WO2024044919A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024044919A1
WO2024044919A1 PCT/CN2022/115644 CN2022115644W WO2024044919A1 WO 2024044919 A1 WO2024044919 A1 WO 2024044919A1 CN 2022115644 W CN2022115644 W CN 2022115644W WO 2024044919 A1 WO2024044919 A1 WO 2024044919A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
ris
precoding matrix
precoding
indication information
Prior art date
Application number
PCT/CN2022/115644
Other languages
English (en)
French (fr)
Inventor
奚晓君
毕晓艳
刘永
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/115644 priority Critical patent/WO2024044919A1/zh
Publication of WO2024044919A1 publication Critical patent/WO2024044919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of mobile communication technology, and in particular, to a communication method and device.
  • RIS-assisted network technology that controls channel characteristics through reconfigurable intelligent surface (RIS) is considered a key enabling technology for expanding the coverage of wireless communication networks.
  • RIS participates in signal transmission between network equipment and terminal equipment
  • RIS reflects the signal between the network equipment and terminal equipment through the optimal precoding matrix of RIS, which can ensure the best channel quality between network equipment and terminal equipment.
  • the optimal precoding matrix for communication between network equipment and terminal equipment
  • a large number of precoding matrices in the RIS codebook need to be scanned to determine the RIS
  • the optimal precoding matrix has the problem of too many scans of the precoding matrix, resulting in increased scanning delay.
  • the present application provides a communication method and device to provide a method for determining the precoding matrix of RIS, so as to reduce the number of scanning of the precoding matrix of RIS.
  • this application provides a communication method to reduce the number of scans of the precoding matrix of the RIS.
  • the method may be implemented by a RIS or a component in the RIS (eg, a RIS device).
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • this method can be implemented through the following steps: RIS receives the first signal from the transmitting end through multiple precoding matrices in the first codebook of the RIS, and the channel corresponding to the first signal The measurement information is used to determine a first precoding matrix.
  • a plurality of precoding matrices in the first codebook include the first precoding matrix.
  • the first codebook is used between the transmitter and the RIS. Adjustment of inter-channel characteristics, a precoding matrix in the first codebook and a precoding matrix in the second codebook of the RIS correspond to a precoding matrix in the third codebook of the RIS,
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end, and the third codebook is used to adjust the channel characteristics between the transmitting end, the RIS and the receiving end.
  • the RIS may also reflect the second signal to the receiving end through multiple precoding matrices in the third codebook. The second signal comes from the transmitting end.
  • the second signal corresponds to The channel measurement information is used to determine the second precoding matrix, and the plurality of precoding matrices in the third codebook correspond to the first precoding matrix and the plurality of precoding matrices in the second codebook, so The plurality of precoding matrices in the second codebook include the second precoding matrix.
  • the RIS receives the first signal from the transmitting end through multiple precoding matrices in the first codebook of the RIS. Therefore, the channel measurement information corresponding to the first signal can be determined according to the channel measurement information in the first codebook.
  • the RIS may also reflect the second signal to the receiving end through multiple precoding matrices in the third codebook, where the multiple precoding matrices in the third codebook correspond to the first precoding matrix and the second codebook.
  • a plurality of precoding matrices, therefore the second precoding matrix among the plurality of precoding matrices in the second codebook can be determined according to the channel measurement information corresponding to the second signal.
  • the RIS can be based on the first precoding matrix and the second precoding matrix.
  • a precoding matrix in the third codebook is determined, and the precoding matrix is used to reflect the signal between the transmitting end and the receiving end, thereby achieving the determination of the optimal precoding matrix for the RIS.
  • the third codebook includes a total of M ⁇ N precoding matrices. That is, if the third codebook is scanned For all precoding matrices in the codebook, RIS needs to scan M ⁇ N precoding matrices to determine the optimal precoding matrix.
  • the number of multiple precoding matrices in the third codebook is N. That is to say, in this method, the RIS only needs to receive the first signal through M precoding matrices and reflect the first signal through N precoding matrices. two signals, so scanning a total of M+N precoding matrices can determine the optimal precoding matrix for RIS.
  • M or N is greater than 2
  • the RIS may further determine the first precoding matrix from multiple precoding matrices in the first codebook of the RIS based on the channel measurement information corresponding to the first signal.
  • the RIS can determine the first precoding matrix according to the channel measurement information corresponding to the received first signal, thereby achieving flexible determination of the first precoding matrix.
  • the RIS may also send indication information of the first precoding matrix to a network device, where the network device includes the sending end or the receiving end.
  • the indication information is used to determine the first precoding matrix.
