。
 これにより、車両用変圧器100は、互いに直列に接続された2次側巻線4および2次側補助巻線5に負荷が接続された状態となる。具体的には、2次側巻線4および2次側補助巻線5に、直流電圧を3相交流電圧に変換するインバータ8、および、インバータ8により変換された3相交流電圧により駆動するモータ9からなる、負荷が接続された状態となる。
 図6(A)は、互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図6(B)は、互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図6(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図6(A)に示す鉄心上の位置に対応している。
 2次側巻線4および2次側補助巻線5の各々に直流電流が流れているときには、インダクタンスは発生しない。しかしながら、2次側巻線4および2次側補助巻線5の各々を流れる直流電流に脈流成分すなわち交流成分が含まれている場合は、漏れ磁束が鉄心内に発生することにより、インダクタンスを得ることができる。具体的には、図6(A)に示すように、2次側巻線4に電流4aが流れることにより、漏れ磁束4bが発生する。第1補助巻線5Sに電流5Saが流れることにより、漏れ磁束5Sbが発生する。第2補助巻線5Tに電流5Taが流れることにより、漏れ磁束5Tbが発生する。その結果、図6(B)に示すような起磁力Fが鉄心10内に発生することにより、インダクタンスを得ることができ、2次側巻線4および2次側補助巻線5の各々を流れる直流電流に含まれる交流成分を減衰させることができる。
 図7は、実施の形態1に係る車両用変圧器における2次側補助巻線の両端に負荷が接続された状態を示す回路図である。この状態においては、鉄道車両1000が架線1から単相交流電圧を供給されており、車両用変圧器100は変圧器として機能する。
 具体的には、図7に示すように、スイッチSW1によってパンタグラフ2に接続された端子6pと1次側巻線3の第1端子6aとが電気的に接続され、スイッチSW2によってコンバータ7の第1入力端子6qと2次側補助巻線5の第1端子6dとが電気的に接続され、スイッチSW3によってコンバータ7の第2入力端子6rと2次側補助巻線5の第2端子6eとが電気的に接続され、スイッチSW4によってインバータ8の第1入力端子6sとコンバータ7の第1出力端子6fとが電気的に接続され、スイッチSW5によってインバータ8の第2入力端子6tとコンバータ7の第2出力端子6gとが電気的に接続される。
 これにより、車両用変圧器100は、2次側補助巻線5の両端に負荷が接続された状態となる。具体的には、2次側補助巻線5の第1端子6dと第2端子6eとの間に負荷が接続された状態となる。このときの負荷は、単相交流電圧を直流電圧に変換するコンバータ7、コンバータ7により変換された直流電圧を3相交流電圧に変換するインバータ8、および、インバータ8により変換された3相交流電圧により駆動するモータ9からなる。
 図8(A)は、2次側補助巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図8(B)は、2次側補助巻線の両端に負荷が接続された状態で実施の形態1に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図8(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図8(A)に示す鉄心上の位置に対応している。
 図8(A)に示すように、1次側巻線3に電流3aが流れることにより、漏れ磁束3bが発生する。第1補助巻線5Sに電流5Saが流れることにより、漏れ磁束5Sbが発生する。第2補助巻線5Tに電流5Taが流れることにより、漏れ磁束5Tbが発生する。その結果、図8(B)に示すような起磁力Fが鉄心10内に発生することにより、漏れインダクタンス値がL2であるリアクタンスを得ることができる。
 なお、第1補助巻線5Sは、2次側巻線4と同じ向きに鉄心10に巻回されており、第2補助巻線5Tは、2次側巻線4と逆向きに鉄心10に巻回されており、2次側巻線4の巻数がN1、および、第1補助巻線5Sの巻数がN2とすると、第2補助巻線5Tの巻数は(N1+N2)である。
 これにより、鉄心10内に発生した主磁束によって誘起された第1補助巻線5Sを流れる電流5Saは、鉄心10内に発生した主磁束によって誘起された第2補助巻線5Tを流れる電流5Taとは逆向きに流れるため、2次側補助巻線5内において打ち消される。その結果、鉄心10内に発生した主磁束によって2次側補助巻線5に誘起される電圧は、第2補助巻線5Tの巻数(N1+N2)から第1補助巻線5Sの巻数N2を減じた巻数N1と、1次側巻線3の巻数との比に応じた電圧となる。すなわち、図7に示す回路における2次側補助巻線5の変圧比は、図3に示す回路における2次側巻線4の変圧比と同一となる。
 上記のように、本実施の形態に係る車両用変圧器100においては、複数の漏れインダクタンス値を選択可能であり、変圧比を維持しつつ漏れインダクタンス値の異なるリアクタンスを得ることができる。また、2次側補助巻線5が含む補助巻線ユニット5Uの数が多くなるにしたがって、選択可能な漏れインダクタンス値の数を増やすことができる。さらに、本実施の形態に係る車両用変圧器100においては、車両用変圧器100が2次側巻線4と直列に接続される2次側補助巻線5を有することにより、リアクトル装置を車両用変圧器100とは別に単体で配置する必要がないため小型化を図ることができる。
