WO2022121904A1 - 声波滤波器、多工器以及通信设备 - Google Patents

声波滤波器、多工器以及通信设备 Download PDF

Info

Publication number
WO2022121904A1
WO2022121904A1 PCT/CN2021/136150 CN2021136150W WO2022121904A1 WO 2022121904 A1 WO2022121904 A1 WO 2022121904A1 CN 2021136150 W CN2021136150 W CN 2021136150W WO 2022121904 A1 WO2022121904 A1 WO 2022121904A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
split
additional
resonators
acoustic wave
Prior art date
Application number
PCT/CN2021/136150
Other languages
English (en)
French (fr)
Inventor
蔡华林
庞慰
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022121904A1 publication Critical patent/WO2022121904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements

Definitions

  • the present invention relates to the technical field of filters, in particular to an acoustic wave filter, a multiplexer and a communication device.
  • FIG. 1 is a schematic diagram of a structure of an acoustic wave filter according to the prior art.
  • inductances 121 and 122 and a plurality of resonators (usually called series resonators) 101 to 104 are arranged between the input end 131 and the output end 132, and the connection point between the connection point of each series resonator and the ground end is Resonators 111 to 113 (usually referred to as parallel resonators) and inductances 123 to 125 are respectively provided on a plurality of branches (usually called parallel branches).
  • the resonator 102 may be split into two series-connected resonators 102a and 102b, and similarly, the resonator 113 may be split into two series-connected resonators 113a and 113b.
  • the present invention provides an acoustic wave filter, a multiplexer, and a communication device, which help to improve nonlinear performance.
  • An acoustic wave filter comprising a plurality of piezoelectric acoustic wave resonators, and including at least one group of split resonator groups in series, the series split resonator group comprising at least a first split resonator and a second split resonator group.
  • Two split resonators, one or more first additional resonators are connected in parallel on the first split resonator.
  • the plurality of first additional resonators are connected in series, in parallel or in combination.
  • the first additional resonator differs from the first split resonator by one or more of the following: a resonator stack structure; a thickness of one or more layers in the resonator stack structure ; the material of one or more layers in the resonator stack structure.
  • one or more second additional resonators are connected in parallel on the second split resonator, and at least one of the first additional resonators and at least one of the second additional resonators have one or more of the following: Differences in terms: area, shape, resonator stack, thickness of one or more layers in said resonator stack, material of one or more layers in said resonator stack.
  • the second additional resonator differs from the second split resonator by one or more of the following: the resonator stack structure; one or more layers in the resonator stack structure thickness; material of one or more layers in a stack of resonators.
  • the series split resonator group is composed of a first split resonator and a second split resonator; a first additional resonator is connected in parallel with the first split resonator, and the first split resonator is connected in parallel.
  • the input power of the resonator is between (1-a1)/a2 ⁇ P1 and a1 ⁇ (1-a3) ⁇ P1/a2/a3, where: a1 and a3 are 0.8 to 1, and a2 is 0 to 1 , P1 represents the power of the first split resonator.
  • a method for improving nonlinear performance of an acoustic wave filter comprising a plurality of piezoelectric acoustic wave resonators, and including at least one group of series split resonator groups, comprising: splitting the resonator groups to the series A first split resonator in is connected in parallel with one or more first additional resonators.
  • the plurality of first additional resonators are connected in series, in parallel or in combination.
  • the first additional resonator differs from the first split resonator by one or more of the following: a resonator stack structure; a thickness of one or more layers in the resonator stack structure ; the material of one or more layers in the resonator stack structure.
  • the method further includes: adjusting the stack structure of the first additional resonators, The thickness of the laminated structure and the material of the laminated structure, the laminated structure of the first additional resonator, the thickness of the laminated structure and the material of the laminated structure and the laminated structure of the first split resonator, the thickness of the laminated structure and the thickness of the laminated structure In the case of the same material, the first additional resonator and the first split resonator are fused into one integral resonator.
  • the step further includes: adding the first split resonator group to the series split resonator group.
  • Two split resonators are connected in parallel with one or more second additional resonators, and at least one of the first additional resonators differs from at least one of the second additional resonators by one or more of the following: area, shape, The resonator stack, the thickness of one or more layers in the resonator stack, the material of one or more layers in the resonator stack.
  • the second additional resonator differs from the second split resonator by one or more of the following: the resonator stack structure; one or more layers in the resonator stack structure thickness; material of one or more layers in the stacked structure of the resonator.
