WO2022121939A1 - 一种以铜冶炼渣为原料制备耐火材料的方法 - Google Patents

一种以铜冶炼渣为原料制备耐火材料的方法 Download PDF

Info

Publication number
WO2022121939A1
WO2022121939A1 PCT/CN2021/136417 CN2021136417W WO2022121939A1 WO 2022121939 A1 WO2022121939 A1 WO 2022121939A1 CN 2021136417 W CN2021136417 W CN 2021136417W WO 2022121939 A1 WO2022121939 A1 WO 2022121939A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper smelting
smelting slag
magnesia
present
time
Prior art date
Application number
PCT/CN2021/136417
Other languages
English (en)
French (fr)
Inventor
胡建杭
高鹏文
王�华
姚培福
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2022121939A1 publication Critical patent/WO2022121939A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the invention belongs to the technical field of solid waste resource utilization, and particularly relates to a method for preparing a refractory material by using copper smelting slag as a raw material.
  • Copper smelting slag is a major solid waste in the copper metallurgy industry. Due to the different grades of copper ore and different smelting processes, its chemical composition may be different to a certain extent, but it generally contains iron and silicon in the form of oxides. , aluminum, magnesium, calcium, copper, zinc and a small amount of lead and other harmful elements. In the past, copper smelting slag was generally used for abrasive rust removal, road building materials or stockpiling. Non-ferrous metallurgical enterprises dump copper smelting slag in the open air, which not only occupies a lot of land resources, but also poses a serious threat to the environment.
  • the copper smelting slag Due to the coexistence of copper, iron, lead, zinc and other polymetallic metals in the copper smelting slag, the low degree of crystallization and the high dispersion of valuable elements, the copper smelting slag has technical difficulties that the valuable elements cannot be effectively utilized, and the comprehensive utilization rate of the copper smelting slag is extremely high. Low.
  • the object of the present invention is to provide a method for preparing a refractory material by using copper smelting slag as a raw material, the method provided by the invention uses copper smelting slag as a raw material, and the obtained refractory material has the characteristics of high strength and low thermal conductivity, The resource utilization of copper smelting slag is realized.
  • the invention provides a method for preparing a refractory material with copper smelting slag as a raw material, comprising the following steps:
  • the mixture is sequentially subjected to forming treatment, drying and sintering to obtain the refractory material.
  • the mass ratio of the copper smelting slag and magnesia is (68-80): (20-32).
  • the binder includes one or more of resin, rubber, pulp and magnesium chloride.
  • the ratio of the total mass of the copper smelting slag and magnesia to the mass of the binder is 100:(0.5-14).
  • the magnesia is prepared from low-grade magnesite; the content of magnesia in the low-grade magnesite is less than or equal to 45wt.%; the magnesia is prepared by a preparation method comprising the following steps:
  • the low-grade magnesite is crushed and calcined successively to obtain magnesite light calcined powder;
  • the leaching solution and ammonia water are mixed, magnesium precipitation reaction and solid-liquid separation are carried out in sequence, and the obtained solid phase is calcined to obtain the magnesia.
  • the calcining temperature is 800° C. and the time is 1-3 hours.
  • the concentration of the ammonium chloride aqueous solution is 2-3 mol/L; the ratio of the volume of the ammonium chloride aqueous solution to the mass of the magnesite light-burning powder is (9-10) L: 1 kg.
  • the leaching temperature is 110-120° C.
  • the time is 60-80 min.
  • the concentration of the ammonia water is 5-8 mol/L, the volume ratio of the leachate and the ammonia water is (0.8-1.2): 1; the temperature of the magnesium precipitation reaction is 40-50°C, and the time is 60-70min .
  • the roasting temperature is 450-500° C., and the time is 30-60 min.
  • the ball-to-material ratio of the ball mill is (1.5-2):1, the rotational speed is 300-500 rpm, and the time is 20-25 min.
  • the forming treatment is cold-press forming; the pressure of the cold-press forming is 50-200 MPa, and the pressure-holding time is 10-30 min.
  • the drying temperature is 102-108° C.
  • the drying time is 4-8 hours.
  • the temperature of the sintering is 1350-1400° C., and the time is 2-8 hours.
  • the sintering temperature is obtained by heating up; the heating rate is 5-20° C./min.
  • the invention provides a method for preparing a refractory material by using copper smelting slag as a raw material, which comprises the following steps: mixing copper smelting slag, magnesia and a binder, and performing ball milling to obtain a mixture; and sequentially subjecting the mixture to forming treatment , drying and sintering to obtain the refractory material.
  • copper smelting slag is rich in Fe, SiO 2 and Al 2 O 3 , which can be sintered and fused with MgO in magnesia, and MgO reacts with SiO 2 to form high melting point forsterite and enstatite, while MgO and The reaction of Fe 2 O 3 or Al 2 O 3 produces corresponding high melting point magnesia spinel, which is beneficial to improve the refractoriness of the material and obtain a refractory material with good compressive strength and low thermal conductivity.
  • the test results of the examples show that the density of the refractory material prepared by the method provided by the present invention is 1.752 ⁇ 2.359g/cm 3 , and the density is moderate; the thermal conductivity is 0.46 ⁇ 1.03W/mK, and the thermal conductivity is low; the maximum use temperature is 1250 ⁇ 1250 ⁇ 1300 °C, high refractory temperature; compressive strength is 184.3 ⁇ 201.3MPa, high compressive strength, not easy to deform.
  • the method provided by the invention makes good use of the copper smelting slag solid waste, and achieves the slag-free resource utilization of the copper smelting slag.
  • FIG. 1 is a flow chart of a method for preparing a refractory material by using copper smelting slag as a raw material provided by the present invention.
  • the invention provides a method for preparing a refractory material with copper smelting slag as a raw material, comprising the following steps:
  • the mixture is sequentially subjected to forming treatment, drying and sintering to obtain the refractory material.