  • the RIS may indicate the first precoding matrix to the network device, so that the network device determines the first precoding matrix.
  • the RIS may also send channel measurement information corresponding to the first signal to a network device, where the network device includes the sending end or the receiving end.
  • the RIS can send channel measurement information corresponding to the first signal to the network device, so that the network device determines the first precoding matrix based on the channel measurement information corresponding to the first signal, thereby achieving flexible determination of the first precoding matrix.
  • the RIS may also receive indication information of the first precoding matrix from the network device, and determine the first precoding according to the indication information of the first precoding matrix. matrix.
  • the RIS can determine the first precoding matrix according to the indication information of the first precoding matrix sent by the network device.
  • the RIS may receive first indication information from the network device, where the first indication information is used to instruct the RIS to pass multiple precoding matrices in the first codebook of the RIS. Receive the first signal.
  • the RIS may receive the first signal through multiple precoding matrices in the first codebook based on the first indication information, so as to realize scanning of the precoding matrices in the first codebook.
  • the RIS may also receive indication information of the second precoding matrix from a network device, where the network device includes the sending end or the receiving end.
  • the RIS may also determine the second precoding matrix according to the indication information of the second precoding matrix.
  • the RIS can determine the second precoding matrix according to the received indication information of the second precoding matrix, thereby realizing flexible determination of the second precoding matrix.
  • the RIS may also receive channel measurement information corresponding to the second signal from a network device, where the network device includes the sending end or the receiving end.
  • the RIS may also determine the second precoding matrix from a plurality of precoding matrices in the second codebook according to the received channel measurement information corresponding to the second signal.
  • the RIS can determine the second precoding matrix from multiple precoding matrices in the second codebook according to the channel measurement information corresponding to the received second signal, thereby realizing flexible determination of the second precoding matrix.
  • the RIS may also send indication information of the second precoding matrix to the network device, where the indication information of the second precoding matrix is used to determine the second precoding matrix.
  • the RIS may indicate the second precoding matrix to the network device, thereby allowing the network device to determine the second precoding matrix.
  • the RIS may also receive second indication information from the network device, where the second indication information is used to instruct the RIS to pass multiple precoding in the third codebook.
  • the matrix reflects the second signal toward the receiving end.
  • the RIS may send the second signal through multiple precoding matrices in the third codebook based on the second indication information.
  • the second indication information may include indication information of multiple precoding matrices in the second codebook, or the second indication information may include multiple precoding matrices in the third codebook. Matrix instructions.
  • this application provides a communication method to reduce the number of scans of the precoding matrix of the RIS.
  • the method may be implemented by a first device, which may be a network device or a component in the network device (such as a chip or a chip system).
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • this method can be implemented through the following steps: the network device sends first indication information to the RIS, and the first indication information is used to instruct the RIS to pass the code in the first codebook of the RIS.
  • Multiple precoding matrices receive the first signal from the transmitting end, and the channel measurement information corresponding to the first signal is used to determine the first precoding matrix.
  • the multiple precoding matrices in the first codebook include the first A precoding matrix, the first codebook is used to adjust the channel characteristics between the transmitter and the RIS, a precoding matrix in the first codebook and the second codebook of the RIS A precoding matrix corresponds to a precoding matrix in the third codebook of the RIS.
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end.
  • the third codebook is used Adjustment of channel characteristics between the transmitter, the RIS and the receiver.
  • the network device may also send second indication information to the RIS, where the second indication information is used to instruct the RIS to reflect the second signal to the receiving end through multiple precoding matrices in the third codebook,
  • the second signal comes from the sending end, the channel measurement information corresponding to the second signal is used to determine a second precoding matrix, and multiple precoding matrices in the third codebook correspond to the first A precoding matrix and a plurality of precoding matrices in the second codebook, and the plurality of precoding matrices in the second codebook include the second precoding matrix.
  • the network device may also receive indication information of the first precoding matrix from the RIS.
  • the network device may further determine the first precoding matrix according to the indication information of the first precoding matrix.
  • the network device may also receive channel measurement information corresponding to the first signal from the RIS.
  • the network device may further determine the first precoding matrix from a plurality of precoding matrices in the first codebook of the RIS according to the channel measurement information corresponding to the first signal.
  • the network device may also send indication information of the first precoding matrix to the RIS, where the indication information of the first precoding matrix is used to determine the first precoding matrix. matrix.
  • the network device may also send indication information of the second precoding matrix to the RIS, and the indication information of the second precoding matrix is used to determine the second precoding matrix. matrix.
