WO2022121896A1 - 可折叠电子设备 - Google Patents

可折叠电子设备 Download PDF

Info

Publication number
WO2022121896A1
WO2022121896A1 PCT/CN2021/136102 CN2021136102W WO2022121896A1 WO 2022121896 A1 WO2022121896 A1 WO 2022121896A1 CN 2021136102 W CN2021136102 W CN 2021136102W WO 2022121896 A1 WO2022121896 A1 WO 2022121896A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
parasitic
device body
antenna radiator
Prior art date
Application number
PCT/CN2021/136102
Other languages
English (en)
French (fr)
Inventor
章心怡
汤杭飞
薛亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022121896A1 publication Critical patent/WO2022121896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel

Definitions

  • the present application relates to the field of antennas, and in particular, to a foldable electronic device.
  • Two common working states of a foldable smartphone are the unfolded state and the folded state.
  • the open state is the same as the current common candy bar smartphone or tablet.
  • the folded state whether it is folded up and down or left and right, the floor area of the foldable smartphone in the folded state is reduced by half compared to the unfolded state, and the environment around each antenna may change, which makes it easy to make the distance longer.
  • the ECC envelope Correlation Coefficient, Envelope Correlation Coefficient, envelope correlation coefficient
  • ECC envelope Correlation Coefficient, Envelope Correlation Coefficient, envelope correlation coefficient
  • the embodiment of the present application provides a foldable electronic device, which overcomes the pain points and difficulties in the antenna design of the existing foldable electronic device, and can make a pair of antennas in a folded state, even between the two antennas of the pair of antennas.
  • the two antennas of the pair have a low envelope correlation coefficient (ie ECC), and can still work normally independently, and the two antennas of the pair have high antennas Efficiency, i.e. improving the antenna performance of the foldable electronic device in the folded state.
  • An embodiment of the present application provides a foldable electronic device, including a first device body and a second device body, the first device body and the second device body are connected by a rotating shaft, the first device body has a first conductive frame, a second device body is The device body has a second conductive frame, and the foldable electronic device further includes:
  • a first antenna and a second antenna the first antenna includes a first antenna radiator, the second antenna includes a second antenna radiator, the first antenna radiator and the second antenna radiator are located in the first device body, wherein the first antenna
  • the working frequency band of the second antenna is the same or partially overlaps with the working frequency band of the second antenna;
  • the first parasitic radiator is located in the second device body, and the first parasitic radiator is grounded through the second device body, wherein,
  • the first antenna radiator and the second antenna radiator are formed by the first conductive frame of the first device body, and the first parasitic radiator is formed by the second conductive frame of the second device body; at least part of the first antenna radiator and the second conductive frame of the second device body are formed; At least a part of the two antenna radiators extends in a direction parallel to the rotation axis.
  • the pair of antennas of the first antenna and the second antenna can be folded in the foldable electronic device.
  • the two antennas of the pair of antennas have a low envelope correlation coefficient (ie ECC), and can still work independently and normally,
  • both antennas of the pair of antennas have high antenna efficiency, that is, the antenna performance of the foldable electronic device in a folded state is improved.
  • the foldable electronic device further includes a second parasitic radiator disposed corresponding to the position of the second antenna radiator, the second parasitic radiator is located on the second device body, and is formed by the second parasitic radiator of the second device body.
  • a conductive frame is formed; when the foldable electronic device is in the folded state, in the thickness direction of the foldable electronic device, at least a part of the second antenna radiator and the correspondingly arranged second parasitic radiator overlap, so that the second antenna radiator overlaps coupled with the second parasitic radiator;
  • the second parasitic radiator includes a first end and a second end, and has a second parasitic ground point located between the first end and the second end and proximate the second end, the second parasitic ground point passing through the second device body Grounding, the first end is closer to the rotating shaft than the second end; the floor of the second device body has one side edge away from the rotating shaft and another side edge intersecting with the side edge, and at least part of the second parasitic radiator is perpendicular to the The direction of the rotating shaft extends to be located outside the other side edge of the floor of the second device body, and is disposed opposite to the other side edge of the floor board, and the at least part of the second parasitic radiator is connected to the second antenna radiator The at least part of the vertical arrangement.
  • the lower envelope correlation between the two antennas of the pair of antennas can be further improved coefficients, and the antenna efficiencies of the two antennas.
  • the first antenna radiator includes a first end and a second end, and has a first feed point between the first end and the second end, and a first feed point and the second end The first ground point between the two ends, the second end is closer to the second antenna radiator than the first end; the first ground point of the first antenna radiator is grounded through the first device body; the second antenna radiator includes the first end and a second end, having a second feed point between the first end and the second end, and a second ground point between the second feed point and the first end, the second end being opposite to the first end The end is closer to the first antenna radiator; the second ground point of the second antenna radiator is grounded through the first device body.
  • the first antenna radiator is L-shaped and is located at a first corner of the first conductive frame of the first device body, and includes intersecting first straight line segments and second straight line segments, wherein the first straight line segment is The line segment extends in a direction parallel to the rotation axis;
  • the second antenna radiator is L-shaped and is located at the second corner of the first conductive frame of the first device body, and includes intersecting first straight line segments and second straight line segments, wherein, The first straight line segment extends in a direction parallel to the rotation axis.
  • the first parasitic radiator includes a first end and a second end and has a first parasitic ground point located between the first end and the second end, the first parasitic ground point being grounded through the second device body , when the foldable electronic device is in the folded state, the second end of the first parasitic radiator is closer to the second antenna radiator than the first end; at least part of the first parasitic radiator extends in a direction parallel to the rotation axis to It is located outside the edge of the side of the floor of the second device body that is away from the rotating shaft.
  • the first parasitic radiator is L-shaped and is located at a first corner of the second conductive frame of the second device body, in the thickness direction of the foldable electronic device when the foldable electronic device is in a folded state , the first corner of the second conductive frame overlaps with the first corner of the first conductive frame, and the first parasitic radiator includes intersecting first straight line segments and second straight line segments, wherein the first straight line segment is along a direction parallel to the rotation axis extend.
  • Embodiments of the present application further provide a foldable electronic device, including a first device body and a second device body, the first device body and the second device body are connected by a rotating shaft, and the first device body has a first conductive frame, The second device body has a second conductive frame, and the foldable electronic device further includes:
  • a first antenna and a second antenna the first antenna includes a first antenna radiator, the second antenna includes a second antenna radiator, the first antenna radiator and the second antenna radiator are located in the first device body, wherein the first antenna
  • the working frequency band of the second antenna is the same or partially overlaps with the working frequency band of the second antenna;
  • the parasitic radiator is located in the second device body, and the parasitic radiator is grounded through the second device body, wherein,
  • the first antenna radiator and the second antenna radiator are formed by the first conductive frame of the first device body, and the parasitic radiator is formed by the second conductive frame of the second device body; at least part of the first antenna radiator and the second antenna At least part of the radiator extends in a direction parallel to the rotation axis, so as to be respectively located outside the edge of one side of the floor of the first device main body away from the rotation axis, when the foldable electronic device is in a folded state, in the thickness direction of the foldable electronic device , at least a part of the second antenna radiator and the parasitic radiator overlap, so that the second antenna radiator and the parasitic radiator are coupled.
  • the pair of antennas of the first antenna and the second antenna can be made when the foldable electronic device is in the folded state.
  • the two antennas of the pair of antennas have a low envelope correlation coefficient (ie ECC), and can still work independently and normally, and the Both of the two antennas have high antenna efficiency, that is, the antenna performance of the foldable electronic device in a folded state is improved.
  • the first antenna radiator includes a first end and a second end, and has a first feed point between the first end and the second end, and a first feed point and the second end The first ground point between the two ends, the second end is closer to the second antenna radiator than the first end; the first ground point of the first antenna radiator is grounded through the main body of the first device; the first antenna radiator is L-shaped and It is located at the first corner of the first conductive frame of the first device body, and includes a first straight line segment and a second straight line segment that intersect, wherein the first straight line segment extends in a direction parallel to the rotation axis; the second antenna radiator includes a first end and a second end having a second feed point located between the first end and the second end, and a second ground point located between the second feed point and the first end, the second ends being opposite The first end is closer to the first antenna radiator; the second grounding point of the second antenna radiator is grounded through the first device body; the second antenna radiator is L-shaped and is located on the first side of the
  • the parasitic radiator includes a first end and a second end and has a parasitic ground point located between and proximate the second end, the parasitic ground point passing through the second device body Grounding, the first end is closer to the rotating shaft than the second end; the floor of the second device body has one side edge away from the rotating shaft and another side edge intersecting with the side edge, and at least part of the parasitic radiator is along a direction perpendicular to the rotating shaft. The direction extends so as to be located outside the further side edge of the floor of the second device body, and the at least part of the parasitic radiator is perpendicular to the at least part of the second antenna radiator.
  • the parasitic radiator is L-shaped and is located at the second corner of the second conductive frame of the second device body.
  • the first The second corners of the two conductive frames overlap with the second corners of the first conductive frame, and the parasitic radiator includes intersecting first straight line segments and second straight line segments, wherein the first straight line segment extends in a direction perpendicular to the rotation axis; The location is on the second straight line segment.
  • the first end of the parasitic radiator when the foldable electronic device is in a folded state, in a direction perpendicular to the rotation axis, the first end of the parasitic radiator is closer to the rotation axis than the first end of the second antenna radiator, and in a direction parallel to the rotation axis In the direction of , the second end of the second antenna radiator is closer to the first antenna radiator than the second end of the parasitic radiator.
  • Embodiments of the present application further provide a foldable electronic device, including a first device body and a second device body, the first device body and the second device body are connected by a rotating shaft, and the first device body has a first conductive frame, The second device body has a second conductive frame, and the foldable electronic device further includes:
  • the first antenna includes a first antenna radiator
  • the second antenna includes a second antenna radiator
  • the first antenna radiator is located on the first device body
  • the second antenna radiator is located on the second device body
  • the first parasitic radiator is located in the main body of the second device, and the first parasitic radiator is grounded through the main body of the second device; wherein,
  • the first antenna radiator is formed by the first conductive frame of the first device body, the second antenna radiator and the first parasitic radiator are formed by the second conductive frame of the second device body; at least part of the first antenna radiator is parallel to the Extend in the direction of the rotation axis, so as to be located outside the edge of the side of the floor of the first device body away from the rotation axis, and at least part of the second antenna radiator extends in a direction parallel to the rotation axis, so as to be located on the floor of the second device body away from the rotation axis Outside one side edge of the foldable electronic device, when the foldable electronic device is in the folded state, in the thickness direction of the foldable electronic device, at least a part of the first antenna radiator and the first parasitic radiator overlap, so that the first antenna radiator and the first parasitic radiator overlap.
  • the first parasitic radiator is coupled, and the first antenna radiator and the second antenna radiator do not overlap.
  • An embodiment of the present application provides a foldable electronic device, including a device body and an antenna system, the device body includes a first device body and a second device body, and the first device body and the second device body are rotatably connected by a rotating shaft, so as to enabling a foldable electronic device to switch between an unfolded state and a folded state;
  • the antenna system includes a first antenna and a second antenna, the first antenna includes a strip-shaped first antenna radiator, the second antenna includes a strip-shaped second antenna radiator, and the first antenna radiator is located on a virtual line. side, the second antenna radiator is located on the other side of the virtual line opposite to one side, wherein the virtual line is perpendicular to the axis direction of the rotating shaft;
  • the antenna system further includes a strip-shaped first parasitic radiator disposed corresponding to the position of the first antenna radiator and/or a strip-shaped second parasitic radiator disposed corresponding to the position of the second antenna radiator,
  • the first parasitic radiator and the first antenna radiator are respectively located in different device bodies in the first device body and the second device body, and the second parasitic radiator and the second antenna radiator are respectively located in the first device body and the second device body In different equipment bodies in the device, the first parasitic radiator and the second parasitic radiator are respectively connected to the floor of the equipment body where they are located, wherein,
  • At least part of the first antenna radiator and at least part of the second antenna radiator are respectively located outside the side edge of the floor of the device body where they are located away from the rotation axis, and are respectively arranged opposite to the side edge of the floor of the device body where they are located.
  • a first parasitic radiator that is arranged corresponding to the first antenna radiator in the folded state and at least partially overlapped, and/or is arranged to correspond to the second antenna radiator in the folded state and at least partially
  • the overlapping second parasitic radiators can make the pair of the first antenna and the second antenna, when the foldable electronic device is in the folded state, even if the two antennas of the pair of antennas are closely spaced apart.
  • the two antennas of the pair of antennas have a low envelope correlation coefficient (ie ECC), and can still work normally independently, and the two antennas of the pair of antennas have high antenna efficiency, that is, the foldable electronics are improved.
  • Antenna performance of the device in the folded state by arranging a first parasitic radiator that is arranged corresponding to the first antenna radiator in the folded state and at least partially overlapped, and/or is arranged to correspond to the second antenna radiator in the folded state and at least partially
  • the overlapping second parasitic radiators can make the pair of the first antenna and the second antenna, when the foldable
  • the virtual line is the center line of the device body or is parallel to the center line of the device body, and the center line of the device body is perpendicular to the axial direction of the rotating shaft.
  • the floor of the first device body and the floor of the second device body are symmetrical about the rotation axis, and the structures and dimensions of the floor of the first device body and the floor of the second device body are the same.
  • the floor of the first device body and the floor of the second device body are rectangular plate-like structures.
  • the floor of the first device body and the floor of the second device body may be formed by a bottom plate of a middle frame of a foldable electronic device (ie, a foldable smartphone).
  • the first antenna radiator includes a first end and a second end and has a first feed point between the first end and the second end or at the first end, and the first feed point The first ground point between the second end and the second end or at the second end, the second end is closer to the virtual line than the first end; the first ground point of the first antenna radiator is connected to the device main body where the first antenna radiator is located. floor;
  • the second antenna radiator includes a first end and a second end and has a second feed point between the first end and the second end or at the second end, and a second feed point between the second feed point and the first end or at the second end
  • the second ground point of the first end is closer to the virtual line than the first end; the second ground point of the second antenna radiator is connected to the floor of the device body where the second antenna radiator is located.
  • the first ground point is closer to the virtual line than the first feed point, and the second end of the first antenna radiator is closer to the first end virtual line;
  • the second feeding point is closer to the imaginary line than the second grounding point, and the second end of the second antenna radiator is closer to the imaginary line than the first end.
  • the first antenna radiator is in the shape of a straight bar; or, the first antenna radiator is in the shape of an L, and includes a first straight line segment and a second line perpendicularly connected to one end of the first straight line segment away from the imaginary line
  • the straight line segment, the free end of the first straight line segment and the free end of the second straight line segment are respectively the second end and the first end of the first antenna radiator, wherein the first straight line segment and the main body of the device where the first antenna radiator is located are respectively.
  • the side edges of the floor are arranged opposite to each other, and the second straight line segment is located outside the other side edge of the floor of the device body where the first antenna radiator is located that intersects the side edge, and is arranged opposite to the other side edge of the floor;
  • the second antenna radiator is in the shape of a straight bar; or, the second antenna radiator is in the shape of an L, and includes a first straight line segment and a second straight line segment vertically connected to one end of the first straight line segment away from the imaginary line , the free end of the first straight line segment and the free end of the second straight line segment are the second end and the first end of the second antenna radiator, respectively, wherein the first straight line segment and the second antenna radiator are located on the floor of the main body of the device.
  • the side edges are opposite to each other, and the second straight line segment is located outside the other side edge of the floor of the device body where the second antenna radiator is located that intersects the side edge, and is opposite to the other side edge of the floor.
  • the first antenna radiator when the first antenna radiator is in a straight shape, the first antenna radiator extends in a straight line along the side edge of the floor of the device body where the first antenna radiator is located.
  • the first antenna radiator when the first antenna radiator is in the shape of a straight bar, the first antenna radiator extends along an axis direction parallel to the rotating shaft.
  • the first antenna radiator when the first antenna radiator is L-shaped, the first antenna radiator is also located near a pair of corners away from the rotation axis of the floor of the device body where the first antenna radiator is located, and along the The diagonal corner edges extend.
  • the first straight line segment when the first antenna radiator is L-shaped, the first straight line segment extends along the axis direction parallel to the rotating shaft, and the second straight line segment extends along the axis direction perpendicular to the rotating shaft.
  • the second antenna radiator when the second antenna radiator is in a straight shape, the second antenna radiator extends in a straight line along the side edge of the floor of the device body where the second antenna radiator is located.
  • the second antenna radiator when the second antenna radiator is in the shape of a straight bar, the second antenna radiator extends along an axis direction parallel to the rotating shaft.
  • the second antenna radiator when the second antenna radiator is L-shaped, the second antenna radiator is also located near a pair of corners away from the rotation axis of the floor of the device body where the second antenna radiator is located, and along the The diagonal corner edges extend.
  • the first straight line segment when the second antenna radiator is L-shaped, the first straight line segment extends along an axis direction parallel to the rotating shaft, and the second straight line segment extends along an axis direction perpendicular to the rotating shaft.
  • both the first antenna radiator and the second antenna radiator are in the shape of a straight bar, the extension direction of the first antenna radiator and the extension direction of the second antenna radiator are on the same straight line or mutually parallel;
  • the extending direction of the first straight line segment of the first antenna radiator and the extending direction of the first straight line segment of the second antenna radiator are on the same straight line or are parallel to each other, and the extending direction of the second straight segment of the first antenna radiator and the extending direction of the second straight segment of the second antenna radiator are parallel to each other;
  • the extending direction of the first antenna radiator and the extending direction of the first straight segment of the second antenna radiator are on the same straight line or parallel to each other ;
  • the extension direction of the first straight line segment of the first antenna radiator and the extension direction of the second antenna radiator are on the same straight line or parallel to each other .
  • the first parasitic radiator includes a first end and a second end, and has a first parasitic ground point between the first end and the second end or at the first end or the second end, the first parasitic ground The point is connected to the floor of the device body where the first parasitic radiator is located, and the second end is closer to the virtual line than the first end; at least part of the first parasitic radiator is located at the edge of the side of the floor of the device body where it is located away from the rotation axis outside, and is disposed opposite to the side edge of the floor of the main body of the equipment where it is located.
  • the second end of the first parasitic radiator in a direction parallel to the axis of the rotating shaft, is closer to the imaginary line than the first end.
  • the first parasitic radiator has a straight bar shape
  • the first parasitic radiator is L-shaped and includes a first straight line segment and a second straight line segment perpendicularly connected to one end of the first straight line segment away from the imaginary line, the free end of the first straight line segment and the second straight line segment
  • the free ends are respectively the second end and the first end of the first parasitic radiator, wherein the first straight line segment is disposed opposite to the side edge of the floor of the device body where the first parasitic radiator is located, and the second straight line segment is located at the first parasitic radiator.
  • the radiator is located outside the other side edge of the floor of the device main body that intersects with the side edge, and is disposed opposite to the other side edge of the floor.
  • the first parasitic radiator when the first parasitic radiator is in a straight shape, the first parasitic radiator extends in a straight line along the side edge of the floor of the device body where the first parasitic radiator is located.
  • the first parasitic radiator when the first parasitic radiator is in the shape of a straight strip, the first parasitic radiator extends along an axis direction parallel to the rotating shaft.
  • the first parasitic radiator when the first parasitic radiator is L-shaped, the first parasitic radiator is also located near a pair of corners away from the rotation axis of the floor of the device body where the first parasitic radiator is located, and along the The diagonal corner edges extend.
  • the first straight line segment when the first parasitic radiator is L-shaped, the first straight line segment extends along the axis direction parallel to the rotation shaft, and the second straight line segment extends along the axis direction perpendicular to the rotation axis.
  • both the first antenna radiator and the first parasitic radiator are in the shape of a straight bar, the extension direction of the first antenna radiator and the extension direction of the first parasitic radiator are parallel to each other;
  • both the first antenna radiator and the first parasitic radiator are L-shaped, the extending direction of the first straight line segment of the first antenna radiator and the extending direction of the first straight line segment of the first parasitic radiator are parallel to each other, and the first The extending direction of the second straight line segment of the antenna radiator and the extending direction of the second straight line segment of the first parasitic radiator are parallel to each other;
  • the extension direction of the first antenna radiator and the extension direction of the first straight segment of the first parasitic radiator are parallel to each other;
  • the extension direction of the first straight line segment of the first antenna radiator and the extension direction of the first parasitic radiator are parallel to each other.
  • the first parasitic ground point when the first parasitic ground point is located between the first end and the second end of the first parasitic radiator, the first parasitic ground point is located in the middle of the first parasitic radiator or close to the first end or the second end of the first parasitic radiator. the position of the two ends;
  • the first end of the first parasitic radiator is close to the first end of the first antenna radiator, and the second end of the first parasitic radiator is close to the first end of the first antenna radiator.
  • the at least part of the first parasitic radiator and the at least part of the first antenna radiator are parallel to each other.
  • the first parasitic radiator when the first parasitic radiator includes a first straight line segment and a second straight line segment, and the first parasitic grounding point is located in the middle of the first parasitic radiator, the first parasitic grounding point is located on the first straight line segment;
  • the first parasitic radiator includes a first straight line segment and a second straight line segment, and the first parasitic ground point is located at a position close to the first end of the first parasitic radiator, the first parasitic ground point is located on the second straight line segment;
  • the first parasitic radiator includes a first straight line segment and a second straight line segment, and the first parasitic ground point is located close to the second end of the first parasitic radiator, the first parasitic ground point is located on the first straight line segment.
  • both the first feed point and the first ground point are located on the first straight line segment;
  • the first ground point is located proximate the second end of the first antenna radiator
  • the first ground point is located in the middle of the first straight line segment of the first antenna radiator.
  • the second parasitic radiator includes a first end and a second end, and has a second parasitic ground point located between the first end and the second end and proximate the second end or at the second end,
  • the second parasitic grounding point is connected to the floor of the device body where the second parasitic radiator is located, and the first end is closer to the rotation axis than the second end;
  • the floor of the device body where the second parasitic radiator is located has an edge on one side away from the rotation axis and On the other side edge that intersects with the side edge, at least part of the second parasitic radiator is located outside the other side edge of the floor of the equipment main body where it is located, and is opposite to the other side edge of the floor board, and the first The at least part of the two parasitic radiators is arranged perpendicular to the at least part of the second antenna radiator.
  • the first end of the second parasitic radiator in a direction parallel to the imaginary line, is closer to the axis of rotation than the second end;
  • the second parasitic radiator has a straight bar shape
  • the second parasitic radiator is L-shaped and includes a first straight line segment and a second straight line segment vertically connected to one end of the first straight line segment away from the rotation axis, a free end of the first straight line segment and a free end of the second straight line segment
  • the ends are respectively the first end and the second end of the second parasitic radiator, wherein the first straight segment is arranged opposite to the edge of the other side of the floor of the main body of the device where the first parasitic radiator is located, and the second straight segment is located at the first
  • the parasitic radiator is located outside the side edge of the floor of the device main body, and is arranged opposite to the side edge of the floor.
  • the second parasitic radiator when the second parasitic radiator is in a straight shape, the second parasitic radiator extends in a straight line along the other edge of the floor of the device body where the second parasitic radiator is located.
  • the second parasitic radiator when the second parasitic radiator is in the shape of a straight strip, the second parasitic radiator extends along an axis direction perpendicular to the rotating shaft.
  • the second parasitic radiator when the second parasitic radiator is L-shaped, the second parasitic radiator is also located near a pair of corners away from the rotation axis of the floor of the device body where the second parasitic radiator is located, and along the The diagonal corner edges extend.
  • the first straight line segment extends along the axis direction perpendicular to the rotating shaft, and the second straight line segment extends along the axis direction parallel to the rotating shaft.
  • the extension direction of the first straight line segment of the second antenna radiator and the second straight line segment of the second parasitic radiator are parallel to each other, and the extension direction of the second straight line segment of the second antenna radiator and the extension direction of the first straight line segment of the second parasitic radiator are parallel to each other;
  • the extending direction of the second antenna radiator and the extending direction of the second straight segment of the second parasitic radiator are parallel to each other, and the second antenna radiates
  • the extension direction of the body and the extension direction of the first straight line segment of the second parasitic radiator are perpendicular to each other;
  • the extension direction of the first straight line segment of the second antenna radiator and the extension direction of the second parasitic radiator are perpendicular to each other, and the second antenna radiates The extending direction of the second straight segment of the body and the extending direction of the second parasitic radiator are parallel to each other.
  • the second parasitic radiator when the second parasitic radiator includes a first straight line segment and a second straight line segment, the second parasitic grounding point is located on the second straight line segment, and the length of the first straight line segment is greater than the length of the second straight line segment.
  • the first end of the second parasitic radiator when the foldable electronic device is in the folded state, in a direction parallel to the virtual line, the first end of the second parasitic radiator is closer to the rotation axis than the first end of the second antenna radiator, at In a direction parallel to the axis of the rotating shaft, the second end of the second antenna radiator is closer to the virtual line than the second end of the second parasitic radiator.
  • the second ground point of the second antenna radiator is located close to the first end of the second antenna radiator, and the second feed point is located close to the second end of the second antenna radiator;
  • the second antenna radiator when the second antenna radiator includes the first straight line segment and the second straight line segment, the second feed point is located on the first straight line segment, and the second ground point is located on the second straight line segment.
  • the working frequency band of the first antenna and the working frequency band of the second antenna are the same or partially overlap;
  • the extending direction of the at least part of the first antenna radiator and the extending direction of the at least part of the second antenna radiator are located on the same straight line or parallel to each other;
  • the at least part of the first antenna radiator and the at least part of the second antenna radiator respectively extend along an axis direction parallel to the rotation shaft.
  • the frequency range of the working frequency band of the first antenna is 0.7-0.96 GHz
  • the frequency range of the working frequency band of the second antenna is 0.7-0.96 GHz, that is, the working frequency band of the first antenna and the frequency range of the second antenna are The working frequency is low frequency.
  • the first antenna radiator, the second antenna radiator, the first parasitic radiator, and the second parasitic radiator are formed by a conductive frame of the foldable electronic device;
  • the first antenna radiator, the second antenna radiator, the first parasitic radiator, and the second parasitic radiator adopt a patch structure, and the patch structure is attached to the surface of the conductive frame of the foldable electronic device, and is made of conductive material. be made of;
  • the first antenna radiator, the second antenna radiator, the first parasitic radiator, and the second parasitic radiator are transparent antennas embedded in the screen of the foldable electronic device;
  • the first antenna radiator, the second antenna radiator, the first parasitic radiator, and the second parasitic radiator adopt a patch structure, and the patch structure is attached to the back cover of the foldable electronic device and is made of conductive materials .
  • the first antenna radiator and the second antenna radiator are arranged on the first device body, and the first parasitic radiator and/or the second parasitic radiator are arranged on the second device body.
  • the first device body is the device body on the side where the main screen of the foldable electronic device is located
  • the second device body is the device body on the side where the secondary screen of the foldable electronic device is located.
  • FIG. 1a is a schematic structural diagram of the foldable electronic device when it is in an unfolded state
  • Fig. 1b is a schematic structural diagram of the foldable electronic device when it is in a folded state
  • FIG. 2 is a simulation graph of the performance of ECC parameters between the first antenna and the second antenna when the foldable electronic device is in two states: unfolded state and folded state, wherein the operating frequency range of the first antenna and the second antenna is 0.7 GHz ⁇ 0.96GHz;
  • Fig. 3a is a simulation effect diagram of the radiation efficiency and system efficiency of the first antenna when the foldable electronic device is in an unfolded state and a folded state;
  • Fig. 3b is a simulation effect diagram of the radiation efficiency and system efficiency of the second antenna when the foldable electronic device is in an unfolded state and a folded state;
  • Example 4 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Example 1 of the present application in an unfolded state;
  • Example 5 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Example 1 of the present application in an unfolded state
  • FIG. 6 is a schematic structural diagram of the third embodiment of the foldable electronic device according to Example 1 of the present application in an unfolded state;
  • Example 7 is a schematic structural diagram of the fourth embodiment of the foldable electronic device according to Example 1 of the present application in an unfolded state;
  • Example 8 is a schematic structural diagram of the fifth embodiment of the foldable electronic device according to Example 1 of the present application in an unfolded state;
  • FIG. 9 is a schematic structural diagram of the foldable electronic device of the first reference design in an unfolded state
  • 10a is a comparison diagram of the simulation effect of the radiation efficiency and the system efficiency of the first antenna when the foldable electronic device of the first embodiment of the application and the first reference design are in a folded state;
  • 10b is a comparison diagram of the simulation effect of the radiation efficiency and the system efficiency of the first antenna when the foldable electronic device of the second embodiment of the first embodiment of the present application and the first reference design is in a folded state;
  • Fig. 10c is the simulation effect comparison diagram of the radiation efficiency of the first antenna and the system efficiency when the foldable electronic device of the third embodiment of the embodiment 1 of the application and the first reference design is in a folded state;
  • FIGS. 11 a to 11 d are the radiation patterns of the first antenna when the first reference design, the first embodiment, the second embodiment, and the third embodiment of the foldable electronic device of Example 1 of the present application are in a folded state;
  • FIG. 12 is a schematic diagram of a current distribution structure at a position close to the first antenna when the foldable electronic device of the first reference design is in a folded state;
  • FIG. 13a and 13b are schematic diagrams of the current distribution structure at a position close to the first antenna when the foldable electronic device according to the first embodiment of Example 1 of the present application is in a folded state, wherein the viewing angle shown in FIG. 13a is on the main screen side Viewing angle, the viewing angle shown in Figure 13b is the viewing angle on the side of the secondary screen;
  • FIG. 14a and 14b are schematic diagrams of the current distribution structure at a position close to the first antenna when the foldable electronic device according to the second embodiment of Example 1 of the present application is in a folded state, wherein the viewing angle shown in FIG. 14a is on the main screen side Viewing angle, the viewing angle shown in Figure 14b is the viewing angle on the side of the secondary screen;
  • FIG. 15a and 15b are schematic diagrams of the current distribution structure at a position close to the first antenna when the foldable electronic device according to the third embodiment of Example 1 of the present application is in a folded state, wherein the viewing angle shown in FIG. 15a is on the main screen side Viewing angle, the viewing angle shown in Figure 15b is the viewing angle on the side of the secondary screen;
  • 16 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Example 2 of the present application in an unfolded state;
  • FIG. 17 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Example 2 of the application in an unfolded state;
  • FIG. 18 is a schematic structural diagram of the foldable electronic device of the second reference design in an unfolded state
  • 19 is a schematic structural diagram of the foldable electronic device of the third reference design in an unfolded state
  • 20 is a comparison diagram of the simulation effect of the S11 parameter of the second antenna when the foldable electronic device according to the first embodiment of the second embodiment of the present application, the second reference design, and the third reference design is in a folded state;
  • 22 is a comparison diagram of the simulation effect of the radiation efficiency and the system efficiency of the second antenna when the foldable electronic device of the first embodiment of the second embodiment of the application, the second reference design, and the third reference design are in a folded state;
  • Example 23 is a radiation pattern of the second antenna when the foldable electronic device according to the first embodiment of Example 2 of the present application and the second reference design is in a folded state;
  • FIG. 24a and 24b are schematic diagrams of the current distribution structure at a position close to the second antenna when the foldable electronic device according to the first embodiment of Example 2 of the present application is in a folded state, wherein the viewing angle shown in FIG. 24a is on the main screen side The viewing angle, the viewing angle shown in Figure 24b is the viewing angle on the side of the secondary screen;
  • Example 25 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Example 3 of the present application in an unfolded state
  • 26 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Example 3 of the present application in an unfolded state
  • FIG. 27 is a schematic structural diagram of the third embodiment of the foldable electronic device according to Example 3 of the present application in an unfolded state
  • FIG. 28 is a schematic structural diagram of the fourth embodiment of the foldable electronic device according to Example 3 of the application in an unfolded state.
  • 200' Equipment body; 210': First equipment body; 211': Floor; 212': Left edge; 220': Second equipment body; 250': Rotating shaft;
  • 400' first antenna; 410': first antenna radiator; 411': first end; 412': second end; 413': first straight segment; 414': second straight segment; 420': first A feeding point; 430': the first grounding point;
  • 500' the second antenna; 510': the second antenna radiator; 511': the first end; 512': the second end; 513': the first straight segment; 514': the second straight segment; Two feeding points; 530': the second grounding point;
  • 800' the first radio frequency source
  • 810' the second radio frequency source
  • 200 device body; 210: first device body; 211: floor; 212: left edge; 213: upper edge; 214: lower edge; 215: first diagonal corner; 216: second diagonal corner; 220: 221: floor; 222: right edge; 224: lower edge; 225: first diagonal corner; 250: rotating shaft;
  • 400 first antenna; 410: first antenna radiator; 411: first end; 412: second end; 413: first straight line segment; 414: second straight line segment; 420: first feeding point; 430: first ground point;
  • 500 second antenna; 510: second antenna radiator; 511: first end; 512: second end; 513: first straight line segment; 514: second straight line segment; 520: second feed point; 530: the second ground point;
  • 600 the first parasitic radiator; 610: the first parasitic ground point; 620: the first straight line segment; 630: the second straight line segment; 640: the first end; 650: the second end;
  • 800 the first radio frequency source
  • 810 the second radio frequency source
  • 200A device body; 210A: first device body; 211A: floor; 220A: second device body; 221A: floor; 250A: rotating shaft;
  • 400A first antenna; 410A: first antenna radiator; 411A: first end; 412A: second end; 420A: first feeding point; 430A: first grounding point;
  • 500A second antenna; 510A: second antenna radiator; 511A: first end; 512A: second end; 520A: second feeding point; 530A: second grounding point;
  • 600A first parasitic radiator; 610A: first parasitic ground point; 620A: first straight line segment; 630A: second straight line segment; 640A: first end; 650A: second end;
  • 800A the first radio frequency source
  • 810A the second radio frequency source
  • 200B device body; 210B: first device body; 211B: floor; 220B: second device body; 221B: floor; 250B: rotating shaft;
  • 400B first antenna; 410B: first antenna radiator; 411B: first end; 412B: second end; 420B: first feeding point; 430B: first grounding point;
  • 500B the second antenna
  • 510B the second antenna radiator
  • 511B the first end
  • 512B the second end
  • 520B the second feeding point
  • 530B the second grounding point
  • 600B first parasitic radiator; 610B: first parasitic ground point; 620B: first straight line segment; 630B: second straight line segment; 640B: first end; 650B: second end;
  • 800B the first radio frequency source
  • 810B the second radio frequency source
  • 210C the main body of the first device; 211C: the floor; 212C: the left edge; 250C: the rotating shaft;
  • 500C the second antenna
  • 510C the second antenna radiator
  • 410D first antenna radiator; 411D: first end; 412D: second end; 413D: first straight line segment; 414D: second straight line segment; 420D: first feeding point; 430D: first grounding point;
  • 200E device body; 210E: first device body; 211E: floor; 212E: left edge; 220E: second device body; 221E: floor; 222E: right edge; 223E: upper edge; 226E: second pair angle; 250E: axis of rotation;
  • 400E first antenna; 410E: first antenna radiator; 411E: first end; 412E: second end; 413E: first straight line segment; 414E: second straight line segment; 420E: first feeding point; 430E: first ground point;
  • 500E second antenna; 510E: second antenna radiator; 511E: first end; 512E: second end; 513E: first straight line segment; 514E: second straight line segment; 520E: second feeding point; 530E: the second ground point;
  • 700E the second parasitic radiator
  • 710E the second parasitic ground point
  • 720E the first straight line segment
  • 730E the second straight line segment
  • 740E the first end
  • 750E the second end
  • 800E the first radio frequency source
  • 810E the second radio frequency source
  • 200F device main body; 210F: first device main body; 211F: floor; 212F: left edge; 220F: second device main body; 250F: rotating shaft;
  • 400F the first antenna
  • 410F the first antenna radiator
  • 500F the second antenna
  • 510F the second antenna radiator
  • 700F the second parasitic radiator
  • 200G device main body; 210G: first device main body; 220G: second device main body; 221G: floor; 250G: rotating shaft;
  • 400G the first antenna
  • 410G the first antenna radiator
  • 500G second antenna
  • 510G second antenna radiator
  • 600G the first parasitic radiator
  • 700G second parasitic radiator
  • 600H the first parasitic radiator
  • 700H the second parasitic radiator
  • 200I device main body; 210I: first device main body; 220I: second device main body; 250I: rotating shaft;
  • 600I the first parasitic radiator
  • 700I the second parasitic radiator
  • 210J the first device body
  • 220J the second device body
  • 600J the first parasitic radiator
  • 700J the second parasitic radiator
  • L11 the length of the first straight line segment of the first antenna radiator
  • L12 the length of the second straight line segment of the first antenna radiator
  • L13 the length of the first antenna radiator between the first ground point and the second end
  • L14 the length of the first antenna radiator between the first ground point and the first feed point
  • L2 the length of the second antenna radiator
  • L21 the length of the first straight line segment of the second antenna radiator
  • L22 the length of the second straight line segment of the second antenna radiator
  • L23 the length of the second antenna radiator between the second ground point and the second end
  • L24 the length of the second antenna radiator between the second ground point and the second feed point
  • L25 the length of the second antenna radiator between the second ground point and the first end
  • L31 the length of the first straight line segment of the first parasitic radiator
  • L32 the length of the second straight line segment of the first parasitic radiator
  • L33 the length of the first parasitic radiator between the first parasitic ground point and the second end
  • L34 Length of the first parasitic radiator between the first parasitic ground point and the first end:
  • L41 the length of the first straight segment of the second parasitic radiator
  • L42 the length of the second straight line segment of the second parasitic radiator
  • L43 the length of the second parasitic radiator between the second parasitic ground point and the second end
  • L44 the length of the second parasitic radiator between the second parasitic ground point and the first end
  • d the distance between the second end of the first antenna radiator and the second end of the second antenna radiator
  • 220A' the second equipment main body
  • 221A' the floor
  • 600A' the first parasitic radiator
  • 220B' the second equipment main body
  • 221B' the floor
  • 700B' the second parasitic radiator
  • 220C' the second device body
  • 222C' the right edge
  • 250C' the shaft
  • 700C' The second parasitic radiator.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • electrical connection can be understood as the physical contact and electrical conduction between components; it can also be understood as the connection between different components in the circuit structure through a printed circuit board (printed circuit board, PCB) is a form of connection in the form of physical lines that can transmit electrical signals such as copper foil or wires.
  • a "communication connection” may refer to the transmission of electrical signals, including wireless communication connections and wired communication connections. The wireless communication connection does not require a physical medium, and does not belong to the connection relationship that defines the product structure.