  • the series split resonator group is composed of a first split resonator and a second split resonator; a first additional resonator is connected in parallel with the first split resonator, and the first split resonator is connected in parallel.
  • the input power of the resonator is between (1-a1)/a2 ⁇ P1 and a1 ⁇ (1-a3) ⁇ P1/a2/a3, where: a1 and a3 are 0.8 to 1, and a2 is 0 to 1 , P1 represents the power of the first split resonator.
  • a multiplexer includes the acoustic wave filter of the present invention.
  • a communication device comprising the acoustic wave filter of the present invention.
  • the present invention improves nonlinearity by connecting one or more additional resonators in parallel on at least one of the split resonators in the series split structure, and from the perspective of power average distribution, the area and impedance of the parallel small resonators are improved. A specific analysis is carried out to ensure a better nonlinear improvement effect.
  • Figure 1 is a schematic circuit diagram of a series split of resonators in a common filter topology.
  • Fig. 2 is the device schematic diagram of two series-connected resonators obtained by existing series splitting
  • Fig. 3 is the partial device schematic diagram of the acoustic wave filter of the first embodiment of the present invention.
  • Fig. 4 is the partial device schematic diagram of the acoustic wave filter of the second embodiment of the present invention.
  • Fig. 5 is the partial device schematic diagram of the acoustic wave filter of the third embodiment of the present invention.
  • 6A and 6B are respectively schematic diagrams of cross-sectional comparison of devices of the first split resonator and the first additional resonator of the acoustic wave filter according to the embodiment of the present invention
  • Fig. 7 is the partial device schematic diagram of the acoustic wave filter of the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a partial device of an acoustic wave filter according to a fifth embodiment of the present invention
  • FIG. 9 is a nonlinear analysis diagram of a series splitting method in the prior art
  • FIG. 10 is a nonlinear analysis diagram in the technical solution of the embodiment of the present invention.
  • the existing first split resonator A and the second split resonator B in a series relationship obtained by splitting in series 001 represents the lower electrode, 002 represents the piezoelectric layer, and 003 represents the upper electrode .
  • the first split resonator A and the second split resonator B have the same area and the same shape. The exact same shape and area have great restrictions on the layout, which will result in waste of layout area and extension of part of the wiring, so the cost of the chip will increase and the performance will deteriorate to a certain extent.
  • the acoustic wave filter includes a plurality of piezoelectric acoustic wave resonators, and includes at least one group of series split resonators, and the first split resonator in the series split resonator group is connected in parallel There are one or more first additional resonators.
  • first additional resonators when the number of the first additional resonators is multiple, these first additional resonators may be connected in series, in parallel, or in combination.
  • the definition of mixed connection includes both series connection and parallel connection.
  • the first additional resonator and the first split resonator may be different from one or more of the following: a resonator stack structure; one or more layers in the resonator stack structure thickness; material of one or more layers in a resonator stack.
  • the resonator stack structure refers to the distribution in the horizontal and vertical directions of a multi-layer structure such as a plurality of metal layers, piezoelectric layers, and non-metal layers constituting the resonator.
  • FIG. 3 is a schematic diagram of a partial device of the acoustic wave filter according to the first embodiment of the present invention, and its basic structure is a first split resonator A and a second split resonator B split in series.
  • the first split resonator A has a first additional resonator C connected in parallel.
  • This embodiment adjusts the amplitude and phase of the signal on the large resonator by connecting a small first additional resonator in parallel with the large resonator of one of the two resonators obtained by series splitting, thereby adjusting the signal amplitude and phase on the large resonator.
  • the amplitude and phase of the nonlinear components generated on the resonator ensure a better nonlinear improvement effect.
  • the number of the first additional resonators may be two or more, and these first additional resonators may be flexibly connected in series, parallel, or mixed connections. It can be understood that the first additional resonator C in FIG. 3 can be further split, and can be split into a first additional resonator C1 and a first additional resonator C2 in series as shown in FIG. 4 , or as shown in FIG. 5 . A parallel split is used to split into first additional resonators C3 and C4. When the number of the first additional resonators is two or more, these first additional resonators may also be directly in a mixed form, which can be flexibly designed by those skilled in the art, and details are not described here.
  • the first additional resonator differs from the first split resonator by one or more of the following: the resonator stack structure; the thickness of one or more layers in the resonator stack structure; the resonator stack One or more layers of material in a structure.