  • the network device may also send channel measurement information corresponding to the second signal to the RIS.
  • the network device may also receive indication information of the second precoding matrix from the RIS.
  • the network device may further determine the second precoding matrix according to the indication information of the second precoding matrix.
  • the network device includes the sending end or the receiving end.
  • this application provides a communication method to reduce the number of scans of the precoding matrix of the RIS.
  • the method may be implemented by a RIS or a component in the RIS (eg, a RIS device).
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • this method can be implemented through the following steps: RIS reflects a third signal to the receiving end through the first set of precoding matrices, the third signal comes from the transmitting end, and the channel corresponding to the third signal The measurement information is used to determine the fourth precoding matrix.
  • the first group of precoding matrices is a plurality of precoding matrices in the third codebook of the RIS.
  • the first group of precoding matrices corresponds to the fourth codebook.
  • one precoding matrix in the fifth codebook, and the plurality of precoding matrices in the fourth codebook include the fourth precoding matrix.
  • the RIS may also reflect the fourth signal to the receiving end through a second group of precoding matrices, the second group of precoding matrices being a plurality of precoding matrices in the third codebook of the RIS, and the third
  • the two sets of precoding matrices correspond to the fourth precoding matrix and a plurality of precoding matrices in the fifth codebook, and the channel measurement information corresponding to the fourth signal is used to determine the fifth precoding matrix.
  • the plurality of precoding matrices in the fifth codebook include the fifth precoding matrix.
  • the fourth codebook and the fifth codebook are respectively the first codebook of the RIS or the second codebook of the RIS, and the fourth codebook and the fifth codebook are different.
  • a precoding matrix in the first codebook and a precoding matrix in the second codebook of the RIS correspond to a precoding matrix in the third codebook
  • the third codebook is For the adjustment of channel characteristics between the transmitter, the RIS and the receiver
  • the first codebook is used for the adjustment of channel characteristics between the transmitter and the RIS
  • the second codebook is used for adjustment of channel characteristics between the transmitter and the RIS. Used to adjust channel characteristics between the RIS and the receiving end.
  • the RIS can reflect the third signal through the first set of precoding matrices, and reflect the fourth signal through the second set of precoding matrices, where the channel measurement information corresponding to the third signal and the fourth signal
  • the channel measurement information may be used to determine the fourth precoding matrix and the fifth precoding matrix respectively.
  • the fourth precoding matrix and the fifth precoding matrix can be used to determine the sixth precoding matrix, so the determination of the precoding matrix in the third codebook of the RIS can be achieved.
  • the fourth codebook and the fifth codebook are one of the first codebook and the second codebook respectively.
  • the fourth codebook above is the first codebook, and the number of precoding matrices included in it is M.
  • the fifth codebook is the second codebook, and the number of precoding matrices included in it is N.
  • M and N are positive integers.
  • the third codebook includes a total of M ⁇ N precoders. Matrix, that is to say, if all precoding matrices in the third codebook are scanned, RIS needs to scan M ⁇ N precoding matrices to determine the optimal precoding matrix.
  • the first set of precoding matrices used by RIS when reflecting the third signal corresponds to M precoding matrices in the fourth codebook and 1 precoding matrix in the fifth codebook matrix, that is, M precoding matrices are scanned
  • the second set of precoding matrices used by RIS when reflecting the fourth signal corresponds to the fourth precoding matrix and the fifth codebook
  • N precoding matrices are obtained. That is to say, N precoding matrices are scanned.
  • RIS scans a total of M+N precoding matrices to determine the optimal precoding matrix of RIS.
  • the encoding matrix scheme can reduce the number of beam scans and reduce the scan delay when M or N is greater than 2.
  • the RIS may also receive third indication information from the network device, where the third indication information is used to instruct the RIS to reflect the The third signal.
  • the RIS may transmit the third signal through multiple precoding matrices in the fourth codebook based on the third indication information.
  • the third indication information specifically includes indication information of multiple precoding matrices in the fourth codebook, or the third indication information specifically includes indication information of the first group of precoding matrices.
  • the RIS may also receive indication information of the fourth precoding matrix from a network device, and the network device includes the sending end or the receiving end.
  • the RIS may further determine the fourth precoding matrix according to the indication information of the fourth precoding matrix.
  • the network device can indicate the fourth precoding matrix to the RIS, and the fourth precoding matrix can be flexibly determined.
  • the RIS receives fourth indication information from a network device, and the fourth indication information is used to instruct the RIS to reflect the said information to the receiving end through a second set of precoding matrices.
  • the fourth signal is used to instruct the RIS to reflect the said information to the receiving end through a second set of precoding matrices.