  • FIG. 1a is a schematic structural diagram of the foldable electronic device 100' in an unfolded state.
  • FIG. 1b is a schematic structural diagram of the foldable electronic device 100' in a folded state.
  • a foldable electronic device 100' includes a device body 200' and an antenna system 300'.
  • the device main body 200' includes a first device main body 210' and a second device main body 220', and the first device main body 210' and the second device main body 220' are rotatably connected by a rotating shaft 250', so that the foldable electronic device 100 'The ability to switch between expanded and collapsed states.
  • the antenna system 300' includes a first antenna 400' and a second antenna 500'.
  • the first antenna 400' includes a first antenna radiator 410'.
  • the first antenna radiator 410' includes a first end 411' and a second end 412', and has a first feed point 420', a first ground point 430', and the first feed point 420' is located on the first antenna radiator
  • the first end 411' of 410' and the second end 412' of the first antenna radiator 410' are connected to the first radio frequency source 800' to receive the radio frequency signal output by the first radio frequency source 800'.
  • the grounding point 430' is located between the first feeding point 420' and the second end 412' of the first antenna radiator 410', and is connected to the floor 211' of the first device body 210'.
  • the first antenna radiator 410' includes a first straight line segment 413' and a second straight line segment 414' vertically connected to an end of the first straight line segment 413' that is far from the virtual line O1.
  • the free end of the first straight section 413' and the free end of the second straight section 414' are the second end 412' and the first end 411' of the first antenna radiator 410', respectively.
  • the first feeding point 420' and the first grounding point 430' are located on the first straight section 413'.
  • the first straight section 413' is located outside the side edge (ie, the left side edge 212') of the floor 211' of the first device main body 210' which is away from the rotating shaft 250'.
  • the second antenna 500' includes a second antenna radiator 510'.
  • the second antenna radiator 510' is also located on the side edge (ie, the left edge 212') of the floor 211' of the first device body 210' away from the rotating shaft 250'. outside.
  • the second antenna radiator 510' includes a first end 511' and a second end 512', and has a second feed point 520' and a second ground point 530'.
  • the second feeding point 520' is located between the first end 511' of the second antenna radiator 510' and the second end 512' of the second antenna radiator 510', and is connected to the second radio frequency source 810' for receiving The radio frequency signal output by the second radio frequency source 810'.
  • the second ground point 530' is located between the second feed point 520' and the first end 511' of the second antenna radiator 510', and is connected to the floor 211' of the first device body 210'.
  • the second antenna radiator 510' includes a first straight line segment 513' and a second straight line segment 514' vertically connected to one end of the first straight line segment 513' away from the imaginary line O1.
  • the free end of the first straight section 513' and the free end of the second straight section 514' are the second end 512' and the first end 511' of the second antenna radiator 510', respectively.
  • the imaginary line O1 is perpendicular to the direction of the axis O2 of the rotating shaft 250'.
  • the foldable electronic device 100' provided in FIG. 1a and FIG. 1b is simulated and analyzed by using the full-wave electromagnetic simulation software HFSS, and the effect curves shown in FIG. 2 to FIG. 3b are obtained.
  • FIG. 2 is a simulation graph of the performance of ECC parameters between the first antenna and the second antenna when the foldable electronic device is in the unfolded state and the folded state.
  • the operating frequency range of the antenna is 0.7GHz to 0.96GHz.
  • FIG. 3 a is a simulation effect diagram of the radiation efficiency and system efficiency of the first antenna when the foldable electronic device is in two states, the unfolded state and the folded state.
  • Fig. 3b is a simulation effect diagram of the radiation efficiency and system efficiency of the second antenna when the foldable electronic device is in an unfolded state and a folded state;
  • the ECC between the first antenna and the second antenna in the folded state is 0.406
  • the ECC in the unfolded state is 0.406.
  • the ECC between the first antenna and the second antenna is 0.034. That is to say, the ECC between the first antenna and the second antenna in the folded state is increased to a certain extent compared to the ECC between the first antenna and the second antenna in the unfolded state (that is, the ECC is degraded to a certain extent) ). It can be seen from this that when the foldable electronic device is in the folded state, the ECC of the pair of co-channel antennas is degraded compared to the unfolded state.
  • the radiation efficiency of the second antenna in the folded state is -3.9dB, the system efficiency is -4dB, and the radiation efficiency of the second antenna in the unfolded state is -2dB, and the system efficiency is -2.5dB. It can be seen that, compared with the unfolded state, in the folded state, when the operating frequency is 0.76 GHz, the radiation efficiency of the second antenna decreases by 1.9 dB, and the system efficiency of the second antenna decreases by 1.5 dB.
  • Embodiment 1 Embodiment 2 and Embodiment 3 of the present application further improve the envelope correlation coefficient between the first antenna and the second antenna and the efficiency of the first antenna and the second antenna.
  • FIG. 4 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Embodiment 1 of the present application in an unfolded state.
  • Embodiment 1 of the present application provides a foldable electronic device 100 , which includes a device body 200 and an antenna system 300 .
  • the foldable electronic device 100 is exemplified by a foldable smartphone.
  • the foldable electronic device 100 can also be other foldable electronic devices such as a foldable tablet computer or a foldable smart watch, which is not described here.
  • the scope of protection of the application has a limiting effect.
  • the device main body 200 includes a first device main body 210 and a second device main body 220, and the first device main body 210 and the second device main body 220 are rotatably connected by a rotating shaft 250, so that the foldable electronic device 100 can be unfolded and folded. switch between states.
  • the first device body 210 is the device body on the side where the main screen of the foldable electronic device 100 is located
  • the second device body 220 is the device body on the side where the secondary screen of the foldable electronic device 100 is located.
  • the first device body 210 may also be the device body on the side where the secondary screen of the foldable electronic device 100 is located, and the second device body 220 may be the device on the side where the main screen of the foldable electronic device 100 is located.
  • the direction of the axis O2 of the rotating shaft 250 is parallel to the longitudinal direction L of the foldable electronic device 100 , that is, the foldable electronic device 100 is a foldable electronic device 100 folded left and right.
  • the direction of the axis O2 of the rotating shaft 250 may also be parallel to the transverse direction T of the foldable electronic device 100, that is, the foldable electronic device 100 is folded up and down.
  • the foldable electronic device 100 described herein does not limit the scope of protection of the present application.
  • the antenna system 300 includes a first antenna 400 and a second antenna 500 .
  • the first antenna 400 includes a bar-shaped first antenna radiator 410 .
  • the second antenna 500 includes a bar-shaped second antenna radiator 510 .
  • the first antenna radiator 410 is located on one side of a virtual line O1 (ie, the lower side of the virtual line O1), and the second antenna radiator 510 is located on the other side of the virtual line O1 opposite to one side (ie, the upper side of the virtual line O1). side).
  • the virtual line O1 is perpendicular to the axis O2 of the rotating shaft 250 .
  • the virtual line O1 is the center line of the device body 200 or is parallel to the center line of the device body 200 , and the center line of the device body 200 is perpendicular to the direction of the axis O2 of the rotating shaft 250 .
  • the floor 211 of the first device body and the floor 221 of the second device body are symmetrical about the rotation axis 250 , and the structures and dimensions of the floor 211 of the first device body and the floor 221 of the second device body are the same.
  • the floor 211 of the first device body and the floor 221 of the second device body are rectangular plate-like structures. It should be noted that those skilled in the art can understand that the floor 211 of the first device body and the floor 221 of the second device body may also be structures of other suitable shapes.
  • the floor 211 of the first device body and the floor 221 of the second device body may be formed by the bottom plate of the middle frame of the foldable electronic device 100 (ie, a foldable smartphone).
  • the floor 211 of the first device body and the floor 221 of the second device body may also be formed of other metal parts, such as printed circuit boards.
  • the antenna system 300 further includes a strip-shaped first parasitic radiator 600 disposed corresponding to the position of the first antenna radiator 410 .
  • the first parasitic radiator 600 and the first antenna radiator 410 are respectively located in different device bodies in the first device body 210 and the second device body 220, and the first parasitic radiator 600 is electrically connected to the ground of the device body where it is located, specifically , the first parasitic radiator 600 is electrically connected to the floor of the device body where it is located.
  • the floor is a type of ground, and in this embodiment, the floor is exemplified by the floor.
  • the first antenna radiator 410 and the second antenna radiator 510 are provided on the first device body 210
  • the first parasitic radiator 600 is provided on the second device body 220 .
  • the first parasitic radiator 600 is connected to the floor 221 of the second device body.
  • the first antenna radiator 410 and the second antenna radiator 510 may also be disposed on different device bodies, for example, the first antenna radiator 410
  • the second antenna radiator 510 and the first parasitic radiator 600 are arranged on the second device body 220, or the first antenna radiator 410 is arranged on the second device body 220, and the second antenna radiator
  • the 510 and the first parasitic radiator 600 are disposed on the first device body 210, which does not limit the scope of protection of the present application.
  • At least part of the first antenna radiator 410 and at least part of the second antenna radiator 510 are respectively located outside the edge of the side of the floor of the device body where they are located away from the rotating shaft 250, and are respectively located at The side edges of the floor of the apparatus body are oppositely disposed.
  • at least part of the first antenna radiator 410 is located outside the side edge of the floor 211 of the first device main body away from the rotating shaft 250 , and is disposed opposite to the side edge of the floor 211 of the first device main body.
  • At least part of the first antenna radiator 410 is located outside the left edge 212 of the floor 211 of the first device body, and is disposed opposite to the left edge 212 of the floor 211 of the first device body.
  • At least part of the second antenna radiator 510 is located outside the side edge of the floor 211 of the first device body away from the rotation axis 250 , and is disposed opposite to the side edge of the floor 211 of the first device body. That is, at least part of the second antenna radiator 510 is located outside the left edge 212 of the floor 211 of the first device body, and is disposed opposite to the left edge 212 of the floor 211 of the first device body.
  • the left edge 212 of the floor 211 of the first device body extends along the longitudinal direction L of the foldable electronic device 100 .
  • the first antenna radiator 410 is located on the lower side of the virtual line O1
  • the second antenna radiator 510 is located on the upper side of the virtual line O1.
  • the first antenna radiator 410 When the foldable electronic device 100 is in the folded state, viewed from the thickness direction of the foldable electronic device 100, the first antenna radiator 410 is spaced apart from the correspondingly disposed first parasitic radiator 600, and the first antenna radiator 410 At least part of the antenna overlaps with at least part of the first parasitic radiator 600 , so that the first antenna radiator 410 is coupled with the correspondingly disposed first parasitic radiator 600 .
  • the pair of antennas of the first antenna 400 and the second antenna 500 can be folded in the foldable electronic device 100 In the state, even if the two antennas of the pair of antennas are closely spaced, the two antennas of the pair of antennas have a low envelope correlation coefficient (ie ECC), and can still work independently and normally,
  • the first antenna 400 of the pair of antennas has higher antenna efficiency, that is, the antenna performance of the foldable electronic device 100 in the folded state is improved.
  • the first antenna radiator 410 includes a first end 411 and a second end 412 .
  • the second end 412 of the first antenna radiator 410 is closer to the virtual line O1 than the first end 411 of the first antenna radiator 410 .
  • the first antenna radiator 410 has a first feed point 420 and a first ground point 430 .
  • the first feeding point 420 is located between the first end 411 of the first antenna radiator 410 and the second end 412 of the first antenna radiator 410 , and is connected to the first radio frequency source 800 to receive the output of the first radio frequency source 800 the radio frequency signal.
  • the first ground point 430 is located between the first feed point 420 and the second end 412 of the first antenna radiator 410 .
  • the first ground point 430 of the first antenna radiator 410 is connected to the floor of the device body where the first antenna radiator 410 is located, that is, the first ground point 430 of the first antenna radiator 410 is connected to the floor 211 of the first device body.
  • the first feeding point 420 may also be located at the first end 411 of the first antenna radiator 410; the first grounding point 430 may also be located at the first end 411 of the first antenna radiator 410.
  • At the second end 412 of the first antenna radiator 410 is connected to the floor of the device body where the first antenna radiator 410 is located, that is, the first ground point 430 of the first antenna radiator 410 is connected to the floor 211 of the first device body.
  • the first ground point 430 is closer to the virtual line O1 than the first feeding point 420
  • the second end 412 of the first antenna radiator 410 is closer to the first
  • the first end 411 of the antenna radiator 410 is closer to the imaginary line O1.
  • the first antenna radiator 410 is L-shaped and is located at the first corner of the first conductive frame of the first device body 210 , and the first corner is disposed corresponding to the first diagonal corner 215 of the floor 211 of the first device body 210 , That is, it is located near the first diagonal corner 215 of the floor 211 .
  • the first antenna radiator 410 includes a first straight line segment 413 and a second straight line segment 414 vertically connected to one end of the first straight line segment 413 away from the virtual line O1 .
  • the free end of the first straight segment 413 and the free end of the second straight segment 414 are the second end 412 of the first antenna radiator 410 and the first end 411 of the first antenna radiator 410 , respectively.
  • the first straight section 413 is disposed opposite to the side edge of the floor of the device body where the first antenna radiator 410 is located, that is, the first straight section 413 is disposed opposite to the left edge 212 of the floor 211 of the first device body.
  • the second straight line segment 414 is located outside the other side edge of the floor of the device body where the first antenna radiator 410 is located, which intersects the side edge, and is disposed opposite to the other side edge of the floor. That is, the second straight section 414 is located outside the lower edge 214 of the floor panel 211 of the first device body, and is opposite to the lower edge 214 of the floor panel 211 of the first device body.
  • the first antenna radiator 410 is also located near a pair of corners of the floor of the device body where the first antenna radiator 410 is located away from the rotation axis 250, and extends along the corner edges of the opposite corners of the floor. That is, the first antenna radiator 410 is also located near the first diagonal corner 215 of the floor 211 of the first device body, and extends along the corner edge of the first diagonal corner 215 of the floor 211 of the first device body.
  • first straight section 413 extends in a direction parallel to the axis O2 of the rotating shaft 250
  • second straight section 414 extends in a direction perpendicular to the axis O2 of the rotating shaft 250 . That is, the first straight section 413 extends along the longitudinal direction L of the foldable electronic device 100 , and the second straight section 414 extends along the lateral direction T of the foldable electronic device 100 .
  • the parallel can be roughly parallel, including the case of forming a small included angle (the included angle can be ignored).
  • the direction parallel to the axis O2 of the rotating shaft 250 may have a certain allowable inclination deviation, for example, a deviation within 5°.
  • the first feeding point 420 and the first grounding point 430 are both located on the first straight line segment 413 .
  • the first ground point 430 is located near the second end 412 of the first antenna radiator 410 .
  • the length of the first antenna radiator 410 located between the first ground point 430 and the second end 412 is 7.56 mm
  • the length of the first antenna radiator 410 located between the first ground point 430 and the first end 411 is 7.56 mm
  • the length of the first antenna radiator 410 is 84.94 mm
  • the length of the first antenna radiator 410 located between the first ground point 430 and the first feeding point 420 is 24.7 mm.
  • the length of the first straight section 413 is greater than the length of the second straight section 414 , the length of the first straight section 413 is 65 mm, and the length of the second straight section 414 is 27.5 mm.
  • the length of the first antenna radiator 410 is about 1/4 times the operating wavelength of the first antenna.
  • first feeding point 420 may also be located at the second straight line segment 414, and the first grounding point 430 may also be located at other suitable positions. This does not limit the protection scope of the present application.
  • the second antenna radiator 510 includes a first end 511 and a second end 512 .
  • the second end 512 of the second antenna radiator 510 is closer to the virtual line O1 than the first end 511 of the second antenna radiator 510 .
  • the second antenna radiator 510 has a second feed point 520 and a second ground point 530 .
  • the second feeding point 520 is located between the first end 511 of the second antenna radiator 510 and the second end 512 of the second antenna radiator 510 , and is connected to the second radio frequency source 810 to receive the output of the second radio frequency source 810 the radio frequency signal.
  • the second ground point 530 is located between the second feed point 520 and the first end 511 of the second antenna radiator 510 .
  • the second ground point 530 of the second antenna radiator 510 is connected to the floor of the device body where the second antenna radiator 510 is located, that is, the second ground point 530 of the second antenna radiator 510 is connected to the floor 211 of the first device body.
  • the second feeding point 520 may also be located at the second end 512 of the second antenna radiator 510; the second grounding point 530 may also be located at the second end 512 of the second antenna radiator 510.
  • the second feeding point 520 is closer to the virtual line O1 than the second grounding point 530, and the second end 512 of the second antenna radiator 510 is relatively
  • the first end 511 of the antenna radiator 510 is closer to the imaginary line O1.
  • the second antenna radiator 510 is L-shaped and is located at the second corner of the first conductive frame of the first device body 210 , and the second corner corresponds to the second diagonal corner 216 of the floor 211 of the first device body 210 , That is, it is located near the second diagonal corner 216 of the floor 211 .
  • the second antenna radiator 510 includes a first straight line segment 513 and a second straight line segment 514 vertically connected to one end of the first straight line segment 513 away from the imaginary line O1 .
  • the free end of the first straight segment 513 and the free end of the second straight segment 514 are the second end 512 and the first end 511 of the second antenna radiator 510 , respectively.
  • the first straight section 513 is disposed opposite to the side edge of the floor of the device body where the second antenna radiator 510 is located, that is, the first straight section 513 is disposed opposite to the left edge 212 of the floor 211 of the first device body.
  • the second straight section 514 is located outside the other side edge of the floor of the device body where the second antenna radiator 510 is located, which intersects with the side edge, and is opposite to the other side edge of the floor board. That is to say, the second straight segment 514 is located outside the upper edge 213 of the floor 211 of the first device body, and is disposed opposite to the upper edge 213 of the floor 211 of the first device body.
  • the second antenna radiator 510 is also located near a pair of corners of the floor of the device body where the second antenna radiator 510 is located, away from the rotation axis 250 , and extends along the corner edges of the opposite corners of the floor. That is, the second antenna radiator 510 is also located near the second diagonal corner 216 of the floor 211 of the first device body, and extends along the corner edge of the second diagonal corner 216 of the floor 211 of the first device body.
  • first straight section 513 extends in a direction parallel to the axis O2 of the rotating shaft 250
  • second straight section 514 extends in a direction perpendicular to the axis O2 of the rotating shaft 250 . That is, the first straight section 513 extends along the longitudinal direction L of the foldable electronic device 100 , and the second straight section 514 extends along the lateral direction T of the foldable electronic device 100 .
  • the vertical may be approximately vertical, including the case of a small deviation (the deviation is negligible).
  • the direction perpendicular to the axis O2 of the rotating shaft 250 may have a certain allowable angular deviation, for example, a deviation within 5°.
  • the second ground point 530 of the second antenna radiator 510 is located close to the first end 511 of the second antenna radiator 510
  • the second feed point 520 is located close to the second end 512 of the second antenna radiator 510 at the location.
  • the length of the second antenna radiator 510 located between the second ground point 530 and the second end 512 is 38.09 mm;
  • the length of the second antenna radiator 510 is 27.39 mm.
  • the second feeding point 520 is located on the first straight segment 513
  • the second grounding point 530 is located on the second straight segment 514 .
  • the length of the first linear segment 513 is 30.2 mm
  • the length of the second linear segment 514 is 13.68 mm.
  • the length of the second antenna radiator 510 between the second ground point 530 and the first end 511 is 4.65 mm.
  • the second antenna 500 is a left-handed antenna, wherein the length of the second antenna radiator 510 located between the second ground point 530 and the second end 512 is 1/8 times the operating wavelength of the second antenna ⁇ 1/4 times.
  • the second grounding point 530 may also be located at a suitable position of the first straight line segment 513, and the second feeding point 520 may also be located at other suitable positions position, which does not limit the scope of protection of the present application.
  • the extending direction of the at least part of the first antenna radiator 410 and the extending direction of the at least part of the second antenna radiator 510 are located on the same straight line. And the at least part of the first antenna radiator 410 and the at least part of the second antenna radiator 510 respectively extend in a direction parallel to the axis O2 of the rotating shaft 250 .
  • the extending direction of the at least part of the first antenna radiator 410 and the extending direction of the at least part of the second antenna radiator 510 may also be mutually parallel.
  • the extending direction of the first straight line segment 413 of the first antenna radiator 410 and the extending direction of the first straight line segment of the second antenna radiator 510 are located on the same straight line, and the second straight line segment of the first antenna radiator 410 The extending direction of the straight segment 414 and the extending direction of the second straight segment 514 of the second antenna radiator 510 are parallel to each other.
  • the extending direction of the first straight segment 413 of the first antenna radiator 410 and the extending direction of the first straight segment of the second antenna radiator 510 parallel to each other.
  • the working frequency band of the first antenna 400 and the working frequency band of the second antenna 500 are the same or partially overlap.
  • the frequency range of the working frequency band of the first antenna 400 is 0.7-0.96 GHz
  • the frequency range of the working frequency band of the second antenna 500 is 0.7-0.96 GHz, that is, the working frequency band of the first antenna 400 and the second antenna
  • the working frequency band of 500 is low frequency. It can be understood by those skilled in the art that, in other alternative embodiments, the dimensions, feeding points and grounding points of the first antenna 400 and the second antenna 500 may be designed so that the operating frequency band of the first antenna 400 and the The working frequency band of the second antenna 500 may also be a medium and high frequency.
  • first antenna radiator 410 and the second antenna radiator 510 can also adopt other shapes, not limited to L-shape, for example, The first antenna radiator 410 and/or the second antenna radiator 510 have a straight bar shape.
  • the first antenna radiator 410 when the first antenna radiator 410 is in a straight shape, the first antenna radiator 410 extends in a straight line along the side edge of the floor of the device body where the first antenna radiator 410 is located, that is, the first antenna radiator 410
  • the left edge 212 of the floor 211 of the first device body extends in a straight line, and the first antenna radiator 410 extends in a direction parallel to the axis O2 of the rotating shaft 250 .
  • the second antenna radiator 510 When the second antenna radiator 510 is in a straight shape, the second antenna radiator 510 extends in a straight line along the side edge of the floor of the main body of the device where the second antenna radiator 510 is located, that is, the second antenna radiator 510 extends along the first
  • the left edge 212 of the floor 211 of a device body extends in a straight line, and the second antenna radiator 510 extends in a direction parallel to the axis O2 of the rotating shaft 250 .
  • the extension direction of the first antenna radiator 410 and the extension direction of the second antenna radiator 510 are located at on the same line or parallel to each other.
  • the extending direction of the first antenna radiator 410 and the extending direction of the first straight segment 513 of the second antenna radiator 510 are in the same direction on a straight line or parallel to each other.
  • the extending direction of the first straight segment 413 of the first antenna radiator 410 and the extending direction of the second antenna radiator 510 are located in the same direction on a straight line or parallel to each other.
  • the first parasitic radiator 600 includes a first end 640 and a second end 650 .
  • the second end 650 of the first parasitic radiator 600 is closer to the imaginary line O1 than the first end 640 .
  • the first parasitic radiator 600 has a first parasitic ground point 610 located between the first end 640 of the first parasitic radiator 600 and the second end 650 of the first parasitic radiator 600 .
  • the first parasitic ground point 610 is connected to the floor of the device body where the first parasitic radiator 600 is located, that is, the first parasitic ground point 610 of the first parasitic radiator 600 is connected to the floor 221 of the second device body.
  • the first parasitic grounding point 610 may also be located at the first end 640 of the first parasitic radiator 600 or the second side of the first parasitic radiator 600 end 650.
  • At least part of the first parasitic radiator 600 is located outside the edge of the side of the floor of the device body where it is located away from the rotating shaft 250, and is disposed opposite to the side edge of the floor of the device body where it is located. That is, at least part of the first parasitic radiator 600 is located outside the right edge 222 of the floor 221 of the second device body, and is opposite to the right edge 222 of the floor 221 of the second device body.
  • the right side edge 222 of the floor 221 of the second device body extends along the longitudinal direction L of the foldable electronic device 100 .
  • the first parasitic radiator 600 is located on the lower side of the virtual line O1.
  • the second end 650 of the first parasitic radiator 600 is closer to the virtual line O1 than the first end 640 of the first parasitic radiator 600 .
  • the first parasitic radiator 600 is L-shaped and is located at the first corner of the second conductive frame of the second device body 220 .
  • the first corner of the second conductive frame and the first pair of the floor 221 of the second device body 220 The corners 225 are arranged correspondingly, that is, located near the first diagonal corner 225 of the floor 221 .
  • the first corner of the second conductive frame overlaps with the first corner of the first conductive frame.
  • the first parasitic radiator 600 includes a first straight line segment 620 and a second straight line segment 630 vertically connected to one end of the first straight line segment 620 away from the imaginary line O1 .
  • the free end of the first linear segment 620 and the free end of the second linear segment 630 are the second end 650 and the first end 640 of the first parasitic radiator 600 , respectively.
  • the first straight section 620 is disposed opposite to the side edge of the floor of the equipment main body where the first parasitic radiator 600 is located, that is, the first straight section 620 is disposed opposite to the right edge 222 of the floor 221 of the second equipment main body.
  • the second straight segment 630 is located outside the other side edge of the floor of the device main body where the first parasitic radiator 600 is located, which intersects the side edge, and is disposed opposite to the other side edge of the floor. That is to say, the second straight segment 630 is located outside the lower edge 224 of the floor 221 of the second device body, and is opposite to the lower edge 224 of the floor 221 of the second device body.
  • the first parasitic radiator 600 is also located near a pair of corners of the floor of the device main body where the first parasitic radiator 600 is located, away from the rotation axis 250 , and extends along the corner edges of the opposite corners of the floor. That is, the first parasitic radiator 600 is also located near the first diagonal corner 225 of the floor 221 of the second device body, and extends along the corner edge of the first diagonal corner 225 of the floor 221 of the second device body.
  • first straight section 620 extends in a direction parallel to the axis O2 of the rotating shaft 250
  • second straight section 630 extends in a direction perpendicular to the axis O2 of the rotating shaft 250 . That is, the first straight section 620 extends along the longitudinal direction L of the foldable electronic device 100 , and the second straight section 630 extends along the lateral direction T of the foldable electronic device 100 .
  • the first parasitic ground point 610 is located in the middle of the first parasitic radiator 600 along the length direction of the first parasitic radiator 600 . In this way, the efficiency of the first antenna 400 can be guaranteed, and the envelope correlation coefficient (ie ECC) between the first antenna 400 and the second antenna 500 can also be guaranteed.
  • ECC envelope correlation coefficient
  • the first parasitic grounding point 610 may also be located at other suitable positions of the first parasitic radiator 600 .
  • the efficiency of the first antenna 400 is better, and as the first parasitic ground point 610 is closer to the first end 640 of the first parasitic radiator 600 At the second end 650, the envelope correlation coefficient between the first antenna 400 and the second antenna 500 is lower.
  • the first parasitic ground point 610 is located on the first straight line segment 620 .
  • the length of the first parasitic radiator 600 between the first parasitic ground point 610 and the second end 650 is 37 mm, and the length of the first parasitic radiator 600 between the first parasitic ground point 610 and the first end 640 is 52.4mm.
  • the length of the first straight section 620 is greater than the length of the second straight section 630 .
  • the length of the first straight section 620 is 65 mm, and the length of the second straight section 630 is 27.5 mm.
  • the length of the first parasitic radiator 600 is 1/4 times to 1/2 times the operating wavelength of the first antenna.
  • the extending direction of the at least part of the first parasitic radiator 600 and the extending direction of the at least part of the first antenna radiator 410 are parallel to each other.
  • the extending direction of the first straight line segment 620 of the first antenna radiator 410 and the extending direction of the first straight line segment 620 of the first parasitic radiator 600 are parallel to each other, and the second straight line of the first antenna radiator 410 is parallel to each other.
  • the extending direction of the segment 414 and the extending direction of the second straight segment 630 of the first parasitic radiator 600 are parallel to each other.
  • the first end 640 of the first parasitic radiator 600 is close to the first end 411 of the first antenna radiator 410
  • the second end 650 of the first parasitic radiator 600 Close to the second end 412 of the first antenna radiator 410 .
  • the entire first parasitic radiator 600 substantially overlaps with the first antenna radiator 410 as viewed in the thickness direction of the foldable electronic device 100 .
  • the first parasitic radiator 600 may also adopt other shapes, and is not limited to an L-shape.
  • the first parasitic radiator 600 is Straight bar.
  • the first parasitic radiator 600 when the first parasitic radiator 600 is in a straight shape, the first parasitic radiator 600 extends in a straight line along the side edge of the floor of the device main body where the first parasitic radiator 600 is located. That is, the first parasitic radiator 600 extends in a straight line along the right edge 222 of the floor 221 of the second device body, and the first parasitic radiator 600 extends in a direction parallel to the axis O2 of the rotating shaft 250 .
  • the extension direction of the first antenna radiator 410 and the extension direction of the first parasitic radiator 600 are mutually exclusive. parallel.
  • the first antenna radiator 410 is straight and the first parasitic radiator 600 is L-shaped, the extending direction of the first antenna radiator 410 and the extending direction of the first straight segment of the first parasitic radiator 600 are parallel to each other.
  • the first antenna radiator 410 is L-shaped and the first parasitic radiator 600 is straight, the extending direction of the first straight segment 413 of the first antenna radiator 410 and the extending direction of the first parasitic radiator 600 are parallel to each other .
  • the first antenna radiator 410 , the second antenna radiator 510 , and the first parasitic radiator 600 are formed by the conductive frame of the foldable electronic device 100 .
  • the first antenna radiator 410 and the second antenna radiator 510 are formed by the first conductive frame of the first device body 210
  • the first parasitic radiator 600 is formed by the second conductive frame of the second device body 220 .
  • the first antenna radiator 410, the second antenna radiator 510, the first parasitic radiator 600, and the second parasitic radiator may also use stickers
  • the chip structure is attached to the surface of the conductive frame of the foldable electronic device 100 and is made of conductive material.
  • the first antenna radiator 410 , the second antenna radiator 510 , the first parasitic radiator 600 , and the second parasitic radiator may also be transparent antennas embedded inside the screen of the foldable electronic device 100 .
  • the first antenna radiator 410 , the second antenna radiator 510 , the first parasitic radiator 600 , and the second parasitic radiator may also adopt a patch structure. Made of conductive material.
  • FIG. 5 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Embodiment 1 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100A provided by the second embodiment is basically the same as the structure of the foldable electronic device 100 provided by the first embodiment, that is, the foldable electronic device 100A also includes the device body 200A and the antenna system 300A, the device main body 200A also includes a first device main body 210A and a second device main body 220A rotatably connected by a rotating shaft 250A, the first device main body 210A and the second device main body 220A both have a floor; the antenna system 300A also includes a first device main body 210A and a second device main body 220A.
  • first antenna 400A includes first antenna radiator 410A, first antenna radiator 410A includes first end 411A and second end 412A, and has a first feed The point 420A, the first ground point 430A, the first feeding point 420A is located between the first end 411A of the first antenna radiator 410A and the second end 412A of the first antenna radiator 410A, and is connected to the first radio frequency source 800A , to receive the radio frequency signal output by the first radio frequency source 800A, the first ground point 430A is located between the first feeding point 420A and the second end 412A of the first antenna radiator 410A, and is connected to the floor of the first device body 210A 211A; the second antenna 500A includes a second antenna radiator 510A, the second antenna radiator 510A includes a first end 511A and a second end 512A, and has a second feeding point 520A, a second grounding point 530A, and the second feeding
  • the structure of the foldable electronic device 100A provided by the second embodiment differs from the structure of the foldable electronic device 100A provided by the first embodiment in that the first parasitic ground point 610A is located close to the first parasitic radiator 600A at the location of the second end 650A. This can make the envelope correlation coefficient (ie, ECC) between the first antenna 400A and the second antenna 500A lower.
  • ECC envelope correlation coefficient
  • the first parasitic ground point 610A is located on the first straight line segment 620A.
  • the length of the first parasitic radiator 600A between the first parasitic ground point 610A and the second end 650A is 18.11 mm.
  • the length of the first parasitic radiator 600A located between the first parasitic ground point 610A and the first end 640A is 71.5 mm.
  • the length of the first straight section 620A is greater than the length of the second straight section 630A, the length of the first straight section 620A is 65 mm, and the length of the second straight section 630A is 27.5 mm.
  • the length of the first parasitic radiator 600A located between the first parasitic ground point 610A and the first end 640A is 1/4 times the operating wavelength of the first antenna.
  • FIG. 6 is a schematic structural diagram of the third embodiment of the foldable electronic device according to Embodiment 1 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100B provided by the third embodiment is basically the same as the structure of the foldable electronic device 100 provided by the first embodiment, that is, the foldable electronic device 100B also includes the device body 200B and the antenna system 300B, the device main body 200B also includes a first device main body 210B and a second device main body 220B rotatably connected by a rotating shaft 250B, and both the first device main body 210B and the second device main body 220B have a floor; the antenna system 300B also includes a first device main body 210B and a second device main body 220B.
  • first antenna 400B includes first antenna radiator 410B, first antenna radiator 410B includes first end 411B and second end 412B, and has a first feed point 420B, the first ground point 430B, the first feeding point 420B is located between the first end 411B of the first antenna radiator 410B and the second end 412B of the first antenna radiator 410B, and is connected to the first radio frequency source 800B , to receive the radio frequency signal output by the first radio frequency source 800B, the first ground point 430B is located between the first feeding point 420B and the second end 412B of the first antenna radiator 410B, and is connected to the floor of the first device body 210B 211B;
  • the second antenna 500B includes a second antenna radiator 510B, the second antenna radiator 510B includes a first end 511B and a second end 512B, and has a second feeding point 520B, a second grounding point 530B, and the second feeding
  • the second antenna 500B includes a second antenna radiator 510B, the
  • the structure of the foldable electronic device 100B provided by the third embodiment differs from the structure of the foldable electronic device 100A provided by the first embodiment in that the first parasitic grounding point 610B is located close to the first parasitic radiator 600B at the location of the first end 640B. This can make the efficiency of the first antenna 400B better.
  • the first parasitic ground point 610B is located on the second straight line segment 630B.
  • the length of the first parasitic radiator 600B between the first parasitic ground point 610B and the first end 640B is 16.8 mm, and the length of the first parasitic radiator 600B between the first parasitic ground point 610B and the second end 650B is 75mm.
  • the length of the first straight segment 620B is greater than the length of the second straight segment 630B.
  • the length of the first straight section 620B is 65 mm, and the length of the second straight section 630B is 27.5 mm.
  • the length of the first parasitic radiator 600B located between the first parasitic ground point 610B and the second end 650B is 1/4 times the operating wavelength of the first antenna.
  • FIG. 7 is a schematic structural diagram of the fourth embodiment of the foldable electronic device according to Embodiment 1 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100C provided by the fourth embodiment is basically the same as the structure of the foldable electronic device 100 provided by the first embodiment, and the difference is that the second antenna 500C
  • the second antenna radiator 510C is in the shape of a straight bar.
  • the second antenna radiator 510C extends in a straight line along the side edge of the floor of the device body where the second antenna radiator 510C is located, that is, the second antenna radiator 510C extends along the left edge 212C of the floor 211C of the first device body 210C It extends in a straight line, and the second antenna radiator 510C extends in a direction parallel to the axis O2 of the rotating shaft 250C.
  • FIG. 8 is a schematic structural diagram of the fifth embodiment of the foldable electronic device 100D according to Embodiment 1 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100D provided by the fifth embodiment is basically the same as the structure of the foldable electronic device 100 provided by the first embodiment, and the difference lies in that the first ground point 430D It is located in the middle of the first straight segment 413D of the first antenna radiator 410D.
  • the length of the first antenna radiator 410D located between the first ground point 430D and the second end 412D is 29.4 mm
  • the length of the first antenna radiator 410D located between the first ground point 430D and the first end 411D is 29.4 mm.
  • the length is 61.6 mm
  • the length of the first antenna radiator 410D located between the first ground point 430D and the first feeding point 420D is 14 mm.
  • the length of the first straight section 413D is greater than the length of the second straight section 414D
  • the length of the first straight section 413D is 64 mm
  • the length of the second straight section 414D is 27 mm.
  • the length of the first antenna radiator 410D located between the first ground point 430D and the first end 411D is 1/4 times the operating wavelength of the first antenna.
  • FIG. 9-FIG. 15b show the schematic structural diagrams of the first reference design of the antenna unit and the first, second, and third embodiments of the first embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the foldable electronic device 100A' of the first reference design in an unfolded state.
  • the foldable electronic device 100A' of the first reference design is the first, second, and third embodiments of Example 1 of the present application
  • the first parasitic radiator 600A' is suspended relative to the floor 221A' of the second device main body 220A' without a ground point, that is, the first parasitic radiator 600A' is connected to the second device.
  • the floor of the main body is not connected, and the first parasitic radiator is not grounded.
  • Other structures and parameters remain unchanged.
  • the full-wave electromagnetic simulation software HFSS is used to simulate and analyze the foldable electronic device provided by the first embodiment, the second embodiment, the third embodiment and the first reference design in this embodiment, and the obtained results are shown in Fig. 10a to Fig. 15b .
  • Table 3 shows the first antenna and the second antenna when the foldable electronic device of the first embodiment, the second embodiment, the third embodiment and the first reference design is in the folded state in this embodiment. Comparison results of envelope correlation coefficients between antennas. Among them, when the operating frequencies of the first antenna are 0.71GHz, 0.72GHz, 0.73GHz, 0.74GHz, 0.75GHz, 0.76GHz, 0.77GHz, and 0.78GHz, the first and second antennas with four structural designs are obtained respectively. Envelope Correlation Coefficient (ie ECC) between . In addition, the main resonance frequency of the first antenna is 0.76 GHz, that is, the resonance frequency of the resonance generated by the first antenna radiator of the first antenna itself is 0.76 GHz.
  • ECC Envelope Correlation Coefficient
  • the operating frequency range of the first antenna is 0.71GHz to 0.76GHz
  • the ECC between the first antenna and the second antenna in the first reference design, the first embodiment, and the second embodiment are all within 0.5 or less
  • the third embodiment when the operating frequency of the first antenna is 0.71 GHz and 0.72 GHz, the ECC between the first antenna and the second antenna is more than 0.5, and the operating frequency range is 0.73 GHz to 0.76 GHz , the ECC between the first antenna and the second antenna is still kept below 0.5.
  • the ECC between the first antenna and the second antenna in the first reference design (that is, the scheme in which the first parasitic radiator does not play a parasitic radiation effect on the first antenna radiator) can fully satisfy the two The requirements for the normal operation of the antenna, and the ECC between the first antenna and the second antenna in the first and second embodiments can also fully meet the requirements for the normal operation of the two antennas.
  • the ECC between the first antenna and the second antenna is slightly deteriorated (ie, the ECC is slightly increased).
  • the ECC between the first antenna and the second antenna in the second embodiment There is a certain optimization (ie, ECC has a certain degree of decline), the third embodiment is relative to the first reference design, the ECC between the first antenna and the second antenna deteriorates (ie, the ECC rises), but within the operating frequency range Basically, it can still meet the needs of the two antennas to work normally. Therefore, it can be concluded that as the first parasitic ground point is closer to the second end of the first parasitic radiator, the envelope correlation coefficient between the first antenna and the second antenna is lower.
  • the ECC between the first antenna and the second antenna in the first reference design is 0.27
  • the ECC between the first antenna and the second antenna is 0.27
  • the ECC is 0.29
  • the ECC between the first antenna and the second antenna in the second embodiment of the present application is 0.21
  • the ECC between the first antenna and the second antenna in the second embodiment of the present application is 0.45.
  • the ECC between the first antenna and the second antenna in the first embodiment of the present application is increased by 0.02 compared to the first reference design, that is, a slight deterioration of 0.02, Compared with the first reference design in the second embodiment of the present application, the ECC between the first antenna and the second antenna is reduced by 0.06, that is, an optimization of 0.06.
  • the third embodiment of the present application the first antenna The ECC between the antenna and the second antenna increased by 0.18, that is, deteriorated by 0.18. That is to say, in the second embodiment of the present application, the ECC between the first antenna and the second antenna is the best, followed by the first embodiment of the present application.
  • ECC envelope correlation coefficient
  • FIG. 10a is a comparison diagram of the radiation efficiency of the first antenna and the simulation effect of the system efficiency when the foldable electronic device of the first embodiment of the first embodiment of the present application and the first reference design are in a folded state.
  • FIG. 10b is a comparison diagram of the simulation effect of the radiation efficiency and the system efficiency of the first antenna when the foldable electronic device according to the second embodiment of Example 1 of the present application and the first reference design is in a folded state.
  • FIG. 10c is a comparison diagram of the simulation effect of the radiation efficiency and the system efficiency of the first antenna when the foldable electronic device according to the third embodiment of Example 1 of the present application and the first reference design is in a folded state.
  • the radiation efficiency is a value that measures the radiation capability of the antenna, and the losses caused by metal loss and dielectric loss affect the radiation efficiency.
  • the system efficiency is the actual efficiency after considering the antenna port matching, that is, the system efficiency of the antenna is the actual efficiency (ie, efficiency) of the antenna.
  • efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB, and the closer the efficiency is to 0 dB, the better.
  • the radiation efficiency and system efficiency of the first antenna in the first embodiment are optimized to a certain extent.