  • Fig. 1 is a flow chart of a method for preparing a refractory material by using copper smelting slag as a raw material provided by the present invention, and the method provided by the present invention is described in detail below with reference to Fig. 1 .
  • the copper smelting slag, magnesia and the binder are mixed and ball-milled to obtain the mixed material.
  • the source of the copper smelting slag is not particularly limited in the present invention, and the source of the copper smelting slag well known to those skilled in the art can be used.
  • the present invention does not specifically limit the chemical composition of the copper smelting slag, and the chemical composition of the copper smelting slag known to those skilled in the art can be used.
  • the chemical composition of the copper smelting slag includes: Cu 0.27wt.%, Fe 45.54wt.%, S 0.26wt.%, SiO 2 27.37wt.%, CaO 2.37wt.%, MgO 1.19 wt.%, Al2O3 3.96 wt.%.
  • the magnesia is preferably prepared from low-grade magnesite; the content of magnesia in the low-grade magnesite is preferably ⁇ 45wt.%.
  • magnesia is preferably prepared by a preparation method comprising the following steps:
  • the low-grade magnesite is crushed and calcined successively to obtain magnesite light calcined powder;
  • the leaching solution and ammonia water are mixed, magnesium precipitation reaction and solid-liquid separation are carried out in sequence, and the obtained solid phase is calcined to obtain the magnesia.
  • the low-grade magnesite is sequentially crushed and calcined to obtain magnesite light calcined powder.
  • the present invention does not specifically limit the source of the low-grade magnesite, and the source of low-grade magnesite well-known to those skilled in the art can be used.
  • the chemical composition of the low-grade magnesite includes: MgO 43.56wt.%, CaO 0.98wt.%, SiO2 3.88wt .%, Al2O3 2.05wt .%, Fe2 O3 1.47 wt.%, LOI 47.62 wt.%.
  • the particle size of the low-grade magnesite particles obtained after the crushing is preferably 2 mm.
  • the method of crushing is preferably grinding.
  • the crushing equipment is preferably a double-roll mill.
  • the temperature of the calcination is preferably 800°C; the time is preferably 1-3 hours, more preferably 1.5-2.5 hours.
  • the present invention utilizes an ammonium chloride aqueous solution to leaching the magnesite light calcined powder to obtain a leaching solution.
  • the concentration of the ammonium chloride aqueous solution is preferably 2-3 mol/L, more preferably 2.2-2.8 mol/L.
  • the ratio of the volume of the ammonium chloride aqueous solution to the mass of the magnesite light calcined powder is preferably (9-10)L:1kg, more preferably (9.2-9.8)L:1kg.
  • the temperature of the leaching is preferably 110-120°C, more preferably 112-118°C; the time is preferably 60-80 min, more preferably 65-75 min.
  • the solid-liquid mixture obtained by leaching is preferably subjected to solid-liquid separation to obtain a liquid-phase leaching solution.
  • the present invention does not specifically limit the solid-liquid separation, and the solid-liquid separation well known to those skilled in the art can be used.
  • the present invention mixes the leaching solution and ammonia water, performs magnesium precipitation reaction and solid-liquid separation in sequence, and roasts the obtained solid phase to obtain the magnesia.
  • the concentration of the ammonia water is preferably 5-8 mol/L, more preferably 5.5-7.5 mol/L.
  • the volume ratio of the leachate and the ammonia water is preferably (0.8-1.2):1, more preferably (0.9-1.1):1.
  • the temperature of the magnesium precipitation reaction is preferably 40-50°C, more preferably 42-48°C; the time is preferably 60-70min, more preferably 62-68min.
  • the magnesium precipitation reaction is preferably carried out under stirring conditions; the stirring rate is preferably 450-550 rpm, more preferably 460-540 rpm.
  • the magnesium precipitation reaction generates magnesium hydroxide precipitate.
  • the present invention does not specifically limit the solid-liquid separation, and the solid-liquid separation well known to those skilled in the art can be used.
  • the roasting temperature is preferably 450-500°C, more preferably 460-490°C; the time is preferably 30-60 min, more preferably 35-55 min.
  • the roasting equipment is preferably an electric furnace.
  • the purity of the magnesia is preferably ⁇ 98%.
  • the mass ratio of the copper smelting slag and magnesia is preferably (68-80):(20-32), more preferably (70-78):(22-30).
  • the binder preferably includes one or more of resin, rubber, pulp and magnesium chloride.
  • the resin, rubber and pulp are not particularly limited, and resins, rubbers and pulps well known to those skilled in the art can be used.
  • the resin is polyvinyl chloride (PVC).
  • the solid content of the pulp is preferably 35-40%.
  • the magnesium chloride is preferably provided in the form of a magnesium chloride solution; the present invention does not specifically limit the mass percent concentration of the magnesium chloride solution, and the concentration of the magnesium chloride solution well known to those skilled in the art can be used. In the embodiment of the present invention, the mass percentage concentration of the magnesium chloride solution is 5%.
  • the ratio of the total mass of the copper smelting slag and magnesia to the mass of the binder is preferably 100:(0.5-14), more preferably 100:(1-13), more preferably 100:( 5 to 10).
  • the ball-to-material ratio of the ball mill is preferably (1.5-2):1, more preferably (1.8-1.9):1; the rotation speed of the ball mill is preferably 300-500rpm, more preferably 350-450rpm; The time is preferably 20-25min, more preferably 21-24min.
  • the invention promotes the uniform dispersion and mixing of copper smelting slag and magnesia through ball milling.
  • the present invention sequentially performs the forming treatment, drying and sintering on the mixed material to obtain the refractory material.
  • the mixed material is subjected to forming treatment to obtain a formed blank.
  • the forming process is preferably cold press forming.
  • the pressure of the cold pressing is preferably 50-200 MPa, more preferably 75-175 MPa, and more preferably 100-150 MPa; the pressure holding time is preferably 10-30 min, more preferably 15-25 min.
  • the forming die in the forming process is preferably a steel die. After the molding process, the present invention preferably performs demoulding to obtain the molding.
  • the present invention dries the preform to obtain the preform to be sintered.
  • the drying temperature is preferably 102-108°C, more preferably 104-106°C; the time is preferably 4-8h, more preferably 5-7h.