  • the RIS may reflect the fourth signal through multiple precoding matrices in the fifth codebook based on the fourth indication information.
  • the fourth indication information specifically includes indication information of multiple precoding matrices in the fifth codebook, or the fourth indication information specifically includes indication information of the second group of precoding matrices.
  • the RIS may also receive indication information of the fifth precoding matrix from a network device, and the network device includes the sending end or the receiving end.
  • the RIS may further determine the fifth precoding matrix according to the indication information of the fifth precoding matrix.
  • the network device can indicate the fifth precoding matrix to the RIS, and the fifth precoding matrix can be flexibly determined.
  • this application provides a communication method to reduce the number of scans of the precoding matrix of the RIS.
  • the method may be implemented by a first device, which may be a network device or a component in the network device (such as a chip or a chip system).
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • this method can be implemented through the following steps: the network device sends third indication information to the RIS, and the third indication information is used to instruct the RIS to reflect to the receiving end through the first set of precoding matrices.
  • the third signal comes from the transmitting end.
  • the channel measurement information corresponding to the third signal is used to determine the fourth precoding matrix.
  • the first group of precoding matrices is the third codebook of the RIS.
  • a plurality of precoding matrices in the first group of precoding matrices correspond to a plurality of precoding matrices in the fourth codebook and one precoding matrix in the fifth codebook, and the plurality of precoding matrices in the fourth codebook
  • the precoding matrices include the fourth precoding matrix.
  • the network device sends fourth indication information to the RIS.
  • the third indication information is used to instruct the RIS to reflect the fourth signal to the receiving end through a second set of precoding matrices.
  • the second set of precoding matrices The matrix is a plurality of precoding matrices in the third codebook of the RIS, and the second group of precoding matrices corresponds to the fourth precoding matrix and a plurality of precoding matrices in the fifth codebook,
  • the channel measurement information corresponding to the fourth signal is used to determine a fifth precoding matrix
  • the plurality of precoding matrices in the fifth codebook include the fifth precoding matrix.
  • the fourth codebook and the fifth codebook are respectively the first codebook of the RIS or the second codebook of the RIS, and the fourth codebook and the fifth codebook are different.
  • a precoding matrix in the first codebook and a precoding matrix in the second codebook of the RIS correspond to a precoding matrix in the third codebook
  • the third codebook is For the adjustment of channel characteristics between the transmitter, the RIS and the receiver
  • the first codebook is used for the adjustment of channel characteristics between the transmitter and the RIS
  • the second codebook is used for adjustment of channel characteristics between the transmitter and the RIS. Used to adjust channel characteristics between the RIS and the receiving end.
  • the third indication information specifically includes indication information of multiple precoding matrices in the fourth codebook, or the third indication information specifically includes the first group of precoding matrices. Instructions for the encoding matrix.
  • the fourth indication information specifically includes indication information of multiple precoding matrices in the fifth codebook, or the fourth indication information specifically includes a second group of precoding matrices. instructions.
  • the network device may also send indication information of the fourth precoding matrix to the RIS.
  • the network device includes the sending end or the receiving end, and the fourth precoding matrix
  • the indication information of the precoding matrix is used to determine the fourth precoding matrix.
  • the network device may also send indication information of the fifth precoding matrix to the RIS.
  • the network device includes the sending end or the receiving end, and the fifth precoding matrix
  • the indication information of the precoding matrix is used to determine the fifth precoding matrix.
  • this application provides a communication method to reduce the codebook feedback overhead of RIS.
  • the method may be implemented by a first device, which may be a terminal device, a network device, a component in a terminal device (such as a chip or a chip system), or a component in a network device (such as a chip or a chip system).
  • the first device may be used to receive or send reference signals and/or data, or in other words, the first device may be a transmitting end or a receiving end.
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • the method can be implemented through the following steps: the first device obtains first information, the first information is used to determine the first precoding matrix and/or the second precoding matrix, the first The precoding matrix belongs to the first codebook, and the second precoding matrix belongs to the second codebook.
  • a precoding matrix in the first codebook and a precoding matrix in the second codebook of the RIS correspond to A precoding matrix in the third codebook.
  • the third codebook is used to adjust the channel characteristics between the transmitter, the RIS and the receiver.
  • the first codebook is used for the channel between the transmitter and the RIS. Adjustment of characteristics, the second codebook is used for adjustment of channel characteristics between the RIS and the receiving end.
  • the first device may also send second information to the RIS, where the second information is used to indicate the first precoding matrix and/or the second precoding matrix.