  • the radiation efficiency of the first antenna and the system efficiency in the second embodiment are The system efficiency is slightly optimized.
  • the third embodiment has obvious optimization of the radiation efficiency and system efficiency of the first antenna (ie, the resonance efficiency is significantly improved). Therefore, it can be concluded that as the first parasitic ground point is closer to the first end of the first parasitic radiator, the radiation efficiency of the first antenna and the system efficiency are higher.
  • the radiation efficiency of the first antenna is improved by 0.8985 dB in the first embodiment of the present application compared with the first reference design, that is, 0.8985 dB is optimized to a certain extent, and the radiation efficiency of the first antenna is improved by 0.8985 dB.
  • the system efficiency is improved by 1.087dB, that is, 1.087dB is optimized to a certain extent.
  • the radiation efficiency of the first antenna in the second embodiment of the present application is improved by 0.3481 dB, that is, a slight optimization of 0.3481 dB
  • the system efficiency of the first antenna is improved by 0.614 dB, that is, a slight optimization of 0.614 dB
  • the radiation efficiency of the first antenna is improved by 2.247 dB, that is, a relatively obvious optimization of 0.3481 dB
  • the system efficiency of the first antenna is increased by 2.092 dB, that is, a relatively obvious optimization of 2.092 dB. dB. That is to say, in the third embodiment of the present application, the radiation efficiency and system efficiency of the first antenna are the best, followed by the first embodiment of the present application.
  • FIGS. 11 a to 11 d show the first reference design, the first, second, and third embodiments of the foldable electronic device of Example 1 of the present application when the foldable electronic device is in a folded state.
  • the operating frequency of the first antenna is 0.74 GHz.
  • the horizontal direction is the direction of the short side of the foldable electronic device
  • the longitudinal direction is the direction of the long side of the foldable electronic device
  • the direction perpendicular to the paper surface outward is the second device
  • the direction of the back shell of the main body, which is perpendicular to the inward direction of the paper surface, is the direction of the back shell of the first device main body.
  • the directions of the arrows respectively represent the maximum radiation directions in the radiation pattern of the first antenna. It can be seen from Fig. 11a that, for the first reference design, the maximum radiation direction of the first antenna is the lateral direction of the foldable electronic device, that is, the horizontal direction in Fig. 11a is to the right.
  • the maximum radiation direction of the first antenna is the lateral direction of the foldable electronic device, that is, the horizontal direction is to the right and upward in FIG. 11 b . That is, in this embodiment, the first parasitic radiator slightly changes the radiation pattern of the first antenna.
  • the maximum radiation direction of the first antenna is the lateral direction of the foldable electronic device, that is, the horizontal direction in FIG. 11 c is to the right. That is, in this embodiment, the first parasitic radiator does not change the radiation pattern of the first antenna.
  • the maximum radiation direction of the first antenna is the longitudinal direction of the foldable electronic device, that is, the vertical upward direction in FIG. 11d . That is to say, in this embodiment, the first parasitic radiator completely changes the radiation pattern of the first antenna, and the maximum radiation direction of the first antenna is changed from horizontal to vertical.
  • the radiation pattern of the first antenna and the maximum radiation direction of the first antenna can be changed, thereby improving the distance between the first antenna and the second antenna.
  • the ECC as well as the radiation efficiency and system efficiency of the first antenna.
  • FIG. 12 is a schematic diagram of a current distribution structure at a position close to the first antenna when the foldable electronic device of the first reference design is in a folded state.
  • the viewing angle shown in FIG. 12 is the viewing angle of the main screen side, which corresponds to the lower left corner of the first device body after the second device body in the foldable electronic device shown in FIG. 9 is folded inward relative to the first device body. point of view.
  • the white solid line arrows indicate the current direction on the first antenna radiator
  • the white dotted line arrows indicate the current flow direction on the floor of the first device body where the first antenna radiator is located.
  • the current on the floor of the first device main body where the first antenna radiator is located has a horizontal current and a vertical current, among which the horizontal current is mainly. That is to say, in the first reference design, the current on the floor corresponding to the first antenna is mainly a lateral current, that is, a lateral mode. This also illustrates from the side that the maximum radiation direction of the first antenna in the radiation pattern of the first antenna is the lateral direction.
  • FIGS. 13a and 13b are schematic diagrams of current distribution structures near the first antenna when the foldable electronic device according to the first embodiment of Example 1 of the present application is in a folded state.
  • the viewing angle shown in FIG. 13a is the viewing angle of the main screen side (corresponding to the first device body 210 after the second device body 220 is folded inward relative to the first device body 210 in the foldable electronic device shown in FIG. 4 ).
  • the viewing angle at a pair of corners 215), the viewing angle shown in FIG. 13b is the viewing angle on the side of the secondary screen (corresponding to the foldable electronic device shown in FIG. 4 after the first device body 210 is folded inward relative to the second device body 220 the viewing angle at the first diagonal corner 225 of the second device body 220).
  • the white solid arrows indicate the current direction on the first antenna radiator, and the white dotted arrows indicate the current flow direction on the floor of the first device body where the first antenna radiator is located.
  • the white solid arrows indicate the current direction on the first parasitic radiator, and the white dashed arrows indicate the current flow direction on the floor of the second device body where the first parasitic radiator is located.
  • the current on the floor of the first device main body where the first antenna radiator is located has a horizontal current and a vertical current, among which the horizontal current is mainly.
  • the current on the floor of the second device main body where the first parasitic radiator is located has a horizontal current and a vertical current, wherein the horizontal current and the vertical current distribution intensity are relatively close. That is to say, in the first embodiment, after the first parasitic radiator is introduced, the direction of the current on the floor corresponding to the first antenna is slightly laterally deviated from the longitudinal direction, that is, the lateral direction is slightly deviated from the longitudinal mode. This also illustrates from the side that the maximum radiation direction of the first antenna in the radiation pattern of the first antenna in the first embodiment is the lateral direction and the longitudinal direction.
  • FIGS. 14a and 14b are schematic diagrams of current distribution structures near the first antenna when the foldable electronic device according to the second embodiment of Example 1 of the present application is in a folded state.
  • the viewing angle shown in FIG. 14a is the viewing angle of the main screen side (corresponding to the first device body 210A in the foldable electronic device shown in FIG. 5 after the second device body 220A is folded inward relative to the first device body 210A).
  • the viewing angle at a pair of corners, that is, the viewing angle at the lower left corner of the first device body 210A), the viewing angle shown in FIG. 14b is the viewing angle on the side of the secondary screen (corresponding to the first device body in the foldable electronic device shown in FIG.
  • the current on the floor of the first device main body where the first antenna radiator is located has a horizontal current and a vertical current, among which the horizontal current is mainly.
  • the current on the floor of the second device main body where the first parasitic radiator is located has a horizontal current and a vertical current, wherein the horizontal current distribution intensity is slightly larger than the vertical current distribution intensity. That is to say, in the second embodiment, after the first parasitic radiator is introduced, the direction of the current on the floor corresponding to the first antenna is still the lateral direction, that is, the lateral mode. This also illustrates from the side that the maximum radiation direction of the first antenna in the radiation pattern of the first antenna in the second embodiment is the lateral direction.
  • FIGS. 15a and 15b are schematic diagrams of current distribution structures near the first antenna when the foldable electronic device according to the third embodiment of Example 1 of the present application is in a folded state.
  • the viewing angle shown in FIG. 15a is the viewing angle of the main screen side (corresponding to the first device body 210B after the second device body 220B is folded inward relative to the first device body 210B in the foldable electronic device shown in FIG. 6 ).
  • the viewing angle at a pair of corners, that is, the viewing angle at the lower left corner of the first device body 210B), the viewing angle shown in FIG. 15b is the viewing angle on the side of the secondary screen (corresponding to the first device body in the foldable electronic device shown in FIG.
  • the white solid line arrows indicate the current direction on the first antenna radiator
  • the white dotted line arrows indicate the current flow direction on the floor of the first device body where the first antenna radiator is located.
  • the white solid arrows indicate the current direction on the first parasitic radiator
  • the white dashed arrows indicate the current flow direction on the floor of the second device body where the first parasitic radiator is located.
  • the current on the floor of the first device main body where the first antenna radiator is located has a horizontal current and a vertical current, among which the horizontal current is mainly.
  • the current on the floor of the second device body where the first parasitic radiator is located is mainly a longitudinal current. That is to say, in the third embodiment, after the first parasitic radiator is introduced, the direction of the current on the floor corresponding to the first antenna is deviated from the longitudinal direction, that is, the mode is deviated from the longitudinal direction. This also illustrates from the side that the maximum radiation direction of the first antenna in the radiation pattern of the first antenna in the third embodiment is the longitudinal direction.
  • the key to changing the radiation pattern of the first antenna in the present application lies in the introduction of the first parasitic radiator and the setting position of the first parasitic grounding point, as well as the lateral current in the current distribution on the floor. And the distribution ratio of longitudinal current, so as to obtain different radiation pattern performance.
  • FIG. 16 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Embodiment 2 of the present application in an unfolded state.
  • the foldable electronic device 100E provided in this embodiment also includes a device main body 200E and an antenna system 300E, wherein the structure of the device main body 200E can be the same as the device main body of the foldable electronic device provided in Embodiment 1
  • the structure of the antenna system 300E is different from that of the antenna system of the foldable electronic device provided in the first embodiment.
  • the device main body 200E also includes a first device main body 210E and a second device main body 220E, and the first device main body 210E and the second device main body 220E are rotatably connected by a rotating shaft 250E, so that the foldable electronic device 100E can Toggle between expanded and collapsed state.
  • the first device body 210E has a floor 211E
  • the second device body 220E also has a floor 221E.
  • the direction of the axis O2 of the rotating shaft 250E is parallel to the longitudinal direction L of the foldable electronic device 100E, that is, the foldable electronic device 100E is a foldable electronic device 100E folded left and right.
  • the direction of the axis O2 of the rotating shaft 250E can also be parallel to the transverse direction T of the foldable electronic device 100E, that is, the foldable electronic device 100E is folded up and down.
  • the foldable electronic device 100E described herein does not limit the scope of protection of the present application.
  • the antenna system 300E also includes a first antenna 400E and a second antenna 500E.
  • the first antenna 400E includes a strip-shaped first antenna radiator 410E, the first antenna radiator 410E includes a first end 411E and a second end 412E, and has a first feeding point 420E and a first grounding point 430E.
  • the first feeding point 420E is located between the first end 411E of the first antenna radiator 410E and the second end 412E of the first antenna radiator 410E, and is connected to the first radio frequency source 800E to receive the output of the first radio frequency source 800E the radio frequency signal.
  • the first grounding point 430E is located between the first feeding point 420E and the second end 412E of the first antenna radiator 410E, and the first grounding point 430E is electrically connected to the ground of the first device body 210E, specifically, electrically connected to the second end 412E of the first antenna radiator 410E.
  • the second antenna 500E includes a bar-shaped second antenna radiator 510E.
  • the second antenna radiator 510E includes a first end 511E and a second end 512E, and has a second feeding point 520E and a second grounding point 530E.
  • the second feeding point 520E is located between the first end 511E of the second antenna radiator 510E and the second end 512E of the second antenna radiator 510E, and is connected to the second radio frequency source 810E to receive the output of the second radio frequency source 810E the radio frequency signal.
  • the second ground point 530E is located between the second feeding point 520E and the first end 511E of the second antenna radiator 510E, and is connected to the floor 211E of the first device body 210E.
  • the first antenna radiator 410E is located on one side of an imaginary line O1
  • the second antenna radiator 510E is located on the opposite side of the imaginary line O1, wherein the imaginary line O1 is perpendicular to the direction of the axis O2 of the rotating shaft 250E.
  • the virtual line O1 is the center line of the device body 200E or is parallel to the center line of the device body 200E, and the center line of the device body 200E is perpendicular to the direction of the axis O2 of the rotating shaft 250E.
  • the structure of the first antenna 400E may adopt the structure of the first antenna provided in any implementation manner in Embodiment 1
  • the structure of the second antenna 500E may also adopt the structure provided in any implementation manner in Embodiment 1 the structure of the second antenna.
  • the antenna system 300E further includes a strip-shaped second parasitic radiator 700E arranged corresponding to the position of the second antenna radiator 510E.
  • the second parasitic radiator 700E and the second antenna radiator 510E are respectively located in the first device body 210E and For different device bodies in the second device body 220E, the second parasitic radiator 700E is connected to the floor of the device body where it is located. That is, in this embodiment, the antenna system 300E is not provided with the first parasitic radiator provided in Embodiment 1, but is provided with a second parasitic radiator 700E corresponding to the second antenna radiator 510E.
  • the first antenna radiator 410E and the second antenna radiator 510E are provided on the first device body 210E, and the second parasitic radiator 700E is provided on the second device body 220E.
  • the second parasitic radiator 700E is connected to the floor 221E of the second device body 220E.
  • the first antenna radiator 410E and the second antenna radiator 510E may also be disposed on different device bodies, for example, the second antenna radiator 510E Set on the first device body 210E, the first antenna radiator 410E and the second parasitic radiator 700E are set on the second device body 220E, or the second antenna radiator 510E is set on the second device body 220E, the first antenna radiator The 410E and the second parasitic radiator 700E are disposed on the first device body 210E, which does not limit the scope of protection of the present application.
  • At least part of the first antenna radiator 410E and at least part of the second antenna radiator 510E are respectively located outside the edge of the side of the floor of the device body where they are located away from the rotating shaft 250E, and are respectively located there
  • the side edges of the floor of the apparatus body are oppositely disposed.
  • at least part of the first antenna radiator 410E is located outside the edge of the side of the floor 211E of the first device body 210E that is far away from the rotating shaft 250E, and is disposed opposite to the side edge of the floor 211E of the first device body 210E .
  • At least part of the first antenna radiator 410E is located outside the left edge 212E of the floor 211E of the first device body 210E, and is opposite to the left edge 212E of the floor 211E of the first device body 210E.
  • At least part of the second antenna radiator 510E is located outside the side edge of the floor 211E of the first device body 210E away from the rotating shaft 250E, and is disposed opposite to the side edge of the floor 211E of the first device body 210E. That is, at least part of the second antenna radiator 510E is located outside the left edge 212E of the floor 211E of the first device body 210E, and is opposite to the left edge 212E of the floor 211E of the first device body 210E.
  • the left edge 212E of the floor 211E of the first device body 210E extends along the longitudinal direction L of the foldable electronic device 100E.
  • the first antenna radiator 410E is located on the lower side of the virtual line O1
  • the second antenna radiator 510E is located on the upper side of the virtual line O1.
  • the second antenna radiator 510E When the foldable electronic device 100E is in the folded state, viewed from the thickness direction of the foldable electronic device 100E, the second antenna radiator 510E is spaced apart from the corresponding second parasitic radiator 700E. At least part overlaps with at least part of the second parasitic radiator 700E, so that the second antenna radiators 510E are respectively coupled with the correspondingly disposed second parasitic radiators 700E.
  • the pair of antennas of the first antenna 400E and the second antenna 500E can be folded in the foldable electronic device 100E In the state, even if the two antennas of the pair of antennas are closely spaced, the two antennas of the pair of antennas have a low envelope correlation coefficient (ie ECC), and can still work independently and normally,
  • the second antenna 500E of the pair of antennas has higher antenna efficiency, that is, the antenna performance of the foldable electronic device 100E in the folded state is improved.
  • the first antenna radiator 410E is L-shaped and is located at the first corner of the first conductive frame of the first device body 210E, and the first corner is opposite to the first corner of the floor 211E of the first device body 210E 215E is arranged correspondingly, that is, it is located near the first diagonal corner 215E of the floor 211E.
  • the first antenna radiator 410E includes a first straight line segment 413E extending along the left edge 212E of the floor 211E of the first device body 210E and a second straight line segment 414E vertically connected to an end of the first straight line segment 413E away from the virtual line O1 .
  • the free end of the first straight segment 413E and the free end of the second straight segment 414E are the second end 412E of the first antenna radiator 410E and the first end 411E of the first antenna radiator 410E, respectively.
  • Both the first feeding point 420E and the first grounding point 430E are located on the first straight line segment 413E.
  • the first ground point 430E is located in the middle of the first straight line segment 413E of the first antenna radiator 410E.
  • the length of the first antenna radiator 410E located between the first ground point 430E and the second end 412E is 29.4 mm
  • the length of the first antenna radiator 410E located between the first ground point 430E and the first end 411E is 29.4 mm.
  • the length is 61.6 mm
  • the length of the first antenna radiator 410E located between the first ground point 430E and the first feeding point 420E is 14 mm.
  • the length of the first straight section 413E is greater than the length of the second straight section 414E
  • the length of the first straight section 413E is 64 mm
  • the length of the second straight section 414E is 27 mm.
  • the length of the first antenna radiator 410E located between the first ground point 430E and the first end 411E is 1/4 times the operating wavelength of the first antenna.
  • the second antenna radiator 510E is L-shaped and is located at the second corner of the first conductive frame of the first device body 210E, and the second corner is opposite to the second corner of the floor 211E of the first device body 210E 216E is correspondingly arranged, that is, it is located near the second diagonal corner 216E of the floor 211E.
  • the second antenna radiator 510E includes a first straight line segment 513E extending along the left edge 212E of the floor 211E of the first device body 210E and a second straight line segment 514E vertically connected to an end of the first straight line segment 513E away from the virtual line O1 .
  • the free end of the first straight segment 513E and the free end of the second straight segment 514E are the second end 512E of the second antenna radiator 510E and the first end 511E of the second antenna radiator 510E, respectively.
  • the second ground point 530E of the second antenna radiator 510E is located close to the first end 511E of the second antenna radiator 510E, and the second feed point 520E is located close to the second end 512E of the second antenna radiator 510E place.
  • the length of the second antenna radiator 510E between the second ground point 530E and the second end 512E is 37.5mm; the length of the second antenna radiator 510E between the second ground point 530E and the second feed point 520E is 27.8mm.
  • the second feed point 520E is located on the first straight segment 513E
  • the second ground point 530E is located on the second straight segment 514E.
  • the length of the first straight section 513E is 29 mm
  • the length of the second straight section 514E is 14 mm.
  • the length of the second antenna radiator 510E between the second ground point 530E and the first end 511E is 5.0 mm.
  • the second antenna is a left-handed antenna
  • the length of the second antenna radiator 510E located between the second ground point 530E and the second end 512E is 1/8 times to 1/8 of the operating wavelength of the second antenna 4 times.
  • the second grounding point 530E may also be located at a suitable position of the first straight line segment 513E, and the second feeding point 520E may also be located at other suitable positions position, which does not limit the scope of protection of the present application.
  • the second parasitic radiator 700E includes a first end 740E and a second end 750E.
  • the first end 740E of the second parasitic radiator 700E is closer to the rotation axis 250E than the second end 750E.
  • the second parasitic radiator 700E has a second parasitic ground point 710E.
  • the second parasitic ground point 710E is located between the first end 740E of the second parasitic radiator 700E and the second end 750E of the second parasitic radiator 700E, and is close to the first end 740E of the second parasitic radiator 700E. At the location of the second end 750E of the two parasitic radiators 700E.
  • the second parasitic ground point 710E is connected to the floor of the device body where the second parasitic radiator 700E is located, that is, the second parasitic ground point 710E of the second parasitic radiator 700E is connected to the floor 221E of the second device body 220E.
  • the second parasitic grounding point 710E may also be located at the second end 750E of the second parasitic radiator 700E.
  • the floor of the device main body where the second parasitic radiator 700E is located has one side edge away from the rotation axis 250E and another side edge intersecting with the side edge, that is, the floor 221E of the second device main body 220E has a right side edge away from the rotation axis 250E.
  • At least part of the second parasitic radiator 700E is located outside the other edge of the floor of the device body where it is located, and is opposite to the other edge of the floor, that is to say, at least part of the second parasitic radiator 700E
  • the part is located outside the upper edge 223E of the floor 221E of the second device body 220E, and is disposed opposite to the upper edge 223E of the floor 221E of the second device body 220E.
  • the at least part of the second parasitic radiator 700E is perpendicular to the at least part of the second antenna radiator 510E.
  • the first straight segment 720E of the second parasitic radiator 700E is vertically arranged with the first straight segment 513E of the second antenna radiator 510E.
  • the upper edge 223E of the floor 221E of the second device body 220E extends along the transverse direction T of the foldable electronic device 100E, and the right edge 222E of the floor 221E of the second device body 220E is along the longitudinal direction L of the foldable electronic device 100E extend.
  • the second parasitic radiator 700E is located on the upper side of the imaginary line O1.
  • the first end 740E of the second parasitic radiator 700E is closer to the rotation axis 250E than the second end 750E of the second parasitic radiator 700E.
  • the second parasitic radiator 700E is L-shaped and is located at the second corner of the second conductive frame of the second device body 220 .
  • the second corner of the second conductive frame and the second pair of the floor 221 of the second device body 220 The corners 226E are correspondingly arranged, that is, located near the second diagonal corner 226E of the floor 221 .
  • the second corner of the second conductive frame overlaps with the second corner of the first conductive frame.
  • the second parasitic radiator 700E includes a first straight line segment 720E and a second straight line segment 730E vertically connected to one end of the first straight line segment 720E away from the rotating shaft 250E.
  • the free end of the first straight segment 720E and the free end of the second straight segment 730E are the first end 740E and the second end 750E of the second parasitic radiator 700E, respectively.
  • the first straight section 720E is disposed opposite to the other side edge of the floor of the equipment main body where the first parasitic radiator is located, and the second straight section 730E is located outside the side edge of the floor of the equipment main body where the first parasitic radiator is located, and Opposite to the side edge of the floor. That is, the first straight segment 720E is located outside the upper edge 223E of the floor 221E of the second device body 220E, and is opposite to the upper edge 223E of the floor 221E of the second device body 220E.
  • the second parasitic radiator 700E is also located near a pair of corners of the floor of the device main body where the second parasitic radiator 700E is located, away from the rotation axis 250E, and extends along the corner edges of the opposite corner of the floor. That is, the second parasitic radiator 700E is also located near the second diagonal corner 226E of the floor 221E of the second device body 220E and extends along the corner edge of the second diagonal corner 226E of the floor 221E of the second device body 220E.
  • first straight section 720E extends in a direction perpendicular to the axis O2 of the rotating shaft 250E
  • the second straight section 730E extends in a direction parallel to the axis O2 of the rotating shaft 250E. That is, the first straight section 720E extends along the transverse direction T of the foldable electronic device 100E, and the second straight section 730E extends along the longitudinal direction L of the foldable electronic device 100E.
  • the second parasitic ground point 710E is located on the second straight line segment 730E, and the length of the first straight line segment 720E is greater than the length of the second straight line segment 730E.
  • the length of the second parasitic radiator 700E located between the second parasitic ground point 710E and the second end 750E is 20 mm
  • the second parasitic radiator 700E located between the second parasitic ground point 710E and the first end 740E The length of the radiator 700E is 9.4 mm
  • the length of the first straight section 720E is 7.19 mm
  • the length of the second straight section 730E is 29.4 mm.
  • the second parasitic grounding point 710E may also be located in the first straight segment 720E, which does not limit the protection scope of the present application.
  • the length of the second parasitic radiator 700E located between the second parasitic ground point 710E and the first end 740E is 1/4 times the operating wavelength of the second antenna.
  • the extending direction of the first straight segment 513E of the second antenna radiator 510E and the extending direction of the second straight segment 730E of the second parasitic radiator 700E are parallel to each other, and the extending direction of the second antenna radiator 510E is parallel to each other.
  • the extending direction of the second straight segment 514E and the extending direction of the first straight segment 720E of the second parasitic radiator 700E are parallel to each other.
  • the first end 740E of the second parasitic radiator 700E is more distant from the first end 740E of the second antenna radiator 510E.
  • the second end 750E of the second antenna radiator 510E is closer to the virtual line O1 than the second end 750E of the second parasitic radiator 700E.
  • the second parasitic radiator 700E may also adopt other shapes, and is not limited to an L-shape.
  • the second parasitic radiator 700E is Straight bar.
  • the second parasitic radiator 700E when the two parasitic radiators are in a straight shape, the second parasitic radiator 700E extends in a straight line along the other side edge of the floor of the device main body where the second parasitic radiator 700E is located, and the second parasitic radiator 700E extends in a straight line. 700E extends in a direction perpendicular to the axis O2 of the rotating shaft 250E. That is, the second parasitic radiator 700E extends in a straight line along the upper edge 223E of the second device body 220E.
  • the extension direction of the first straight segment 513E of the second antenna radiator 510E and the second parasitic radiation The extending directions of the second straight section 730E of the body 700E are parallel to each other, and the extending direction of the second straight section 514E of the second antenna radiator 510E and the extending direction of the first straight section 720E of the second parasitic radiator 700E are parallel to each other.
  • the extending direction of the second antenna radiator 510E and the extending direction of the second straight segment 730E of the second parasitic radiator 700E are parallel to each other
  • the extending direction of the second antenna radiator 510E and the extending direction of the first straight line segment 720E of the second parasitic radiator 700E are perpendicular to each other.
  • the extending direction of the first straight segment 513E of the second antenna radiator 510E and the extending direction of the second parasitic radiator 700E are perpendicular to each other,
  • the extending direction of the second straight segment 514E of the second antenna radiator 510E and the extending direction of the second parasitic radiator 700E are parallel to each other.
  • the first antenna radiator 410E, the second antenna radiator 510E, and the second parasitic radiator 700E are formed by the conductive frame of the foldable electronic device 100E.
  • the first antenna radiator 410E and the second antenna radiator 510E are formed by the first conductive frame of the first device body 210E
  • the second parasitic radiator 700E is formed by the second conductive frame of the second device body 220E.
  • the first antenna radiator 410E, the second antenna radiator 510E, and the second parasitic radiator 700E may also adopt a patch structure, and the patch structure It is attached to the surface of the conductive frame of the foldable electronic device 100E, and is made of conductive material.
  • the first antenna radiator 410E, the second antenna radiator 510E, and the second parasitic radiator 700E may also use transparent antennas embedded in the screen of the foldable electronic device 100E.
  • the first antenna radiator 410E, the second antenna radiator 510E, and the second parasitic radiator 700E may also adopt a patch structure.
  • the patch structure is attached to the back cover of the foldable electronic device 100E and is made of conductive materials.
  • the working frequency band of the first antenna 400E and the working frequency band of the second antenna 500E are the same or partially overlap.
  • the frequency range of the working frequency band of the first antenna 400E is 0.7-0.96 GHz
  • the frequency range of the working frequency band of the second antenna 500E is 0.7-0.96 GHz, that is, the working frequency band of the first antenna 400E and the second antenna
  • the 500E operates at low frequencies.
  • the working frequency band of the first antenna 400E and the working frequency band of the second antenna 500E may also be medium and high frequency.
  • FIG. 17 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Example 2 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100F provided by the second embodiment is basically the same as that of the foldable electronic device 100F provided by the first embodiment, that is, the foldable electronic device 100F also includes a device body 200F and the antenna system 300F, the device main body 200F also includes a first device main body 210F and a second device main body 220F that are rotatably connected by a rotating shaft 250F, and the antenna system 300F also includes a first antenna 400F, a second antenna 500F and a second parasitic radiator 700F, The first antenna 400F includes a first antenna radiator 410F, and the second antenna 500F includes a second antenna radiator 510F.
  • the structure of the foldable electronic device 100F provided by the second embodiment is different from the structure of the foldable electronic device 100F provided by the first embodiment in that the second antenna radiator 510F of the second antenna 500F is in the shape of a straight bar .
  • the second antenna radiator 510F extends in a straight line along the side edge of the floor of the device body where the second antenna radiator 510F is located, that is, the second antenna radiator 510F extends along the left edge 212F of the floor 211F of the first device body 210F It extends in a straight line, and the second antenna radiator 510F extends in a direction parallel to the axis O2 of the rotating shaft 250F.
  • FIG. 18 is a schematic structural diagram of the foldable electronic device 100B' of the second reference design in an unfolded state.
  • the foldable electronic device 100B' of the second reference design is based on the structure of the foldable electronic device 100E provided by the first implementation of Embodiment 2 of the present application , the second parasitic radiator 700B' is suspended relative to the floor 221B' of the second device body 220B' without a ground point, that is, the second parasitic radiator 700B' is not connected to the floor 221B' of the second device body 220B', the second parasitic radiator 700B' is not connected to the floor 221B' of the second device body 220B' Parasitic radiator 700B' is not connected to floor 221B'.
  • FIG. 19 is a schematic structural diagram of the foldable electronic device 100C' of the third reference design in an unfolded state. As shown in FIG. 19 , it can be understood with reference to FIG. 16 that the structure of the foldable electronic device 100C' of the third reference design is different from that of the foldable electronic device 100E provided by the first implementation of Embodiment 2 of the present application.
  • the second parasitic radiator 700C' is in the shape of a straight bar.
  • the second parasitic radiator 700C' extends in a straight line along the side edge of the floor of the device body where the second parasitic radiator 700C' is located and away from the rotation axis 250C', and the second parasitic radiator 700C' is parallel to the rotation axis 250C' extends in the direction of the axis O2. That is, the second parasitic radiator 700C' extends in a straight line along the right edge 222C' of the second device body 220C'.
  • the full-wave electromagnetic simulation software HFSS is used to simulate and analyze the foldable electronic device provided by the first embodiment, the second reference design, and the third reference design in this embodiment, and the effects shown in Figure 20 to Figure 22 are obtained.
  • Graph The full-wave electromagnetic simulation software HFSS is used to simulate and analyze the foldable electronic device provided by the first embodiment, the second reference design, and the third reference design in this embodiment, and the effects shown in Figure 20 to Figure 22 are obtained.
  • FIG. 20 is the S11 parameter of the second antenna when the foldable electronic device of the first implementation, the second reference design and the third reference design of Example 2 of the present application is in a folded state.
  • the abscissa represents the frequency, and the unit is GHz, and the ordinate represents the amplitude value of S11 , and the unit is dB.
  • S 11 is one of the S-parameters.
  • S 11 represents the reflection coefficient. This parameter indicates whether the transmission efficiency of the second antenna is good or not. The smaller the value, the smaller the energy reflected by the second antenna itself, and the better the efficiency of the antenna.
  • the S 11 of the second antenna of the first embodiment is less than -6dB
  • the S 11 of the second antenna of the second reference design is less than -6dB
  • the S 11 of the third reference design is less than -6dB.
  • the S 11 of the second antenna is less than -6dB, that is to say, the operating frequency bands of the second antenna of the first embodiment, the second antenna of the second reference design, and the second antenna of the third reference design are both 0.74-0.78 GHz
  • the resonant frequency of the second antenna is 0.76GHz.
  • the abscissa represents the frequency in GHz
  • the ordinate represents the magnitude value of the envelope correlation coefficient (ECC).
  • ECC envelope correlation coefficient
  • the ECC between the first antenna and the second antenna in the second reference design (that is, equivalent to the scheme in which the second parasitic radiator does not play a parasitic radiation effect on the second antenna radiator) can fully satisfy the requirements for the normal operation of the two antennas.
  • the ECC between the first antenna and the second antenna in the third reference design (that is, the solution equivalent to the longitudinal extension of the second parasitic radiator along the foldable electronic device) can also fully meet the requirements for the normal operation of the two antennas
  • the ECC between the first antenna and the second antenna in the first embodiment can also fully meet the requirements for the normal operation of the two antennas, wherein the third reference design is relative to the second reference design, the first antenna and the second Compared with the second reference design, the ECC between the first antenna and the second antenna is optimized to a certain extent (ie, the ECC has a certain degree of improvement).
  • the ECC between the first antenna and the second antenna in the second reference design is 0.3997
  • the ECC between the first antenna and the second antenna in the third reference design is 0.3997.
  • the ECC is 0.498
  • the ECC between the first antenna and the second antenna in the first implementation manner of Example 2 of the present application is 0.168.
  • the ECC between the first antenna and the second antenna is reduced by 0.232 compared to the second reference design in the first implementation of this embodiment, that is, an optimization of 0.24
  • the ECC between the first antenna and the second antenna increases by 0.1, that is, deteriorates by 0.1. That is to say, in the first implementation of this embodiment, the ECC between the first antenna and the second antenna is the best, the second reference design is second, and in the third reference design, the difference between the first antenna and the second antenna is The ECC is the worst among them.
  • the abscissa represents the frequency in GHz, and the ordinate represents the magnitude of radiation efficiency and system efficiency. It can be seen from Figure 22 that when the working efficiency is 0.76GHz, the radiation efficiency of the second antenna in the first embodiment is -3.3dB, the system efficiency is -3.5255dB, and the radiation efficiency of the second antenna in the second reference design is is -3.8dB, the system efficiency is -4.0719dB, the radiation efficiency of the second antenna in the third reference design is -2.7dB, and the system efficiency is -3.0094dB.
  • the reference design improves the radiation efficiency of the second antenna by 1.1dB and the system efficiency of the second antenna by 1.063dB when the operating frequency is 0.76GHz.
  • the radiation efficiency of the second antenna in the first embodiment is optimized by 0.5dB
  • the system efficiency is optimized by 0.546dB
  • the radiation efficiency of the second antenna in the third reference design is optimized by 0.5dB
  • the efficiency is optimized by 1.1dB
  • the system efficiency is optimized by 1.063dB. Therefore, it can be concluded that the second parasitic radiator is cited in this application, and the radiation efficiency and system efficiency of the second antenna are more optimized.
  • the 0-degree direction represents the horizontal direction of the foldable electronic device
  • the 90-degree direction represents the vertical direction of the foldable electronic device.
  • the maximum radiation direction in the radiation pattern of the second antenna is the 90-degree direction, which corresponds to the longitudinal direction of the foldable electronic device.
  • the maximum radiation direction in the radiation pattern of the second antenna is a direction around 70 degrees, that is, a direction corresponding to the longitudinal direction of the foldable electronic device. It can be seen that, in the embodiment of the present application, after the second parasitic radiator is introduced, the radiation pattern of the second antenna is changed, so that the maximum radiation direction in the radiation pattern of the second antenna is the vertical and lateral direction.
  • FIG. 24a and FIG. 24b are schematic diagrams of the current distribution structure at the position close to the second antenna when the foldable electronic device according to the first embodiment of Example 2 of the present application is in the folded state.
  • the viewing angle shown in Figure 24b is the viewing angle on the side of the main screen
  • the viewing angle shown in Figure 24b is the viewing angle on the side of the secondary screen.
  • the solid line arrows indicate the current direction on the second antenna radiator
  • the dashed line arrows indicate the current flow direction on the floor of the first device body where the second antenna radiator is located.
  • the solid arrows indicate the direction of current flow on the second parasitic radiator
  • the dashed arrows indicate the direction of current flow on the floor of the second device body where the second parasitic radiator is located.
  • the current on the floor of the first device body where the second antenna radiator is located is mainly a longitudinal current.
  • the current on the floor of the second device body where the second parasitic radiator is located is mainly a lateral current. That is to say, after the second parasitic radiator is introduced, the direction of the current on the floor corresponding to the second antenna is made to be longitudinal and lateral. This also shows that the introduction of the second parasitic radiator can change the maximum radiation direction of the radiation direction of the second antenna.
  • the second parasitic radiator when the second parasitic radiator extends at least partially along the other side edge (ie, the upper side edge) of the floor of the device body where the second parasitic radiator is located, and the second parasitic grounding point is close to the second parasitic grounding point At the second end of the radiator, the direction of the current on the floor of the second device body where the second antenna radiator is located is longitudinal and lateral, so that the envelope correlation coefficient between the first antenna and the second antenna is relatively high. low, so as to avoid mutual interference between the first antenna and the second antenna, and the first antenna and the second antenna can work normally.
  • FIG. 25 is a schematic structural diagram of the first embodiment of the foldable electronic device according to Embodiment 3 of the present application in an unfolded state.
  • the foldable electronic device 100G provided by the first embodiment of this embodiment also includes a device body 200G and an antenna system 300G, and the device body 200G includes a first device body 210G and a second device body 220G.
  • the first device The main body 210G and the second device main body 220G are rotatably connected through the rotating shaft 250G, so that the foldable electronic device 100G can be switched between the unfolded state and the folded state.
  • Both the first device body 210G and the second device body 220G have a floor.
  • the antenna system 300G includes a first antenna 400G, a second antenna 500G, a first parasitic radiator 600G, and a second parasitic radiator 700G.
  • the first antenna 400G may use the first antenna provided by any one of Embodiment 1 or Embodiment 2 of the present application, and the second antenna 500G may also use any one of Embodiment 1 or Embodiment 2 of the present application.
  • the first parasitic radiator 600G may use the first parasitic radiator provided by any one of the implementation manners in Embodiment 1 of the present application, and the second parasitic radiator 700G may use any of the embodiments of the present application.
  • the second parasitic radiator provided by the embodiment That is, in this embodiment, a first parasitic radiator 600G corresponding to the first antenna radiator 410G and a second parasitic radiator 700G corresponding to the second antenna radiator 510G are provided at the same time.
  • the direction of the axis O2 of the rotating shaft 250G is parallel to the longitudinal direction of the foldable electronic device 100G, that is, the foldable electronic device 100G is a foldable electronic device 100G folded left and right.
  • the first antenna radiator 410G and the second antenna radiator 510G are located on the first device body 210G, and the first parasitic radiator 600G and the second parasitic radiator 700G are located on the second device body 220G.
  • the first parasitic radiator 600G and the second parasitic radiator 700G are connected to the floor 221G of the second device body 220G.
  • the first antenna radiator 410G and the second antenna radiator 510G are located in the same device body, and the first parasitic radiator 600G and the second parasitic radiator 700G are also located in the same device body. Moreover, the first antenna radiator 410G and the first parasitic radiator 600G are located in different device bodies, and the second antenna radiator 510G and the second parasitic radiator 700G are located in different device bodies.
  • the first antenna radiator 410G and the first parasitic radiator 600G are located on the lower side of the virtual line O1
  • the second antenna radiator 510G and the second parasitic radiator 700G are located on the upper side of the virtual line O1.
  • the virtual line O1 is perpendicular to the direction of the axis O2 of the rotating shaft.
  • FIG. 26 is a schematic structural diagram of the second embodiment of the foldable electronic device according to Embodiment 3 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100H provided by the second embodiment is basically the same as the structure of the foldable electronic device 100E provided by the first embodiment, and the difference lies in that the first antenna radiator 410H and the second parasitic radiator 700H are located on the first device body 210H, and the second antenna radiator 510H and the first parasitic radiator 600H are located on the second device body 220H. That is, the first antenna radiator 410H and the second antenna radiator 510H are located in different device bodies, and the first parasitic radiator 600H and the second parasitic radiator 700H are located in different device bodies.
  • FIG. 27 is a schematic structural diagram of the third embodiment of the foldable electronic device according to Embodiment 3 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100I provided by the third embodiment is basically the same as the structure of the foldable electronic device 100E provided by the first embodiment, and the difference is that in this embodiment , the direction of the axis O2 of the rotating shaft 250I is parallel to the transverse direction T of the foldable electronic device, that is, the foldable electronic device 100I is a foldable electronic device that is folded up and down.
  • the device body 200I includes a first device body 210I and a second device body 220I that are rotatably connected around the rotation axis 250I, the first antenna radiator 410I and the second antenna radiator 510I are located in the same device body, that is, the first device body 210I, and the first parasitic The radiator 600I and the second parasitic radiator 700I are located in the same device body, that is, the second device body 220I.
  • the first antenna radiator 410I and the first parasitic radiator 600I are located on the left side of the virtual line O1O1
  • the second antenna radiator 510I and the second parasitic radiator 700I are located on the right side of the virtual line O1O1.
  • the virtual line O1 is perpendicular to the direction of the axis O2 of the rotating shaft 250I.
  • FIG. 28 is a schematic structural diagram of the fourth embodiment of the foldable electronic device according to Embodiment 3 of the present application in an unfolded state.
  • the structure of the foldable electronic device 100J provided by the fourth embodiment is basically the same as the structure of the foldable electronic device 100I provided by the third embodiment, and the difference is that in this embodiment , the first antenna radiator 410J and the second parasitic radiator 700J are located in the same device body, namely the first device body 210J, the second antenna radiator 510J and the first parasitic radiator 700J are also located in the same device body, that is, the second device body 20J. That is, the first antenna radiator 410J and the second antenna radiator 510J are located in different device bodies, and the first parasitic radiator 600J and the second parasitic radiator 700J are located in different device bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请公开了一种可折叠电子设备,包括第一设备主体、第二设备主体、第一天线、第二天线和第一寄生辐射体,第一天线包括第一天线辐射体,第二天线包括第二天线辐射体,第一天线辐射体的至少部分和第二天线辐射体的至少部分沿平行于转轴的方向延伸,当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第一天线辐射体与对应设置的第一寄生辐射体之间至少一部分重叠,使得第一天线辐射体与第一寄生辐射体耦合。本申请能够改善折叠状态时第一天线和第二天线的包络相关性系数以及效率。