  • the drying equipment is preferably a drying oven. Through drying, the invention preliminarily removes the moisture absorbed in the process of preparing the shaped blank, and prevents the subsequent sintering from causing internal stress cracking.
  • the present invention sinters the to-be-sintered blank to obtain the refractory material.
  • the temperature of the sintering is preferably 1350-1400°C, more preferably 1360-1390°C; the time is preferably 2-8h, more preferably 2.5-7.5h.
  • the sintering temperature is preferably obtained by heating up; the heating rate is preferably 5-20°C/min, more preferably 8-12°C/min, and most preferably 10°C/min.
  • the sintering is preferably carried out under an air atmosphere condition. The invention makes the slag undergo phase transformation and microstructure change through sintering, which is beneficial to the rapid transformation of the olivine phase in the slag into the forsterite phase and the spinel phase of the high melting point phase.
  • the present invention preferably cools the sintered product to obtain the refractory material.
  • the cooling method is preferably cooling with the furnace.
  • the chemical composition of low-grade magnesite includes: MgO 43.56wt.%, CaO 0.98wt.%, SiO2 3.88wt.%, Al2O3 2.05wt .%, Fe2O3 1.47wt .%, LOI 47.62wt% .%;
  • the chemical composition of copper smelting slag includes: Cu 0.27wt.%, Fe 45.54wt.%, S 0.26wt.%, SiO2 27.37wt.%, CaO 2.37wt.%, MgO 1.19wt .%, Al2O3 3.96 wt.%;
  • the magnesite light-fired powder is leached, the leaching temperature is 110°C, and the leaching time is 80min to obtain a leaching solution;
  • the leaching solution was mixed with 26 L of ammonia water with a concentration of 8 mol/L, and the magnesium precipitation reaction was carried out under the conditions of 550 rpm and 40 ° C for 60 min. After solid-liquid separation, the obtained solid phase was calcined at 500 ° C for 30 min to obtain magnesium oxide with a purity of 99.81%. , magnesia with a mass of 2.92kg;
  • the mixture was placed in a cylindrical steel mold with a diameter of 500 mm, molded under a pressure of 200 MPa, and the pressure holding time was 15 min. After demolding, it was placed in a drying oven at 105 ° C for 6 hours, and then the sintered blank obtained by drying was dried. It is placed in an electric furnace, heated to 1400° C. at a rate of 10° C./min, held for 5 hours for sintering, and finally cooled with the furnace to obtain the refractory material.
  • the refractory material obtained in this example has a diameter of 500 mm and a thickness of 100 mm.
  • the obtained refractories are mainly spinel phase and olivine phase.
  • the chemical composition of low-grade magnesite includes: MgO 43.56wt.%, CaO 0.98wt.%, SiO2 3.88wt.%, Al2O3 2.05wt .%, Fe2O3 1.47wt .%, LOI 47.62wt% .%;
  • the chemical composition of copper smelting slag includes: Cu 0.27wt.%, Fe 45.54wt.%, S 0.26wt.%, SiO2 27.37wt.%, CaO 2.37wt.%, MgO 1.19wt .%, Al2O3 3.96 wt.%;
  • 10kg low-grade magnesite is placed in a roller crusher and crushed to a particle size of 2mm, and the obtained low-grade magnesite particles are calcined at 800°C for 2h to obtain 5.2kg magnesite light calcined powder;
  • the magnesite light-burning powder was leached, the leaching temperature was 115°C, and the leaching time was 70min to obtain a leaching solution;
  • the leaching solution was mixed with 30.6 L of ammonia water with a concentration of 7 mol/L, and the magnesium precipitation reaction was carried out under the conditions of 500 rpm and 45 ° C for 65 min. After solid-liquid separation, the obtained solid phase was calcined at 480 ° C for 50 min to obtain magnesium oxide with a purity of 99.76 %, magnesia with a mass of 3.06kg;
  • the mixture was placed in a cylindrical steel mold with a diameter of 500 mm, molded under a pressure of 50 MPa, and the pressure holding time was 25 min. After demoulding, it was placed in a drying oven at 105 ° C for 6 hours, and then the resulting sintered blank was dried. It was placed in an electric furnace, heated to 1350°C at a rate of 10°C/min, kept for 8 hours for sintering, and finally cooled with the furnace to obtain the refractory material.
  • the refractory material obtained in this example has a diameter of 500 mm and a thickness of 100 mm.
  • the obtained refractories are mainly spinel phase and olivine phase.
  • the chemical composition of low-grade magnesite includes: MgO 43.56wt.%, CaO 0.98wt.%, SiO2 3.88wt.%, Al2O3 2.05wt .%, Fe2O3 1.47wt .%, LOI 47.62wt% .%;
  • the chemical composition of copper smelting slag includes: Cu 0.27wt.%, Fe 45.54wt.%, S 0.26wt.%, SiO2 27.37wt.%, CaO 2.37wt.%, MgO 1.19wt .%, Al2O3 3.96 wt.%;
  • the magnesite light-fired powder was leached, the leaching temperature was 120°C, and the leaching time was 60min to obtain a leaching solution;
  • the leaching solution was mixed with 39 L of ammonia water with a concentration of 5 mol/L, and the magnesium precipitation reaction was carried out under the conditions of 450 rpm and 50 ° C for 70 min. After solid-liquid separation, the obtained solid phase was calcined at 450 ° C for 60 min to obtain magnesium oxide with a purity of 99.51%. , magnesia with a mass of 3.15kg;
  • the mixture was placed in a cylindrical steel mold with a diameter of 500 mm, molded under a pressure of 100 MPa, and the pressure holding time was 20 min. After demolding, it was placed in a drying oven at 105 °C for 6 hours, and then the resulting sintered blank was dried. It was placed in an electric furnace, heated to 1400°C at a rate of 10°C/min, kept for 2 hours for sintering, and finally cooled with the furnace to obtain the refractory material.
  • the obtained refractories are mainly spinel phase and olivine phase.
  • the density of the refractory material prepared by the method provided by the present invention is 1.752-2.359g/cm 3 , and the density is moderate; the thermal conductivity is 0.46-1.03W/mK, and the thermal conductivity is low; the maximum operating temperature is 1250-1300 °C, high refractory temperature; compressive strength is 184.3 ⁇ 201.3MPa, high compressive strength, not easy to deform.
  • the method provided by the invention makes good use of the copper smelting slag solid waste, and achieves the slag-free resource utilization of the copper smelting slag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种以铜冶炼渣为原料制备耐火材料的方法,属于固体废弃物资源化利用技术领域。制备方法包括以下步骤:将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料;将混合料依次进行成型处理、干燥和烧结,得到耐火材料。实施例测试结果表明,采用该方法得到的耐火材料密度为1.752~2.359g/cm 3;导热系数为0.46~1.03W/mK;最高使用温度为1250~1300℃;抗压强度为184.3~201.3MPa,不易变形,实现了对铜冶炼渣的资源化利用。

