WO2022121706A1 - 传输控制方法、装置及智能超表面 - Google Patents

传输控制方法、装置及智能超表面 Download PDF

Info

Publication number
WO2022121706A1
WO2022121706A1 PCT/CN2021/133504 CN2021133504W WO2022121706A1 WO 2022121706 A1 WO2022121706 A1 WO 2022121706A1 CN 2021133504 W CN2021133504 W CN 2021133504W WO 2022121706 A1 WO2022121706 A1 WO 2022121706A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
angle
atoms
connector
unit
Prior art date
Application number
PCT/CN2021/133504
Other languages
English (en)
French (fr)
Inventor
白伟
索士强
张鑫
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/252,625 priority Critical patent/US20240014863A1/en
Priority to EP21902413.0A priority patent/EP4262261A4/en
Publication of WO2022121706A1 publication Critical patent/WO2022121706A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission control method, a device, and an intelligent metasurface.
  • the RIS units in the related art that can adjust the phase and amplitude of the smart metasurface are fixed or can only be set to a few states, which cannot meet the needs of RIS use.
  • the purpose of the present disclosure is to provide a transmission control method, device and intelligent metasurface, so as to realize flexible setting of RIS reflection coefficient and reduce the cost of RIS realization and control.
  • an embodiment of the present disclosure provides a transmission control method performed by an intelligent metasurface RIS, where the RIS includes a plurality of RIS atoms and a plurality of connectors, each connector of the plurality of connectors is used to control the surrounding the connection status of the plurality of RIS atoms of the connector;
  • the method includes:
  • connection state of the plurality of RIS atoms surrounding the connector according to the setting parameter, and determining the RIS unit according to the connection state
  • At least one of the RIS atoms constitutes one of the RIS units; the setting parameters include: center distances of multiple RIS units.
  • the method before the determining the setting parameters of the RIS unit, the method further includes:
  • the target information includes at least one of the following:
  • the determining of the setting parameters of the RIS unit includes:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the center distance of the plurality of RIS units includes at least one of the following:
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • the method further includes:
  • the reflection parameter of each RIS unit is determined.
  • the reflection parameters include: reflection amplitude;
  • the determining of the reflection parameters of each RIS unit according to the RIS area information, the RIS power consumption information and the setting parameters of each RIS unit includes:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the determining the connection state of a plurality of RIS atoms surrounding the connector, and determining the RIS unit according to the connection state includes:
  • each connector of the plurality of connectors is configured to perform at least one of the following operations:
  • an embodiment of the present disclosure also provides a transmission control device, comprising a plurality of RIS atoms and a plurality of connectors, each connector of the plurality of connectors is used to control a plurality of the connection state of the RIS atom;
  • the device includes:
  • the first processing module is used to determine the setting parameters of the RIS unit
  • a second processing module configured to determine the connection state of a plurality of RIS atoms surrounding the connector according to the setting parameter, and determine the RIS unit according to the connection state;
  • the setting parameters include: center distances of a plurality of RIS units.
  • the device further includes:
  • the acquisition module is used to acquire target information
  • the target information includes at least one of the following:
  • the first processing module is also used for:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the center distance of the plurality of RIS units includes at least one of the following:
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • the device further includes:
  • the third processing module is configured to determine the reflection parameter of each RIS unit according to the RIS area information, the RIS power consumption information and the setting parameters of each RIS unit.
  • the reflection parameters include: reflection amplitude;
  • the third processing module is also used for:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the second processing module is also used for:
  • each connector of the plurality of connectors is configured to perform at least one of the following operations:
  • an embodiment of the present disclosure further provides a transmission control device, including: a memory, a transceiver, and a processor; a memory for storing program instructions; and a transceiver for sending and receiving data under the control of the processor ; a processor for reading program instructions in said memory and performing the following operations:
  • connection state of the plurality of RIS atoms surrounding the connector according to the setting parameter, and determining the RIS unit according to the connection state
  • At least one of the RIS atoms constitutes one of the RIS units; the setting parameters include: center distances of multiple RIS units.
  • the processor is also used for:
  • the target information includes at least one of the following:
  • the processor is also used for:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the center distance of the plurality of RIS units includes at least one of the following:
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • the reflection parameters include: reflection amplitude;
  • the processor is also used to:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the processor is also used for:
  • each connector of the plurality of connectors is configured to perform at least one of the following operations:
  • an embodiment of the present disclosure further provides an intelligent metasurface that implements the above-mentioned transmission control method, and the intelligent metasurface includes:
  • each connector of the plurality of connectors is used to control the connection state of the plurality of RIS atoms surrounding the connector;
  • At least one RIS atom constitutes a RIS unit.
  • the connector is configured to perform at least one of the following:
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the above-mentioned The processor-executable computer program of the transmission control method.
  • the setting parameters of the RIS unit that is, the center distances of the multiple RIS units on the RIS, are determined first, and then the distance between the multiple RIS atoms surrounding the connector can be further determined according to the setting parameters.
  • the connection state, the RIS unit is determined according to the connection state, so that the RIS can be subsequently transmitted based on the obtained RIS unit, the flexible setting of the RIS reflection coefficient is realized, and the cost of RIS realization and control is reduced.
  • FIG. 1 is a schematic flowchart of a method according to an embodiment of the present disclosure
  • FIG. 2 is one of the schematic diagrams of the RIS according to an embodiment of the disclosure
  • FIG. 3 is the second schematic diagram of the RIS according to the embodiment of the disclosure.
  • FIG. 4 is a schematic block diagram of an apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of an apparatus according to an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present disclosure provide a transmission control method and apparatus.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • a transmission control method provided by an embodiment of the present disclosure is performed by an intelligent metasurface RIS, where the RIS includes a plurality of RIS atoms and a plurality of connectors, each of the plurality of connectors a connector for controlling the connection state of a plurality of RIS atoms surrounding the connector;
  • the method includes:
  • Step 101 determine the setting parameters of the RIS unit
  • Step 102 determining the connection state of a plurality of RIS atoms surrounding the connector according to the setting parameter, and determining the RIS unit according to the connection state;
  • the setting parameters include: center distances of a plurality of RIS units.