Description

可折叠电子设备
本申请要求于2020年12月09日提交中国专利局、申请号为CN202011449133.9、申请名称为“可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线领域,尤其是涉及一种可折叠电子设备。
背景技术
手机进入智能时代后,大屏成为智能手机发展的趋势之一。折叠屏手机兼顾了便携性和大屏带来的视觉体验等优势,可折叠智能手机成为了当下比较热门的话题。各大手机厂商已经发布了相关可折叠智能手机。
可折叠智能手机的常见两种工作状态为展开状态和折叠状态。打开状态的形态和目前常见的直板智能手机或者平板一样。而对于折叠状态而言,不论是上下折叠还是左右折叠,折叠状态下可折叠智能手机的地板的面积相较于展开状态减小了一半,各天线周围的环境可能发生改变,从而容易使得距离较近的一对同频天线的ECC(Envelope Correlation Coefficient,包络相关性系数)及天线效率的恶化,整个天线系统的发送/接收性能可能劣化。因此,对于可折叠智能手机在折叠状态的天线设计来说,如何设计出低的包络相关性系数以及高的天线效率是可折叠智能手机天线设计的难点和痛点。
发明内容
本申请实施例提供了一种可折叠电子设备,克服了现有的可折叠电子设备天线设计的痛点和难点,可以使一对天线在折叠状态时,即使在该对天线的两个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的两个天线均具有较高的天线效率,即改善了可折叠电子设备处于折叠状态下的天线性能。
本申请实施例提供了一种可折叠电子设备,包括第一设备主体和第二设备主体,第一设备主体和第二设备主体之间通过转轴连接,第一设备主体具有第一导电边框,第二设备主体具有第二导电边框,可折叠电子设备还包括:
第一天线和第二天线,第一天线包括第一天线辐射体,第二天线包括第二天线辐射体,第一天线辐射体和第二天线辐射体位于第一设备主体,其中,第一天线的工作频段和第二天线的工作频段相同或部分重叠;
第一寄生辐射体,位于第二设备主体,第一寄生辐射体通过第二设备主体接地,其中,
第一天线辐射体和第二天线辐射体由第一设备主体的第一导电边框形成,第一寄生辐射体由第二设备主体的第二导电边框形成;第一天线辐射体的至少部分和第二天线辐射体的至少部分沿平行于转轴的方向延伸,当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第一天线辐射体与第一寄生辐射体之间至少一部分重叠,使得第一天线辐射体与第一寄生辐射体耦合。
在本方案中,通过设置在折叠状态下与第一天线辐射体对应设置并至少部分重叠的第一寄生辐射体,可以使第一天线和第二天线这一对天线在可折叠电子设备处于折叠状态时,即使在该对天线的两 个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的两个天线均具有较高的天线效率,即改善了可折叠电子设备处于折叠状态下的天线性能。
在一些实施例中,可折叠电子设备还包括与第二天线辐射体的位置对应地设置的第二寄生辐射体,第二寄生辐射体位于第二设备主体,并由第二设备主体的第二导电边框形成;当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二天线辐射体与对应设置的第二寄生辐射体之间至少一部分重叠,使得第二天线辐射体与第二寄生辐射体耦合;其中,
第二寄生辐射体包括第一端和第二端,并具有位于第一端和第二端之间且靠近第二端的位置处的第二寄生接地点,第二寄生接地点通过第二设备主体接地,第一端相对于第二端更靠近转轴;第二设备主体的地板具有远离转轴的一侧边缘和与该侧边缘相交的又一侧边缘,第二寄生辐射体的至少部分沿垂直于转轴的方向延伸,以位于第二设备主体的地板的该又一侧边缘外,并与该地板的该又一侧边缘相对设置,且第二寄生辐射体的该至少部分与第二天线辐射体的该至少部分垂直设置。
在本方案中,通过额外设置与第二天线辐射体的位置对应地设置并至少部分重叠的第二寄生辐射体,能够进一步改善该对天线的两个天线之间具有较低的包络相关性系数,以及两个天线的天线效率。
在一些实施例中,第一天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间的第一馈电点、以及位于第一馈电点与第二端之间的第一接地点,第二端相对于第一端更靠近第二天线辐射体;第一天线辐射体的第一接地点通过第一设备主体接地;第二天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间的第二馈电点、以及位于第二馈电点与第一端之间的第二接地点,第二端相对于第一端更靠近第一天线辐射体;第二天线辐射体的第二接地点通过第一设备主体接地。
在一些实施例中,第一天线辐射体呈L形并位于第一设备主体的第一导电边框的第一转角处,并包括相交的第一直线段和第二直线段,其中,第一直线段沿平行于转轴的方向延伸;第二天线辐射体呈L形并位于第一设备主体的第一导电边框的第二转角处,并包括相交的第一直线段和第二直线段,其中,第一直线段沿平行于转轴的方向延伸。
在一些实施例中,第一寄生辐射体包括第一端和第二端,并具有位于第一端和第二端之间的第一寄生接地点,第一寄生接地点通过第二设备主体接地,当可折叠电子设备处于折叠状态时,第一寄生辐射体的第二端相对于第一端更靠近第二天线辐射体;第一寄生辐射体的至少部分沿平行于转轴的方向延伸,以位于第二设备主体的地板的远离转轴的一侧边缘外。
在一些实施例中,第一寄生辐射体呈L形并位于第二设备主体的第二导电边框的第一转角处,当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二导电边框的第一转角与第一导电边框的第一转角重叠,第一寄生辐射体包括相交的第一直线段和第二直线段,其中,第一直线段沿平行于转轴的方向延伸。
本申请实施例还提供了一种可折叠电子设备,包括第一设备主体和第二设备主体,第一设备主体和第二设备主体之间通过转轴连接,第一设备主体具有第一导电边框,第二设备主体具有第二导电边框,可折叠电子设备还包括:
第一天线和第二天线,第一天线包括第一天线辐射体,第二天线包括第二天线辐射体,第一天线辐射体和第二天线辐射体位于第一设备主体,其中,第一天线的工作频段和第二天线的工作频段相同或部分重叠;
寄生辐射体,位于第二设备主体,寄生辐射体通过第二设备主体接地,其中,
第一天线辐射体和第二天线辐射体由第一设备主体的第一导电边框形成,寄生辐射体由第二设备主体的第二导电边框形成;第一天线辐射体的至少部分和第二天线辐射体的至少部分沿平行于转轴的 方向延伸,以分别位于第一设备主体的地板的远离转轴的一侧边缘外,当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二天线辐射体与寄生辐射体之间至少一部分重叠,使得第二天线辐射体与寄生辐射体耦合。
在本方案中,通过设置在折叠状态下与第二天线辐射体对应设置并至少部分重叠的寄生辐射体,可以使第一天线和第二天线这一对天线在可折叠电子设备处于折叠状态时,即使在该对天线的两个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的两个天线均具有较高的天线效率,即改善了可折叠电子设备处于折叠状态下的天线性能。
在一些实施例中,第一天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间的第一馈电点、以及位于第一馈电点与第二端之间的第一接地点,第二端相对于第一端更靠近第二天线辐射体;第一天线辐射体的第一接地点通过第一设备主体接地;第一天线辐射体呈L形并位于第一设备主体的第一导电边框的第一转角处,并包括相交的第一直线段和第二直线段,其中,第一直线段沿平行于转轴的方向延伸;第二天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间的第二馈电点、以及位于第二馈电点与第一端之间的第二接地点,第二端相对于第一端更靠近第一天线辐射体;第二天线辐射体的第二接地点通过第一设备主体接地;第二天线辐射体呈L形并位于第一设备主体的第一导电边框的第二转角处,并包括相交的第一直线段和第二直线段,其中,第一直线段沿平行于转轴的方向延伸。
在一些实施例中,寄生辐射体包括第一端和第二端,并具有位于第一端和第二端之间并靠近第二端的位置处的寄生接地点,寄生接地点通过第二设备主体接地,第一端相对于第二端更靠近转轴;第二设备主体的地板具有远离转轴的一侧边缘和与该侧边缘相交的又一侧边缘,寄生辐射体的至少部分沿垂直于转轴的方向延伸,以位于第二设备主体的地板的该又一侧边缘外,且寄生辐射体的该至少部分与第二天线辐射体的该至少部分垂直设置。
在一些实施例中,寄生辐射体呈L形并位于第二设备主体的第二导电边框的第二转角处,当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二导电边框的第二转角与第一导电边框的第二转角重叠,寄生辐射体包括相交的第一直线段和第二直线段,其中,第一直线段沿垂直于转轴的方向延伸;寄生接地点位于第二直线段。
在一些实施例中,当可折叠电子设备处于折叠状态时,在垂直于转轴的方向上,寄生辐射体的第一端相对于第二天线辐射体的第一端更靠近转轴,在平行于转轴的方向上,第二天线辐射体的第二端相对于寄生辐射体的第二端更靠近第一天线辐射体。
本申请实施例还提供了一种可折叠电子设备,包括第一设备主体和第二设备主体,第一设备主体和第二设备主体之间通过转轴连接,第一设备主体具有第一导电边框,第二设备主体具有第二导电边框,可折叠电子设备还包括:
第一天线和第二天线,第一天线包括第一天线辐射体,第二天线包括第二天线辐射体,第一天线辐射体位于第一设备主体,第二天线辐射体位于第二设备主体,其中,第一天线的工作频段和第二天线的工作频段相同或部分重叠;
第一寄生辐射体,位于第二设备主体,第一寄生辐射体通过第二设备主体接地;其中,
第一天线辐射体由第一设备主体的第一导电边框形成,第二天线辐射体和第一寄生辐射体由第二设备主体的第二导电边框形成;第一天线辐射体的至少部分沿平行于转轴的方向延伸,以位于第一设备主体的地板的远离转轴的一侧边缘外,第二天线辐射体的至少部分沿平行于转轴的方向延伸,以位于第二设备主体的地板的远离转轴的一侧边缘外,当可折叠电子设备处于折叠状态时,在可折叠电子 设备的厚度方向上,第一天线辐射体与第一寄生辐射体之间至少一部分重叠,使得第一天线辐射体与第一寄生辐射体耦合,且第一天线辐射体和第二天线辐射体之间不重叠。
本申请实施例提供了一种可折叠电子设备,包括设备主体和天线系统,设备主体包括第一设备主体和第二设备主体,第一设备主体和第二设备主体之间通过转轴旋转连接,以使可折叠电子设备能够在展开状态和折叠状态之间切换;
天线系统包括第一天线和第二天线,第一天线包括呈条形的第一天线辐射体,第二天线包括呈条形的第二天线辐射体,第一天线辐射体位于一虚拟线的一侧,第二天线辐射体位于虚拟线的与一侧相反的另一侧,其中,虚拟线垂直于转轴的轴线方向;
天线系统还包括与第一天线辐射体的位置对应地设置的呈条形的第一寄生辐射体和/或与第二天线辐射体的位置对应地设置的呈条形的第二寄生辐射体,第一寄生辐射体与第一天线辐射体分别位于第一设备主体和第二设备主体中的不同设备主体,第二寄生辐射体与第二天线辐射体分别位于第一设备主体和第二设备主体中的不同设备主体,第一寄生辐射体、第二寄生辐射体分别连接于其所在设备主体的地板,其中,
第一天线辐射体的至少部分和第二天线辐射体的至少部分分别位于其所在设备主体的地板的远离转轴的一侧边缘外,并分别与其所在设备主体的地板的该侧边缘相对设置,当可折叠电子设备处于折叠状态时,从可折叠电子设备的厚度方向上看,第一天线辐射体的至少部分与对应设置的第一寄生辐射体的至少部分重叠,第二天线辐射体的至少部分与对应设置的第二寄生辐射体的至少部分重叠,使得第一天线辐射体、第二天线辐射体分别与对应设置的寄生辐射体耦合。
在本方案中,通过设置在折叠状态下与第一天线辐射体对应设置并至少部分重叠的第一寄生辐射体,和/或,设置在折叠状态下与第二天线辐射体对应设置并至少部分重叠的第二寄生辐射体,可以使第一天线和第二天线这一对天线在可折叠电子设备处于折叠状态时,即使在该对天线的两个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的两个天线均具有较高的天线效率,即改善了可折叠电子设备处于折叠状态下的天线性能。
在一些可能的实施例中,虚拟线为设备主体的中心线或与设备主体的中心线平行,设备主体的中心线垂直于转轴的轴线方向。
在一些可能的实施例中,第一设备主体的地板和第二设备主体的地板关于转轴对称,且第一设备主体的地板和第二设备主体的地板的结构和尺寸均相同。
在一些可能的实施例中,第一设备主体的地板和第二设备主体的地板为矩形的板状结构。
在一些可能的实施例中,该第一设备主体的地板和第二设备主体的地板可以由可折叠电子设备(即可折叠智能手机)的中框的底板来形成。
在一些实施例中,第一天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间或位于第一端的第一馈电点、以及位于第一馈电点与第二端之间或位于第二端的第一接地点,第二端相对于第一端更靠近虚拟线;第一天线辐射体的第一接地点连接于第一天线辐射体所在的设备主体的地板;
第二天线辐射体包括第一端和第二端,并具有位于第一端和第二端之间或位于第二端的第二馈电点、以及位于第二馈电点与第一端之间或位于第一端的第二接地点,第二端相对于第一端更靠近虚拟线;第二天线辐射体的第二接地点连接于第二天线辐射体所在的设备主体的地板。
在一些可能的实施例中,在平行于转轴的轴线方向上,第一接地点相对于第一馈电点更靠近虚拟线,且第一天线辐射体的第二端相对于第一端更靠近虚拟线;
在平行于转轴的轴线方向上,第二馈电点相对于第二接地点更靠近虚拟线,且第二天线辐射体的 第二端相对于第一端更靠近虚拟线。
在一些实施例中,第一天线辐射体呈直条形;或者,第一天线辐射体呈L形,并包括第一直线段和垂直连接于第一直线段的远离虚拟线的一端的第二直线段,第一直线段的自由端和第二直线段的自由端分别为第一天线辐射体的第二端和第一端,其中,第一直线段与第一天线辐射体所在设备主体的地板的该侧边缘相对设置,第二直线段位于第一天线辐射体所在设备主体的地板的与该侧边缘相交的另一侧边缘外,并与该地板的该另一侧边缘相对设置;
和/或,第二天线辐射体呈直条形;或者,第二天线辐射体呈L形,并包括第一直线段和垂直连接于第一直线段的远离虚拟线的一端的第二直线段,第一直线段的自由端和第二直线段的自由端分别为第二天线辐射体的第二端和第一端,其中,第一直线段与第二天线辐射体所在设备主体的地板的该侧边缘相对设置,第二直线段位于第二天线辐射体所在设备主体的地板的与该侧边缘相交的又一侧边缘外,并与该地板的该又一侧边缘相对设置。
在一些可能的实施例中,第一天线辐射体呈直条形时,第一天线辐射体沿第一天线辐射体所在的设备主体的地板的该侧边缘呈一直线状延伸。
在一些可能的实施例中,第一天线辐射体呈直条形时,第一天线辐射体沿平行于转轴的轴线方向延伸。
在一些可能的实施例中,第一天线辐射体呈L形时,第一天线辐射体还位于第一天线辐射体所在的设备主体的地板的远离转轴的一对角附近,并沿该地板的该对角的角边缘延伸。
在一些可能的实施例中,第一天线辐射体呈L形时,第一直线段沿平行于转轴的轴线方向延伸,第二直线段沿垂直于转轴的轴线方向延伸。
在一些可能的实施例中,第二天线辐射体呈直条形时,第二天线辐射体沿第二天线辐射体所在的设备主体的地板的该侧边缘呈一直线状延伸。
在一些可能的实施例中,第二天线辐射体呈直条形时,第二天线辐射体沿平行于转轴的轴线方向延伸。
在一些可能的实施例中,第二天线辐射体呈L形时,第二天线辐射体还位于第二天线辐射体所在的设备主体的地板的远离转轴的一对角附近,并沿该地板的该对角的角边缘延伸。
在一些可能的实施例中,第二天线辐射体呈L形时,第一直线段沿平行于转轴的轴线方向延伸,第二直线段沿垂直于转轴的轴线方向延伸。
在一些可能的实施例中,在第一天线辐射体和第二天线辐射体均呈直条形时,第一天线辐射体的延伸方向和第二天线辐射体的延伸方向位于同一直线上或相互平行;
在第一天线辐射体和第二天线辐射体均呈L形时,第一天线辐射体的第一直线段的延伸方向和第二天线辐射体的第一直线段的延伸方向位于同一直线上或相互平行,第一天线辐射体的第二直线段的延伸方向和第二天线辐射体的第二直线段的延伸方向相互平行;
在第一天线辐射体呈直条形,第二天线辐射体呈L形时,第一天线辐射体的延伸方向和第二天线辐射体的第一直线段的延伸方向位于同一直线上或相互平行;
在第一天线辐射体呈L形,第二天线辐射体呈直条形时,第一天线辐射体的第一直线段的延伸方向和第二天线辐射体的延伸方向位于同一直线上或相互平行。
在一些实施例中,第一寄生辐射体包括第一端和第二端,并具有位于第一端和第二端之间或位于第一端或第二端的第一寄生接地点,第一寄生接地点连接于第一寄生辐射体所在的设备主体的地板,第二端相对于第一端更靠近虚拟线;第一寄生辐射体的至少部分位于其所在设备主体的地板的远离转轴的一侧边缘外,并与其所在设备主体的地板的该侧边缘相对设置。
在一些可能的实施例中,在平行于转轴的轴线方向上,第一寄生辐射体的第二端相对于第一端更靠近虚拟线。
在一些实施例中,第一寄生辐射体呈直条形;
或者,第一寄生辐射体呈L形,并包括第一直线段和垂直连接于第一直线段的远离虚拟线的一端的第二直线段,第一直线段的自由端和第二直线段的自由端分别为第一寄生辐射体的第二端和第一端,其中,第一直线段与第一寄生辐射体所在设备主体的地板的该侧边缘相对设置,第二直线段位于第一寄生辐射体所在设备主体的地板的与该侧边缘相交的另一侧边缘外,并与该地板的该另一侧边缘相对设置。
在一些可能的实施例中,第一寄生辐射体呈直条形时,第一寄生辐射体沿第一寄生辐射体所在的设备主体的地板的该侧边缘呈一直线状延伸。
在一些可能的实施例中,第一寄生辐射体呈直条形时,第一寄生辐射体沿平行于转轴的轴线方向延伸。
在一些可能的实施例中,第一寄生辐射体呈L形时,第一寄生辐射体还位于第一寄生辐射体所在的设备主体的地板的远离转轴的一对角附近,并沿该地板的该对角的角边缘延伸。
在一些可能的实施例中,第一寄生辐射体呈L形时,第一直线段沿平行于转轴的轴线方向延伸,第二直线段沿垂直于转轴的轴线方向延伸。
在一些可能的实施例中,在第一天线辐射体和第一寄生辐射体均呈直条形时,第一天线辐射体的延伸方向和第一寄生辐射体的延伸方向相互平行;
在第一天线辐射体和第一寄生辐射体均呈L形时,第一天线辐射体的第一直线段的延伸方向和第一寄生辐射体的第一直线段的延伸方向相互平行,第一天线辐射体的第二直线段的延伸方向和第一寄生辐射体的第二直线段的延伸方向相互平行;
在第一天线辐射体呈直条形,第一寄生辐射体呈L形时,第一天线辐射体的延伸方向和第一寄生辐射体的第一直线段的延伸方向相互平行;
在第一天线辐射体呈L形,第一寄生辐射体呈直条形时,第一天线辐射体的第一直线段的延伸方向和第一寄生辐射体的延伸方向相互平行。
在一些实施例中,当第一寄生接地点位于第一寄生辐射体的第一端和第二端之间时,第一寄生接地点位于第一寄生辐射体的中部或靠近第一端或第二端的位置处;
和/或,当可折叠电子设备处于折叠状态时,第一寄生辐射体的第一端靠近第一天线辐射体的第一端,第一寄生辐射体的第二端靠近第一天线辐射体的第二端;
和/或,第一寄生辐射体的该至少部分与第一天线辐射体的该至少部分之间相互平行。
在一些实施例中,当第一寄生辐射体包括第一直线段和第二直线段,且第一寄生接地点位于第一寄生辐射体的中部时,第一寄生接地点位于第一直线段;
当第一寄生辐射体包括第一直线段和第二直线段,且第一寄生接地点位于靠近第一寄生辐射体的第一端的位置处时,第一寄生接地点位于第二直线段;
当第一寄生辐射体包括第一直线段和第二直线段,且第一寄生接地点位于靠近第一寄生辐射体的第二端的位置处时,第一寄生接地点位于第一直线段。
在一些实施例中,当第一天线辐射体包括第一直线段和第二直线段时,第一馈电点和第一接地点均位于第一直线段;
第一接地点位于靠近第一天线辐射体的第二端的位置处;或者,
第一接地点位于第一天线辐射体的第一直线段的中部。
在一些实施例中,第二寄生辐射体包括第一端和第二端,并具有位于第一端和第二端之间并靠近第二端的位置处或位于第二端的第二寄生接地点,第二寄生接地点连接于第二寄生辐射体所在的设备主体的地板,第一端相对于第二端更靠近转轴;第二寄生辐射体所在的设备主体的地板具有远离转轴的一侧边缘和与该侧边缘相交的又一侧边缘,第二寄生辐射体的至少部分位于其所在的设备主体的地板的该又一侧边缘外,并与该地板的该又一侧边缘相对设置,且第二寄生辐射体的该至少部分与第二天线辐射体的该至少部分垂直设置。
在一些可能的实施例中,在平行于虚拟线的方向上,第二寄生辐射体的第一端相对于第二端更靠近转轴;
在一些实施例中,第二寄生辐射体呈直条形;
或者,第二寄生辐射体呈L形,并包括第一直线段和垂直连接于第一直线段的远离转轴的一端的第二直线段,第一直线段的自由端和第二直线段的自由端分别为第二寄生辐射体的第一端和第二端,其中,第一直线段与第一寄生辐射体所在设备主体的地板的该又一侧边缘相对设置,第二直线段位于第一寄生辐射体所在设备主体的地板的该侧边缘外,并与该地板的该侧边缘相对设置。
在一些可能的实施例中,第二寄生辐射体呈直条形时,第二寄生辐射体沿第二寄生辐射体所在的设备主体的地板的该又一侧边缘呈一直线状延伸。
在一些可能的实施例中,第二寄生辐射体呈直条形时,第二寄生辐射体沿垂直于转轴的轴线方向延伸。
在一些可能的实施例中,第二寄生辐射体呈L形时,第二寄生辐射体还位于第二寄生辐射体所在的设备主体的地板的远离转轴的一对角附近,并沿该地板的该对角的角边缘延伸。
在一些可能的实施例中,第二寄生辐射体呈L形时,第一直线段沿垂直于转轴的轴线方向延伸,第二直线段沿平行于转轴的轴线方向延伸。
在一些可能的实施例中,在第二天线辐射体和第二寄生辐射体均呈L形时,第二天线辐射体的第一直线段的延伸方向和第二寄生辐射体的第二直线段的延伸方向相互平行,第二天线辐射体的第二直线段的延伸方向和第二寄生辐射体的第一直线段的延伸方向相互平行;
在第二天线辐射体呈直条形,第二寄生辐射体呈L形时,第二天线辐射体的延伸方向和第二寄生辐射体的第二直线段的延伸方向相互平行,第二天线辐射体的延伸方向和第二寄生辐射体的第一直线段的延伸方向相互垂直;
在第二天线辐射体呈L形,第二寄生辐射体呈直条形时,第二天线辐射体的第一直线段的延伸方向和第二寄生辐射体的延伸方向相互垂直,第二天线辐射体的第二直线段的延伸方向和第二寄生辐射体的延伸方向相互平行。
在一些实施例中,当第二寄生辐射体包括第一直线段和第二直线段时,第二寄生接地点位于第二直线段,且第一直线段的长度大于第二直线段的长度。
在一些实施例中,当可折叠电子设备处于折叠状态时,在平行于虚拟线的方向上,第二寄生辐射体的第一端相对于第二天线辐射体的第一端更靠近转轴,在平行于转轴的轴线方向上,第二天线辐射体的第二端相对于第二寄生辐射体的第二端更靠近虚拟线。
在一些实施例中,第二天线辐射体的第二接地点位于靠近第二天线辐射体的第一端的位置处,第二馈电点位于靠近第二天线辐射体的第二端的位置处;
在一些实施例中,当第二天线辐射体包括第一直线段和第二直线段时,第二馈电点位于第一直线段,第二接地点位于第二直线段。
在一些实施例中,第一天线的工作频段和第二天线的工作频段相同或部分重叠;
和/或,第一天线辐射体的该至少部分的延伸方向和第二天线辐射体的该至少部分的延伸方向位于同一直线上或相互平行;
和/或,第一天线辐射体的该至少部分和第二天线辐射体的该至少部分分别沿平行于转轴的轴线方向延伸。
在一些可能的实施例中,第一天线的工作频段的频率范围为0.7~0.96GHz,第二天线的工作频段的频率范围为0.7~0.96GHz,即第一天线的工作频段和第二天线的工作频段为低频。
在一些实施例中,第一天线辐射体、第二天线辐射体、第一寄生辐射体、第二寄生辐射体由可折叠电子设备的导电边框形成;
或者,第一天线辐射体、第二天线辐射体、第一寄生辐射体、第二寄生辐射体采用贴片结构,贴片结构贴设于可折叠电子设备的导电边框的表面,并由导电材料制得;
或者,第一天线辐射体、第二天线辐射体、第一寄生辐射体、第二寄生辐射体采用嵌设于可折叠电子设备的屏幕内部的透明天线;
或者,第一天线辐射体、第二天线辐射体、第一寄生辐射体、第二寄生辐射体采用贴片结构,贴片结构贴设于可折叠电子设备的后盖,并由导电材料制得。
在一些实施例中,第一天线辐射体和第二天线辐射体设置于第一设备主体,第一寄生辐射体和/或第二寄生辐射体设置于第二设备主体。
在一些实施例中,第一设备主体为可折叠电子设备的主屏所在一侧的设备主体,第二设备主体为可折叠电子设备的副屏所在一侧的设备主体。
附图说明
图1a为可折叠电子设备处于展开状态时的结构示意图;
图1b为可折叠电子设备处于折叠状态时的结构示意图;
图2为可折叠电子设备处于展开状态和折叠状态两种状态时第一天线和第二天线之间的ECC参数性能仿真曲线图,其中,第一天线和第二天线的工作频率范围为0.7GHz~0.96GHz;
图3a为可折叠电子设备处于展开状态和折叠状态两种状态时第一天线的辐射效率和系统效率的仿真效果图;
图3b为可折叠电子设备处于展开状态和折叠状态两种状态时第二天线的辐射效率和系统效率的仿真效果图;
图4为本申请实施例1的可折叠电子设备的第一实施方式在展开状态下的结构示意图;
图5为本申请实施例1的可折叠电子设备的第二实施方式在展开状态下的结构示意图;
图6为本申请实施例1的可折叠电子设备的第三实施方式在展开状态下的结构示意图;
图7为本申请实施例1的可折叠电子设备的第四实施方式在展开状态下的结构示意图;
图8为本申请实施例1的可折叠电子设备的第五实施方式在展开状态下的结构示意图;
图9为第一种参考设计的可折叠电子设备在展开状态下的结构示意图;
图10a为本申请实施例1的第一实施方式以及第一种参考设计的可折叠电子设备处于折叠状态时第一天线的辐射效率和系统效率的仿真效果对比图;
图10b为本申请实施例1的第二实施方式以及第一种参考设计的可折叠电子设备处于折叠状态时第一天线的辐射效率和系统效率的仿真效果对比图;
图10c为本申请实施例1的第三实施方式以及第一种参考设计的可折叠电子设备处于折叠状态时 第一天线的辐射效率和系统效率的仿真效果对比图;
图11a~图11d为第一种参考设计、本申请实施例1的第一实施方式、第二实施方式、第三实施方式的可折叠电子设备处于折叠状态时第一天线的辐射方向图;
图12为第一种参考设计的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图;
图13a和图13b为本申请实施例1的第一实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图,其中,图13a所示的视角为主屏一侧的视角,图13b所示的视角为副屏一侧的视角;
图14a和图14b为本申请实施例1的第二实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图,其中,图14a所示的视角为主屏一侧的视角,图14b所示的视角为副屏一侧的视角;
图15a和图15b为本申请实施例1的第三实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图,其中,图15a所示的视角为主屏一侧的视角,图15b所示的视角为副屏一侧的视角;
图16为本申请实施例2的可折叠电子设备的第一实施方式在展开状态下的结构示意图;
图17为本申请实施例2的可折叠电子设备的第二实施方式在展开状态下的结构示意图;
图18为第二种参考设计的可折叠电子设备在展开状态下的结构示意图;
图19为第三种参考设计的可折叠电子设备在展开状态下的结构示意图;
图20为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线的S 11参数的仿真效果对比图;
图21为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线与第一天线之间的包络相关性系数(即ECC)的仿真效果对比图;
图22为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线的辐射效率和系统效率的仿真效果对比图;
图23为本申请实施例2的第一实施方式以及第二种参考设计的可折叠电子设备处于折叠状态时第二天线的辐射方向图;
图24a和图24b为本申请实施例2的第一实施方式的可折叠电子设备处于折叠状态时靠近第二天线位置处的电流分布结构示意图,其中,图24a所示的视角为主屏一侧的视角,图24b所示的视角为副屏一侧的视角;
图25为本申请实施例3的可折叠电子设备的第一实施方式在展开状态下的结构示意图;
图26为本申请实施例3的可折叠电子设备的第二实施方式在展开状态下的结构示意图;
图27为本申请实施例3的可折叠电子设备的第三实施方式在展开状态下的结构示意图;
图28为本申请实施例3的可折叠电子设备的第四实施方式在展开状态下的结构示意图。
附图标记说明:
100':可折叠电子设备;
200':设备主体;210':第一设备主体;211':地板;212':左侧边缘;220':第二设备主体;250':转轴;
300':天线系统;
400':第一天线;410':第一天线辐射体;411':第一端;412':第二端;413':第一直线段; 414':第二直线段;420':第一馈电点;430':第一接地点;
500':第二天线;510':第二天线辐射体;511':第一端;512':第二端;513':第一直线段;514':第二直线段;520':第二馈电点;530':第二接地点;
800':第一射频源;810':第二射频源;
100:可折叠电子设备;
200:设备主体;210:第一设备主体;211:地板;212:左侧边缘;213:上侧边缘;214:下侧边缘;215:第一对角;216:第二对角;220:第二设备主体;221:地板;222:右侧边缘;224:下侧边缘;225:第一对角;250:转轴;
300:天线系统;
400:第一天线;410:第一天线辐射体;411:第一端;412:第二端;413:第一直线段;414:第二直线段;420:第一馈电点;430:第一接地点;
500:第二天线;510:第二天线辐射体;511:第一端;512:第二端;513:第一直线段;514:第二直线段;520:第二馈电点;530:第二接地点;
600:第一寄生辐射体;610:第一寄生接地点;620:第一直线段;630:第二直线段;640:第一端;650:第二端;
800:第一射频源;810:第二射频源;
100A:可折叠电子设备;
200A:设备主体;210A:第一设备主体;211A:地板;220A:第二设备主体;221A:地板;250A:转轴;
300A:天线系统;
400A:第一天线;410A:第一天线辐射体;411A:第一端;412A:第二端;420A:第一馈电点;430A:第一接地点;
500A:第二天线;510A:第二天线辐射体;511A:第一端;512A:第二端;520A:第二馈电点;530A:第二接地点;
600A:第一寄生辐射体;610A:第一寄生接地点;620A:第一直线段;630A:第二直线段;640A:第一端;650A:第二端;
800A:第一射频源;810A:第二射频源;
100B:可折叠电子设备;
200B:设备主体;210B:第一设备主体;211B:地板;220B:第二设备主体;221B:地板;250B:转轴;
300B:天线系统;
400B:第一天线;410B:第一天线辐射体;411B:第一端;412B:第二端;420B:第一馈电点;430B:第一接地点;
500B:第二天线;510B:第二天线辐射体;511B:第一端;512B:第二端;520B:第二馈电点;530B:第二接地点;
600B:第一寄生辐射体;610B:第一寄生接地点;620B:第一直线段;630B:第二直线段;640B:第一端;650B:第二端;
800B:第一射频源;810B:第二射频源;
100C:可折叠电子设备;
210C:第一设备主体;211C:地板;212C:左侧边缘;250C:转轴;
500C:第二天线;510C:第二天线辐射体;
100D:可折叠电子设备;
410D:第一天线辐射体;411D:第一端;412D:第二端;413D:第一直线段;414D:第二直线段;420D:第一馈电点;430D:第一接地点;
100E:可折叠电子设备;
200E:设备主体;210E:第一设备主体;211E:地板;212E:左侧边缘;220E:第二设备主体;221E:地板;222E:右侧边缘;223E:上侧边缘;226E:第二对角;250E:转轴;
300E:天线系统;
400E:第一天线;410E:第一天线辐射体;411E:第一端;412E:第二端;413E:第一直线段;414E:第二直线段;420E:第一馈电点;430E:第一接地点;
500E:第二天线;510E:第二天线辐射体;511E:第一端;512E:第二端;513E:第一直线段;514E:第二直线段;520E:第二馈电点;530E:第二接地点;
700E:第二寄生辐射体;710E:第二寄生接地点;720E:第一直线段;730E:第二直线段;740E:第一端;750E:第二端;
800E:第一射频源;810E:第二射频源;