Description

一种以铜冶炼渣为原料制备耐火材料的方法
本申请要求于2020年12月09日提交中国专利局、申请号为CN202011450445.1、发明名称为“一种以铜冶炼渣为原料制备耐火材料的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于固体废弃物资源化利用技术领域,特别涉及一种以铜冶炼渣为原料制备耐火材料的方法。
背景技术
铜冶炼渣是铜冶金行业中的一种主要的固体废弃物,由于铜矿的品位和冶炼工艺的不同,其化学成分可能会有一定程度的不同,但一般以氧化物的形式含有铁、硅、铝、镁、钙、铜、锌元素以及少量铅等有害元素。以往铜冶炼渣一般用于作磨料除锈、筑路建筑材料或堆存。有色冶金企业将铜冶炼渣堆弃于露天环境之下,不但占用大量的土地资源,且会对环境造成严重威胁。由于铜冶炼废渣中铜、铁、铅、锌等多金属共存、结晶程度低及有价元素高度分散,导致铜冶炼渣存在有价元素无法有效利用的技术难题,铜冶炼渣的综合利用率极低。
发明内容
有鉴于此,本发明的目的在于提供一种以铜冶炼渣为原料制备耐火材料的方法,本发明提供的方法以铜冶炼渣为原料,得到的耐火材料具有强度高、导热系数低的特点,实现了对铜冶炼渣的资源化利用。
为了实现上述发明的目的,本发明提供以下技术方案:
本发明提供了一种以铜冶炼渣为原料制备耐火材料的方法,包括以下步骤:
将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料;
将所述混合料依次进行成型处理、干燥和烧结,得到所述耐火材料。
优选的,所述铜冶炼渣和镁砂的质量比为(68~80):(20~32)。
优选的,所述结合剂包括树脂、橡胶、纸浆和氯化镁中的一种或 多种。
优选的,所述铜冶炼渣和镁砂的总质量与结合剂的质量的比为100:(0.5~14)。
优选的,所述镁砂由低品位菱镁矿制备得到;所述低品位菱镁矿中氧化镁的含量≤45wt.%;所述镁砂由包括以下步骤的制备方法制备得到:
将所述低品位菱镁矿依次进行破碎和煅烧,得到菱镁矿轻烧粉;
利用氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,得到浸出液;
将所述浸出液和氨水混合,依次进行沉镁反应和固液分离,将所得固相进行焙烧,得到所述镁砂。
优选的,所述煅烧的温度为800℃,时间为1~3h。
优选的,所述氯化铵水溶液的浓度为2~3mol/L;所述氯化铵水溶液的体积与菱镁矿轻烧粉的质量的比为(9~10)L:1kg。
优选的,所述浸出的温度为110~120℃,时间为60~80min。
优选的,所述氨水的浓度为5~8mol/L,所述浸出液和氨水的体积比为(0.8~1.2):1;所述沉镁反应的温度为40~50℃,时间为60~70min。
优选的,所述焙烧的温度为450~500℃,时间为30~60min。
优选的,所述球磨的球料比为(1.5~2):1,转速为300~500rpm,时间为20~25min。
优选的,所述成型处理为冷压成型;所述冷压成型的压力为50~200MPa,保压时间为10~30min。
优选的,所述干燥的温度为102~108℃,时间为4~8h。
优选的,所述烧结的温度为1350~1400℃,时间为2~8h。
优选的,所述烧结的温度通过升温得到;所述升温的速率为5~20℃/min。
本发明提供了一种以铜冶炼渣为原料制备耐火材料的方法,包括以下步骤:将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料;将所述混合料依次进行成型处理、干燥和烧结,得到所述耐火材料。在本发明中,铜冶炼渣含有丰富的Fe、SiO 2和Al 2O 3,可以与镁砂中的MgO烧结熔合,MgO与SiO 2反应生成高熔点的镁橄榄石和顽辉石, 而MgO与Fe 2O 3或Al 2O 3反应生成了相应的高熔点的氧化镁尖晶石,有利于提高材料的耐火度,得到抗压强度好、导热系数低的耐火材料。
实施例测试结果表明,采用本发明提供的方法制备得到的耐火材料密度为1.752~2.359g/cm 3,密度适中;导热系数为0.46~1.03W/mK,导热系数低;最高使用温度为1250~1300℃,耐火温度高;抗压强度为184.3~201.3MPa,抗压强度高,不易变形。本发明提供的方法很好的利用了铜冶炼渣固体废弃物,达到了对铜冶炼渣的无渣化资源化利用。
说明书附图
图1为本发明提供的以铜冶炼渣为原料制备耐火材料的方法的流程图。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种以铜冶炼渣为原料制备耐火材料的方法,包括以下步骤:
将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料;
将所述混合料依次进行成型处理、干燥和烧结,得到所述耐火材料。
在本发明中,若无特殊限定,所述各组分均为本领域技术人员熟知的市售商品。
图1为本发明提供的以铜冶炼渣为原料制备耐火材料的方法的流程图,下面结合图1对本发明提供的方法进行具体说明。
本发明将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料。