  • the RIS1 performing the method of the embodiment of the present disclosure includes a plurality of RIS atoms 2 and a plurality of connectors 3, wherein at least one RIS atom 2 can constitute a RIS unit 4, and each connector can Controls the connection state of multiple RIS atoms surrounding itself.
  • RIS first determines the setting parameters of the RIS unit, that is, the center distances of multiple RIS units on the RIS, and then can further determine the connection state of multiple RIS atoms surrounding the connector according to the setting parameters.
  • the RIS unit is determined, so that the RIS can be subsequently transmitted based on the obtained RIS unit, the flexible setting of the RIS reflection coefficient is realized, and the cost of RIS realization and control is reduced.
  • the RIS atoms as the smallest physical elements on the RIS, include metal patches, diodes, and non-metallic structures, where the metal patches and diodes are arranged on the non-metallic structures, or a plurality of RIS atoms share the diodes.
  • the diode is connected with the metal patch.
  • the connector is connected with the surrounding RIS atoms, and controls the composition of the RIS unit, which is the smallest unit for signal reflection or transmission.
  • the length and width of RIS atoms can be about one-tenth of the wavelength or even smaller.
  • the size of the RIS unit is between one-tenth and one-half the wavelength.
  • step 10 it also includes:
  • the target information includes at least one of the following:
  • the target information is used to determine the setting parameters and/or reflection parameters of the RIS unit. Therefore, the RIS needs to obtain the target information for subsequent use.
  • the target information may be stored locally (such as predefined), and the acquisition of the target information is local extraction; the target information may be notified by other devices (such as a base station), and the acquisition of the target information is the target information sent by the receiving base station.
  • step 101 includes:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the location information of the transmitting end may include the first angle and the second angle
  • the location information of the receiving end may include the third angle and the fourth angle
  • the RIS can directly extract from the location information of the transmitting end and the location information of the receiving end to determine the The angles required for the setting parameters of the RIS unit.
  • the RIS position information can also be combined to determine the required angles, and then use these angle information to determine the setting parameters of the RIS unit.
  • the above angle is the angle observed at the center of the RIS by drawing a line from the center of the RIS to the receiving end or the transmitting end.
  • the setting parameters include the center distances of the multiple RIS units.
  • the multiple RIS units can optionally be adjacent RIS units.
  • the RIS units may be arranged in the first direction of the RIS (the length direction of the RIS) and the second direction of the RIS (the width direction of the RIS). Therefore, optionally, the plurality of RIS units
  • the center distance includes at least one of the following: the center distance of two adjacent RIS units in the first direction of RIS; the center distance of two adjacent RIS units in the second direction of RIS;
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • a RIS setting parameter table is preset, and the RIS setting parameter table includes at least the combination of K, d x and dy supported by the RIS, if the RIS parameter table contains (K1, d x 1, dy 1), it means that RIS can support the parameter combination K1, d x 1 and dy 1, that is, the RIS unit can be set to K1 phase shifts, the interval between two adjacent RIS unit columns is d x 1, and the adjacent two The spacing between rows of RIS units is dy 1, of course the table contains the various combinations supported.
  • the applicable combination of K, d x and dy can be determined by looking up the table.
  • d x and dy can be selected to be between one-tenth and one-half the wavelength.
  • the RIS setting parameter table will also be adjusted based on the usage, such as: the determined d x and d y , if it is greater than ⁇ /2, ie K* ⁇ 1 ⁇ 2 and/or K* ⁇ 2 ⁇ 2, then it is necessary to Increase K, otherwise the beamforming will be chaotic and unable to focus. At this time, if ⁇ 1 and/or ⁇ 2 are very small, and K cannot be large enough, it is considered that ( ⁇ r , ) direction is beyond the capabilities of the RIS.
  • K* ⁇ 1 >10 and/or K* ⁇ 2 >10 K needs to be reduced, otherwise the Abbe limit will be reached, making the RIS unit very strong for reflection. , i.e. a large K is meaningless for beamforming.
  • the above formulas for determining d x and dy are determined by setting RIS on the XY plane and taking the lower left corner as the coordinate origin as shown in Figure 3 .
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the setting used in the calculation process can be that the RIS is placed on the XY plane, the XZ plane or the YZ plane.
  • the origin of the coordinates is any of the center and four corners of the RIS, and the corresponding formulas are different. Therefore, The formula is not limited to the above.
  • step 102 includes:
  • each connector of the plurality of connectors is configured to perform at least one of the following operations:
  • the connector can control the connection of multiple RIS atoms around itself, various realizations of the RSI unit can be realized.
  • a connector is surrounded by 4 RIS atoms. If the connector controls the non-connection of these 4 RIS atoms, the 4 RIS atoms are each a RIS unit. At this time, the RIS unit It is 1 RIS atom, and the connector state can be recorded as 1; if the connector controls the connection between the 4 RIS atoms and the left and right 2 RIS atoms, the 4 RIS atoms are the upper and lower RIS units respectively. At this time, the connector state can be Record it as 2; if the connector controls the connection of these 4 RIS atoms with 2 RIS atoms up and down, the 4 RIS atoms are the left and right RIS units respectively.
  • the connector state can be recorded as 3; if the connector controls these 4 RIS atoms If 4 RIS atoms are connected, then 4 RIS atoms are a RIS unit, and at this time, the connector state can be recorded as 4.
  • the setting of the RIS unit size can be achieved, which is equivalent to realizing the distance between the centers of two adjacent RIS units.
  • the column spacing (ie d x ) between the centers of RIS units is 5 times the length of RIS atoms (column)
  • the row spacing (ie dy ) between RIS unit centers is 3 times the length of RIS atoms (column direction) length
  • the RIS connectors from the first column to the fourth column of the first row select state 4, the first column to the fourth column of the second row RIS connectors select state 4, and the first column of the third row Go to the RIS connector selection state 2 in the fourth column, the RIS connector selection state 3 in the first row of the fifth column to the second row, and the RIS connector selection state 1 in the third row of the fifth column, as shown in Figure 2.
  • the RIS unit 4 includes 5 RIS atoms in each row and 3 RIS atoms in each column.
  • the diode PINs in the two RIS atoms can be connected in series in the same direction through the RIS connector, that is, the P of one PIN and the N of the other PIN are connected in the same direction. together; RIS connector If you do not want to connect two RIS atoms together, you can use the RIS connector to unconnect the PINs in the two RIS atoms.
  • RIS unit configured according to the set parameters, correspondingly, in order to make it perform required reflection, optionally, after step 101, it further includes:
  • the reflection parameter of each RIS unit is determined.
  • the RIS area information includes but is not limited to the total area of the RIS
  • the RIS power consumption information includes but is not limited to the total power consumption of the RIS.
  • the reflection parameters include: reflection amplitude;
  • the determining of the reflection parameters of each RIS unit according to the RIS area information, the RIS power consumption information and the setting parameters of each RIS unit includes:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the reflection amplitude can be calculated through the corresponding formula.
  • S is the total area of the RIS
  • P is the total power consumption of the RIS.
  • M and N can also be calculated, where M is the number of RIS units of RIS in the first direction of RIS, and N is the number of RIS units of RIS in the second direction of RIS.