100F:可折叠电子设备;
200F:设备主体;210F:第一设备主体;211F:地板;212F:左侧边缘;220F:第二设备主体;250F:转轴;
300F:天线系统;
400F:第一天线;410F:第一天线辐射体;
500F:第二天线;510F:第二天线辐射体;
700F:第二寄生辐射体;
100G:可折叠电子设备;
200G:设备主体;210G:第一设备主体;220G:第二设备主体;221G:地板;250G:转轴;
300G:天线系统;
400G:第一天线;410G:第一天线辐射体;
500G:第二天线;510G:第二天线辐射体;
600G:第一寄生辐射体;
700G:第二寄生辐射体;
100H:可折叠电子设备;
210H:第一设备主体;
220H:第二设备主体;
410H:第一天线辐射体;
510H:第二天线辐射体;
600H:第一寄生辐射体;
700H:第二寄生辐射体;
100I:可折叠电子设备;
200I:设备主体;210I:第一设备主体;220I:第二设备主体;250I:转轴;
410I:第一天线辐射体;
510I:第二天线辐射体;
600I:第一寄生辐射体;
700I:第二寄生辐射体;
100J:可折叠电子设备;
210J:第一设备主体;220J:第二设备主体;
410J:第一天线辐射体;
510J:第二天线辐射体;
600J:第一寄生辐射体;
700J:第二寄生辐射体;
O1:虚拟线;
O2:轴线;
T:横向;
L:纵向;
L11:第一天线辐射体的第一直线段的长度;
L12:第一天线辐射体的第二直线段的长度;
L13:位于第一接地点与第二端之间的第一天线辐射体的长度;
L14:位于第一接地点与第一馈电点之间的第一天线辐射体的长度;
L2:第二天线辐射体的长度;
L21:第二天线辐射体的第一直线段的长度;
L22:第二天线辐射体的第二直线段的长度;
L23:位于第二接地点与第二端之间的第二天线辐射体的长度;
L24:位于第二接地点与第二馈电点之间的第二天线辐射体的长度;
L25:位于第二接地点与第一端之间的第二天线辐射体的长度;
L31:第一寄生辐射体的第一直线段的长度;
L32:第一寄生辐射体的第二直线段的长度;
L33:位于第一寄生接地点与第二端之间的第一寄生辐射体的长度;
L34:位于第一寄生接地点与第一端之间的第一寄生辐射体的长度:
L41:第二寄生辐射体的第一直线段的长度;
L42:第二寄生辐射体的第二直线段的长度;
L43:位于第二寄生接地点与第二端之间的第二寄生辐射体的长度;
L44:位于第二寄生接地点与第一端之间的第二寄生辐射体的长度;
d:第一天线辐射体的第二端与第二天线辐射体的第二端的距离;
100A':可折叠电子设备;
220A':第二设备主体;221A':地板;
600A':第一寄生辐射体;
100B':可折叠电子设备;
220B':第二设备主体;221B':地板;
700B':第二寄生辐射体;
100C':可折叠电子设备;
220C':第二设备主体;222C':右侧边缘;250C':转轴;
700C':第二寄生辐射体。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,应理解,在本申请中“电连接”可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuitboard,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式。“通信连接”可以指电信号传输,包括无线通信连接和有线通信连接。无线通信连接不需要实体媒介,且不属于对产品构造进行限定的连接关系。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
请参见图1a~图1b,图1a为可折叠电子设备100'处于展开状态时的结构示意图。图1b为可折叠电子设备100'处于折叠状态时的结构示意图。
如图1a所示,可折叠电子设备100'包括设备主体200'和天线系统300'。其中,设备主体200'包括第一设备主体210'和第二设备主体220',第一设备主体210'和第二设备主体220'之间通过转轴250'旋转连接,以使可折叠电子设备100'能够在展开状态和折叠状态之间切换。
天线系统300'包括第一天线400'和第二天线500'。第一天线400'包括第一天线辐射体410'。第一天线辐射体410'包括第一端411'和第二端412',并具有第一馈电点420'、第一接地点430',第一馈电点420'位于第一天线辐射体410'的第一端411'和第一天线辐射体410'的第二端412'之间,并连接于第一射频源800',以接收第一射频源800'输出的射频信号,第一接地点430'位于第一馈电点420'与第一天线辐射体410'的第二端412'之间,并连接于第一设备主体210'的地板211'。第一天线辐射体410'包括第一直线段413'和垂直连接于第一直线段413'的远离虚拟线O1的一端的第二直线段414'。第一直线段413'的自由端和第二直线段414'的自由端分别为第一天线 辐射体410'的第二端412'和第一端411'。第一馈电点420'和第一接地点430'位于第一直线段413'。第一直线段413'位于第一设备主体210'的地板211'的远离转轴250'的一侧边缘(即左侧边缘212')外。
第二天线500'包括第二天线辐射体510',第二天线辐射体510'也位于第一设备主体210'的地板211'的远离转轴250'的一侧边缘(即左侧边缘212')外。第二天线辐射体510'包括第一端511'和第二端512',并具有第二馈电点520'、第二接地点530'。第二馈电点520'位于第二天线辐射体510'的第一端511'和第二天线辐射体510'的第二端512'之间,并连接于第二射频源810',以接收第二射频源810'输出的射频信号。第二接地点530'位于第二馈电点520'与第二天线辐射体510'的第一端511'之间,并连接于第一设备主体210'的地板211'。第二天线辐射体510'包括第一直线段513'和垂直连接于第一直线段513'的远离虚拟线O1的一端的第二直线段514'。第一直线段513'的自由端和第二直线段514'的自由端分别为第二天线辐射体510'的第二端512'和第一端511'。虚拟线O1垂直于转轴250'的轴线O2的方向。
采用全波电磁仿真软件HFSS对图1a和图1b所提供的可折叠电子设备100'进行仿真分析,获得了如图2~图3b所示的效果曲线图。
获取图2~图3b所示的曲线图的仿真条件如下表1所示(请结合图1a-图1b予以理解):
表1
Figure PCTCN2021136102-appb-000001
请参见图2~图3b,图2为可折叠电子设备处于展开状态和折叠状态两种状态时第一天线和第二天线之间的ECC参数性能仿真曲线图,其中,第一天线和第二天线的工作频率范围为0.7GHz~0.96GHz。图3a为可折叠电子设备处于展开状态和折叠状态两种状态时第一天线的辐射效率和系统效率的仿真效果图。图3b为可折叠电子设备处于展开状态和折叠状态两种状态时第二天线的辐射效率和系统效率的仿真效果图;
如图2所示,在可折叠电子设备的第一天线和第二天线的工作频率为0.76GHz时,折叠状态时的第一天线和第二天线之间的ECC为0.406,展开状态时的第一天线和第二天线之间的ECC为0.034。也就是说,折叠状态时的第一天线和第二天线之间的ECC相较于展开状态时的第一天线和第二天线之间的ECC有一定程度的上升(即ECC有一定程度的恶化)。由此可知,可折叠电子设备处于折叠状态时,相较于展开状态使一对同频天线的ECC恶化。
结合图3a和图3b,从图3a和图3b可以看出,在可折叠电子设备的第一天线和第二天线的工作频率为0.76GHz时,折叠状态时的第一天线的辐射效率为-4dB,系统效率为-4.6dB,展开状态时的第一天线的辐射效率为-2.3dB,系统效率为-3.2dB。由此可知,折叠状态相较于展开状态,工作频率为0.76GHz时,第一天线的辐射效率下降1.7dB,第一天线的系统效率下降1.4dB。
折叠状态时的第二天线的辐射效率为-3.9dB,系统效率为-4dB,展开状态时的第二天线的辐射效率为-2dB,系统效率为-2.5dB。由此可知,折叠状态相较于展开状态,工作频率为0.76GHz时,第二天线的辐射效率下降1.9dB,第二天线的系统效率下降1.5dB。
由此可知,可折叠电子设备处于折叠状态时,相较于展开状态使一对同频天线的效率恶化。
本申请以下实施例1、实施例2和实施例3所描述的技术方案对第一天线和第二天线之间的包络性相关系数以及第一天线和第二天线的效率进行进一步地改善。
实施例1
请参见图4,图4为本申请实施例1的可折叠电子设备的第一实施方式在展开状态下的结构示意图。如图4所示,本申请实施例1提供了一种可折叠电子设备100,其包括设备主体200和天线系统300。在本实施方式中,该可折叠电子设备100以可折叠智能手机进行举例说明。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,该可折叠电子设备100也可以为可折叠平板电脑或可折叠智能手表等其它可折叠电子设备,在此并不对本申请的保护范围产生限定作用。
其中,设备主体200包括第一设备主体210和第二设备主体220,第一设备主体210和第二设备主体220之间通过转轴250旋转连接,以使可折叠电子设备100能够在展开状态和折叠状态之间切换。在本实施方式中,第一设备主体210为可折叠电子设备100的主屏所在一侧的设备主体,第二设备主体220为可折叠电子设备100的副屏所在一侧的设备主体。在可替代的其它实施方式中,第一设备主体210也可为可折叠电子设备100的副屏所在一侧的设备主体,第二设备主体220为可折叠电子设备100的主屏所在一侧的设备主体,在此并不对本申请的保护范围产生限定作用。
进一步地,在本实施方式中,转轴250的轴线O2的方向平行于可折叠电子设备100的纵向L,即可折叠电子设备100为左右翻折的可折叠电子设备100。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,转轴250的轴线O2的方向也可以平行于可折叠电子设备100的横向T,即可折叠电子设备100为上下翻折的可折叠电子设备100,在此并不对本申请的保护范围产生限定作用。
如图4所示,天线系统300包括第一天线400和第二天线500。第一天线400包括呈条形的第一天线辐射体410。第二天线500包括呈条形的第二天线辐射体510。第一天线辐射体410位于一虚拟线O1的一侧(即虚拟线O1的下侧),第二天线辐射体510位于虚拟线O1的与一侧相反的另一侧(即 虚拟线O1的上侧)。其中,虚拟线O1垂直于转轴250的轴线O2。
在本实施方式中,虚拟线O1为设备主体200的中心线或与设备主体200的中心线平行,设备主体200的中心线垂直于转轴250的轴线O2的方向。
在本实施方式中,第一设备主体的地板211和第二设备主体的地板221关于转轴250对称,且第一设备主体的地板211和第二设备主体的地板221的结构和尺寸均相同。
需要说明的是,本领域技术人员可以理解,第一设备主体的地板211和第二设备主体的地板221的结构可以不同,尺寸也可以不同,可以根据实际的需要进行设置,在此并不对本申请的保护范围产生限定作用。
在本实施方式中,第一设备主体的地板211和第二设备主体的地板221为矩形的板状结构。需要说明的是,本领域技术人员可以理解,第一设备主体的地板211和第二设备主体的地板221也可以为其它合适形状的结构。
进一步地,该第一设备主体的地板211和第二设备主体的地板221可以由可折叠电子设备100(即可折叠智能手机)的中框的底板来形成。本领域技术人员可以理解的是,在可替代的其它实施方式中,第一设备主体的地板211和第二设备主体的地板221也可以其它金属部分构成,比如,印制电路板。
另外,天线系统300还包括与第一天线辐射体410的位置对应地设置的呈条形的第一寄生辐射体600。第一寄生辐射体600与第一天线辐射体410分别位于第一设备主体210和第二设备主体220中的不同设备主体,第一寄生辐射体600电连接于其所在设备主体的地,具体地,第一寄生辐射体600电连接于其所在设备主体的地板。本领域技术人员可以理解的是,地板为地的一种,本实施例中地以地板举例说明。
在本实施方式中,第一天线辐射体410和第二天线辐射体510设置于第一设备主体210,第一寄生辐射体600设置于第二设备主体220。第一寄生辐射体600连接于第二设备主体的地板221。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410和第二天线辐射体510也可以设置于不同的设备主体,比如,第一天线辐射体410设置于第一设备主体210,第二天线辐射体510和第一寄生辐射体600设置于第二设备主体220,或者,第一天线辐射体410设置于第二设备主体220,第二天线辐射体510和第一寄生辐射体600设置于第一设备主体210,在此并不对本申请的保护范围产生限定作用。
进一步地,如图4所示,第一天线辐射体410的至少部分和第二天线辐射体510的至少部分分别位于其所在设备主体的地板的远离转轴250的一侧边缘外,并分别与其所在设备主体的地板的该侧边缘相对设置。在本实施方式中,第一天线辐射体410的至少部分位于第一设备主体的地板211的远离转轴250的一侧边缘外,并与第一设备主体的地板211的该侧边缘相对设置。即第一天线辐射体410的至少部分位于第一设备主体的地板211的左侧边缘212外,并与第一设备主体的地板211的该左侧边缘212相对设置。第二天线辐射体510的至少部分位于第一设备主体的地板211的远离转轴250的一侧边缘外,并与第一设备主体的地板211的该侧边缘相对设置。即第二天线辐射体510的至少部分位于第一设备主体的地板211的左侧边缘212外,并与第一设备主体的地板211的该左侧边缘212相对设置。第一设备主体的地板211的该左侧边缘212沿可折叠电子设备100的纵向L延伸。其中,第一天线辐射体410位于虚拟线O1的下侧,第二天线辐射体510位于虚拟线O1的上侧。
当可折叠电子设备100处于折叠状态时,从可折叠电子设备100的厚度方向上看,第一天线辐射体410与对应设置的第一寄生辐射体600间隔开来,并且第一天线辐射体410的至少部分与第一寄生辐射体600的至少部分重叠,使得第一天线辐射体410、与对应设置的第一寄生辐射体600耦合。
通过设置在折叠状态下与第一天线辐射体410对应设置并至少部分重叠的第一寄生辐射体600, 可以使第一天线400和第二天线500这一对天线在可折叠电子设备100处于折叠状态时,即使在该对天线的两个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的第一天线400具有较高的天线效率,即改善了可折叠电子设备100处于折叠状态下的天线性能。
如图4所示,第一天线辐射体410包括第一端411和第二端412。第一天线辐射体410的第二端412相对于第一天线辐射体410的第一端411更靠近虚拟线O1。第一天线辐射体410具有第一馈电点420、以及第一接地点430。第一馈电点420位于第一天线辐射体410的第一端411和第一天线辐射体410的第二端412之间,并连接于第一射频源800,以接收第一射频源800输出的射频信号。第一接地点430位于第一馈电点420与第一天线辐射体410的第二端412之间。第一天线辐射体410的第一接地点430连接于第一天线辐射体410所在的设备主体的地板,即第一天线辐射体410的第一接地点430连接于第一设备主体的地板211。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一馈电点420也可以位于第一天线辐射体410的第一端411处;第一接地点430也可以位于第一天线辐射体410的第二端412处。
进一步地,在平行于转轴250的轴线O2的方向上,第一接地点430相对于第一馈电点420更靠近虚拟线O1,且第一天线辐射体410的第二端412相对于第一天线辐射体410的第一端411更靠近虚拟线O1。
另外,第一天线辐射体410呈L形并位于第一设备主体210的第一导电边框的第一转角处,第一转角与第一设备主体210的地板211的第一对角215对应设置,即位于地板211的第一对角215附近。第一天线辐射体410包括第一直线段413和垂直连接于第一直线段413的远离虚拟线O1的一端的第二直线段414。第一直线段413的自由端和第二直线段414的自由端分别为第一天线辐射体410的第二端412和第一天线辐射体410的第一端411。第一直线段413与第一天线辐射体410所在设备主体的地板的该侧边缘相对设置,即第一直线段413与第一设备主体的地板211的左侧边缘212相对设置。第二直线段414位于第一天线辐射体410所在设备主体的地板的与该侧边缘相交的另一侧边缘外,并与该地板的该另一侧边缘相对设置。也就是说,第二直线段414位于第一设备主体的地板211的下侧边缘214外,并与第一设备主体的地板211的下侧边缘214相对设置。
进一步地,第一天线辐射体410还位于第一天线辐射体410所在的设备主体的地板的远离转轴250的一对角附近,并沿该地板的该对角的角边缘延伸。即第一天线辐射体410还位于第一设备主体的地板211的第一对角215附近,并沿第一设备主体的地板211的第一对角215的角边缘延伸。
更进一步地,第一直线段413沿平行于转轴250的轴线O2的方向延伸,第二直线段414沿垂直于转轴250的轴线O2的方向延伸。也就是说,第一直线段413沿可折叠电子设备100的纵向L延伸,第二直线段414沿可折叠电子设备100的横向T延伸。当然,需要说明的是,平行可以是大致平行,包括形成小幅度夹角(该夹角可忽略不计)的情况。在本实施例中,平行于转轴250的轴线O2的方向,是可以有一定容许的倾斜偏差,例如,5°以内的偏差。上述关于平行的说明在本申请全文范围内适用。
如图4所示,第一馈电点420和第一接地点430均位于第一直线段413。第一接地点430位于靠近第一天线辐射体410的第二端412的位置处。其中,在一个具体的实施例中,位于第一接地点430与第二端412之间的第一天线辐射体410的长度为7.56mm,位于第一接地点430与第一端411之间的第一天线辐射体410的长度为84.94mm,位于第一接地点430与第一馈电点420之间的第一天线辐射体410的长度为24.7mm。第一直线段413的长度大于第二直线段414的长度,第一直线段413的长度为65mm,第二直线段414的长度为27.5mm。在本实施方式中,第一天线辐射体410的长度约 为第一天线的工作波长的1/4倍。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一馈电点420也可以位于第二直线段414,第一接地点430也可以位于其它合适的位置处,在此并不对本申请的保护范围产生限定作用。
如图4所示,第二天线辐射体510包括第一端511和第二端512。第二天线辐射体510的第二端512相对于第二天线辐射体510的第一端511更靠近虚拟线O1。第二天线辐射体510具有第二馈电点520、以及第二接地点530。第二馈电点520位于第二天线辐射体510的第一端511和第二天线辐射体510的第二端512之间,并连接于第二射频源810,以接收第二射频源810输出的射频信号。第二接地点530位于第二馈电点520与第二天线辐射体510的第一端511之间。第二天线辐射体510的第二接地点530连接于第二天线辐射体510所在的设备主体的地板,即第二天线辐射体510的第二接地点530连接于第一设备主体的地板211。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二馈电点520也可以位于第二天线辐射体510的第二端512处;第二接地点530也可以位于第二天线辐射体510的第一端511处。
进一步地,在平行于转轴250的轴线O2的方向上,第二馈电点520相对于第二接地点530更靠近虚拟线O1,且第二天线辐射体510的第二端512相对于第二天线辐射体510的第一端511更靠近虚拟线O1。
另外,第二天线辐射体510呈L形并位于第一设备主体210的第一导电边框的第二转角处,第二转角与第一设备主体210的地板211的第二对角216对应设置,即位于地板211的第二对角216附近。第二天线辐射体510包括第一直线段513和垂直连接于第一直线段513的远离虚拟线O1的一端的第二直线段514。第一直线段513的自由端和第二直线段514的自由端分别为第二天线辐射体510的第二端512和第一端511。其中,第一直线段513与第二天线辐射体510所在设备主体的地板的该侧边缘相对设置,即第一直线段513与第一设备主体的地板211的左侧边缘212相对设置。第二直线段514位于第二天线辐射体510所在设备主体的地板的与该侧边缘相交的又一侧边缘外,并与该地板的该又一侧边缘相对设置。也就是说,第二直线段514位于第一设备主体的地板211的上侧边缘213外,并与第一设备主体的地板211的上侧边缘213相对设置。
进一步地,第二天线辐射体510还位于第二天线辐射体510所在的设备主体的地板的远离转轴250的一对角附近,并沿该地板的该对角的角边缘延伸。即第二天线辐射体510还位于第一设备主体的地板211的第二对角216附近,并沿第一设备主体的地板211的第二对角216的角边缘延伸。
更进一步地,第一直线段513沿平行于转轴250的轴线O2的方向延伸,第二直线段514沿垂直于转轴250的轴线O2的方向延伸。也就是说,第一直线段513沿可折叠电子设备100的纵向L延伸,第二直线段514沿可折叠电子设备100的横向T延伸。当然,需要说明的是,垂直可以是大致垂直,包括小幅度偏差(该偏差可忽略不计)的情况。在本实施例中,垂直于转轴250的轴线O2的方向,是可以有一定容许的角度偏差,例如,5°以内的偏差。上述关于垂直的说明在本申请全文范围内适用。
此外,第二天线辐射体510的第二接地点530位于靠近第二天线辐射体510的第一端511的位置处,第二馈电点520位于靠近第二天线辐射体510的第二端512的位置处。在一个具体的实施例中,位于第二接地点530与第二端512之间的第二天线辐射体510的长度为38.09mm;位于第二接地点530与第二馈电点520之间的第二天线辐射体510的长度为27.39mm。
进一步地,第二馈电点520位于第一直线段513,第二接地点530位于第二直线段514。其中,在一个具体的实施例中,第一直线段513的长度为30.2mm,第二直线段514的长度为13.68mm。位 于第二接地点530与第一端511之间的第二天线辐射体510的长度为4.65mm。
在本实施方式中,第二天线500为左手天线,其中,位于第二接地点530与第二端512之间的第二天线辐射体510的长度为第二天线的工作波长的1/8倍~1/4倍之间。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二接地点530也可以位于第一直线段513的合适位置处,第二馈电点520也可以位于其它合适的位置处,在此并不对本申请的保护范围产生限定作用。
如图4所示,第一天线辐射体410的该至少部分的延伸方向和第二天线辐射体510的该至少部分的延伸方向位于同一直线上。且第一天线辐射体410的该至少部分和第二天线辐射体510的该至少部分分别沿平行于转轴250的轴线O2的方向延伸。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410的该至少部分的延伸方向和第二天线辐射体510的该至少部分的延伸方向也可以相互平行。
在本实施方式中,第一天线辐射体410的第一直线段413的延伸方向和第二天线辐射体510的第一直线段的延伸方向位于同一直线上,第一天线辐射体410的第二直线段414的延伸方向和第二天线辐射体510的第二直线段514的延伸方向相互平行。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410的第一直线段413的延伸方向和第二天线辐射体510的第一直线段的延伸方向相互平行。
另外,第一天线400的工作频段和第二天线500的工作频段相同或部分重叠。在本实施方式中,第一天线400的工作频段的频率范围为0.7~0.96GHz,第二天线500的工作频段的频率范围为0.7~0.96GHz,即第一天线400的工作频段和第二天线500的工作频段为低频。本领域技术人员可以理解的是,在可替代的其它实施方式中,可以对第一天线400和第二天线500的尺寸、馈电点和接地点进行设计以使第一天线400的工作频段和第二天线500的工作频段也可以为中高频。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410和第二天线辐射体510也可以采用其它形状的结构,并不局限于L形,比如,第一天线辐射体410和/或第二天线辐射体510呈直条形。
其中,第一天线辐射体410呈直条形时,第一天线辐射体410沿第一天线辐射体410所在的设备主体的地板的该侧边缘呈一直线状延伸,即第一天线辐射体410沿第一设备主体的地板211的左侧边缘212呈一直线状延伸,且第一天线辐射体410沿平行于转轴250的轴线O2的方向延伸。
第二天线辐射体510呈直条形时,第二天线辐射体510沿第二天线辐射体510所在的设备主体的地板的该侧边缘呈一直线状延伸,即第二天线辐射体510沿第一设备主体的地板211的左侧边缘212呈一直线状延伸,且第二天线辐射体510沿平行于转轴250的轴线O2的方向延伸。
本领域技术人员可以理解的是,在第一天线辐射体410和第二天线辐射体510均呈直条形时,第一天线辐射体410的延伸方向和第二天线辐射体510的延伸方向位于同一直线上或相互平行。在第一天线辐射体410呈直条形,第二天线辐射体510呈L形时,第一天线辐射体410的延伸方向和第二天线辐射体510的第一直线段513的延伸方向位于同一直线上或相互平行。在第一天线辐射体410呈L形,第二天线辐射体510呈直条形时,第一天线辐射体410的第一直线段413的延伸方向和第二天线辐射体510的延伸方向位于同一直线上或相互平行。
如图4所示,第一寄生辐射体600包括第一端640和第二端650。第一寄生辐射体600的第二端650相对于第一端640更靠近虚拟线O1。第一寄生辐射体600具有第一寄生接地点610,第一寄生接地点610位于第一寄生辐射体600的第一端640和第一寄生辐射体600的第二端650之间。第一寄生接地点610连接于第一寄生辐射体600所在的设备主体的地板,即第一寄生辐射体600的第一寄生接 地点610连接于第二设备主体的地板221。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一寄生接地点610也可以位于第一寄生辐射体600的第一端640或第一寄生辐射体600的第二端650处。
进一步地,第一寄生辐射体600的至少部分位于其所在设备主体的地板的远离转轴250的一侧边缘外,并与其所在设备主体的地板的该侧边缘相对设置。也就是说,即第一寄生辐射体600的至少部分位于第二设备主体的地板221的右侧边缘222外,并与第二设备主体的地板221的该右侧边缘222相对设置。第二设备主体的地板221的该右侧边缘222沿可折叠电子设备100的纵向L延伸。其中,第一寄生辐射体600位于虚拟线O1的下侧。
更进一步地,在平行于转轴250的轴线O2的方向上,第一寄生辐射体600的第二端650相对于第一寄生辐射体600的第一端640更靠近虚拟线O1。
另外,第一寄生辐射体600呈L形并位于第二设备主体220的第二导电边框的第一转角处,第二导电边框的第一转角与第二设备主体220的地板221的第一对角225对应设置,即位于地板221的第一对角225附近。当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二导电边框的第一转角与第一导电边框的第一转角重叠。第一寄生辐射体600包括第一直线段620和垂直连接于第一直线段620的远离虚拟线O1的一端的第二直线段630。第一直线段620的自由端和第二直线段630的自由端分别为第一寄生辐射体600的第二端650和第一端640。其中,第一直线段620与第一寄生辐射体600所在设备主体的地板的该侧边缘相对设置,即第一直线段620与第二设备主体的地板221的右侧边缘222相对设置。第二直线段630位于第一寄生辐射体600所在设备主体的地板的与该侧边缘相交的另一侧边缘外,并与该地板的该另一侧边缘相对设置。也就是说,第二直线段630位于第二设备主体的地板221的下侧边缘224外,并与第二设备主体的地板221的下侧边缘224相对设置。
进一步地,第一寄生辐射体600还位于第一寄生辐射体600所在的设备主体的地板的远离转轴250的一对角附近,并沿该地板的该对角的角边缘延伸。即第一寄生辐射体600还位于第二设备主体的地板221的第一对角225附近,并沿第二设备主体的地板221的第一对角225的角边缘延伸。
更进一步地,第一直线段620沿平行于转轴250的轴线O2的方向延伸,第二直线段630沿垂直于转轴250的轴线O2的方向延伸。也就是说,第一直线段620沿可折叠电子设备100的纵向L延伸,第二直线段630沿可折叠电子设备100的横向T延伸。
如图4所示,第一寄生接地点610位于第一寄生辐射体600的沿第一寄生辐射体600的长度方向上的中部。这样既能够保证第一天线400的效率,也能够保证第一天线400与第二天线500之间的包络相关性系数(即ECC)。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一寄生接地点610也可以位于第一寄生辐射体600的其它合适位置。其中,随着第一寄生接地点610越靠近第一寄生辐射体600的第一端640,第一天线400的效率越好,随着第一寄生接地点610越靠近第一寄生辐射体600的第二端650,第一天线400与第二天线500之间的包络相关性系数越低。
另外,第一寄生接地点610位于第一直线段620。位于第一寄生接地点610与第二端650之间的第一寄生辐射体600的长度为37mm,位于第一寄生接地点610与第一端640之间的第一寄生辐射体600的长度为52.4mm。第一直线段620的长度大于第二直线段630的长度。第一直线段620的长度为65mm,第二直线段630的长度为27.5mm。在本实施方式中,第一寄生辐射体600的长度为第一天线的工作波长的1/4倍~1/2倍。
进一步地,第一寄生辐射体600的该至少部分的延伸方向与第一天线辐射体410的该至少部分的延伸方向之间相互平行。在本实施方式中,第一天线辐射体410的第一直线段620的延伸方向和第一 寄生辐射体600的第一直线段620的延伸方向相互平行,第一天线辐射体410的第二直线段414的延伸方向和第一寄生辐射体600的第二直线段630的延伸方向相互平行。
更进一步地,当可折叠电子设备100处于折叠状态时,第一寄生辐射体600的第一端640靠近第一天线辐射体410的第一端411,第一寄生辐射体600的第二端650靠近第一天线辐射体410的第二端412。并且,当可折叠电子设备100处于折叠状态时,从可折叠电子设备100的厚度方向上看,第一寄生辐射体600整体基本上与第一天线辐射体410重叠。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一寄生辐射体600也可以采用其它形状的结构,并不局限于L形,比如,第一寄生辐射体600呈直条形。
其中,当第一寄生辐射体600呈直条形时,第一寄生辐射体600沿第一寄生辐射体600所在的设备主体的地板的该侧边缘呈一直线状延伸。即第一寄生辐射体600沿第二设备主体的地板221的右侧边缘222呈一直线状延伸,且第一寄生辐射体600沿平行于转轴250的轴线O2的方向延伸。
本领域技术人员可以理解的是,在第一天线辐射体410和第一寄生辐射体600均呈直条形时,第一天线辐射体410的延伸方向和第一寄生辐射体600的延伸方向相互平行。在第一天线辐射体410呈直条形,第一寄生辐射体600呈L形时,第一天线辐射体410的延伸方向和第一寄生辐射体600的第一直线段的延伸方向相互平行。在第一天线辐射体410呈L形,第一寄生辐射体600呈直条形时,第一天线辐射体410的第一直线段413的延伸方向和第一寄生辐射体600的延伸方向相互平行。
在本实施方式中,第一天线辐射体410、第二天线辐射体510、第一寄生辐射体600由可折叠电子设备100的导电边框形成。具体地,第一天线辐射体410和第二天线辐射体510由第一设备主体210的第一导电边框形成,第一寄生辐射体600由第二设备主体220的第二导电边框形成。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410、第二天线辐射体510、第一寄生辐射体600、第二寄生辐射体也可以采用贴片结构,贴片结构贴设于可折叠电子设备100的导电边框的表面,并由导电材料制得。第一天线辐射体410、第二天线辐射体510、第一寄生辐射体600、第二寄生辐射体也可以采用嵌设于可折叠电子设备100的屏幕内部的透明天线。第一天线辐射体410、第二天线辐射体510、第一寄生辐射体600、第二寄生辐射体也可以采用贴片结构,贴片结构贴设于可折叠电子设备100的后盖,并由导电材料制得。