本发明对所述铜冶炼渣的来源没有特殊限定,采用本领域技术人员熟知的铜冶炼渣的来源即可。本发明对所述铜冶炼渣的化学成分没有特殊限定,采用本领域技术人员知晓的铜冶炼渣的化学成分即可。在本发明的实施例中,所述铜冶炼渣的化学组成包括:Cu 0.27wt.%,Fe 45.54wt.%,S 0.26wt.%,SiO 2 27.37wt.%,CaO 2.37wt.%,MgO 1.19wt.%,Al 2O 3 3.96wt.%。
在本发明中,所述镁砂优选由低品位菱镁矿制备得到;所述低品 位菱镁矿中氧化镁的含量优选≤45wt.%。
在本发明中,所述镁砂优选由包括以下步骤的制备方法制备得到:
将所述低品位菱镁矿依次进行破碎和煅烧,得到菱镁矿轻烧粉;
利用氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,得到浸出液;
将所述浸出液和氨水混合,依次进行沉镁反应和固液分离,将所得固相进行焙烧,得到所述镁砂。
本发明将所述低品位菱镁矿依次进行破碎和煅烧,得到菱镁矿轻烧粉。
本发明对所述低品位菱镁矿的来源没有特殊限定,采用本领域技术人员熟知的低品位菱镁矿的来源即可。在本发明的实施例中,所述低品位菱镁矿的化学组成包括:MgO 43.56wt.%,CaO 0.98wt.%,SiO 2 3.88wt.%,Al 2O 3 2.05wt.%,Fe 2O 3 1.47wt.%,LOI 47.62wt.%。
在本发明中,所述破碎后所得的低品位菱镁矿颗粒的粒度优选为2mm。在本发明中,所述破碎的方式优选为碾碎。在本发明中,所述破碎的设备优选为对辊粉碎机。
在本发明中,所述煅烧的温度优选为800℃;时间优选为1~3h,更优选为1.5~2.5h。
得到菱镁矿轻烧粉后,本发明利用氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,得到浸出液。
在本发明中,所述氯化铵水溶液的浓度优选为2~3mol/L,更优选为2.2~2.8mol/L。在本发明中,所述氯化铵水溶液的体积与菱镁矿轻烧粉的质量的比优选为(9~10)L:1kg,更优选为(9.2~9.8)L:1kg。在本发明中,所述浸出的温度优选为110~120℃,更优选为112~118℃;时间优选为60~80min,更优选为65~75min。
浸出后,本发明优选将浸出所得固液混合料进行固液分离,得到液相的浸出液。本发明对所述固液分离没有特殊限定,采用本领域技术人员熟知的固液分离即可。
得到浸出液后,本发明将所述浸出液和氨水混合,依次进行沉镁反应和固液分离,将所得固相进行焙烧,得到所述镁砂。
在本发明中,所述氨水的浓度优选为5~8mol/L,更优选为 5.5~7.5mol/L。在本发明中,所述浸出液和氨水的体积比优选为(0.8~1.2):1,更优选为(0.9~1.1):1。在本发明中,所述沉镁反应的温度优选为40~50℃,更优选为42~48℃;时间优选为60~70min,更优选为62~68min。在本发明中,所述沉镁反应优选在搅拌的条件下进行;所述搅拌的速率优选为450~550rpm,更优选为460~540rpm。在本发明中,所述沉镁反应生成氢氧化镁沉淀。
本发明对所述固液分离没有特殊限定,采用本领域技术人员熟知的固液分离即可。
在本发明中,所述焙烧的温度优选为450~500℃,更优选为460~490℃;时间优选为30~60min,更优选为35~55min。在本发明中,所述焙烧的设备优选为电炉。
在本发明中,所述镁砂的纯度优选≥98%。
在本发明中,所述铜冶炼渣和镁砂的质量比优选为(68~80):(20~32),更优选为(70~78):(22~30)。
在本发明中,所述结合剂优选包括树脂、橡胶、纸浆和氯化镁中的一种或多种。本发明对所述树脂、橡胶和纸浆没有特殊限定,采用本领域技术人员熟知的树脂、橡胶和纸浆即可。在本发明的实施例中,所述树脂为聚氯乙烯(PVC)。在本发明中,所述纸浆的固含量优选为35~40%。
在本发明中,所述氯化镁优选以氯化镁溶液的形式提供;本发明对所述氯化镁溶液的质量百分比浓度没有特殊限定,采用本领域技术人员熟知的氯化镁溶液的浓度即可。在本发明的实施例中,所述氯化镁溶液的质量百分比浓度为5%。
在本发明中,所述铜冶炼渣和镁砂的总质量与结合剂的质量的比优选为100:(0.5~14),更优选为100:(1~13),更优选为100:(5~10)。
在本发明中,所述球磨的球料比优选为(1.5~2):1,更优选为(1.8~1.9):1;球磨的转速优选为300~500rpm,更优选为350~450rpm;球磨的时间优选为20~25min,更优选为21~24min。本发明通过球磨,促进了铜冶炼渣和镁砂的均匀分散混合。
得到混合料后,本发明将所述混合料依次进行成型处理、干燥和烧结,得到所述耐火材料。
本发明将所述混合料进行成型处理,得到成型坯。在本发明中,所述成型处理优选为冷压成型。在本发明中,所述冷压成型的压力优选为50~200MPa,更优选为75~175MPa,再优选为100~150MPa;保压时间优选为10~30min,更优选为15~25min。在本发明中,所述成型处理中的成型模具优选为钢模具。所述成型处理后,本发明优选进行脱模,得到所述成型坯。