  • the reflection parameter is not limited to the reflection amplitude, but also includes the reflection phase shift, etc., which will not be listed one by one here.
  • the magnitude of the reflection phase shift ⁇ n,m of the RIS unit can be expressed as m is the sequence number of the RIS unit in the first direction of RIS, and n is the sequence number of the RIS unit in the second direction of RIS.
  • the RIS After completing the setting of the RIS unit and setting the reflection parameters of each RIS unit, the RIS reports the status to the base station and starts to reflect the signal.
  • an embodiment of the present disclosure provides a transmission control device, which includes a plurality of RIS atoms and a plurality of connectors, and each connector is used to control the connection state of the plurality of RIS atoms surrounding the connector;
  • the device includes:
  • a first processing module 410 configured to determine setting parameters of the RIS unit
  • the second processing module 420 is configured to determine the connection state of a plurality of RIS atoms surrounding the connector according to the setting parameter, and determine the RIS unit according to the connection state;
  • the setting parameters include: center distances of a plurality of RIS units.
  • the device further includes:
  • the acquisition module is used to acquire target information
  • the target information includes at least one of the following:
  • the first processing module is also used for:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the center distance of the plurality of RIS units includes at least one of the following:
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • the device further includes:
  • the third processing module is configured to determine the reflection parameter of each RIS unit according to the RIS area information, the RIS power consumption information and the setting parameters of each RIS unit.
  • the reflection parameters include: reflection amplitude;
  • the third processing module is also used for:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the second processing module is also used for:
  • each connector of the plurality of connectors is configured to perform at least one of the following operations:
  • the device can further determine the connection state of multiple RIS atoms surrounding the connector according to the setting parameters, and determine the connection state according to the connection state.
  • the RIS unit enables the subsequent transmission of the RIS based on the obtained RIS unit, realizes the flexible setting of the RIS reflection coefficient, and reduces the cost of RIS realization and control.
  • the device is a device to which the above-mentioned transmission control method is applied, and the implementation manner of the above-mentioned method embodiments is applicable to the device, and the same technical effect can also be achieved.
  • an embodiment of the present disclosure further provides a transmission control apparatus, including: a memory 520, a transceiver 510, and a processor 500: the memory 520 is used to store program instructions; the transceiver 510 is used to Send and receive data under the control of the processor 500; the processor 500 is used to read the program instructions in the memory 520 and perform the following operations:
  • connection state of the plurality of RIS atoms surrounding the connector according to the setting parameter, and determining the RIS unit according to the connection state
  • At least one of the RIS atoms constitutes one of the RIS units; the setting parameters include: center distances of multiple RIS units.
  • the processor is also used for:
  • the target information includes at least one of the following:
  • the processor is also used for:
  • the first angle is the lift angle from the center of the RIS to the transmitter
  • the second angle is the horizontal angle from the center of the RIS to the transmitter
  • the third angle is the lift angle from the center of the RIS to the receiver
  • the fourth angle is The horizontal angle from the center of the RIS to the receiver.
  • the center distance of the plurality of RIS units includes at least one of the following:
  • the determining of the setting parameters of the RIS unit according to the first angle, the second angle, the third angle and the fourth angle includes:
  • the ⁇ t is the first angle
  • the ⁇ r is the third angle
  • the d x is the center distance of two adjacent RIS units in the first direction of RIS
  • the dy is the center distance of two adjacent RIS units in the second direction of RIS
  • the ⁇ is the wavelength
  • the K is the number of phase shifts.
  • the processor is also used for:
  • the reflection parameter of each RIS unit is determined.
  • the reflection parameters include: reflection amplitude;
  • the processor is also used to:
  • the P is the power consumption of the RIS
  • the S is the area of the RIS
  • the d x is the center distance between two adjacent RIS units in the first direction of the RIS
  • dy is the phase in the second direction of the RIS. The distance between the centers of two adjacent RIS units.
  • the processor is also used for:
  • each of the plurality of connectors is configured to perform at least one of the following:
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 500 and various circuits of memory represented by memory 520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 510 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 510 in performing operations.
  • the processor 500 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the connection state of the multiple RIS atoms surrounding the connector can be further determined according to the setting parameters.
  • the connection state determines the RIS unit, so that the RIS can be subsequently transmitted based on the obtained RIS unit, which realizes the flexible setting of the RIS reflection coefficient and reduces the cost of RIS realization and control.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the related technology, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • an embodiment of the present disclosure further provides an intelligent metasurface that implements the above-mentioned transmission control method, and the intelligent metasurface includes:
  • each connector of the plurality of connectors is used to control the connection state of the plurality of RIS atoms surrounding the connector;
  • At least one RIS atom 2 constitutes a RIS unit 4 .
  • the connector is configured to perform at least one of the following:
  • RIS1 implements the above-mentioned transmission control method.
  • the connection state of multiple RIS atoms surrounding the connector can be further determined according to the setting parameters.
  • the connection state determines the RIS unit, so that the RIS can be subsequently transmitted based on the obtained RIS unit, which realizes the flexible setting of the RIS reflection coefficient and reduces the cost of RIS realization and control.
  • a processor-readable storage medium stores program instructions, and the program instructions are used to cause the processor to perform the following steps:
  • connection state of the plurality of RIS atoms surrounding the connector according to the setting parameter, and determining the RIS unit according to the connection state
  • the setting parameters include: center distances of multiple RIS units.
  • the embodiments of the present application relate to a receiving end and/or a sending end, which may be terminal devices, such as a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem Wait.
  • terminal devices such as a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem Wait.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the receiving end and/or the transmitting end involved in the embodiment of the present application may be a network device, such as a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network equipment (NodeB) in the Wide-band Code Division Multiple Access (Wide-band Code Division Multiple Access, WCDMA), or it can be an evolved network equipment in the Long Term Evolution (Long Term Evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • the network device may include a centralized unit (Centralized Unit, CU) node and a distributed unit (Distributed Unit,
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种传输控制方法、装置及智能超表面,本公开的方法由智能超表面RIS执行,RIS包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;所述方法包括:确定RIS单元的设置参数;根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。