  • the first split resonator adopts a common lamination structure, while the first additional resonator adopts a special lamination structure with local detail design, and the lamination structures of the two are different.
  • the thickness of one or more layers in the first additional resonator and the first split resonator stack is not uniform.
  • the cross-sectional view of the first split resonator is shown in FIG.
  • FIG. 6A and the cross-sectional view of the first additional resonator is shown in FIG. 6B. Comparing the two, it can be seen that the lower electrode 001, the piezoelectric layer 002 and the upper electrode are The thickness of 003 is not the same.
  • aluminum nitride is used for the piezoelectric layer in the laminated structure of the first split resonator, and doped aluminum nitride is used for the piezoelectric layer in the laminated structure of the first additional resonator, and the materials of the two are different.
  • one or more second additional resonators are connected in parallel on the second split resonator, and at least one first additional resonator differs from at least one second additional resonator by one or more of the following: Area, shape, resonator stack, thickness of one or more layers in the resonator stack, material of one or more layers in the resonator stack.
  • Area, shape, resonator stack, thickness of one or more layers in the resonator stack, material of one or more layers in the resonator stack For example, as shown in FIG. 7 , the first additional resonator C is connected in parallel with the first split resonator A, the second additional resonator D is connected in parallel with the second split resonator B, and the first additional resonator C is connected with the second additional resonator in parallel.
  • the areas of the resonators are not the same.
  • a method for improving nonlinear performance of an acoustic wave filter wherein the acoustic wave filter includes a plurality of piezoelectric acoustic wave resonators, and includes at least one group of series-split resonator groups, the method includes: splitting into series The first split resonator in the resonator group is connected in parallel with one or more first additional resonators.
  • the first additional resonators when the number of the first additional resonators is multiple, the first additional resonators may be connected in series, in parallel or in a mixed connection.
  • the definition of mixed connection includes both series connection and parallel connection.
  • the first additional resonator differs from the first split resonator by one or more of the following: a resonator stack structure; one of the resonator stack structures The thickness of a layer or layers; the material of one or more layers in a resonator stack.
  • a plurality of first additional resonators are connected in parallel; one or more first split resonators in the series split resonator group are connected in parallel
  • the method further includes: adjusting the layered structure, the thickness of the layered structure and the material of the layered structure of the first additional resonator.
  • the related parameters of the overall split resonator A0 obtained after adjustment and the second split resonator B of the original basis may not necessarily be exactly the same (the same as those of the first split resonator A and the second split resonator B in FIG. 2 .
  • the case where the two split resonators B have the same parameters is different).
  • the method is further added to the series split resonator group.
  • One or more second additional resonators are connected in parallel on the second split resonator in the sub-resonator group, and at least one first additional resonator differs from at least one second additional resonator by one or more of the following: area , shape, resonator stack, thickness of one or more layers in the resonator stack, material of one or more layers in the resonator stack.
  • the second additional resonator differs from the second split resonator by one or more of the following: a resonator stack structure; The thickness of one or more layers; the material of one or more layers in a stack of resonators.
  • Fig. 9 shows the situation when the first additional resonator in parallel is not added in the prior art, in which Res1 and Res3 are the original two large resonators split in series (ie, the first split resonator in series relationship) resonator and second split resonator).
  • Res1 and Res3 are the original two large resonators split in series (ie, the first split resonator in series relationship) resonator and second split resonator).
  • FIG. 10 is a nonlinear analysis after adding a first additional resonator (ie, Res2) in parallel with the first split resonator according to an embodiment of the present invention.
  • Res2 a first additional resonator
  • the input power of Res1 is P1
  • the output power is a1 ⁇ P1
  • the input power of Res3 is a1 ⁇ P1+a2 ⁇ P2
  • the output power is a3 ⁇ (a2 ⁇ P2+a1 ⁇ P1).
  • the present invention improves nonlinearity by connecting one or more small additional resonators in parallel on at least one of the split resonators in the series split structure, and from the perspective of power average distribution, the parallel small resonance
  • the area and impedance of the device are specifically analyzed to ensure a better nonlinear improvement effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种声波滤波器、多工器以及通信设备,有助于改善非线性性能。该声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,该串联拆分谐振器组至少包含第一拆分谐振器和第二拆分谐振器,所述第一拆分谐振器上并联有一个或多个第一附加谐振器。