请参见图5,图5为本申请实施例1的可折叠电子设备的第二实施方式在展开状态下的结构示意图。
如图5所示,该第二实施方式所提供的可折叠电子设备100A的结构与第一实施方式所提供的可折叠电子设备100的结构基本相同,即可折叠电子设备100A也包括设备主体200A和天线系统300A,设备主体200A也包括通过转轴250A旋转连接的第一设备主体210A和第二设备主体220A,第一设备主体210A和第二设备主体220A均具有地板;天线系统300A也包括第一天线400A、第二天线500A和第一寄生辐射体600A,第一天线400A包括第一天线辐射体410A,第一天线辐射体410A包括第一端411A和第二端412A,并具有第一馈电点420A、第一接地点430A,第一馈电点420A位于第一天线辐射体410A的第一端411A和第一天线辐射体410A的第二端412A之间,并连接于第一射频源800A,以接收第一射频源800A输出的射频信号,第一接地点430A位于第一馈电点420A与第一天线辐射体410A的第二端412A之间,并连接于第一设备主体210A的地板211A;第二天线500A包括第二天线辐射体510A,第二天线辐射体510A包括第一端511A和第二端512A,并具有第二馈电点520A、第二接地点530A,第二馈电点520A位于第二天线辐射体510A的第一端511A和第二天线辐射体510A的第二端512A之间,并连接于第二射频源810A,以接收第二射频源810A输出的射频信号,第二接地点530A位于第二馈电点520A与第二天线辐射体510A的第一端511A之间,并连接 于第一设备主体210A的地板211A;第一寄生辐射体600A包括第一端640A和第二端650A,并具有第一寄生接地点610A,第一寄生接地点610A连接于第二设备主体220A的地板221A;在可折叠电子设备100A处于折叠状态下,第一寄生辐射体600A与第一天线辐射体410A至少部分重叠。其中,该第二实施方式所提供的可折叠电子设备100A的结构与第一实施方式所提供的可折叠电子设备100A的结构不同之处在于,第一寄生接地点610A位于靠近第一寄生辐射体600A的第二端650A的位置处。这样能够使得第一天线400A与第二天线500A之间的包络相关性系数(即ECC)更低。
进一步地,第一寄生接地点610A位于第一直线段620A。位于第一寄生接地点610A与第二端650A之间的第一寄生辐射体600A的长度为18.11mm。在本实施方式中,位于第一寄生接地点610A与第一端640A之间的第一寄生辐射体600A的长度为71.5mm。第一直线段620A的长度大于第二直线段630A的长度,第一直线段620A的长度为65mm,第二直线段630A的长度为27.5mm。在本实施方式中,位于第一寄生接地点610A与第一端640A之间的第一寄生辐射体600A的长度为第一天线的工作波长的1/4倍。
请参见图6,图6为本申请实施例1的可折叠电子设备的第三实施方式在展开状态下的结构示意图。
如图6所示,该第三实施方式所提供的可折叠电子设备100B的结构与第一实施方式所提供的可折叠电子设备100的结构基本相同,即可折叠电子设备100B也包括设备主体200B和天线系统300B,设备主体200B也包括通过转轴250B旋转连接的第一设备主体210B和第二设备主体220B,第一设备主体210B和第二设备主体220B均具有地板;天线系统300B也包括第一天线400B、第二天线500B和第一寄生辐射体600B,第一天线400B包括第一天线辐射体410B,第一天线辐射体410B包括第一端411B和第二端412B,并具有第一馈电点420B、第一接地点430B,第一馈电点420B位于第一天线辐射体410B的第一端411B和第一天线辐射体410B的第二端412B之间,并连接于第一射频源800B,以接收第一射频源800B输出的射频信号,第一接地点430B位于第一馈电点420B与第一天线辐射体410B的第二端412B之间,并连接于第一设备主体210B的地板211B;第二天线500B包括第二天线辐射体510B,第二天线辐射体510B包括第一端511B和第二端512B,并具有第二馈电点520B、第二接地点530B,第二馈电点520B位于第二天线辐射体510B的第一端511B和第二天线辐射体510B的第二端512B之间,并连接于第二射频源810B,以接收第二射频源810B输出的射频信号,第二接地点530B位于第二馈电点520B与第二天线辐射体510B的第一端511B之间,并连接于第一设备主体210B的地板211B;第一寄生辐射体600B包括第一端640B和第二端650B,并具有第一寄生接地点610B,第一寄生接地点610B连接于第二设备主体220B的地板221B;在可折叠电子设备100B处于折叠状态下,第一寄生辐射体600B与第一天线辐射体410B至少部分重叠。其中,该第三实施方式所提供的可折叠电子设备100B的结构与第一实施方式所提供的可折叠电子设备100A的结构不同之处在于,第一寄生接地点610B位于靠近第一寄生辐射体600B的第一端640B的位置处。这样能够使得第一天线400B的效率更好。
进一步地,第一寄生接地点610B位于第二直线段630B。位于第一寄生接地点610B与第一端640B之间的第一寄生辐射体600B的长度为16.8mm,位于第一寄生接地点610B与第二端650B之间的第一寄生辐射体600B的长度为75mm。第一直线段620B的长度大于第二直线段630B的长度。第一直线段620B的长度为65mm,第二直线段630B的长度为27.5mm。在本实施方式中,位于第一寄生接地点610B与第二端650B之间的第一寄生辐射体600B的长度为第一天线的工作波长的1/4倍。
请参见图7,图7为本申请实施例1的可折叠电子设备的第四实施方式在展开状态下的结构示意图。
如图7所示,该第四实施方式所提供的可折叠电子设备100C的结构基本与第一实施方式所提供的可折叠电子设备100的结构基本相同,其不同之处在于,第二天线500C的第二天线辐射体510C呈直条形。第二天线辐射体510C沿第二天线辐射体510C所在的设备主体的地板的该侧边缘呈一直线状延伸,即第二天线辐射体510C沿第一设备主体210C的地板211C的左侧边缘212C呈一直线状延伸,且第二天线辐射体510C沿平行于转轴250C的轴线O2的方向延伸。
请参见图8,图8为本申请实施例1的可折叠电子设备100D的第五实施方式在展开状态下的结构示意图。
如图8所示,该第五实施方式所提供的可折叠电子设备100D的结构与第一实施方式所提供的可折叠电子设备100的结构基本相同,其不同之处在于,第一接地点430D位于第一天线辐射体410D的第一直线段413D的中部。
进一步地,位于第一接地点430D与第二端412D之间的第一天线辐射体410D的长度为29.4mm,位于第一接地点430D与第一端411D之间的第一天线辐射体410D的长度为61.6mm,位于第一接地点430D与第一馈电点420D之间的第一天线辐射体410D的长度为14mm。第一直线段413D的长度大于第二直线段414D的长度,第一直线段413D的长度为64mm,第二直线段414D的长度为27mm。在本实施方式中,位于第一接地点430D与第一端411D之间的第一天线辐射体410D的长度为第一天线的工作波长的1/4倍。
为了说明本申请所保护的技术方案的作用,图9-图15b给出了天线单元的第一种参考设计的结构示意图以及针对本申请实施例1的第一实施方式、第二实施方式、第三实施方式和第一种参考设计的天线性能对比仿真曲线图。
请参见图9,图9为第一种参考设计的可折叠电子设备100A'在展开状态下的结构示意图。如图9所示,结合图4~图6予以理解,该第一种参考设计的可折叠电子设备100A'是在本申请实施例1的第一实施方式、第二实施方式、第三实施方式所提供的可折叠电子设备的结构的基础上,将第一寄生辐射体600A'相对于第二设备主体220A'的地板221A'悬浮无接地点,即第一寄生辐射体600A'与第二设备主体的地板不连接,第一寄生辐射体不接地。其它结构以及参数保持不变。
采用全波电磁仿真软件HFSS对本实施例中第一实施方式、第二实施方式、第三实施方式以及第一种参考设计所提供的可折叠电子设备进行仿真分析,获得了如图10a~图15b所示的效果曲线图。
获取图10a~图15b所示的曲线图的仿真条件如下表2所示(请结合图4~图6以及图9予以理解):
表2
Figure PCTCN2021136102-appb-000002
Figure PCTCN2021136102-appb-000003
如下表3所示,表3给出了本实施例中第一实施方式、第二实施方式、第三实施方式以及第一种 参考设计的可折叠电子设备处于折叠状态时第一天线和第二天线之间的包络相关性系数的对比结果。其中,在第一天线的工作频率分别为0.71GHz、0.72GHz、0.73GHz、0.74GHz、0.75GHz、0.76GHz、0.77GHz、0.78GHz,分别获得了四种结构设计的第一天线和第二天线之间的包络相关性系数(即ECC)。并且,第一天线的主谐振频率为0.76GHz,即第一天线自身的第一天线辐射体产生的谐振的谐振频率为0.76GHz。
表3
Figure PCTCN2021136102-appb-000004
从表3中可知,在第一天线的工作频率范围为0.71GHz~0.76GHz,第一种参考设计、第一实施方式、第二实施方式中第一天线和第二天线之间的ECC均在0.5以下,而针对第三实施方式,在第一天线的工作频率为0.71GHz、0.72GHz时,第一天线和第二天线之间的ECC在0.5以上,在工作频率范围为0.73GHz~0.76GHz,第一天线和第二天线之间的ECC还是保持0.5以下。
由此可知,第一种参考设计(即相当于第一寄生辐射体未对第一天线辐射体起到寄生辐射作用的方案)中第一天线和第二天线之间的ECC能够完全满足两个天线正常工作的需求,且第一实施方式、第二实施方式中第一天线和第二天线之间的ECC也能够完全满足两个天线正常工作的需求,其中,第一实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC有轻微的恶化(即ECC有轻微上升),第二实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC有一定的优化(即ECC有一定程度的下降),第三实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC恶化(即ECC上升),但在工作频率范围内基本还是能够满足两个天线正常工作的需求。从而得出,随着第一寄生接地点越靠近第一寄生辐射体的第二端,第一天线与第二天线之间的包络相关性系数越低。
其中,在第一天线的工作频率为0.74GHz时,第一种参考设计中第一天线和第二天线之间的ECC为0.27,本申请第一实施方式中第一天线和第二天线之间的ECC为0.29,本申请第二实施方式中第一天线和第二天线之间的ECC为0.21,本申请第二实施方式中第一天线和第二天线之间的ECC为0.45。由此可知,在第一天线的工作频率为0.74GHz时,本申请第一实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC上升了0.02,即轻微恶化0.02,本申请第二实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC下降了0.06,即优化0.06,本申请第三实施方式相对于第一种参考设计,第一天线和第二天线之间的ECC上升了0.18,即恶化0.18。也就是说,在本申请第二实施方式中,第一天线和第二天线之间的ECC最佳,本申请第一实施方式次之。
需要说明的是,本领域技术人员可以理解,第一天线和第二天线之间的包络相关性系数(即ECC)在工作频段的频率范围内低于0.5时,第一天线和第二天线便能正常工作。
请参见图10a~图10c,图10a为本申请实施例1的第一实施方式以及第一种参考设计的可折叠电 子设备处于折叠状态时第一天线的辐射效率和系统效率的仿真效果对比图。图10b为本申请实施例1的第二实施方式以及第一种参考设计的可折叠电子设备处于折叠状态时第一天线的辐射效率和系统效率的仿真效果对比图。图10c为本申请实施例1的第三实施方式以及第一种参考设计的可折叠电子设备处于折叠状态时第一天线的辐射效率和系统效率的仿真效果对比图。
其中,辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗带来的损耗影响辐射效率。系统效率是考虑天线端口匹配后的实际效率,即天线的系统效率为天线的实际效率(即效率)。本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB越好。
从图10a可以看出,在工作频率为0.74GHz时,第一种参考设计中第一天线的辐射效率为-5.884dB,系统效率为-6.7dB,本申请第一实施方式中第一天线的辐射效率为-4.9855dB,系统效率为-5.6dB。由此可知,本申请第一实施方式相比于第一种参考设计,工作频率为0.74GHz时,第一天线的辐射效率提高0.8985dB,第一天线的系统效率提高1.1dB。
从图10b可以看出,在工作频率为0.74GHz时,第一种参考设计中第一天线的辐射效率为-5.884dB,系统效率为-6.7dB,本申请第二实施方式中第一天线的辐射效率为-5.5359dB,系统效率为-6.1dB。由此可知,本申请第二实施方式相比于第一种参考设计,工作频率为0.74GHz时,第一天线的辐射效率提高0.3481dB,第一天线的系统效率提高0.6dB。
从图10c可以看出,在工作频率为0.74GHz时,第一种参考设计中第一天线的辐射效率为-5.884dB,系统效率为-6.7dB,本申请第三实施方式中第一天线的辐射效率为-3.637dB,系统效率为-4.6dB。由此可知,本申请第三实施方式相比于第一种参考设计,工作频率为0.74GHz时,第一天线的辐射效率提高2.247dB,第一天线的系统效率提高2.1dB。
由此可知,第一实施方式相对于第一种参考设计,第一天线的辐射效率和系统效率有一定程度的优化,第二实施方式相对于第一种参考设计,第一天线的辐射效率和系统效率有轻微的优化,第三种实施方式相对于第一种参考设计,第一天线的辐射效率和系统效率有较明显的优化(即谐振效率有较明显的提高)。从而得出,随着第一寄生接地点越靠近第一寄生辐射体的第一端,第一天线的辐射效率和系统效率越高。
其中,在第一天线的工作频率为0.74GHz时,本申请第一实施方式相对于第一种参考设计,第一天线的辐射效率提高了0.8985dB,即一定程度优化0.8985dB,第一天线的系统效率提高了1.087dB,即一定程度优化1.087dB。本申请第二实施方式相对于第一种参考设计,第一天线的辐射效率提高了0.3481dB,即轻微优化0.3481dB,第一天线的系统效率提高了0.614dB,即轻微优化0.614dB。本申请第三实施方式相对于第一种参考设计,第一天线的辐射效率提高了2.247dB,即较明显的优化0.3481dB,第一天线的系统效率提高了2.092dB,即较明显的优化2.092dB。也就是说,在本申请第三实施方式中,第一天线的辐射效率和系统效率最佳,本申请第一实施方式次之。
请参见图11a~图11d,图11a~图11d为第一种参考设计、本申请实施例1的第一实施方式、第二实施方式、第三实施方式的可折叠电子设备处于折叠状态时第一天线的辐射方向图。此时,第一天线的工作频率为0.74GHz。其中,在可折叠电子设备处于折叠状态时,横向是可折叠电子设备的短边所在的方向,纵向是可折叠电子设备的长边所在的方向,垂直于纸面朝外的方向是第二设备主体的背壳方向,垂直于纸面朝内的方向是第一设备主体的背壳方向。
请参见图11a~图11d,箭头的方向分别表示第一天线的辐射方向图中最大辐射方向。从图11a可以看出,针对第一种参考设计,第一天线的最大辐射方向为可折叠电子设备的横向,即图11a中水平朝右侧方向。
从图11b可以看出,针对本申请第一实施方式,第一天线的最大辐射方向为可折叠电子设备的横向偏纵向,即图11b中水平朝右偏上方向。也就是说,在该实施方式中,第一寄生辐射体轻微改变了第一天线的辐射方向图。
从图11c可以看出,针对本申请第二实施方式,第一天线的最大辐射方向为可折叠电子设备的横向,即图11c中水平朝右侧方向。也就是说,在该实施方式中,第一寄生辐射体未改变第一天线的辐射方向图。
从图11d可以看出,针对本申请第三实施方式,第一天线的最大辐射方向为可折叠电子设备的纵向,即图11d中竖直朝上方向。也就是说,在该实施方式中,第一寄生辐射体完全改变了第一天线的辐射方向图,第一天线的最大辐射方向由横向变更为纵向。
从上可知,在本申请各实施方式中,通过引入第一寄生辐射体,可以改变第一天线的辐射方向图以及第一天线的最大辐射方向,从而能够改善第一天线与第二天线之间的ECC以及第一天线的辐射效率和系统效率。
请参见图12,图12为第一种参考设计的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图。其中,图12所示的视角为主屏一侧的视角,即对应将图9示出的可折叠电子设备中第二设备主体相对于第一设备主体朝内折叠后的第一设备主体的左下角处的视角。在图12中,白色实线箭头表示第一天线辐射体上的电流方向,白色虚线箭头表示第一天线辐射体所在的第一设备主体的地板上的电流方向。如图12可以看出,第一天线辐射体所在的第一设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,主要是横向的电流。也就是说,在该第一种参考设计中,第一天线对应的地板上的电流主要是横向的电流,即横向模式。这也从侧面说明了第一天线的辐射方向图中第一天线的最大辐射方向为横向。
请参见图13a和图13b,图13a和图13b为本申请实施例1的第一实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图。其中,图13a所示的视角为主屏一侧的视角(对应图4示出的可折叠电子设备中第二设备主体220相对于第一设备主体210朝内折叠后的第一设备主体210的第一对角215处的视角),图13b所示的视角为副屏一侧的视角(对应图4示出的可折叠电子设备中第一设备主体210相对于第二设备主体220朝内折叠后的第二设备主体220的第一对角225处的视角)。在图13a中,白色实线箭头表示第一天线辐射体上的电流方向,白色虚线箭头表示第一天线辐射体所在的第一设备主体的地板上的电流方向。在图13b中,白色实线箭头表示第一寄生辐射体上的电流方向,白色虚线箭头表示第一寄生辐射体所在的第二设备主体的地板上的电流方向。
从图13a中可知,第一天线辐射体所在的第一设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,主要是横向的电流。从图13b中可知,第一寄生辐射体所在的第二设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,横向的电流和纵向的电流分布强度比较接近。也就是说,在该第一实施方式中,引入该第一寄生辐射体后,使得第一天线对应的地板上的电流的方向横向稍微偏纵向,即横向稍微偏纵向模式。这也从侧面说明了该第一实施方式中第一天线的辐射方向图中第一天线的最大辐射方向为横向偏纵向。
请参见图14a和图14b,图14a和图14b为本申请实施例1的第二实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图。其中,图14a所示的视角为主屏一侧的视角(对应图5示出的可折叠电子设备中第二设备主体220A相对于第一设备主体210A朝内折叠后的第一设备主体210A的第一对角处的视角,即第一设备主体210A的左下角处的视角),图14b所示的视角为副屏一侧的视角(对应图5示出的可折叠电子设备中第一设备主体210A相对于第二设备主体 220A朝内折叠后的第二设备主体220A的第一对角处的视角,即第二设备主体220A的右下角处的视角)。在图14a中,白色实线箭头表示第一天线辐射体上的电流方向,白色虚线箭头表示第一天线辐射体所在的第一设备主体的地板上的电流方向。在图14b中,白色实线箭头表示第一寄生辐射体上的电流方向,白色虚线箭头表示第一寄生辐射体所在的第二设备主体的地板上的电流方向。
从图14a中可知,第一天线辐射体所在的第一设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,主要是横向的电流。从图14b中可知,第一寄生辐射体所在的第二设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,横向的电流分布强度稍大于纵向的电流分布强度。也就是说,在该第二实施方式中,引入该第一寄生辐射体后,使得第一天线对应的地板上的电流的方向仍然是横向,即横向模式。这也从侧面说明了该第二实施方式中第一天线的辐射方向图中第一天线的最大辐射方向为横向。
请参见图15a和图15b,图15a和图15b为本申请实施例1的第三实施方式的可折叠电子设备处于折叠状态时靠近第一天线位置处的电流分布结构示意图。其中,图15a所示的视角为主屏一侧的视角(对应图6示出的可折叠电子设备中第二设备主体220B相对于第一设备主体210B朝内折叠后的第一设备主体210B的第一对角处的视角,即第一设备主体210B的左下角处的视角),图15b所示的视角为副屏一侧的视角(对应图6示出的可折叠电子设备中第一设备主体210B相对于第二设备主体220B朝内折叠后的第二设备主体220B的第一对角处的视角,即第二设备主体220B的右下角处的视角)。在图15a中,白色实线箭头表示第一天线辐射体上的电流方向,白色虚线箭头表示第一天线辐射体所在的第一设备主体的地板上的电流方向。在图15b中,白色实线箭头表示第一寄生辐射体上的电流方向,白色虚线箭头表示第一寄生辐射体所在的第二设备主体的地板上的电流方向。
从图15a中可知,第一天线辐射体所在的第一设备主体的地板上的电流有横向的电流,也有纵向的电流,其中,主要是横向的电流。从图15b中可知,第一寄生辐射体所在的第二设备主体的地板上的电流主要是纵向的电流。也就是说,在该第三实施方式中,引入该第一寄生辐射体后,使得第一天线对应的地板上的电流的方向偏纵向,即偏纵向模式。这也从侧面说明了该第三实施方式中第一天线的辐射方向图中第一天线的最大辐射方向为纵向。
由上面的对比和分析可知,本申请可以改变第一天线的辐射方向图的关键即在于引入的第一寄生辐射体以及第一寄生接地点所在的设置位置,以及地板上的电流分布中横向电流和纵向电流的分布比例,从而得到不同的辐射方向图表现。
实施例2
请参见图16,图16为本申请实施例2的可折叠电子设备的第一实施方式在展开状态下的结构示意图。如图16所示,本实施例所提供的可折叠电子设备100E也包括设备主体200E和天线系统300E,其中,设备主体200E的结构可以采用与实施例1所提供的可折叠电子设备的设备主体的结构相同的结构,天线系统300E的结构与实施例1所提供的可折叠电子设备的天线系统的结构不同。
如图16所示,设备主体200E也包括第一设备主体210E和第二设备主体220E,第一设备主体210E和第二设备主体220E之间通过转轴250E旋转连接,以使可折叠电子设备100E能够在展开状态和折叠状态之间切换。第一设备主体210E具有地板211E,第二设备主体220E也具有地板221E。在本实施方式中,转轴250E的轴线O2的方向平行于可折叠电子设备100E的纵向L,即可折叠电子设备100E为左右翻折的可折叠电子设备100E。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,转轴250E的轴线O2的方向也可以平行于可折叠电子设备100E的横向T,即可折叠电子设备100E为上下翻折的可折叠电子设备100E,在此并不对本申请的保护范围产生限定作用。
天线系统300E也包括第一天线400E和第二天线500E。第一天线400E包括呈条形的第一天线辐 射体410E,第一天线辐射体410E包括第一端411E和第二端412E,并具有第一馈电点420E、第一接地点430E。第一馈电点420E位于第一天线辐射体410E的第一端411E和第一天线辐射体410E的第二端412E之间,并连接于第一射频源800E,以接收第一射频源800E输出的射频信号。第一接地点430E位于第一馈电点420E与第一天线辐射体410E的第二端412E之间,第一接地点430E电连接于第一设备主体210E的地,具体地,电连接于第一设备主体210E的地板211E。
第二天线500E包括呈条形的第二天线辐射体510E。第二天线辐射体510E包括第一端511E和第二端512E,并具有第二馈电点520E、第二接地点530E。第二馈电点520E位于第二天线辐射体510E的第一端511E和第二天线辐射体510E的第二端512E之间,并连接于第二射频源810E,以接收第二射频源810E输出的射频信号。第二接地点530E位于第二馈电点520E与第二天线辐射体510E的第一端511E之间,并连接于第一设备主体210E的地板211E。
第一天线辐射体410E位于一虚拟线O1的一侧,第二天线辐射体510E位于虚拟线O1的与一侧相反的另一侧,其中,虚拟线O1垂直于转轴250E的轴线O2的方向。虚拟线O1为设备主体200E的中心线或与设备主体200E的中心线平行,设备主体200E的中心线垂直于转轴250E的轴线O2的方向。
在本实施方式中,第一天线400E的结构可以采用实施例1中任一实施方式所提供的第一天线的结构,第二天线500E的结构也可以采用实施例1中任一实施方式所提供的第二天线的结构。
天线系统300E还包括与第二天线辐射体510E的位置对应地设置的呈条形的第二寄生辐射体700E,第二寄生辐射体700E与第二天线辐射体510E分别位于第一设备主体210E和第二设备主体220E中的不同设备主体,第二寄生辐射体700E连接于其所在设备主体的地板。也就是说,在本实施方式中,天线系统300E中未设置实施例1中所提供的第一寄生辐射体,但设置有与第二天线辐射体510E对应设置的第二寄生辐射体700E。
在本实施方式中,第一天线辐射体410E和第二天线辐射体510E设置于第一设备主体210E,第二寄生辐射体700E设置于第二设备主体220E。第二寄生辐射体700E连接于第二设备主体220E的地板221E。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410E和第二天线辐射体510E也可以设置于不同的设备主体,比如,第二天线辐射体510E设置于第一设备主体210E,第一天线辐射体410E和第二寄生辐射体700E设置于第二设备主体220E,或者,第二天线辐射体510E设置于第二设备主体220E,第一天线辐射体410E和第二寄生辐射体700E设置于第一设备主体210E,在此并不对本申请的保护范围产生限定作用。
进一步地,如图16所示,第一天线辐射体410E的至少部分和第二天线辐射体510E的至少部分分别位于其所在设备主体的地板的远离转轴250E的一侧边缘外,并分别与其所在设备主体的地板的该侧边缘相对设置。在本实施方式中,第一天线辐射体410E的至少部分位于第一设备主体210E的地板211E的远离转轴250E的一侧边缘外,并与第一设备主体210E的地板211E的该侧边缘相对设置。即第一天线辐射体410E的至少部分位于第一设备主体210E的地板211E的左侧边缘212E外,并与第一设备主体210E的地板211E的该左侧边缘212E相对设置。第二天线辐射体510E的至少部分位于第一设备主体210E的地板211E的远离转轴250E的一侧边缘外,并与第一设备主体210E的地板211E的该侧边缘相对设置。即第二天线辐射体510E的至少部分位于第一设备主体210E的地板211E的左侧边缘212E外,并与第一设备主体210E的地板211E的该左侧边缘212E相对设置。第一设备主体210E的地板211E的该左侧边缘212E沿可折叠电子设备100E的纵向L延伸。其中,第一天线辐射体410E位于虚拟线O1的下侧,第二天线辐射体510E位于虚拟线O1的上侧。
当可折叠电子设备100E处于折叠状态时,从可折叠电子设备100E的厚度方向上看,第二天线辐 射体510E与对应设置的第二寄生辐射体700E间隔开来,第二天线辐射体510E的至少部分与第二寄生辐射体700E的至少部分重叠,使得第二天线辐射体510E分别与对应设置的第二寄生辐射体700E耦合。
通过设置在折叠状态下与第二天线辐射体510E对应设置并至少部分重叠的第二寄生辐射体700E,可以使第一天线400E和第二天线500E这一对天线在可折叠电子设备100E处于折叠状态时,即使在该对天线的两个天线之间相隔较近的情况下,该对天线的两个天线之间具有较低的包络相关性系数(即ECC),依然可以独立正常工作,且该对天线的第二天线500E具有较高的天线效率,即改善了可折叠电子设备100E处于折叠状态下的天线性能。
如图16所示,第一天线辐射体410E呈L形并位于第一设备主体210E的第一导电边框的第一转角处,第一转角与第一设备主体210E的地板211E的第一对角215E对应设置,即位于地板211E的第一对角215E附近。第一天线辐射体410E包括沿第一设备主体210E的地板211E的左侧边缘212E延伸的第一直线段413E和垂直连接于第一直线段413E的远离虚拟线O1的一端的第二直线段414E。第一直线段413E的自由端和第二直线段414E的自由端分别为第一天线辐射体410E的第二端412E和第一天线辐射体410E的第一端411E。第一馈电点420E和第一接地点430E均位于第一直线段413E。第一接地点430E位于第一天线辐射体410E的第一直线段413E的中部。
进一步地,位于第一接地点430E与第二端412E之间的第一天线辐射体410E的长度为29.4mm,位于第一接地点430E与第一端411E之间的第一天线辐射体410E的长度为61.6mm,位于第一接地点430E与第一馈电点420E之间的第一天线辐射体410E的长度为14mm。第一直线段413E的长度大于第二直线段414E的长度,第一直线段413E的长度为64mm,第二直线段414E的长度为27mm。在本实施方式中,位于第一接地点430E与第一端411E之间的第一天线辐射体410E的长度为第一天线的工作波长的1/4倍。
如图16所示,第二天线辐射体510E呈L形并位于第一设备主体210E的第一导电边框的第二转角处,第二转角与第一设备主体210E的地板211E的第二对角216E对应设置,即位于地板211E的第二对角216E附近。第二天线辐射体510E包括沿第一设备主体210E的地板211E的左侧边缘212E延伸的第一直线段513E和垂直连接与第一直线段513E的远离虚拟线O1的一端的第二直线段514E。第一直线段513E的自由端和第二直线段514E的自由端分别为第二天线辐射体510E的第二端512E和第二天线辐射体510E的第一端511E。第二天线辐射体510E的第二接地点530E位于靠近第二天线辐射体510E的第一端511E的位置处,第二馈电点520E位于靠近第二天线辐射体510E的第二端512E的位置处。位于第二接地点530E与第二端512E之间的第二天线辐射体510E的长度为37.5mm;位于第二接地点530E与第二馈电点520E之间的第二天线辐射体510E的长度为27.8mm。
进一步地,第二馈电点520E位于第一直线段513E,第二接地点530E位于第二直线段514E。其中,第一直线段513E的长度为29mm,第二直线段514E的长度为14mm。位于第二接地点530E与第一端511E之间的第二天线辐射体510E的长度为5.0mm。
在本实施方式中,第二天线为左手天线,位于第二接地点530E与第二端512E之间的第二天线辐射体510E的长度为第二天线的工作波长的1/8倍~1/4倍。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二接地点530E也可以位于第一直线段513E的合适位置处,第二馈电点520E也可以位于其它合适的位置处,在此并不对本申请的保护范围产生限定作用。
如图16所示,第二寄生辐射体700E包括第一端740E和第二端750E。第二寄生辐射体700E的第一端740E相对于第二端750E更靠近转轴250E。第二寄生辐射体700E具有第二寄生接地点710E, 第二寄生接地点710E位于第二寄生辐射体700E的第一端740E和第二寄生辐射体700E的第二端750E之间,并靠近第二寄生辐射体700E的第二端750E的位置处。第二寄生接地点710E连接于第二寄生辐射体700E所在的设备主体的地板,即第二寄生辐射体700E的第二寄生接地点710E连接于第二设备主体220E的地板221E。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二寄生接地点710E也可以位于第二寄生辐射体700E的第二端750E处。