Description

传输控制方法、装置及智能超表面
相关申请的交叉引用
本申请主张在2020年12月10日在中国提交的中国专利申请号No.202011454063.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种传输控制方法、装置及智能超表面。
背景技术
随着移动通信的发展变化,多个组织都开始研究新一代无线通信系统,即6G。智能超表面(Reconfigure Intelligent Surfaces,RIS)技术最早由电磁学、材料学的科学家进行研究,之后被引入实际应用中,例如电磁隐身材料、完美透镜、全息成像、太赫兹感知、雷达波束扫描等。智能超表面技术受到业界广泛关注,尤其是通信界的关注,欲将其引入到6G通信系统中提升高频段通信系统的通信质量,提高能量效率和频谱效率。智能超表面被认为是6G系统的潜在关键技术之一。
但是,相关技术中的智能超表面可调整相位和振幅的RIS单元是固定设置或者仅可设置少数几个状态,无法满足RIS使用需求。
发明内容
本公开的目的在于提供一种传输控制方法、装置及智能超表面,用以实现RIS反射系数的灵活设置,降低RIS实现和控制的成本。
为了实现上述目的,本公开实施例提供一种传输控制方法,由智能超表面RIS执行,RIS包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
所述方法包括:
确定RIS单元的设置参数;
根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。
可选地,在所述确定RIS单元的设置参数之前,还包括:
获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
可选地,所述确定RIS单元的设置参数,包括:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
可选地,所述多个RIS单元的中心距离至少包括以下之一:
RIS第一方向上相邻两个RIS单元的中心距离;
RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000001
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000002
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000003
为所述第二角度,所述θ r为所述第 三角度,所述
Figure PCTCN2021133504-appb-000004
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
可选地,在所述确定所述RIS单元的设置参数之后,还包括:
根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
可选地,所述反射参数包括:反射幅度;
所述根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数,包括:
通过公式
Figure PCTCN2021133504-appb-000005
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
可选地,所述确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,包括:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
为了实现上述目的,本公开实施例还提供一种传输控制装置,包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
所述装置包括:
第一处理模块,用于确定RIS单元的设置参数;
第二处理模块,用于根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个RIS单元;所述设置参数包括: 多个RIS单元的中心距离。
可选地,所述装置还包括:
获取模块,用于获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
可选地,所述第一处理模块还用于:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
可选地,
所述多个RIS单元的中心距离至少包括以下之一:
RIS第一方向上相邻两个RIS单元的中心距离;
RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000006
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000007
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000008
为所述第二角度,所述θ r为所述第三角度,所述
Figure PCTCN2021133504-appb-000009
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所 述λ为波长,所述K为相移数量。
可选地,所述装置还包括:
第三处理模块,用于根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
可选地,所述反射参数包括:反射幅度;
所述第三处理模块还用于:
通过公式
Figure PCTCN2021133504-appb-000010
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
可选地,所述第二处理模块还用于:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
为了实现上述目的,本公开实施例还提供一种传输控制装置,包括:存储器、收发机,处理器;存储器,用于存储程序指令;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的程序指令并执行以下操作:
确定RIS单元的设置参数;
根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。
可选地,所述处理器还用于:
获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
可选地,所述处理器还用于:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
可选地,所述多个RIS单元的中心距离至少包括以下之一:
RIS第一方向上相邻两个RIS单元的中心距离;
RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000011
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000012
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000013
为所述第二角度,所述θ r为所述第三角度,所述
Figure PCTCN2021133504-appb-000014
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
可选地,所述反射参数包括:反射幅度;
所述处理器还用于:
通过公式
Figure PCTCN2021133504-appb-000015
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
可选地,所述处理器还用于:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
为了实现上述目的,本公开实施例还提供了一种智能超表面,执行如上所述的传输控制方法,所述智能超表面包括:
多个RIS原子和多个连接器;
其中,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
至少一个RIS原子构成一个RIS单元。
可选地,所述连接器用于执行以下至少一项:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
为了实现上述目的,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上述所述的传输控制方法的处理器可执行的计算机程序。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的上述技术方案中,通过先确定RIS单元的设置参数,即RIS上多个RIS单元的中心距离,之后就能够进一步根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,使得该RIS后续能够基于所得的RIS单元进行传输,实现了RIS反射系数的灵活设置,降低了RIS实现和控制的成本。
附图说明
图1为本公开实施例的方法的流程示意图;
图2为本公开实施例的RIS的示意图之一;
图3为本公开实施例的RIS的示意图之二;
图4为本公开实施例的装置的模块示意图;