Description

声波滤波器、多工器以及通信设备 技术领域
本发明涉及滤波器技术领域,特别地涉及一种声波滤波器、多工器以及通信设备。
背景技术
滤波器中的谐振器在射频信号输入的时候会产生非线性成分,非线性成分对导致通信系统性能恶化。现有技术中,通过谐振器的非线性拆分会使射频信号分别在两个拆分谐振器的上下电极通过,产生的非线性成分幅度相同且相位相反,因此可以消除非线性成分。其中串联拆分是一种常见方式。图1是根据现有技术中的声波滤波器的一种结构的示意图。该滤波器10中,输入端131和输出端132之间有电感121、122以及多个谐振器(通常称作串联谐振器)101~104,各串联谐振器的连接点与接地端之间的多个支路(通常称作并联支路)上分别设置有谐振器111~113(通常称作并联谐振器),以及电感123~125。作为举例,其中的谐振器102可以拆分为两个串联的谐振器102a和102b,同理,谐振器113可以拆分为两个串联的113a和113b。
但是,实际情况中,信号通过串联拆分谐振器的第一个谐振器时,信号的功率和幅度会降低,因此导致在两个串联拆分谐振器上的产生的非线性成分的幅度会有不同,两个串联拆分谐振器相位也无法完全反相,所以改善非线性的效果会变差。
发明内容
有鉴于此,本发明提供了一种声波滤波器、多工器以及通信设备,有助于改善非线性性能。
本发明提供如下技术方案:
一种声波滤波器,所述声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,该串联拆分谐振器组至少包含第一拆分谐振器和第二拆分谐振器,所述第一拆分谐振器上并联有一个或多个第一附加谐振器。
可选地,所述多个第一附加谐振器为串联、并联或者混联。
可选地,所述第一附加谐振器与所述第一拆分谐振器存在以下一项或多项的不同:谐振器层叠结构;所述谐振器层叠结构中的一层或多层的厚度;所述谐振器层叠结构中的一层或者多层的材料。
可选地,所述第二拆分谐振器上并联有一个或多个第二附加谐振器,至少一个所述第一附加谐振器与至少一个所述第二附加谐振器存在以下一项或多项的不同:面积、形状、谐振器层叠结构、所述谐振器层叠结构中的一层或多层的厚度、所述谐振器层叠结构中的一层或多层的材料。
可选地,所述第二附加谐振器与所述第二拆分谐振器存在以下一项或多项的不同:所述谐振器层叠结构;所述谐振器层叠结构中的一层或多层的厚度;谐振器的层叠结构中的一层或者多层的材料。
可选地,所述串联拆分谐振器组由第一拆分谐振器和第二拆分谐振器构成;所述第一拆分谐振器上并联有一个第一附加谐振器,该第一附加谐振器的输入功率介于(1-a1)/a2×P1和a1×(1-a3)×P1/a2/a3之间,其中:a1和a3取值0.8~1,a2取值0~1,P1表示第一拆分谐振器的功率。
一种改善声波滤波器非线性性能的方法,所述声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,包括:向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器。
可选地,所述多个第一附加谐振器为串联、并联或者混联。
可选地,所述第一附加谐振器与所述第一拆分谐振器存在以下一项或多项的不同:谐振器层叠结构;所述谐振器层叠结构中的一层或多层的厚度;所述谐振器层叠结构中的一层或多层的材料。
可选地,向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还包括:调整所述第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料,在所述第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料与所述第一拆分谐振器的层叠结构、层叠结构的厚度和层叠结构的材料相同的情况下,将所述第一附加谐振器与所述第一拆分谐振器融合成1个整体谐振器。
可选地,向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还包括:向所述串联拆分谐振器组中的第二拆分谐振器上并联一个或多个第二附加谐振器,至少一个所述第一附加谐振器与至少一个所述第二附加谐振器存在以下一项或多项的不同:面积、形状、谐振器层叠结构、所述谐振器层叠结构中的一层或多层的厚度、所述谐振器层叠结构中的一层或多层的材料。
可选地,所述第二附加谐振器与所述第二拆分谐振器存在以下一项或多项的不同:所述谐振器层叠结构;所述谐振器层叠结构中的一层或多层的厚度;所述谐振器的层叠结构中的一层或者多层的材料。