得到成型坯后,本发明将所述成型坯进行干燥,得到待烧结坯。在本发明中,所述干燥的温度优选为102~108℃,更优选为104~106℃;时间优选为4~8h,更优选为5~7h。在本发明中,所述干燥的设备优选为干燥箱。本发明通过干燥,初步去除制备成型坯过程中吸收的水分,防止后续烧结产生内应力开裂。
得到待烧结坯后,本发明将所述待烧结坯进行烧结,得到所述耐火材料。在本发明中,所述烧结的温度优选为1350~1400℃,更优选为1360~1390℃;时间优选为2~8h,更优选为2.5~7.5h。在本发明中,所述烧结的温度优选通过升温得到;所述升温的速率优选为5~20℃/min,更优选为8~12℃/min,最优选为10℃/min。在本发明中,所述烧结优选在空气气氛条件下进行。本发明通过烧结,使渣发生相变和微观结构变化有利于渣中的橄榄石相迅速转变为高熔点相的镁橄榄石相和尖晶石相。
烧结后,本发明优选将烧结产物进行冷却,得到所述耐火材料。在本发明中,所述冷却的方式优选为随炉冷却。
为了进一步说明本发明,下面结合实施例对本发明提供的一种以铜冶炼渣为原料制备耐火材料的方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
低品位菱镁矿的化学组成包括:MgO 43.56wt.%,CaO 0.98wt.%,SiO 2 3.88wt.%,Al 2O 3 2.05wt.%,Fe 2O 3 1.47wt.%,LOI 47.62wt.%;
铜冶炼渣的化学组成包括:Cu 0.27wt.%,Fe 45.54wt.%,S 0.26wt.%,SiO 2 27.37wt.%,CaO 2.37wt.%,MgO 1.19wt.%,Al 2O 3 3.96wt.%;
将10kg低品位菱镁矿置于对辊破碎机中碾碎至粒径为2mm,将所得的低品位菱镁矿颗粒在800℃下煅烧3h,得到5.15kg菱镁矿轻烧粉;
利用50L浓度为2.5mol/L的氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,浸出温度为110℃,浸出时间为80min,得到浸出液;
将所述浸出液和26L浓度为8mol/L的氨水混合,550rpm、40℃条件下进行沉镁反应60min,固液分离后,将所得固相于500℃下焙烧30min,得到氧化镁纯度为99.81%、质量为2.92kg的镁砂;
将750g铜冶炼渣、250g镁砂和5g纸浆(固含量为40%)混合,以球料比为1.9:1、球磨转速为350rpm的条件球磨20min,得到混合料;
将所述混合料置于直径为500mm的柱状钢模具中,在200MPa的压力条件下成型,保压时间为15min,脱模后置于105℃干燥箱中干燥6h,然后将干燥所得待烧结坯置于电炉中,以10℃/min的速率升温至1400℃并保温5h进行烧结,最后随炉冷却,得到所述耐火材料。
本实施例所得耐火材料的直径为500mm,厚度为100mm。
经X射线衍射测试,所得耐火材料主要为尖晶石相和橄榄石相。
实施例2
低品位菱镁矿的化学组成包括:MgO 43.56wt.%,CaO 0.98wt.%,SiO 2 3.88wt.%,Al 2O 3 2.05wt.%,Fe 2O 3 1.47wt.%,LOI 47.62wt.%;
铜冶炼渣的化学组成包括:Cu 0.27wt.%,Fe 45.54wt.%,S 0.26wt.%,SiO 2 27.37wt.%,CaO 2.37wt.%,MgO 1.19wt.%,Al 2O 3 3.96wt.%;
将10kg低品位菱镁矿置于对辊破碎机中碾碎至粒径为2mm,将所得的低品位菱镁矿颗粒在800℃下煅烧2h,得到5.2kg菱镁矿轻烧 粉;
利用52L浓度为2mol/L的氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,浸出温度为115℃,浸出时间为70min,得到浸出液;
将所述浸出液和30.6L浓度为7mol/L的氨水混合,500rpm、45℃条件下进行沉镁反应65min,固液分离后,将所得固相于480℃下焙烧50min,得到氧化镁纯度为99.76%、质量为3.06kg的镁砂;
将680g铜冶炼渣、320g镁砂和65g质量百分比浓度为5%的氯化镁溶液混合,以球料比为1.8:1、球磨转速为400rpm的条件球磨20min,得到混合料;
将所述混合料置于直径为500mm的柱状钢模具中,在50MPa的压力条件下成型,保压时间为25min,脱模后置于105℃干燥箱中干燥6h,然后将干燥所得待烧结坯置于电炉中,以10℃/min的速率升温至1350℃并保温8h进行烧结,最后随炉冷却,得到所述耐火材料。
本实施例所得耐火材料的直径为500mm,厚度为100mm。
经X射线衍射测试,所得耐火材料主要为尖晶石相和橄榄石相。
实施例3
低品位菱镁矿的化学组成包括:MgO 43.56wt.%,CaO 0.98wt.%,SiO 2 3.88wt.%,Al 2O 3 2.05wt.%,Fe 2O 3 1.47wt.%,LOI 47.62wt.%;