图5为本公开实施例的装置的结构框图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本公开实施例提供了一种传输控制方法及装置。其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1所示,为本公开实施例提供的一种传输控制方法,由智能超表面RIS执行,所述RIS包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
所述方法包括:
步骤101,确定RIS单元的设置参数;
步骤102,根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个RIS单元;所述设置参数包括:多个RIS单元的中心距离。
这里,如图2所示,执行本公开实施例方法的RIS1,包括多个RIS原子 2和多个连接器3,其中,至少一个RIS原子2可构成一个RIS单元4,而每个连接器能够控制围绕自身的多个RIS原子的连接状态。如此,RIS按照步骤101和步骤102,通过先确定RIS单元的设置参数,即RIS上多个RIS单元的中心距离,之后就能够进一步根据设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,使得该RIS后续能够基于所得的RIS单元进行传输,实现了RIS反射系数的灵活设置,降低了RIS实现和控制的成本。
该实施例中,RIS原子作为RIS上最小物理元件,包括金属贴片、二极管和非金属结构,金属贴片和二极管设置在该非金属结构,或者多个RIS原子共享二极管。其中,二极管与金属贴片连接。连接器与围绕的各个RIS原子连接,控制RIS单元的构成,RIS单元是进行信号反射或透射的最小单位。
其中,RIS原子的长和宽可以在波长的十分之一左右甚至更小。RIS单元的大小处于波长的十分之一和二分之一之间。
可选地,在步骤10之前,还包括:
获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
这里,目标信息是用于确定RIS单元的设置参数和/或反射参数的,因此,RIS需要先获取到该目标信息,以便后续的使用。
其中,目标信息可以是存储在本地(如预先定义的),则获取该目标信息为本地提取;目标信息可以是其它设备(如基站)告知,则获取该目标信息为接收基站发送的目标信息。
可选地,步骤101,包括:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的 设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
该实施例中,发射端位置信息可包括第一角度和第二角度,接收端位置信息可包括第三角度和第四角度,RIS则能够从发射端位置信息和接收端位置信息直接提取到确定RIS单元的设置参数所需的各角度。当然,若发射端位置信息、接收端位置信息未包括这些角度,也可结合RIS位置信息,先确定所需的各角度,然后再使用这些角度信息确定RIS单元的设置参数。
其中,上述角度是从RIS中心到接收端或发送端划线,在RIS中心观察到的角。
而设置参数包括多个RIS单元的中心距离,这里,多个RIS单元可选是相邻的RIS单元。该实施例中,如图2所示,RIS单元可在RIS第一方向(RIS长度方向)和RIS第二方向(RIS宽度方向)上排列设置,因此,可选地,所述多个RIS单元的中心距离至少包括以下之一:RIS第一方向上相邻两个RIS单元的中心距离;RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000016
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000017
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000018
为所述第二角度,所述θ r为所述第三角度,所述
Figure PCTCN2021133504-appb-000019
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
在RIS单元的相移需要有K个时,RIS单元相移的调整粒度是2π/K,需要满足2π/K=2π/λ*δ 1*d x=2π/λ*δ 2*d y,所以,较佳的d x需要满足Kd x=λ/δ 1,较佳的d y需要满足Kd y=λ/δ 2
该实施例中,预先设置了RIS设置参数表,该RIS设置参数表至少包括RIS所支持的K、d x和d y的组合,如果RIS参数表中包含了(K1,d x1,d y1),就说明RIS可以支持参数组合K1、d x1和d y1,即RIS单元可以设置成K1个相移、相邻两个RIS单元列之间的间隔为d x1、相邻两个RIS单元行之间的间隔为d y1,当然表中包含支持的各种组合。通过查表,即可确定出适用的K、d x和d y的组合。这里,确定出适用的K、d x和d y的组合满足公式Kd x=λ/δ 1以及Kd y=λ/δ 2,是指该组合使得公式成立,或者,该组合为该RIS设置参数表中最接近公式成立的组合。当然,若仅需要独立确定d x或d y,则确定的d x满足公式Kd x=λ/δ 1即可,无需考虑d y;确定的d y满足公Kd y=λ/δ 2即可,无需考虑d x。同样的,满足公式包括使公式成立,或者最接近公式成立。
其中,d x和d y可选为波长的十分之一到二分之一之间。
另外,该RIS设置参数表也会基于使用情况进行调整,如:确定的d x和d y,如果大于λ/2,即K*δ 1<2和/或K*δ 2<2,那么需要增大K,否则会使得波束赋形混乱,不能聚焦。这时,如果δ 1和/或δ 2非常小,K也做不到足够大,这时认为(θ r
Figure PCTCN2021133504-appb-000020
)方向上的波束赋形超出了RIS的能力。确定的d x和d y,如果小于λ/10,即K*δ 1>10和/或K*δ 2>10,那么需要减小K,否则会达到Abbe极限使得RIS单元对反射有非常强的相关性,即大的K对波束赋形是没有意义的。
应该知道的是,上述确定d x和d y的公式,是如图3所示,将RIS设定为X-Y平面上,以左下角为坐标原点来确定的。其中,第一方向即X轴方向,第二方向即Y轴方向。当然,在计算过程中采用的设定,可以是RIS放在X-Y平面上、X-Z平面或Y-Z平面,坐标原点为RIS的中心、四角中的任意一个,其对应的公式是存在差异的,因此,公式不限上述内容。
此外,计算其它方向上相邻RIS单元的中心距离的原理与计算RIS第一方向、第二方向上相邻RIS单元的中心距离的原理是相同的,但具体实现存在差异,在此不再赘述。
可选地,步骤102包括:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
这里,基于该实施例中RIS的结构,且该连接器能够将围绕自身的多个RIS原子的连接进行控制,可实现RSI单元的多种实现。
以图2所示的RIS为例,1个连接器围绕有4个RIS原子,则连接器若控制这4个RIS原子非连接,则4个RIS原子分别为一个RIS单元,此时,RIS单元为1个RIS原子,连接器状态可记为1;连接器若控制这4个RIS原子左右2个RIS原子连接,则4个RIS原子分别为上下两个RIS单元,此时,连接器状态可记为2;连接器若控制这4个RIS原子上下2个RIS原子连接,则4个RIS原子分别为左右两个RIS单元,此时,连接器状态可记为3;连接器若控制这4个RIS原子连接,则4个RIS原子为一个RIS单元,此时,连接器状态可记为4。通过设置RIS连接器的状态,可以实现RIS单元大小的设置,等价于实现两个相邻RIS单元中心之间的距离。
一般情况下,比如,RIS单元中心之间列向间隔(即d x)为5倍的RIS原子(列向)长度,RIS单元中心之间行向间隔(即d y)为3倍的RIS原子(列向)长度,则第一行的第一列到第四列RIS连接器选择状态4,第二行的第一列到第四列RIS连接器选择状态4,第三行的第一列到第四列RIS连接器选择状态2,第五列的第一行到第二行RIS连接器选择状态3,第五列的第三行RIS连接器选择状态1,即可得到如图2中所示的RIS单元4。该RIS单元4每行包括5个RIS原子,每列包括3个RIS原子。
具体的,RIS连接器如果要把两个RIS原子连接在一起,可以通过RIS连接器把两个RIS原子中的二极管PIN同向串联起来,即其中一个PIN的P和另一个PIN的N连接在一起;RIS连接器如果不想把两个RIS原子连接在一起,可以通过RIS连接器把两个RIS原子中的PIN不连接。
对于按照设置参数配置的RIS单元,相应的,为使其进行所需的反射,可选地,步骤101之后,还包括:
根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
这里,RIS面积信息包括但不限于RIS的总面积,RIS功耗信息包括但不限于RIS的总功耗。结合RIS面积信息、RIS功耗信息以及RIS单元的设置参数,即可对每个RIS单元的反射参数实现更优的设置。
可选地,所述反射参数包括:反射幅度;
所述根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数,包括:
通过公式
Figure PCTCN2021133504-appb-000021
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
这样,针对于目标RIS单元,在可分别通过对应的公式计算反射幅度。S是RIS的总面积,P是RIS的总功耗。
其中,
Figure PCTCN2021133504-appb-000022
是结合M*N*d x*d y=S,以及M*N*A 2=P确定。其中,还可以计算出M和N,M为RIS在RIS第一方向上的RIS单元数目,N为RIS在RIS第二方向上的RIS单元数目。