 本実施の形態に係る車両用変圧器100においては、2次側補助巻線5の一部は、1次側巻線3と2次側巻線4との間に配置されている。これにより、図4(A)に示すように1次側巻線3と2次側巻線4との間隔を広げることができるため、図4(B)に示すように漏れインダクタンス値を大きく確保することができる。
 実施の形態2.
 以下、実施の形態2に係る車両用変圧器について図面を参照して説明する。実施の形態2に係る車両用変圧器は、巻線の配置のみ、実施の形態1に係る車両用変圧器100と異なるため、実施の形態1に係る車両用変圧器100と同様である構成については説明を繰り返さない。
 図9は、実施の形態2に係る車両用変圧器の外観を示す斜視図である。図9に示すように、実施の形態2に係る車両用変圧器200においては、2次側巻線4は、1次側巻線3と2次側補助巻線5との間に配置されている。具体的には、2次側巻線4は、1次側巻線3と第1補助巻線5Sとの間に配置されている。第2補助巻線5Tは、第1補助巻線5Sに対して2次側巻線4とは反対側に配置されている。
 図10(A)は、2次側巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図10(B)は、2次側巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図10(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図10(A)に示す鉄心上の位置に対応している。
 図10(A)に示すように、1次側巻線3に電流3aが流れることにより、漏れ磁束3bが発生する。2次側巻線4に電流4aが流れることにより、漏れ磁束4bが発生する。その結果、図10(B)に示すような起磁力Fが鉄心10内に発生することにより、漏れインダクタンス値がL3であるリアクタンスを得ることができる。
 図11(A)は、互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図11(B)は、互いに直列に接続された2次側巻線および2次側補助巻線に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図11(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図11(A)に示す鉄心上の位置に対応している。
 図11(A)に示すように、2次側巻線4に電流4aが流れることにより、漏れ磁束4bが発生する。第1補助巻線5Sに電流5Saが流れることにより、漏れ磁束5Sbが発生する。第2補助巻線5Tに電流5Taが流れることにより、漏れ磁束5Tbが発生する。その結果、図11(B)に示すような起磁力Fが鉄心10内に発生することにより、インダクタンスを得ることができ、2次側巻線4および2次側補助巻線5の各々を流れる直流電流に含まれる交流成分を減衰させることができる。
 図12(A)は、2次側補助巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器に発生する電流および磁束を示す、鉄心の一方の窓部を見た断面図である。図12(B)は、2次側補助巻線の両端に負荷が接続された状態で実施の形態2に係る車両用変圧器の鉄心内に発生する漏れ磁束を示すグラフである。図12(B)においては、縦軸に起磁力Fの大きさ示し、横軸は図12(A)に示す鉄心上の位置に対応している。
 図12(A)に示すように、1次側巻線3に電流3aが流れることにより、漏れ磁束3bが発生する。第1補助巻線5Sに電流5Saが流れることにより、漏れ磁束5Sbが発生する。第2補助巻線5Tに電流5Taが流れることにより、漏れ磁束5Tbが発生する。その結果、図12(B)に示すような起磁力Fが鉄心10内に発生することにより、漏れインダクタンス値がL4であるリアクタンスを得ることができる。
 本実施の形態に係る車両用変圧器200においては、2次側巻線4は、1次側巻線3と2次側補助巻線5との間に配置されている。これにより、図12(A)に示すように1次側巻線3と2次側補助巻線5との間隔を広げることができるため、図12(B)に示すように漏れインダクタンス値を大きく確保することができる。
 なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本開示の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1 架線、2 パンタグラフ、3,4 次側巻線、3a,4a,5Sa,5Ta 電流、3b,4b,5Sb,5Tb 漏れ磁束、5 次側補助巻線、5S 第1補助巻線、5T 第2補助巻線、5U 補助巻線ユニット、6 00、6a,6b,6d 第1端子、6c,6e,6h 第2端子、6f 第1出力端子、6g 第2出力端子、6p 端子、6q,6s 第1入力端子、6r,6t 第2入力端子、7 コンバータ、8 インバータ、9 モータ、10 鉄心、100,200 車両用変圧器、1000 鉄道車両、F 起磁力、N1,N2 巻数、SW1,SW2,SW3,SW4,SW5 スイッチ。