铜冶炼渣的化学组成包括:Cu 0.27wt.%,Fe 45.54wt.%,S 0.26wt.%,SiO 2 27.37wt.%,CaO 2.37wt.%,MgO 1.19wt.%,Al 2O 3 3.96wt.%;
将10kg低品位菱镁矿置于对辊破碎机中碾碎至粒径为2mm,将所得的低品位菱镁矿颗粒在800℃下煅烧1h,得到5.27kg菱镁矿轻烧粉;
利用47.43L浓度为3mol/L的氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,浸出温度为120℃,浸出时间为60min,得到浸出液;
将所述浸出液和39L浓度为5mol/L的氨水混合,450rpm、50℃条件下进行沉镁反应70min,固液分离后,将所得固相于450℃下焙烧60min,得到氧化镁纯度为99.51%、质量为3.15kg的镁砂;
将800g铜冶炼渣、200g镁砂和140g聚氯乙烯(PVC)混合,以 球料比为1.7:1、球磨转速为450rpm的条件球磨20min,得到混合料;
将所述混合料置于直径为500mm的柱状钢模具中,在100MPa的压力条件下成型,保压时间为20min,脱模后置于105℃干燥箱中干燥6h,然后将干燥所得待烧结坯置于电炉中,以10℃/min的速率升温至1400℃并保温2h进行烧结,最后随炉冷却,得到所述耐火材料。
经X射线衍射测试,所得耐火材料主要为尖晶石相和橄榄石相。
对实施例1~3所得耐火材料进行测试,所得测试标准和测试结果见表1。
表1实施例1~3所得耐火材料的性能测试结果
Figure PCTCN2021136417-appb-000001
由表1可见,采用本发明提供的方法制备得到的耐火材料密度为1.752~2.359g/cm 3,密度适中;导热系数为0.46~1.03W/mK,导热系数低;最高使用温度为1250~1300℃,耐火温度高;抗压强度为184.3~201.3MPa,抗压强度高,不易变形。本发明提供的方法很好的利用了铜冶炼渣固体废弃物,达到了对铜冶炼渣的无渣化资源化利用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种以铜冶炼渣为原料制备耐火材料的方法,包括以下步骤:
    将铜冶炼渣、镁砂和结合剂混合,进行球磨,得到混合料;
    将所述混合料依次进行成型处理、干燥和烧结,得到所述耐火材料。
  2. 根据权利要求1所述的方法,其特征在于,所述铜冶炼渣和镁砂的质量比为(68~80):(20~32)。
  3. 根据权利要求1所述的方法,其特征在于,所述结合剂包括树脂、橡胶、纸浆和氯化镁中的一种或多种。
  4. 根据权利要求1或3所述的方法,其特征在于,所述铜冶炼渣和镁砂的总质量与结合剂的质量的比为100:(0.5~14)。
  5. 根据权利要求1所述的方法,其特征在于,所述镁砂由低品位菱镁矿制备得到;所述低品位菱镁矿中氧化镁的含量≤45wt.%;所述镁砂由包括以下步骤的制备方法制备得到:
    将所述低品位菱镁矿依次进行破碎和煅烧,得到菱镁矿轻烧粉;
    利用氯化铵水溶液,对所述菱镁矿轻烧粉进行浸出,得到浸出液;
    将所述浸出液和氨水混合,依次进行沉镁反应和固液分离,将所得固相进行焙烧,得到所述镁砂。
  6. 根据权利要求5所述的方法,其特征在于,所述煅烧的温度为800℃,时间为1~3h。
  7. 根据权利要求5所述的方法,其特征在于,所述氯化铵水溶液的浓度为2~3mol/L;所述氯化铵水溶液的体积与菱镁矿轻烧粉的质量的比为(9~10)L:1kg。
  8. 根据权利要求5或7所述的方法,其特征在于,所述浸出的温度为110~120℃,时间为60~80min。
  9. 根据权利要求5所述的方法,其特征在于,所述氨水的浓度为5~8mol/L,所述浸出液和氨水的体积比为(0.8~1.2):1;所述沉镁反应的温度为40~50℃,时间为60~70min。
  10. 根据权利要求5所述的方法,其特征在于,所述焙烧的温度为450~500℃,时间为30~60min。
  11. 根据权利要求1所述的方法,其特征在于,所述球磨的球料比为(1.5~2):1,转速为300~500rpm,时间为20~25min。
  12. 根据权利要求1所述的方法,其特征在于,所述成型处理为冷压成型;所述冷压成型的压力为50~200MPa,保压时间为10~30min。
  13. 根据权利要求1所述的方法,其特征在于,所述干燥的温度为102~108℃,时间为4~8h。
  14. 根据权利要求1所述的方法,其特征在于,所述烧结的温度为1350~1400℃,时间为2~8h。
  15. 根据权利要求14所述的方法,其特征在于,所述烧结的温度通过升温得到;所述升温的速率为5~20℃/min。
PCT/CN2021/136417 2020-12-09 2021-12-08 一种以铜冶炼渣为原料制备耐火材料的方法 WO2022121939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011450445.1 2020-12-09
CN202011450445.1A CN112430108B (zh) 2020-12-09 2020-12-09 一种以铜冶炼渣为原料制备耐火材料的方法