需要注意的是,该实施例中在使用RIS连接器的实现中,不会出现RIS单元中心距离影响RIS总面积的情况,只会影响M和N的取值。
当然,反射参数不限于反射幅度,还包括反射相移等,在此不再一一列举。
这里,RIS单元的反射相移φ n,m的大小,可表示为
Figure PCTCN2021133504-appb-000023
m为RIS单元在RIS第一方向上的序号,n为RIS单元在RIS第二方向上的序号。
RIS在完成RIS单元的设置,每个RIS单元的反射参数设置后,向基站报告状态,开始对信号进行反射。
如图4所示,本公开实施例提供了一种传输控制装置,包括多个RIS原子和多个连接器,且每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
所述装置包括:
第一处理模块410,用于确定RIS单元的设置参数;
第二处理模块420,用于根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个RIS单元;所述设置参数包括:多个RIS单元的中心距离。
可选地,所述装置还包括:
获取模块,用于获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
可选地,所述第一处理模块还用于:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
可选地,
所述多个RIS单元的中心距离至少包括以下之一:
RIS第一方向上相邻两个RIS单元的中心距离;
RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000024
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000025
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000026
为所述第二角度,所述θ r为所述第三角度,所述
Figure PCTCN2021133504-appb-000027
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
可选地,所述装置还包括:
第三处理模块,用于根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
可选地,所述反射参数包括:反射幅度;
所述第三处理模块还用于:
通过公式
Figure PCTCN2021133504-appb-000028
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
可选地,所述第二处理模块还用于:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
该装置通过先确定RIS单元的设置参数,即RIS上多个RIS单元的中心距离,之后就能够进一步根据设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,使得该RIS后续能够基于所得的RIS单元进行传输,实现了RIS反射系数的灵活设置,降低了RIS实现和控制的成本。
需要说明的是,该装置是应用了上述传输控制方法的装置,上述方法实施例的实现方式适用于该装置,也能达到相同的技术效果。
如图5所示,本公开实施例还提供了一种传输控制装置,包括:存储器520、收发机510,处理器500:存储器520,用于存储程序指令;收发机510, 用于在所述处理器500的控制下收发数据;处理器500,用于读取所述存储器520中的程序指令并执行以下操作:
确定RIS单元的设置参数;
根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。
可选地,所述处理器还用于:
获取目标信息;
其中,所述目标信息包括以下至少一项:
信道状态信息CSI;
发射端位置信息;
接收端位置信息;
RIS位置信息;
RIS面积信息;
RIS功耗信息。
可选地,所述处理器还用于:
根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
可选地,所述多个RIS单元的中心距离至少包括以下之一:
RIS第一方向上相邻两个RIS单元的中心距离;
RIS第二方向上相邻两个RIS单元的中心距离;
所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
通过公式
Figure PCTCN2021133504-appb-000029
计算第一参数δ 1
通过公式
Figure PCTCN2021133504-appb-000030
计算第二参数δ 2
基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
其中,所述θ t为所述第一角度,所述
Figure PCTCN2021133504-appb-000031
为所述第二角度,所述θ r为所述第三角度,所述
Figure PCTCN2021133504-appb-000032
为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
可选地,所述处理器还用于:
根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
可选地,所述反射参数包括:反射幅度;
所述处理器还用于:
通过公式
Figure PCTCN2021133504-appb-000033
计算所述每个R IS单元的反射幅度A;
其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
可选地,所述处理器还用于:
通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
其中,所述多个连接器中的每个用于执行以下至少一项:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器500负责 管理总线架构和通常的处理,存储器520可以存储处理器510在执行操作时所使用的数据。
处理器500可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
本公开实施例的中装置,通过先确定RIS单元的设置参数,即RIS上多个RIS单元的中心距离,之后就能够进一步根据设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,使得该RIS后续能够基于所得的RIS单元进行传输,实现了RIS反射系数的灵活设置,降低了RIS实现和控制的成本。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法 实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图2所示,本公开的实施例还提供了一种智能超表面,执行如上所述的传输控制方法,所述智能超表面包括:
多个RIS原子2和多个连接器3;
其中,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
至少一个RIS原子2构成一个RIS单元4。
可选地,所述连接器用于执行以下至少一项:
控制围绕所述连接器的多个RIS原子非连接;
控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
控制围绕所述连接器的多个RIS原子连接。
RIS1执行上述的传输控制方法,通过先确定RIS单元的设置参数,即RIS上多个RIS单元的中心距离,之后就能够进一步根据设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,使得该RIS后续能够基于所得的RIS单元进行传输,实现了RIS反射系数的灵活设置,降低了RIS实现和控制的成本。
在本公开的一些实施例中,还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行实现以下步骤:
确定RIS单元的设置参数;
根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
其中,所述设置参数包括:多个RIS单元的中心距离。
该程序指令被处理器执行时能实现上述应用于如图1所示的传输控制方法实施例中的所有实现方式,为避免重复,此处不再赘述。
本申请实施例涉及接收端和/或发送端,可以是终端设备,如指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能 也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的接收端和/或发送端,可以是网络设备,如基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico) 等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(Centralized Unit,CU)节点和分布单元(Distributed Unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述仅是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本公开的保护范围。