可选地,所述串联拆分谐振器组由第一拆分谐振器和第二拆分谐振器构成;向所述第一拆分谐振器上并联一个第一附加谐振器,该第一附加谐振器的输入功率介于(1-a1)/a2×P1和a1×(1-a3)×P1/a2/a3之间,其中:a1和a3取值0.8~1,a2取值0~1,P1表示第一拆分谐振器的功率。
一种多工器,包含本发明所述的声波滤波器。
一种通信设备,包含本发明所述的声波滤波器。
本发明通过在串联拆分结构的其中至少一个拆分谐振器上,并联一个或者多个附加谐振器来改善非线性,并从功率平均分布的角度,对并联的小的谐振器的面积和阻抗进行具体分析,来保证有较好的非线性改善效果。
附图说明
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1是普通滤波器拓扑结构中谐振器的串联拆分的电路示意图。
图2是现有的串联拆分得到的两个串联关系的谐振器的器件示意图;
图3是本发明第一实施例声波滤波器的局部器件示意图;
图4是本发明第二实施例声波滤波器的局部器件示意图;
图5是本发明第三实施例声波滤波器的局部器件示意图;
图6A和图6B分别是本发明实施例的声波滤波器的第一拆分谐振器与第一附加谐振器的器件剖面对比示意图;
图7是本发明第四实施例声波滤波器的局部器件示意图;
图8是本发明第五实施例声波滤波器的局部器件示意图;图9是关于现有技术中的串联拆分方式的非线性分析图;
图10是本发明实施例的技术方案中的非线性分析图。
具体实施方式
为使本领域技术人员更好地理解本发明,先将发明原理做详细阐述。如图2所示,现有的串联拆分得到的两个串联关系的第一拆分谐振器A和第二拆分谐振器B,001表示下电极,002表示压电层,003表示上电极。第一拆分谐振器A和第二拆分谐振器B二者面积相同,形状也完全相同。形状和面积完全相同对版图有较大的限制,会造成版图面积的浪费和部分走线的延长,所以使芯片成本增加且性能会有一定的恶化。图2中箭头表示第一拆分谐振器A和第二拆分谐振器B产生的非线性成分反相。如背 景技术描述的,实际情况下第一拆分谐振器A和第二拆分谐振器B的非线性成分的幅度会有不同,无法理想地抵消。
本发明实施方式的声波滤波器,声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,串联拆分谐振器组中的第一拆分谐振器上并联有一个或多个第一附加谐振器。
在本发明实施例的声波滤波器中,当第一附加谐振器的数量为多个时,这些第一附加谐振器可以为串联、并联或者混联。混联的定义即既包括串联连接也包括并联连接。
在本发明实施例的声波滤波器中,第一附加谐振器与第一拆分谐振器可以存在以下一项或多项的不同:谐振器层叠结构;谐振器层叠结构中的一层或多层的厚度;谐振器层叠结构中的一层或者多层的材料。其中,谐振器层叠结构是指构成谐振器的多个金属层、压电层和非金属层等多层结构在水平和垂直方向上的分布。
具体地,图3本发明第一实施例声波滤波器的局部器件示意图,其基础结构为串联拆分的第一拆分谐振器A和第二拆分谐振器B。该实施例与现有技术(参考图2)的区别在于第一拆分谐振器A并联了一个第一附加谐振器C。该实施例通过在串联拆分得到的两个谐振器中之一的大谐振器上并联一个小的第一附加谐振器,以此来调节大谐振器上的信号幅度和相位,以此来调节谐振器上产生的非线性成分的幅度和相位,保证有较好的非线改善效果。
第一附加谐振器的数量可以为2个或者2个以上,并且这些第一附加谐振器可以是串联、并联或者混联等方式,灵活地连接。可以理解为图3中的第一附加谐振器C可以进一步拆分,可以如图4所示采用串联拆分成第一附加谐振器C1和第一附加谐振器C2,也可以如图5所示采用并联拆分成第一附加谐振器C3和C4。当第一附加谐振器的数量为2个以上时,这些第一附加谐振器直接还可以为混联形式,本领域技术人员可灵活设计, 此处不赘述。
本发明实施方式中,第一附加谐振器与第一拆分谐振器存在以下一项或多项的不同:谐振器层叠结构;谐振器层叠结构中的一层或多层的厚度;谐振器层叠结构中的一层或者多层的材料。例如:第一拆分谐振器采用普通层叠结构,而第一附加谐振器采用具有局部细节设计的特殊层叠结构,二者的层叠结构不同。又例如,第一附加谐振器与第一拆分谐振器层叠结构中的一层或多层的厚度不一致。在本实施例中,第一拆分谐振器的剖面图如图6A所示,第一附加谐振器的剖面图如图6B所示,二者对比可知下电极001、压电层002和上电极003的厚度均不相同。再例如:第一拆分谐振器的层叠结构中的压电层采用氮化铝,而第一附加谐振器的层叠结构中的压电层采用掺杂氮化铝,二者的材料不同。
本发明实施方式中,第二拆分谐振器上并联有一个或多个第二附加谐振器,至少一个第一附加谐振器与至少一个第二附加谐振器存在以下一项或者多项的不同:面积、形状、谐振器层叠结构、谐振器层叠结构中的一层或多层的厚度、谐振器层叠结构中的一层或多层的材料。例如,如图7所示,第一拆分谐振器A并联了第一附加谐振器C,第二拆分谐振器B并联了第二附加谐振器D,第一附加谐振器C与第二附加谐振器的面积并不相同。