Claims (6)

  1.  鉄心と、
     前記鉄心に巻回された1次側巻線と、
     前記1次側巻線と並んで前記鉄心に巻回された2次側巻線と、
     前記2次側巻線と並んで前記鉄心に巻回され、前記2次側巻線と直列に接続可能な2次側補助巻線とを備え、
     前記2次側補助巻線は、前記2次側巻線と同じ向きに前記鉄心に巻回された第1補助巻線、および、前記2次側巻線と逆向きに前記鉄心に巻回され、前記第1補助巻線と直列に接続された第2補助巻線からなる、少なくとも1つの補助巻線ユニットを含み、
     前記2次側補助巻線に含まれる前記第2補助巻線の巻数の総数は、前記2次側補助巻線に含まれる前記第1補助巻線の巻数の総数と前記2次側巻線の巻数との和であり、
     前記2次側巻線および前記2次側補助巻線の各々と負荷との電気的接続を切り替えることにより、前記2次側巻線の両端に前記負荷が接続された状態、前記2次側補助巻線の両端に前記負荷が接続された状態、および、互いに直列に接続された前記2次側巻線および前記2次側補助巻線に前記負荷が接続された状態の、各々を選択可能に構成されている、車両用変圧器。
  2.  前記2次側補助巻線の一部は、前記1次側巻線と前記2次側巻線との間に配置されている、請求項1に記載の車両用変圧器。
  3.  前記2次側巻線は、前記1次側巻線と前記2次側補助巻線との間に配置されている、請求項1に記載の車両用変圧器。
  4.  前記2次側巻線の両端に前記負荷が接続された状態、および、前記2次側補助巻線の両端に前記負荷が接続された状態の、各々において、前記負荷は、交流電圧を直流電圧に変換するコンバータ、該コンバータにより変換された直流電圧を3相交流電圧に変換するインバータ、および、該インバータにより変換された3相交流電圧により駆動するモータからなる、請求項1から請求項3のいずれか1項に記載の車両用変圧器。
  5.  互いに直列に接続された前記2次側巻線および前記2次側補助巻線に前記負荷が接続された状態において、前記負荷は、直流電圧を3相交流電圧に変換するインバータ、および、該インバータにより変換された3相交流電圧により駆動するモータからなる、請求項1から請求項3のいずれか1項に記載の車両用変圧器。
  6.  請求項1から請求項5のいずれか1項に記載の車両用変圧器を備える、車両。
PCT/JP2020/045902 2020-12-09 2020-12-09 車両用変圧器およびそれを備える車両 WO2022123699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20965082.9A EP4261856A4 (en) 2020-12-09 2020-12-09 TRANSFORMER FOR VEHICLES AND VEHICLES INCLUDING IT
PCT/JP2020/045902 WO2022123699A1 (ja) 2020-12-09 2020-12-09 車両用変圧器およびそれを備える車両
JP2021517056A JP6903253B1 (ja) 2020-12-09 2020-12-09 車両用変圧器およびそれを備える車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045902 WO2022123699A1 (ja) 2020-12-09 2020-12-09 車両用変圧器およびそれを備える車両