Publications (1)

Publication Number Publication Date
WO2022121939A1 true WO2022121939A1 (zh) 2022-06-16

Family

ID=74692142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136417 WO2022121939A1 (zh) 2020-12-09 2021-12-08 一种以铜冶炼渣为原料制备耐火材料的方法

Country Status (2)

Country Link
CN (1) CN112430108B (zh)
WO (1) WO2022121939A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430108B (zh) * 2020-12-09 2021-12-24 昆明理工大学 一种以铜冶炼渣为原料制备耐火材料的方法
CN114774705A (zh) * 2022-04-22 2022-07-22 昆明理工大学 一种利用铜冶炼渣回收铁、锌并制备耐火原料的方法
CN115160836B (zh) * 2022-08-04 2023-07-25 江苏骏威特新材料科技有限公司 一种基于铜冶炼渣的高发射率红外辐射涂料及其制备方法和涂层
CN115626814B (zh) * 2022-10-21 2023-10-13 鞍山钢铁冶金炉材科技有限公司 一种利用菱镁尾矿粉生产的转炉大面料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167602A (zh) * 2010-12-20 2011-08-31 昆明理工大学 一种适用于熔融还原铜渣中铁的耐火材料的制造方法
JP2016191128A (ja) * 2015-03-31 2016-11-10 株式会社Istc 銅製錬スラグの処理方法
CN107285778A (zh) * 2017-06-27 2017-10-24 中南大学 一种耐高温镁橄榄石型耐火材料的制备方法
CN108191421A (zh) * 2018-02-23 2018-06-22 北京科技大学 一种利用镍铁合金尾渣制备镁橄榄石耐火材料的方法
CN112430108A (zh) * 2020-12-09 2021-03-02 昆明理工大学 一种以铜冶炼渣为原料制备耐火材料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374593A (en) * 1992-02-21 1994-12-20 Les Sables Olimag, Inc. Preparation of refractory materials from asbestos tailings
CN107500727B (zh) * 2017-09-25 2021-02-02 北京科技大学 一种利用火法冶炼铜渣制备陶瓷材料的方法
CN108484180B (zh) * 2018-03-26 2021-05-18 中南大学 一种利用镍铁冶炼渣制备高级耐火材料的方法
CN110156353B (zh) * 2019-05-31 2021-04-30 北方民族大学 一种联合处理铜渣和镁渣的方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167602A (zh) * 2010-12-20 2011-08-31 昆明理工大学 一种适用于熔融还原铜渣中铁的耐火材料的制造方法
JP2016191128A (ja) * 2015-03-31 2016-11-10 株式会社Istc 銅製錬スラグの処理方法
CN107285778A (zh) * 2017-06-27 2017-10-24 中南大学 一种耐高温镁橄榄石型耐火材料的制备方法
CN108191421A (zh) * 2018-02-23 2018-06-22 北京科技大学 一种利用镍铁合金尾渣制备镁橄榄石耐火材料的方法
CN112430108A (zh) * 2020-12-09 2021-03-02 昆明理工大学 一种以铜冶炼渣为原料制备耐火材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, HUI ET AL.: "Preparation of High Purity Magnesia from Low-Grade Magnesite", JOURNAL OF CENTRAL SOUTH UNIVERSITY (SCIENCE AND TECHNOLOGY), vol. 37, no. 4, 26 August 2006 (2006-08-26), pages 698 - 702, XP055941312 *

Also Published As

Publication number Publication date
CN112430108B (zh) 2021-12-24
CN112430108A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2022121939A1 (zh) 一种以铜冶炼渣为原料制备耐火材料的方法
CN108585826B (zh) 利用二次铝灰制备镁铝尖晶石的方法
CN106007742B (zh) 一种红土镍矿回转窑用钛铝酸钙砖及其制备方法
CN109020571A (zh) 一种抗侵蚀镁碳砖及其制备方法
CN110129587A (zh) 一种锂辉石真空冶炼提取金属锂并制备铝硅合金的方法
CN109929961A (zh) 一种用中间包涂料制备镁球的工艺及镁球的用途
CN113061045B (zh) 一种水泥窑烧成带用镁铁锌铝复合尖晶石耐火砖及其制备方法
CN101935176B (zh) 硫铁矿烧渣制备导电掺合料的方法
CN106518047A (zh) 一种镁铁铝尖晶石的制备方法
WO2022062292A1 (zh) 一种低导热低热膨胀镁基原料及其制备方法
CN105908255B (zh) 一种利用废弃镁碳砖制备氧化镁晶须的方法
CN106978533A (zh) 制备气基竖炉用氧化球团的方法和系统
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN112095017A (zh) 一种基于还原焙烧-酸浸粉煤灰资源化的方法
CN101798634B (zh) 熔融还原炼镁工艺
CN107779590B (zh) 一种提取钼铼的方法
CN113800544B (zh) 一种利用固废制备高白高纯氢氧化铝的方法及系统
CN105418060A (zh) 一种利用不锈钢渣制备含铬尖晶石材料的方法
CN104911342A (zh) 一种含硼的含铬型钒钛磁铁矿球团的制备方法
CN104894364A (zh) 用钛磁铁矿煤基还原磁选生产钛酸镁和直接还原铁的方法
CN109913641B (zh) 一种综合利用高铝铁矿的方法
CN114180953A (zh) 一种废镁、铝碳砖合成镁铝尖晶石的方法及含镁铝尖晶石
CN113387377A (zh) 一种由低品位锂矿中制造硫酸体系卤水和提取锂的方法
CN115679127B (zh) 一种利用酸性气体焙烧分解钨精矿的方法
CN110713380A (zh) 一种高纯度致密镁橄榄石的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902644

Country of ref document: EP

Kind code of ref document: A1