本发明实施方式的改善声波滤波器非线性性能的方法,其中,声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,该方法包括:向串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器。
在本发明实施例的改善声波滤波器非线性性能的方法,当第一附加谐振器的数量为多个时,这些第一附加谐振器可以为串联、并联或者混联。混联的定义即既包括串联连接也包括并联连接。
在本发明实施例的改善声波滤波器非线性性能的方法,第一附加谐振器与第一拆分谐振器存在以下一项或多项的不同:谐振器层叠结构;谐振器层叠结构中的一层或多层的厚度;谐振器层叠结构中的一层或多层的材料。
在本发明另一实施方式的改善声波滤波器非线性性能的方法中,多个第一附加谐振器为并联;向串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还包括:调整第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料,在第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料与第一拆分谐振器的层叠结构、层叠结构的厚度和层叠结构的材料相同的情况下,将第一附加谐振器与第一拆分谐振器融合成1个整体谐振器。即如图8所示,调整后得到的整体拆分谐振器A0与原有基础的第二拆分谐振器B的相关参数可以不必完全相同(和图2中第一拆分谐振器A和第二拆分谐振器B具有相同参数的情况有区别)。
在本发明实施方式的改善声波滤波器非线性性能的方法中,向串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还向串联拆分谐振器组中的第二拆分谐振器上并联一个或多个第二附加谐振器,至少一个第一附加谐振器与至少一个第二附加谐振器存在以下一项或多项的不同:面积、形状、谐振器层叠结构、谐振器层叠结构中的一层或多层的厚度、谐振器层叠结构中的一层或多层的材料。
在本发明实施方式的改善声波滤波器非线性性能的方法中,第二附加谐振器与第二拆分谐振器存在以下一项或多项的不同:谐振器层叠结构;谐振器层叠结构中的一层或多层的厚度;谐振器的层叠结构中的一层或者多层的材料。
图9中表示现有技术中不添加并联的第一附加谐振器的时候的情况,其中Res1和Res3均为原有的串联拆分的两个大谐振器(即串联关系的第 一拆分谐振器和第二拆分谐振器)。当一个信号幅度为P的信号输入Res1中,输出为a1×P,其中a1是一个系数,表明经过Res1后信号强度的剩余比例。此信号再经过Res3后,输出为a3×a1×P,其中a3为经过Res3后信号强度的剩余比例。由图9可以看出,经过Res1和经过Res3的信号强度是不同的,因此产生的非线性成分也是不同的,难以通过反相来消除。
图10是本发明实施例的添加了与第一拆分谐振器并联的第一附加谐振器(即Res2)后的非线性分析。当采用图中的结构,由于部分功率从P2从Res2经过,因此Res1的输入功率为P1,输出的功率为a1×P1,Res3的输入功率为a1×P1+a2×P2,输出功率为a3×(a2×P2+a1×P1)。
因此当保证Res1和Res3的输入功率相等时,P1=a1×P1+a2×P2,此时经过换算得到P2=(1-a1)/a2×P1;当保证Res1和Res3的输出功率相等时,a1×P1=a3×(a2×P2+a1×P1),此时经换算P2=a1×(1-a3)/a2/a3。取P2介于(1-a1)/a2×P1和a1×(1-a3)×P1/a2/a3之间。
其中a1和a3取值0.8~1,最好0.9~1;a2取值0~1,最好0.3~0.6;其中P1/P2=Z2/Z1,其中Z2和Z1分别为Res2和Res1的输入阻抗,当Res1和Res2频率相等时,阻抗比反比与面积比,也就是P1/P2=S1/S2,其中S1和S2分别为Res1和Res2的面积。
当满足上述P2介于(1-a1)/a2×P1和P2=a1×(1-a3)/a2/a3之间的条件时,Res1和Res3产生的非线性能够更好的被抵消,因此滤波器的非线性性能会更好。
综上,本发明通过在串联拆分结构的其中至少一个拆分谐振器上,并联一个或者多个小的附加谐振器来改善非线性,并从功率平均分布的角度,对并联的小的谐振器的面积和阻抗进行具体分析,来保证有较好的非线性改善效果。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (15)