Claims (12)

  1. 一种传输控制方法,由智能超表面RIS执行,所述RIS包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
    所述方法包括:
    确定RIS单元的设置参数;
    根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
    其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。
  2. 根据权利要求1所述的方法,其中,在所述确定RIS单元的设置参数之前,还包括:
    获取目标信息;
    其中,所述目标信息包括以下至少一项:
    信道状态信息CSI;
    发射端位置信息;
    接收端位置信息;
    RIS位置信息;
    RIS面积信息;
    RIS功耗信息。
  3. 根据权利要求1或2所述的方法,其中,所述确定RIS单元的设置参数,包括:
    根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数;
    其中,所述第一角度为RIS中心到发射端的抬升角,所述第二角度为RIS中心到发射端的水平角,所述第三角度为RIS中心到接收端的抬升角,所述第四角度为RIS中心到接收端的水平角。
  4. 根据权利要求3所述的方法,其中,所述多个RIS单元的中心距离至 少包括以下之一:
    RIS第一方向上相邻两个RIS单元的中心距离;
    RIS第二方向上相邻两个RIS单元的中心距离;
    所述根据第一角度、第二角度、第三角度和第四角度,确定所述RIS单元的设置参数,包括:
    通过公式
    Figure PCTCN2021133504-appb-100001
    计算第一参数δ 1
    通过公式
    Figure PCTCN2021133504-appb-100002
    计算第二参数δ 2
    基于RIS设置参数表,确定d x和/或d y,所述d x满足公式Kd x=λ/δ 1,所述d y满足公式Kd y=λ/δ 2
    其中,所述θ t为所述第一角度,所述
    Figure PCTCN2021133504-appb-100003
    为所述第二角度,所述θ r为所述第三角度,所述
    Figure PCTCN2021133504-appb-100004
    为所述第四角度,所述d x为RIS第一方向上相邻两个RIS单元的中心距离,所述d y为RIS第二方向上相邻两个RIS单元的中心距离,所述λ为波长,所述K为相移数量。
  5. 根据权利要求1所述的方法,其中,在所述确定所述RIS单元的设置参数之后,还包括:
    根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数。
  6. 根据权利要求5所述的方法,其中,所述反射参数包括:反射幅度;
    所述根据RIS面积信息、RIS功耗信息以及每个所述RIS单元的设置参数,确定所述每个RIS单元的反射参数,包括:
    通过公式
    Figure PCTCN2021133504-appb-100005
    计算所述每个RIS单元的反射幅度A;
    其中,所述P为RIS的功耗,所述S为RIS的面积,所述d x为RIS第一方向上相邻两个RIS单元的中心距离所述,d y为RIS第二方向上相邻两个RIS单元的中心距离。
  7. 根据权利要求1所述的方法,其中,所述确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元,包括:
    通过多个连接器,将RIS配置为满足所述设置参数的多个RIS单元;
    其中,所述多个连接器中的每个连接器用于执行以下至少一项操作:
    控制围绕所述连接器的多个RIS原子非连接;
    控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
    控制围绕所述连接器的多个RIS原子连接。
  8. 一种传输控制装置,包括多个RIS原子和多个连接器,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
    所述装置包括:
    第一处理模块,用于确定RIS单元的设置参数;
    第二处理模块,用于根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
    其中,至少一个所述RIS原子构成一个RIS单元;所述设置参数包括:多个RIS单元的中心距离。
  9. 一种传输控制装置,包括:存储器、收发机,处理器;
    存储器,用于存储程序指令;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的程序指令并执行以下操作:
    确定RIS单元的设置参数;
    根据所述设置参数,确定围绕连接器的多个RIS原子的连接状态,根据所述连接状态,确定所述RIS单元;
    其中,至少一个所述RIS原子构成一个所述RIS单元;所述设置参数包括:多个RIS单元的中心距离。
  10. 一种智能超表面,执行如权利要求1-7任一项所述的传输控制方法,所述智能超表面包括:
    多个RIS原子和多个连接器;
    其中,所述多个连接器中的每个连接器用于控制围绕所述连接器的多个RIS原子的连接状态;
    至少一个RIS原子构成一个RIS单元。
  11. 根据权利要求10所述的智能超表面,其中,所述连接器用于执行以下至少一项:
    控制围绕所述连接器的多个RIS原子非连接;
    控制围绕所述连接器的多个RIS原子中部分RIS原子连接;
    控制围绕所述连接器的多个RIS原子连接。
  12. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至7中任一项所述的传输控制方法的处理器可执行的计算机程序。
PCT/CN2021/133504 2020-12-10 2021-11-26 传输控制方法、装置及智能超表面 WO2022121706A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/252,625 US20240014863A1 (en) 2020-12-10 2021-11-26 Transmission control method, device and reconfigure intelligent surface
EP21902413.0A EP4262261A4 (en) 2020-12-10 2021-11-26 TRANSMISSION CONTROL METHOD AND APPARATUS AND INTELLIGENT RECONFIGURABLE INTERFACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011454063.6 2020-12-10
CN202011454063.6A CN114630334B (zh) 2020-12-10 2020-12-10 一种传输控制方法、装置及智能超表面