进一步地,第二寄生辐射体700E所在的设备主体的地板具有远离转轴250E的一侧边缘和与该侧边缘相交的又一侧边缘,即第二设备主体220E的地板221E具有远离转轴250E的右侧边缘222E和与该右侧边缘222E相交的上侧边缘223E。第二寄生辐射体700E的至少部分位于其所在的设备主体的地板的该又一侧边缘外,并与该地板的该又一侧边缘相对设置,也就是说,第二寄生辐射体700E的至少部分位于第二设备主体220E的地板221E的上侧边缘223E外,并与第二设备主体220E的地板221E的上侧边缘223E相对设置。且第二寄生辐射体700E的该至少部分与第二天线辐射体510E的该至少部分垂直设置。在本实施方式中,第二寄生辐射体700E的第一直线段720E与第二天线辐射体510E的第一直线段513E垂直设置。其中,第二设备主体220E的地板221E的该上侧边缘223E沿可折叠电子设备100E的横向T延伸,第二设备主体220E的地板221E的该右侧边缘222E沿可折叠电子设备100E的纵向L延伸。第二寄生辐射体700E位于虚拟线O1的上侧。
更进一步地,在平行于虚拟线O1的方向上,第二寄生辐射体700E的第一端740E相对于第二寄生辐射体700E的第二端750E更靠近转轴250E。
另外,第二寄生辐射体700E呈L形并位于第二设备主体220的第二导电边框的第二转角处,第二导电边框的第二转角与第二设备主体220的地板221的第二对角226E对应设置,即位于地板221的第二对角226E附近。当可折叠电子设备处于折叠状态时,在可折叠电子设备的厚度方向上,第二导电边框的第二转角与第一导电边框的第二转角重叠。第二寄生辐射体700E包括第一直线段720E和垂直连接于第一直线段720E的远离转轴250E的一端的第二直线段730E。第一直线段720E的自由端和第二直线段730E的自由端分别为第二寄生辐射体700E的第一端740E和第二端750E。其中,第一直线段720E与第一寄生辐射体所在设备主体的地板的该又一侧边缘相对设置,第二直线段730E位于第一寄生辐射体所在设备主体的地板的该侧边缘外,并与该地板的该侧边缘相对设置。也就是说,第一直线段720E位于第二设备主体220E的地板221E的上侧边缘223E外,并与第二设备主体220E的地板221E的该上侧边缘223E相对设置。
进一步地,第二寄生辐射体700E还位于第二寄生辐射体700E所在的设备主体的地板的远离转轴250E的一对角附近,并沿该地板的该对角的角边缘延伸。即第二寄生辐射体700E还位于第二设备主体220E的地板221E的第二对角226E附近,并沿第二设备主体220E的地板221E的第二对角226E的角边缘延伸。
更进一步地,第一直线段720E沿垂直于转轴250E的轴线O2的方向延伸,第二直线段730E沿平行于转轴250E的轴线O2的方向延伸。也就是说,第一直线段720E沿可折叠电子设备100E的横向T延伸,第二直线段730E沿可折叠电子设备100E的纵向L延伸。
如图16所示,第二寄生接地点710E位于第二直线段730E,且第一直线段720E的长度大于第二直线段730E的长度。在本实施方式中,位于第二寄生接地点710E与第二端750E之间的第二寄生辐射体700E的长度为20mm,位于第二寄生接地点710E与第一端740E之间的第二寄生辐射体700E的长度为9.4mm,第一直线段720E的长度为7.19mm,第二直线段730E的长度为29.4mm。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二寄生接地点710E也可以位于第一直线段720E,在此并不对本申请的保护范围产生限定作用。在本实施方式中,位于第二寄生接地点 710E与第一端740E之间的第二寄生辐射体700E的长度为第二天线的工作波长的1/4倍。
进一步地,在本实施方式中,第二天线辐射体510E的第一直线段513E的延伸方向和第二寄生辐射体700E的第二直线段730E的延伸方向相互平行,第二天线辐射体510E的第二直线段514E的延伸方向和第二寄生辐射体700E的第一直线段720E的延伸方向相互平行。
更进一步地,当可折叠电子设备100E处于折叠状态时,在平行于虚拟线O1的方向上,第二寄生辐射体700E的第一端740E相对于第二天线辐射体510E的第一端740E更靠近转轴250E,在平行于转轴250E的轴线O2的方向上,第二天线辐射体510E的第二端750E相对于第二寄生辐射体700E的第二端750E更靠近虚拟线O1。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第二寄生辐射体700E也可以采用其它形状的结构,并不局限于L形,比如,第二寄生辐射体700E呈直条形。
其中,当二寄生辐射体呈直条形时,第二寄生辐射体700E沿第二寄生辐射体700E所在的设备主体的地板的该又一侧边缘呈一直线状延伸,且第二寄生辐射体700E沿垂直于转轴250E的轴线O2的方向延伸。也就是说,第二寄生辐射体700E沿第二设备主体220E的上侧边缘223E呈一直线状延伸。
本领域技术人员可以理解的是,在第二天线辐射体510E和第二寄生辐射体700E均呈L条形时,第二天线辐射体510E的第一直线段513E的延伸方向和第二寄生辐射体700E的第二直线段730E的延伸方向相互平行,第二天线辐射体510E的第二直线段514E的延伸方向和第二寄生辐射体700E的第一直线段720E的延伸方向相互平行。在第二天线辐射体510E呈直条形,第二寄生辐射体700E呈L形时,第二天线辐射体510E的延伸方向和第二寄生辐射体700E的第二直线段730E的延伸方向相互平行,第二天线辐射体510E的延伸方向和第二寄生辐射体700E的第一直线段720E的延伸方向相互垂直。第二天线辐射体510E呈L形,第二寄生辐射体700E呈直条形时,第二天线辐射体510E的第一直线段513E的延伸方向和第二寄生辐射体700E的延伸方向相互垂直,第二天线辐射体510E的第二直线段514E的延伸方向和第二寄生辐射体700E的延伸方向相互平行。
在本实施方式中,第一天线辐射体410E、第二天线辐射体510E、第二寄生辐射体700E由可折叠电子设备100E的导电边框形成。具体地,第一天线辐射体410E和第二天线辐射体510E由第一设备主体210E的第一导电边框形成,第二寄生辐射体700E由第二设备主体220E的第二导电边框形成。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线辐射体410E、第二天线辐射体510E、第二寄生辐射体700E也可以采用贴片结构,贴片结构贴设于可折叠电子设备100E的导电边框的表面,并由导电材料制得。第一天线辐射体410E、第二天线辐射体510E、第二寄生辐射体700E也可以采用嵌设于可折叠电子设备100E的屏幕内部的透明天线。第一天线辐射体410E、第二天线辐射体510E、第二寄生辐射体700E也可以采用贴片结构,贴片结构贴设于可折叠电子设备100E的后盖,并由导电材料制得。
在本实施方式中,第一天线400E的工作频段和第二天线500E的工作频段相同或部分重叠。在本实施方式中,第一天线400E的工作频段的频率范围为0.7~0.96GHz,第二天线500E的工作频段的频率范围为0.7~0.96GHz,即第一天线400E的工作频段和第二天线500E的工作频段为低频。本领域技术人员可以理解的是,在可替代的其它实施方式中,第一天线400E的工作频段和第二天线500E的工作频段也可以为中高频。
请参见图17,图17为本申请实施例2的可折叠电子设备的第二实施方式在展开状态下的结构示意图。
如图17所示,该第二实施方式所提供的可折叠电子设备100F的结构与第一实施方式所提供的可折叠电子设备100F的结构基本相同,即可折叠电子设备100F也包括设备主体200F和天线系统300F, 设备主体200F也包括通过转轴250F旋转连接的第一设备主体210F和第二设备主体220F,天线系统300F也包括第一天线400F、第二天线500F和第二寄生辐射体700F,第一天线400F包括第一天线辐射体410F,第二天线500F包括第二天线辐射体510F。该第二实施方式所提供的可折叠电子设备100F的结构与第一实施方式所提供的可折叠电子设备100F的结构不同之处在于,第二天线500F的第二天线辐射体510F呈直条形。第二天线辐射体510F沿第二天线辐射体510F所在的设备主体的地板的该侧边缘呈一直线状延伸,即第二天线辐射体510F沿第一设备主体210F的地板211F的左侧边缘212F呈一直线状延伸,且第二天线辐射体510F沿平行于转轴250F的轴线O2的方向延伸。
请参见图18,图18为第二种参考设计的可折叠电子设备100B'在展开状态下的结构示意图。如图18所示,结合图16予以理解,该第二种参考设计的可折叠电子设备100B'是在本申请实施例2的第一实施方式所提供的可折叠电子设备100E的结构的基础上,将第二寄生辐射体700B'相对于第二设备主体220B'的地板221B'悬浮无接地点,即第二寄生辐射体700B'与第二设备主体220B'的地板221B'不连接,第二寄生辐射体700B'不连接地板221B'。
请参见图19,图19为第三种参考设计的可折叠电子设备100C'在展开状态下的结构示意图。如图19所示,结合图16予以理解,该第三种参考设计的可折叠电子设备100C'与本申请实施例2的第一实施方式所提供的可折叠电子设备100E的结构的不同之处在于,第二寄生辐射体700C'呈直条形。第二寄生辐射体700C'沿第二寄生辐射体700C'所在的设备主体的地板的远离转轴250C'的该侧边缘呈一直线状延伸,且第二寄生辐射体700C'沿平行于转轴250C'的轴线O2的方向延伸。也就是说,第二寄生辐射体700C'沿第二设备主体220C'的右侧边缘222C'呈一直线状延伸。
采用全波电磁仿真软件HFSS对本实施例中第一实施方式以及第二种参考设计、第三种参考设计所提供的可折叠电子设备进行仿真分析,获得了如图20~图22所示的效果曲线图。
获取图20~图22所示的曲线图的仿真条件如下表4所示(请结合图16以及图18~图19予以理解):
表4
Figure PCTCN2021136102-appb-000005
Figure PCTCN2021136102-appb-000006
请参见图20~图22,图20为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线的S 11参数的仿真效果对比图。图21为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线与第一天线之间的包络相关性系数(即ECC)的仿真效果对比图。图22为本申请实施例2的第一实施方式以及第二种参考设计、第三种参考设计的可折叠电子设备处于折叠状态时第二天线的辐射效率和系统效率的仿真效果对比图。
其中,在图20中,横坐标表示频率,单位为GHz,纵坐标表示S 11的幅度值,单位为dB。S 11属于S参数中的一种。S 11表示反射系数,此参数表示第二天线的发射效率好不好,值越小,表示第二天线本身反射回来的能量越小,这样天线的效率就越好。
从图20可以看到,在0.74~0.78GHz频段内,第一实施方式的第二天线的S 11小于-6dB,第二参考设计的第二天线的S 11小于-6dB,第三参考设计的第二天线的S 11小于-6dB,也就是说,第一实施方式的第二天线与第二参考设计的第二天线、第三参考设计的第二天线的工作频段均为0.74~0.78GHz,其中,第二天线的谐振频率为0.76GHz。
参见图21,横坐标表示频率,单位为GHz,纵坐标表示包络相关性系数(ECC)的幅度值。包络相关性系数越小,表示天线的分集增益越高,信噪比和通信质量越高。从图21可以看出,在0.74~0.78GHz的工作频段内,第一实施方式、第二参考设计和第三参考设计中第一天线和第二天线之 间的ECC均在0.5以下。
第二种参考设计(即相当于第二寄生辐射体未对第二天线辐射体起到寄生辐射作用的方案)中第一天线和第二天线之间的ECC能够完全满足两个天线正常工作的需求,第三种参考设计(即相当于第二寄生辐射体沿可折叠电子设备的纵向延伸的方案)中第一天线和第二天线之间的ECC也能够完全满足两个天线正常工作的需求,且第一实施方式中第一天线和第二天线之间的ECC也能够完全满足两个天线正常工作的需求,其中,第三种参考设计相对第二种参考设计,第一天线和第二天线之间的ECC有轻微的恶化(即ECC有轻微上升),第一实施方式相对于第二种参考设计,第一天线和第二天线之间的ECC有一定的优化(即ECC有一定程度的下降)。从而得出,第二寄生辐射体的至少部分沿可折叠电子设备的横向延伸时,相较于第二寄生辐射体沿可折叠电子设备的纵向延伸,第一天线和第二天线之间的ECC更加优化。
其中,在第二天线的工作频率为0.76GHz时,第二种参考设计中第一天线和第二天线之间的ECC为0.3997,第三种参考设计中第一天线和第二天线之间的ECC为0.498,本申请实施例2第一实施方式中第一天线和第二天线之间的ECC为0.168。由此可知,在第二天线的工作频率为0.76GHz时,本实施例第一实施方式相对于第二种参考设计,第一天线和第二天线之间的ECC下降了0.232,即优化0.24,第三种参考设计相对于第二种参考设计,第一天线和第二天线之间的ECC上升了0.1,即恶化0.1。也就是说,在本实施例第一实施方式中,第一天线和第二天线之间的ECC最佳,第二种参考设计次之,第三种参考设计中第一天线和第二天线之间的ECC最差。
请参见图22,横坐标表示频率,单位为GHz,纵坐标表示辐射效率和系统效率的幅度值。从图22可以看出,在工作效率为0.76GHz时,第一实施方式中第二天线的辐射效率为-3.3dB,系统效率为-3.5255dB,第二种参考设计中第二天线的辐射效率为-3.8dB,系统效率为-4.0719dB,第三种参考设计中第二天线的辐射效率为-2.7dB,系统效率为-3.0094dB。由此可知,本实施例第一实施方式相比于第二种参考设计,工作频率为0.76GHz时,第二天线的辐射效率提高0.5dB,第二天线的系统效率提高0.546dB,第三种参考设计相比于第二种参考设计,工作频率为0.76GHz时,第二天线的辐射效率提高1.1dB,第二天线的系统效率提高1.063dB。
由此可知,第一实施方式相对于第二种参考设计,第二天线的辐射效率优化0.5dB,系统效率优化0.546dB,第三种参考设计相对于第二种参考设计,第二天线的辐射效率优化1.1dB,系统效率优化1.063dB。从而得出,本申请中引用第二寄生辐射体,第二天线的辐射效率和系统效率更加优化。
图23为本申请实施例2的第一实施方式以及第二种参考设计的可折叠电子设备处于折叠状态时第二天线的辐射方向图;其中,第二天线的工作频率为0.76GHz。在图23中,0度方向表示可折叠电子设备的横向,90度方向表示可折叠电子设备的纵向。
如图23所示,针对第二种参考设计中,第二天线的辐射方向图中最大辐射方向为90度方向,即对应可折叠电子设备的纵向。针对本申请实施例2的第一实施方式中,第二天线的辐射方向图中最大辐射方向为70度左右方向,即对应可折叠电子设备的纵向偏横向的方向。由此可知,在本申请实施方式中,引入第二寄生辐射体后,改变了第二天线的辐射方向图,使得第二天线的辐射方向图中最大辐射方向为纵向偏横向的方向。
请参见图24a和图24b,图24a和图24b为本申请实施例2的第一实施方式的可折叠电子设备处于折叠状态时靠近第二天线位置处的电流分布结构示意图,其中,图24a所示的视角为主屏一侧的视角,图24b所示的视角为副屏一侧的视角。在图24a中,实线箭头表示第二天线辐射体上的电流方向,虚线箭头表示第二天线辐射体所在的第一设备主体的地板上的电流方向。在图24b中,实线箭头表示第二寄生辐射体上的电流方向,虚线箭头表示第二寄生辐射体所在的第二设备主体的地板上的电流方 向。
从图24a中可知,第二天线辐射体所在的第一设备主体的地板上的电流主要是纵向的电流。从图24b中可知,第二寄生辐射体所在的第二设备主体的地板上的电流主要为横向的电流。也就是说,引入第二寄生辐射体后,使得第二天线对应的地板上的电流的方向为纵向偏横向。这也说明了引入第二寄生辐射体可以改变第二天线辐射方向的最大辐射方向。
由上面的对比和分析可知,本申请实施例2可以改变第二天线的辐射方向的关键即在于引入的第二寄生辐射体以及第二寄生辐射体的延伸方向,以及地板上的电流分布中横向电流和纵向电流的分布比例,从而得到不同的辐射方向图表现。其中,当第二寄生辐射体至少部分沿第二寄生辐射体所在的设备主体的地板的该又一侧边缘(即上侧边缘)呈一直线状延伸,且第二寄生接地点靠近第二寄生辐射体的第二端处时,第二天线辐射体所在的第二设备主体的地板上的电流的方向为纵向偏横向,从而使得第一天线和第二天线之间的包络相关性系数较低,进而避免第一天线和第二天线相互干扰,第一天线和第二天线能正常工作。
实施例3
请参见图25,图25为本申请实施例3的可折叠电子设备的第一实施方式在展开状态下的结构示意图。如图25所示,本实施例第一实施方式所提供的可折叠电子设备100G也包括设备主体200G和天线系统300G,设备主体200G包括第一设备主体210G和第二设备主体220G,第一设备主体210G和第二设备主体220G之间通过转轴250G旋转连接,以使可折叠电子设备100G能够在展开状态和折叠状态之间切换。第一设备主体210G和第二设备主体220G均具有地板。天线系统300G包括第一天线400G、第二天线500G、第一寄生辐射体600G和第二寄生辐射体700G。其中,第一天线400G可以采用本申请实施例1或实施例2中任一个实施方式所提供的第一天线,第二天线500G也可以采用本申请实施例1或实施例2中任一个实施方式所提供的第二天线,第一寄生辐射体600G可以采用本申请实施例1中任一个实施方式所提供的第一寄生辐射体,第二寄生辐射体700G可以采用本申请实施例2中任一个实施方式所提供的第二寄生辐射体。也就是说,在本实施例中,同时设置有与第一天线辐射体410G对应设置的第一寄生辐射体600G、以及与第二天线辐射体510G对应设置的第二寄生辐射体700G。
如图25所示,在本实施方式中,转轴250G的轴线O2的方向平行于可折叠电子设备100G的纵向,即可折叠电子设备100G为左右翻折的可折叠电子设备100G。第一天线辐射体410G和第二天线辐射体510G位于第一设备主体210G,第一寄生辐射体600G和第二寄生辐射体700G位于第二设备主体220G。第一寄生辐射体600G和第二寄生辐射体700G连接于第二设备主体220G的地板221G。也就是说,第一天线辐射体410G和第二天线辐射体510G位于同一设备主体,第一寄生辐射体600G和第二寄生辐射体700G也位于同一设备主体。且第一天线辐射体410G和第一寄生辐射体600G位于不同的设备主体,第二天线辐射体510G和第二寄生辐射体700G位于不同的设备主体。
在本实施方式中,第一天线辐射体410G和第一寄生辐射体600G位于虚拟线O1的下侧,第二天线辐射体510G和第二寄生辐射体700G位于虚拟线O1的上侧。其中,虚拟线O1垂直于转轴的轴线O2的方向。
请参见图26,图26为本申请实施例3的可折叠电子设备的第二实施方式在展开状态下的结构示意图。
如图26所示,该第二实施方式所提供的可折叠电子设备100H的结构与第一实施方式所提供的可折叠电子设备100E的结构基本相同,其不同之处在于,第一天线辐射体410H和第二寄生辐射体700H位于第一设备主体210H,第二天线辐射体510H和第一寄生辐射体600H位于第二设备主体220H。 也就是说,第一天线辐射体410H和第二天线辐射体510H位于不同的设备主体,第一寄生辐射体600H和第二寄生辐射体700H位于不同的设备主体。
请参见图27,图27为本申请实施例3的可折叠电子设备的第三实施方式在展开状态下的结构示意图。
如图27所示,该第三实施方式所提供的可折叠电子设备100I的结构与第一实施方式所提供的可折叠电子设备100E的结构基本相同,其不同之处在于,在本实施方式中,转轴250I的轴线O2的方向平行于可折叠电子设备的横向T,即可折叠电子设备100I为上下翻折的可折叠电子设备。设备主体200I包括绕转轴250I旋转连接的第一设备主体210I和第二设备主体220I,第一天线辐射体410I和第二天线辐射体510I位于同一设备主体,即第一设备主体210I,第一寄生辐射体600I和第二寄生辐射体700I位于同一设备主体,即第二设备主体220I。
在本实施方式中,第一天线辐射体410I和第一寄生辐射体600I位于虚拟线O1O1的左侧,第二天线辐射体510I和第二寄生辐射体700I位于虚拟线O1O1的右侧。其中,虚拟线O1垂直于转轴250I的轴线O2的方向。
请参见图28,图28为本申请实施例3的可折叠电子设备的第四实施方式在展开状态下的结构示意图。
如图28所示,该第四实施方式所提供的可折叠电子设备100J的结构与第三实施方式所提供的可折叠电子设备100I的结构基本相同,其不同之处在于,在本实施方式中,第一天线辐射体410J和第二寄生辐射体700J位于同一设备主体,即第一设备主体210J,第二天线辐射体510J和第一寄生辐射体700J也位于同一设备主体,即第二设备主体20J。也就是说,第一天线辐射体410J和第二天线辐射体510J位于不同的设备主体,第一寄生辐射体600J和第二寄生辐射体700J位于不同的设备主体。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种可折叠电子设备,包括第一设备主体和第二设备主体,所述第一设备主体和第二设备主体之间通过转轴连接,所述第一设备主体具有第一导电边框,所述第二设备主体具有第二导电边框,其特征在于,所述可折叠电子设备还包括:
    第一天线和第二天线,所述第一天线包括第一天线辐射体,所述第二天线包括第二天线辐射体,所述第一天线辐射体和所述第二天线辐射体位于所述第一设备主体,其中,所述第一天线的工作频段和所述第二天线的工作频段相同或部分重叠;
    第一寄生辐射体,位于所述第二设备主体,所述第一寄生辐射体通过所述第二设备主体接地,其中,
    所述第一天线辐射体和所述第二天线辐射体由所述第一设备主体的所述第一导电边框形成,所述第一寄生辐射体由所述第二设备主体的所述第二导电边框形成;所述第一天线辐射体的至少部分和所述第二天线辐射体的至少部分沿平行于所述转轴的方向延伸,当所述可折叠电子设备处于折叠状态时,在所述可折叠电子设备的厚度方向上,所述第一天线辐射体与所述第一寄生辐射体之间至少一部分重叠,使得所述第一天线辐射体与所述第一寄生辐射体耦合。
  2. 如权利要求1所述的可折叠电子设备,其特征在于,所述第一天线辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间的第一馈电点、以及位于所述第一馈电点与所述第二端之间的第一接地点,所述第二端相对于所述第一端更靠近所述第二天线辐射体;所述第一天线辐射体的所述第一接地点通过所述第一设备主体接地;
    所述第二天线辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间的第二馈电点、以及位于所述第二馈电点与所述第一端之间的第二接地点,所述第二端相对于所述第一端更靠近所述第一天线辐射体;所述第二天线辐射体的所述第二接地点通过所述第一设备主体接地。
  3. 如权利要求2所述的可折叠电子设备,其特征在于,所述第一天线辐射体呈L形并位于所述第一设备主体的所述第一导电边框的第一转角处,并包括相交的第一直线段和第二直线段,其中,所述第一直线段沿平行于所述转轴的方向延伸;
    所述第二天线辐射体呈L形并位于所述第一设备主体的所述第一导电边框的第二转角处,并包括相交的第一直线段和第二直线段,其中,所述第一直线段沿平行于所述转轴的方向延伸。
  4. 如权利要求3所述的可折叠电子设备,其特征在于,所述第一寄生辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间的第一寄生接地点,所述第一寄生接地点通过所述第二设备主体接地,当所述可折叠电子设备处于折叠状态时,所述第一寄生辐射体的所述第二端相对于所述第一端更靠近所述第二天线辐射体;所述第一寄生辐射体的至少部分沿平行于所述转轴的方向延伸。
  5. 如权利要求4所述的可折叠电子设备,其特征在于,所述第一寄生辐射体呈L形并位于所述第二设备主体的所述第二导电边框的第一转角处,当所述可折叠电子设备处于折叠状态时,在所述可折叠电子设备的厚度方向上,所述第二导电边框的第一转角与所述第一导电边框的第一转角重叠,所述第一寄生辐射体包括相交的第一直线段和第二直线段,其中,所述第一直线段沿平行于所述转轴的方向延伸。
  6. 如权利要求4或5所述的可折叠电子设备,其特征在于,当所述可折叠电子设备处于所述折叠状态时,所述第一寄生辐射体的所述第一端靠近所述第一天线辐射体的所述第一端,所述第一寄生辐射体的所述第二端靠近所述第一天线辐射体的所述第二端。
  7. 如权利要求6所述的可折叠电子设备,其特征在于,当所述第一寄生接地点位于所述第一寄生辐射体的中部时,所述第一寄生接地点位于所述第一直线段;
    当所述第一寄生接地点位于靠近所述第一寄生辐射体的所述第一端的位置处时,所述第一寄生接地点位于所述第二直线段;
    当所述第一寄生接地点位于靠近所述第一寄生辐射体的所述第二端的位置处时,所述第一寄生接地点位于所述第一直线段。
  8. 如权利要求3~7中任一项所述的可折叠电子设备,其特征在于,所述第一馈电点和所述第一接地点均位于所述第一直线段;
    所述第一接地点位于靠近所述第一天线辐射体的所述第二端的位置处;或者,
    所述第一接地点位于所述第一天线辐射体的所述第一直线段的中部。
  9. 如权利要求3~8中任一项所述的可折叠电子设备,其特征在于,所述第二天线辐射体的所述第二接地点位于所述第二天线辐射体的所述第二直线段,并靠近所述第二天线辐射体的所述第一端的位置处,所述第二馈电点位于所述第二天线辐射体的所述第一直线段,并靠近所述第二天线辐射体的所述第二端的位置处。
  10. 如权利要求3~9中任一项所述的可折叠电子设备,其特征在于,所述可折叠电子设备还包括第二寄生辐射体,所述第二寄生辐射体位于所述第二设备主体,并由所述第二设备主体的所述第二导电边框形成;当所述可折叠电子设备处于所述折叠状态时,在所述可折叠电子设备的厚度方向上,所述第二天线辐射体与所述第二寄生辐射体之间至少一部分重叠,使得所述第二天线辐射体与所述第二寄生辐射体耦合;其中,
    所述第二寄生辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间且靠近所述第二端的位置处的第二寄生接地点,所述第二寄生接地点通过所述第二设备主体接地,所述第一端相对于所述第二端更靠近所述转轴;所述第二寄生辐射体的至少部分沿垂直于所述转轴的方向延伸,且所述第二寄生辐射体的该至少部分与所述第二天线辐射体的该至少部分垂直设置。
  11. 一种可折叠电子设备,包括第一设备主体和第二设备主体,所述第一设备主体和第二设备主体之间通过转轴连接,所述第一设备主体具有第一导电边框,所述第二设备主体具有第二导电边框,其特征在于,所述可折叠电子设备还包括:
    第一天线和第二天线,所述第一天线包括第一天线辐射体,所述第二天线包括第二天线辐射体,所述第一天线辐射体和所述第二天线辐射体位于所述第一设备主体,其中,所述第一天线的工作频段和所述第二天线的工作频段相同或部分重叠;
    寄生辐射体,位于所述第二设备主体,所述寄生辐射体通过所述第二设备主体接地,其中,
    所述第一天线辐射体和所述第二天线辐射体由所述第一设备主体的所述第一导电边框形成,所述寄生辐射体由所述第二设备主体的所述第二导电边框形成;所述第一天线辐射体的至少部分和所述第二天线辐射体的至少部分沿平行于所述转轴的方向延伸,当所述可折叠电子设备处于折叠状态时,在所述可折叠电子设备的厚度方向上,所述第二天线辐射体与所述寄生辐射体之间至少一部分重叠,使得所述第二天线辐射体与所述寄生辐射体耦合。
  12. 如权利要求11所述的可折叠电子设备,其特征在于,所述第一天线辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间的第一馈电点、以及位于所述第一馈电点与所述第二端之间的第一接地点,所述第二端相对于所述第一端更靠近所述第二天线辐射体;所述第一天线辐射 体的所述第一接地点通过所述第一设备主体接地;所述第一天线辐射体呈L形并位于所述第一设备主体的所述第一导电边框的第一转角处,并包括相交的第一直线段和第二直线段,其中,所述第一直线段沿平行于所述转轴的方向延伸;
    所述第二天线辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间的第二馈电点、以及位于所述第二馈电点与所述第一端之间的第二接地点,所述第二端相对于所述第一端更靠近所述第一天线辐射体;所述第二天线辐射体的所述第二接地点通过所述第一设备主体接地;所述第二天线辐射体呈L形并位于所述第一设备主体的所述第一导电边框的第二转角处,并包括相交的第一直线段和第二直线段,其中,所述第一直线段沿平行于所述转轴的方向延伸。
  13. 如权利要求12所述的可折叠电子设备,其特征在于,所述寄生辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间并靠近所述第二端的位置处的寄生接地点,所述寄生接地点通过所述第二设备主体接地,所述第一端相对于所述第二端更靠近所述转轴;所述寄生辐射体的至少部分沿垂直于所述转轴的方向延伸,且所述寄生辐射体的该至少部分与所述第二天线辐射体的该至少部分垂直设置。
  14. 如权利要求13所述的可折叠电子设备,其特征在于,所述寄生辐射体呈L形并位于所述第二设备主体的所述第二导电边框的第二转角处,当所述可折叠电子设备处于折叠状态时,在所述可折叠电子设备的厚度方向上,所述第二导电边框的第二转角与所述第一导电边框的第二转角重叠,所述寄生辐射体包括相交的第一直线段和第二直线段,其中,所述第一直线段沿垂直于所述转轴的方向延伸;所述寄生接地点位于所述第二直线段。
  15. 如权利要求12~14中任一项所述的可折叠电子设备,其特征在于,当所述可折叠电子设备处于所述折叠状态时,在垂直于所述转轴的方向上,所述寄生辐射体的所述第一端相对于所述第二天线辐射体的所述第一端更靠近所述转轴,在平行于所述转轴的方向上,所述第二天线辐射体的所述第二端相对于所述寄生辐射体的所述第二端更靠近所述第一天线辐射体。
  16. 如权利要求12~15中任一项所述的可折叠电子设备,其特征在于,所述第一馈电点和所述第一接地点均位于所述第一天线辐射体的所述第一直线段;
    所述第一接地点位于靠近所述第一天线辐射体的所述第二端的位置处;或者,
    所述第一接地点位于所述第一天线辐射体的所述第一直线段的中部。
  17. 如权利要求12~16中任一项所述的可折叠电子设备,其特征在于,所述第二天线辐射体的所述第二接地点位于所述第二天线辐射体的所述第二直线段,并靠近所述第二天线辐射体的所述第一端的位置处,所述第二馈电点位于所述第二天线辐射体的所述第一直线段,并靠近所述第二天线辐射体的所述第二端的位置处。
  18. 一种可折叠电子设备,包括第一设备主体和第二设备主体,所述第一设备主体和第二设备主体之间通过转轴连接,所述第一设备主体具有第一导电边框,所述第二设备主体具有第二导电边框,其特征在于,所述可折叠电子设备还包括:
    第一天线和第二天线,所述第一天线包括第一天线辐射体,所述第二天线包括第二天线辐射体,所述第一天线辐射体位于所述第一设备主体,所述第二天线辐射体位于所述第二设备主体,其中,所述第一天线的工作频段和所述第二天线的工作频段相同或部分重叠;
    第一寄生辐射体,位于所述第二设备主体,所述第一寄生辐射体通过所述第二设备主体接地;其中,
    所述第一天线辐射体由所述第一设备主体的所述第一导电边框形成,所述第二天线辐射体和所述第一寄生辐射体由所述第二设备主体的所述第二导电边框形成;所述第一天线辐射体的至少部分沿平行于所述转轴的方向延伸,所述第二天线辐射体的至少部分沿平行于所述转轴的方向延伸,当所述可折叠电子设备处于折叠状态时,在所述可折叠电子设备的厚度方向上,所述第一天线辐射体与所述第一寄生辐射体之间至少一部分重叠,使得所述第一天线辐射体与所述第一寄生辐射体耦合,且所述第一天线辐射体和所述第二天线辐射体之间不重叠。
  19. 如权利要求18所述的可折叠电子设备,其特征在于,所述可折叠电子设备还包括第二寄生辐射体,所述第二寄生辐射体位于所述第一设备主体,并由所述第一设备主体的所述第一导电边框形成;当所述可折叠电子设备处于所述折叠状态时,在所述可折叠电子设备的厚度方向上,所述第二天线辐射体与所述第二寄生辐射体之间至少一部分重叠,使得所述第二天线辐射体与所述第二寄生辐射体耦合;其中,
    所述第二寄生辐射体包括第一端和第二端,并具有位于所述第一端和所述第二端之间且靠近所述第二端的位置处的第二寄生接地点,所述第二寄生接地点通过所述第一设备主体接地,所述第一端相对于所述第二端更靠近所述转轴;所述第二寄生辐射体的至少部分沿垂直于所述转轴的方向延伸,且所述第二寄生辐射体的该至少部分与所述第二天线辐射体的该至少部分垂直设置。
PCT/CN2021/136102 2020-12-09 2021-12-07 可折叠电子设备 WO2022121896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011449133.9 2020-12-09
CN202011449133.9A CN114614237A (zh) 2020-12-09 2020-12-09 可折叠电子设备