  1. 一种声波滤波器,所述声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,该串联拆分谐振器组至少包含第一拆分谐振器和第二拆分谐振器,其特征在于,
    所述第一拆分谐振器上并联有一个或多个第一附加谐振器。
  2. 根据权利要求1所述的声波滤波器,其特征在于,所述多个第一附加谐振器为串联、并联或者混联。
  3. 根据权利要求1或2所述的声波滤波器,其特征在于,所述第一附加谐振器与所述第一拆分谐振器存在以下一项或多项的不同:
    谐振器层叠结构;
    所述谐振器层叠结构中的一层或多层的厚度;
    所述谐振器层叠结构中的一层或者多层的材料。
  4. 根据权利要求1所述的声波滤波器,其特征在于,所述第二拆分谐振器上并联有一个或多个第二附加谐振器,至少一个所述第一附加谐振器与至少一个所述第二附加谐振器存在以下一项或多项的不同:
    面积、形状、谐振器层叠结构、所述谐振器层叠结构中的一层或多层的厚度、所述谐振器层叠结构中的一层或多层的材料。
  5. 根据权利要求4所述的声波滤波器,其特征在于,所述第二附加谐振器与所述第二拆分谐振器存在以下一项或多项的不同:
    所述谐振器层叠结构;
    所述谐振器层叠结构中的一层或多层的厚度;
    谐振器的层叠结构中的一层或者多层的材料。
  6. 根据权利要求1所述的声波滤波器,其特征在于,
    所述串联拆分谐振器组由第一拆分谐振器和第二拆分谐振器构成;
    所述第一拆分谐振器上并联有一个第一附加谐振器,该第一附加谐振器的输入功率介于(1-a1)/a2×P1和a1×(1-a3)×P1/a2/a3之间,其中:a1和a3取值0.8~1,a2取值0~1,P1表示第一拆分谐振器的功率。
  7. 一种改善声波滤波器非线性性能的方法,所述声波滤波器包含多个压电声波谐振器,并且其中包含至少1组串联拆分谐振器组,其特征在于,包括:
    向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器。
  8. 根据权利要求7所述的方法,其特征在于,所述多个第一附加谐振器为串联、并联或者混联。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一附加谐振器与所述第一拆分谐振器存在以下一项或多项的不同:
    谐振器层叠结构;
    所述谐振器层叠结构中的一层或多层的厚度;
    所述谐振器层叠结构中的一层或多层的材料。
  10. 根据权利要求7所述的方法,其特征在于,
    向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还包括:
    调整所述第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料,在所述第一附加谐振器的层叠结构、层叠结构的厚度和层叠结构材料与所述第一拆分谐振器的层叠结构、层叠结构的厚度和层叠结构的材料相同的情况下,将所述第一附加谐振器与所述第一拆分谐振器融合成1个整体谐振器。
  11. 根据权利要求7所述的方法,其特征在于,向所述串联拆分谐振器组中的第一拆分谐振器并联一个或多个第一附加谐振器的步骤之后,还 包括:
    向所述串联拆分谐振器组中的第二拆分谐振器上并联一个或多个第二附加谐振器,至少一个所述第一附加谐振器与至少一个所述第二附加谐振器存在以下一项或多项的不同:
    面积、形状、谐振器层叠结构、所述谐振器层叠结构中的一层或多层的厚度、所述谐振器层叠结构中的一层或多层的材料。
  12. 根据权利要求11所述的声波滤波器,其特征在于,所述第二附加谐振器与所述第二拆分谐振器存在以下一项或多项的不同:
    所述谐振器层叠结构;
    所述谐振器层叠结构中的一层或多层的厚度;
    所述谐振器的层叠结构中的一层或者多层的材料。
  13. 根据权利要求7所述的方法,其特征在于,
    所述串联拆分谐振器组由第一拆分谐振器和第二拆分谐振器构成;
    向所述第一拆分谐振器上并联一个第一附加谐振器,该第一附加谐振器的输入功率介于(1-a1)/a2×P1和a1×(1-a3)×P1/a2/a3之间,其中:a1和a3取值0.8~1,a2取值0~1,P1表示第一拆分谐振器的功率。
  14. 一种多工器,其特征在于,包含权利要求1至6中任一项所述的声波滤波器。
  15. 一种通信设备,其特征在于,包含权利要求1至6中任一项所述的声波滤波器。
PCT/CN2021/136150 2020-12-08 2021-12-07 声波滤波器、多工器以及通信设备 WO2022121904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011422683.1 2020-12-08
CN202011422683.1A CN112787622B (zh) 2020-12-08 2020-12-08 声波滤波器、多工器以及通信设备