Publications (1)

Publication Number Publication Date
WO2022121706A1 true WO2022121706A1 (zh) 2022-06-16

Family

ID=81895264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133504 WO2022121706A1 (zh) 2020-12-10 2021-11-26 传输控制方法、装置及智能超表面

Country Status (4)

Country Link
US (1) US20240014863A1 (zh)
EP (1) EP4262261A4 (zh)
CN (1) CN114630334B (zh)
WO (1) WO2022121706A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278736A (zh) * 2022-07-25 2022-11-01 暨南大学 一种基于可重构智能表面的同时同频全双工通信组网方案
CN115396910A (zh) * 2022-08-26 2022-11-25 西安科技大学 去蜂窝网络多个智能超表面位置优化方法
CN115453525A (zh) * 2022-09-19 2022-12-09 华工未来科技(江苏)有限公司 基于ris的无线电感知成像方法、装置、电子设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117858099A (zh) * 2022-09-30 2024-04-09 中兴通讯股份有限公司 网络部署方法、网络调节装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044246A1 (en) * 2017-08-01 2019-02-07 University Of Cyprus New wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
CN111447618A (zh) * 2020-03-13 2020-07-24 重庆邮电大学 一种基于安全通信的智能反射面能效最大资源分配方法
CN111542054A (zh) * 2020-05-08 2020-08-14 南京大学 一种基于可编程超表面的保密通信方法与系统
CN111817797A (zh) * 2020-06-22 2020-10-23 电子科技大学 基于最大化接收信噪比的irs相位旋转设计的信号发射方法
CN111930053A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统
CN112038777A (zh) * 2020-09-15 2020-12-04 江苏易珩空间技术有限公司 一种透明超表面构成的电磁空间调控系统及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010219B (zh) * 2019-11-28 2020-11-20 东南大学 可重构智能表面辅助的多用户mimo上行链路传输方法
CN111416646B (zh) * 2020-02-17 2021-07-06 北京大学 传播环境可调控方法、装置、电子设备和计算机存储介质
CN111817768B (zh) * 2020-06-03 2021-06-15 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN111912409B (zh) * 2020-07-08 2022-04-26 北京大学 可编程智能反射面辅助的多移动设备定位方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044246A1 (en) * 2017-08-01 2019-02-07 University Of Cyprus New wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
CN111447618A (zh) * 2020-03-13 2020-07-24 重庆邮电大学 一种基于安全通信的智能反射面能效最大资源分配方法
CN111542054A (zh) * 2020-05-08 2020-08-14 南京大学 一种基于可编程超表面的保密通信方法与系统
CN111817797A (zh) * 2020-06-22 2020-10-23 电子科技大学 基于最大化接收信噪比的irs相位旋转设计的信号发射方法
CN112038777A (zh) * 2020-09-15 2020-12-04 江苏易珩空间技术有限公司 一种透明超表面构成的电磁空间调控系统及其应用
CN111930053A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262261A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278736A (zh) * 2022-07-25 2022-11-01 暨南大学 一种基于可重构智能表面的同时同频全双工通信组网方案
CN115278736B (zh) * 2022-07-25 2023-09-26 暨南大学 一种基于可重构智能表面的同时同频全双工通信组网方案
CN115396910A (zh) * 2022-08-26 2022-11-25 西安科技大学 去蜂窝网络多个智能超表面位置优化方法
CN115453525A (zh) * 2022-09-19 2022-12-09 华工未来科技(江苏)有限公司 基于ris的无线电感知成像方法、装置、电子设备及介质
CN115453525B (zh) * 2022-09-19 2023-10-27 华工未来科技(江苏)有限公司 基于ris的无线电感知成像方法、装置、电子设备及介质

Also Published As

Publication number Publication date
EP4262261A1 (en) 2023-10-18
CN114630334B (zh) 2023-06-16
EP4262261A4 (en) 2024-05-29
US20240014863A1 (en) 2024-01-11
CN114630334A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2022121706A1 (zh) 传输控制方法、装置及智能超表面
US11412400B2 (en) Method for positioning reference design
US11432165B2 (en) Method and apparatus for adjusting broadcast beam domain
CN109997398A (zh) 指示无线信道状态的系统和方法
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
WO2018228120A1 (zh) 一种发送下行控制信息dci的方法及装置
WO2018171604A1 (zh) 信息的传输方法和设备
CN108075816B (zh) 用于将高端rf与大规模mimo天线的受约束rf组合的预编码器设计
US20230246697A1 (en) Group-based beam reporting for multi-trp operation
US20200091977A1 (en) Rank Indication Reporting Method And Apparatus, And Indication Method And Apparatus
US11196522B2 (en) Enhanced sounding reference signal scheme
WO2019020080A1 (zh) 一种通信方法及其装置
CN110868245A (zh) 信息传输方法及设备
WO2022188485A1 (zh) 相对定位授权方法、装置、终端及目标设备
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
CN115039447B (zh) 一种天线切换配置的切换方法及设备
WO2019100808A1 (zh) 捆绑大小确定方法、用户终端和网络侧设备
WO2019157742A1 (zh) 信道状态信息矩阵信息处理方法及通信装置
EP3614576A1 (en) Rank indication reporting method and device, and indication method and device
EP4311341A1 (en) Communication method and communication device
WO2024044990A1 (zh) 基于智能超表面的预编码方法及装置
WO2023246329A1 (zh) 测量上报方法、装置及通信设备
WO2024044919A1 (zh) 一种通信方法及装置
WO2024065130A1 (zh) 基于智能超表面的预编码方法及装置
WO2023212930A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18252625

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902413

Country of ref document: EP

Effective date: 20230710