Publications (1)

Publication Number Publication Date
WO2022121896A1 true WO2022121896A1 (zh) 2022-06-16

Family

ID=81857060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136102 WO2022121896A1 (zh) 2020-12-09 2021-12-07 可折叠电子设备

Country Status (2)

Country Link
CN (1) CN114614237A (zh)
WO (1) WO2022121896A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425390A (zh) * 2022-09-05 2022-12-02 荣耀终端有限公司 一种终端天线及电子设备
CN115513645A (zh) * 2022-10-10 2022-12-23 Oppo广东移动通信有限公司 一种电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638449A (zh) * 2022-08-18 2024-03-01 Oppo广东移动通信有限公司 一种电子设备
CN115441181A (zh) * 2022-08-24 2022-12-06 维沃移动通信有限公司 天线模组和电子设备
CN115332794A (zh) * 2022-08-31 2022-11-11 维沃移动通信有限公司 电子设备
CN115249889B (zh) * 2022-09-21 2023-02-28 荣耀终端有限公司 可折叠电子设备
CN115579618A (zh) * 2022-10-11 2023-01-06 Oppo广东移动通信有限公司 可折叠电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546488A (zh) * 2016-06-27 2018-01-05 英特尔Ip公司 无线通信的频率可重构天线去耦
US20180062242A1 (en) * 2016-09-01 2018-03-01 Motorola Mobility Llc Adaptive Parasitic Multi-Antenna System
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN209860954U (zh) * 2018-12-29 2019-12-27 Oppo广东移动通信有限公司 电子设备
CN111613873A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 天线装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546488A (zh) * 2016-06-27 2018-01-05 英特尔Ip公司 无线通信的频率可重构天线去耦
US20180062242A1 (en) * 2016-09-01 2018-03-01 Motorola Mobility Llc Adaptive Parasitic Multi-Antenna System
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端
CN209860954U (zh) * 2018-12-29 2019-12-27 Oppo广东移动通信有限公司 电子设备
CN111613873A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 天线装置及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425390A (zh) * 2022-09-05 2022-12-02 荣耀终端有限公司 一种终端天线及电子设备
CN115513645A (zh) * 2022-10-10 2022-12-23 Oppo广东移动通信有限公司 一种电子设备

Also Published As

Publication number Publication date
CN114614237A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022121896A1 (zh) 可折叠电子设备
TWI679799B (zh) 行動裝置
US10511079B2 (en) Electronic device and antenna structure thereof
TWI704722B (zh) 行動裝置
TWI672860B (zh) 電子裝置
TWI646727B (zh) 行動裝置
TWM553500U (zh) 行動裝置
TWI642230B (zh) 行動裝置
TW201444176A (zh) 行動裝置
TW201909474A (zh) 天線裝置和行動裝置
TWI659629B (zh) 通訊裝置
TWI708427B (zh) 行動裝置
TW201941490A (zh) 電子裝置及其天線組件
CN108631044A (zh) 天线系统和无线网络基站
TW202121743A (zh) 天線結構及電子裝置
CN115224467A (zh) 包括天线的可折叠电子设备
TWI624997B (zh) 行動裝置
TWI678842B (zh) 行動裝置
US20060082504A1 (en) Embedded multiband antennas
TW201914099A (zh) 行動裝置
TW201739104A (zh) 電子裝置及其雙頻印刷式天線
TWI633705B (zh) 行動裝置
WO2022083398A1 (zh) 一种电子设备
TWI549355B (zh) 行動裝置
WO2022017220A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902601

Country of ref document: EP

Kind code of ref document: A1