Publications (1)

Publication Number Publication Date
WO2022121904A1 true WO2022121904A1 (zh) 2022-06-16

Family

ID=75750824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136150 WO2022121904A1 (zh) 2020-12-08 2021-12-07 声波滤波器、多工器以及通信设备

Country Status (2)

Country Link
CN (1) CN112787622B (zh)
WO (1) WO2022121904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117013986A (zh) * 2022-11-30 2023-11-07 北京芯溪半导体科技有限公司 一种滤波器、双工器、多工器和通信设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787622B (zh) * 2020-12-08 2022-03-15 诺思(天津)微系统有限责任公司 声波滤波器、多工器以及通信设备
CN117097297B (zh) * 2022-11-20 2024-04-05 北京芯溪半导体科技有限公司 一种滤波器、双工器、多工器和通信设备
CN117559953A (zh) * 2023-02-15 2024-02-13 北京芯溪半导体科技有限公司 滤波器设计方法、装置及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936344A (zh) * 2018-12-29 2019-06-25 天津大学 一种拆分结构谐振器
US20190305746A1 (en) * 2016-12-26 2019-10-03 Murata Manufacturing Co., Ltd. Surface acoustic wave device and surface acoustic wave filter
CN110995195A (zh) * 2019-11-15 2020-04-10 天津大学 滤波器
CN111600571A (zh) * 2020-01-03 2020-08-28 诺思(天津)微系统有限责任公司 一种滤波器、信号处理设备及制造所述滤波器的方法
CN112787622A (zh) * 2020-12-08 2021-05-11 诺思(天津)微系统有限责任公司 声波滤波器、多工器以及通信设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707828B2 (en) * 2018-05-04 2020-07-07 Samsung Electro-Mechanics Co., Ltd. Filter including bulk acoustic wave resonator
CN109818593B (zh) * 2018-12-25 2023-10-03 天津大学 一种阻抗比值不同的拆分式谐振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190305746A1 (en) * 2016-12-26 2019-10-03 Murata Manufacturing Co., Ltd. Surface acoustic wave device and surface acoustic wave filter
CN109936344A (zh) * 2018-12-29 2019-06-25 天津大学 一种拆分结构谐振器
CN110995195A (zh) * 2019-11-15 2020-04-10 天津大学 滤波器
CN111600571A (zh) * 2020-01-03 2020-08-28 诺思(天津)微系统有限责任公司 一种滤波器、信号处理设备及制造所述滤波器的方法
CN112787622A (zh) * 2020-12-08 2021-05-11 诺思(天津)微系统有限责任公司 声波滤波器、多工器以及通信设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117013986A (zh) * 2022-11-30 2023-11-07 北京芯溪半导体科技有限公司 一种滤波器、双工器、多工器和通信设备
CN117013986B (zh) * 2022-11-30 2024-01-26 北京芯溪半导体科技有限公司 一种滤波器、双工器、多工器和通信设备

Also Published As

Publication number Publication date
CN112787622A (zh) 2021-05-11
CN112787622B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2022121904A1 (zh) 声波滤波器、多工器以及通信设备
US11374551B2 (en) Wide-band acoustically coupled thin-film BAW filter
US10541672B2 (en) Acoustic wave element, duplexer, and communication module
US7057478B2 (en) Component functioning with bulk acoustic waves having coupled resonators
CN101154934B (zh) 声谐振器
US7548140B2 (en) Bulk acoustic wave (BAW) filter having reduced second harmonic generation and method of reducing second harmonic generation in a BAW filter
US7414495B2 (en) Coupled FBAR filter
US10298207B2 (en) Filter with improved linearity
CN107493088A (zh) 声波器件
US7683735B2 (en) Balanced acoustic wave filter
US20100301968A1 (en) Power amplifier filter for radio-frequency signals
WO2006039996A1 (de) Mit akustischen volumenwellen arbeitende schaltung und bauelement mit der schaltung
KR20080020967A (ko) 탄성파 디바이스, 필터 및 분파기
US10110197B2 (en) Bulk acoustic wave resonator and filter
JP2017103654A (ja) 弾性波フィルタ、デュプレクサ、及びモジュール
WO2021068671A1 (zh) 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN105391417A (zh) 梯型滤波器以及双工器
US20220200570A1 (en) Acoustic wave filter
CN106416068B (zh) 弹性波装置
US7489210B2 (en) Surface acoustic wave filter and transmitter-receiver
De Paco et al. Equivalent circuit modeling of coupled resonator filters
US11848661B2 (en) Filter and multiplexer
Corrales et al. Design of three-pole bulk acoustic wave coupled resonator filters
Perea-Robles et al. Synthesis and design of filters and multiplexers with acoustic transversal topology
US11121700B2 (en) Filter and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902609

Country of ref document: EP

Kind code of ref document: A1