Publications (1)

Publication Number Publication Date
WO2022123699A1 true WO2022123699A1 (ja) 2022-06-16

Family

ID=76753173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045902 WO2022123699A1 (ja) 2020-12-09 2020-12-09 車両用変圧器およびそれを備える車両

Country Status (3)

Country Link
EP (1) EP4261856A4 (ja)
JP (1) JP6903253B1 (ja)
WO (1) WO2022123699A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262104A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 電気車の電源装置
WO2009110061A1 (ja) 2008-03-04 2009-09-11 三菱電機株式会社 変圧装置
WO2013080298A1 (ja) * 2011-11-29 2013-06-06 三菱電機株式会社 変圧器およびそれを含む変圧装置
JP2013158232A (ja) * 2012-01-05 2013-08-15 Toshiba Corp 電気車制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262104A (ja) * 1998-03-12 1999-09-24 Toshiba Corp 電気車の電源装置
WO2009110061A1 (ja) 2008-03-04 2009-09-11 三菱電機株式会社 変圧装置
WO2013080298A1 (ja) * 2011-11-29 2013-06-06 三菱電機株式会社 変圧器およびそれを含む変圧装置
JP2013158232A (ja) * 2012-01-05 2013-08-15 Toshiba Corp 電気車制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261856A4

Also Published As

Publication number Publication date
JP6903253B1 (ja) 2021-07-14
EP4261856A4 (en) 2024-02-07
EP4261856A1 (en) 2023-10-18
JPWO2022123699A1 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
US9613745B2 (en) Adjustable integrated combined common mode and differential mode three phase inductors and methods of manufacture and use thereof
US7728544B2 (en) System and method for controlling input line harmonics in a motor drive
US6617814B1 (en) Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
US20110316461A1 (en) Open Delta Motor Drive With Integrated Recharge
US7132812B1 (en) Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
TWI390560B (zh) 變壓裝置
CN103282981B (zh) Ac电力调节电路
JP6157625B2 (ja) ゲート電源装置及びこれを用いた半導体遮断器
US10790697B2 (en) System for converting electrical energy supplied by a network and a conversion method implemented by means of such a conversion system
JP5159984B1 (ja) 変圧器およびそれを含む変圧装置
Dzhankhotov et al. A new passive hybrid air-core foil filter for modern power drives
KR101216752B1 (ko) 동축권선 변압기를 이용하는 플라이백 컨버터
WO2011068044A1 (ja) 変圧装置
JP2009182115A (ja) 変圧器
WO2022123699A1 (ja) 車両用変圧器およびそれを備える車両
JP6410287B2 (ja) 非接触給電システム
Zhao et al. Design and optimizations of asymmetric solenoid type magnetic coupler in wireless charging system for electric vehicles
US9406431B2 (en) Transformer and voltage transforming apparatus comprising the same
JP2003309033A (ja) コイルの巻回方法とそのトランス類
JP6825745B2 (ja) 静止誘導電器
WO2020161388A1 (en) Arc suppression coil and method for grounding
JP2022007010A (ja) パワーユニット
JPH0443619A (ja) 三次巻線付変圧器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517056

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020965082

Country of ref document: EP

Effective date: 20230710