  • the first device may send second information to the RIS to indicate the first precoding matrix and/or the second precoding matrix.
  • the RIS can be used to determine the precoding matrix in the third codebook according to the first precoding matrix and/or the second precoding matrix. , without the need for the first device to indicate the precoding matrix in the third codebook to the RIS.
  • the number of precoding matrices in the third codebook is the product of the number of precoding matrices in the first codebook and the number of precoding matrices in the second codebook, so one precoding matrix is indicated from the third codebook
  • the required signaling overhead is greater than the overhead of indicating one precoding matrix in the first codebook and one precoding matrix in the second codebook.
  • the first information includes third information indicating a precoding matrix in the first codebook, a precoding matrix in the second codebook, and the third codebook.
  • the first device may also determine a third precoding matrix belonging to the third codebook.
  • the first device may also determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the first device may obtain channel measurement information through measurement, or receive channel measurement information from the second device, and determine the third precoding matrix based on the channel measurement information.
  • the first device may receive indication information of the third precoding matrix from the second device, and determine the third precoding matrix according to the indication information.
  • the first device is the sending end and the second device is the receiving end, or the first device is the receiving end and the second device is the sending end.
  • the first device may determine the third precoding matrix in the first codebook according to the channel measurement information, and determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information. matrix. Therefore, flexible determination of the first precoding matrix and/or the second precoding matrix is achieved.
  • the first device may receive the third information from the RIS. Therefore, try the flexible acquisition of third information.
  • the first information is used to indicate the first precoding matrix and/or the second precoding matrix, and the first device can receive the first information from the second device.
  • the first device may determine the first precoding matrix and/or the second precoding matrix according to the indication information of the first precoding matrix and/or the second precoding matrix, and implement the first precoding matrix and/or Flexible determination of the second precoding matrix.
  • the first device may also send third information to the second device, where the third information indicates the correspondence between the first codebook, the second codebook, and the third codebook. Based on this implementation, the first device may send third information to the second device, for the second device to determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the present application provides a communication method to reduce the codebook scanning time of RIS.
  • This method can be implemented by RIS or components within RIS.
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • RIS sends third information to the first device
  • the third information indicates the precoding matrix in the first codebook of RIS
  • the precoding matrix in the second codebook of RIS The corresponding relationship between the precoding matrix and the precoding matrix in the third codebook of RIS, a precoding matrix in the first codebook and a precoding matrix in the second codebook correspond to the A precoding matrix in the third codebook.
  • the third codebook is used to adjust the channel characteristics between the transmitter, the RIS and the receiver.
  • the first codebook is used for the channel between the transmitter and the RIS. Adjustment of characteristics
  • the second codebook is used for adjustment of channel characteristics between the RIS and the receiving end.
  • the RIS may also receive second information from the first device.
  • the second information is used to indicate a first precoding matrix and/or a second precoding matrix.
  • the first precoding matrix belongs to the first codebook, and the second precoding matrix belongs to the first codebook.
  • the second precoding matrix belongs to the second codebook.
  • this application provides a communication method to reduce the codebook feedback overhead of RIS.
  • the method may be implemented by a second device, which may be a terminal device, a network device, a component in the terminal device (such as a chip or a chip system), or a component in the network device (such as a chip or a chip system).
  • the second device may be a device or a component in the device (such as a chip or a chip system) that receives or sends signals and/or data for codebook scanning of RIS, or in other words, the second device may be a sending end or Receiving end.
  • the second device may be implemented by a terminal device, a network device, a component in the terminal device, or a component in the network device.
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • the method can be implemented through the following steps: the second device obtains third information, which indicates the precoding matrix in the first codebook of the RIS, the precoding matrix in the second codebook of the RIS.
  • the corresponding relationship between the precoding matrix and the precoding matrix in the third codebook of RIS, a precoding matrix in the first codebook and a precoding matrix in the second codebook of RIS correspond to the A precoding matrix in the third codebook.
  • the third codebook is used to adjust the channel characteristics between the transmitter, the RIS and the receiver.
  • the first codebook is used to adjust the channel characteristics between the transmitter and the RIS.
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end.
  • the second device may also determine a third precoding matrix according to the channel measurement information, and the third precoding matrix belongs to the third codebook.
  • the second device may also send first information to the first device.
  • the first information is used to indicate a first precoding matrix and/or a second precoding matrix.
  • the first precoding matrix belongs to the first codebook, and the second precoding matrix belongs to the first codebook.
  • the two precoding matrices belong to the second codebook, and the first precoding matrix and/or the second precoding matrix are determined based on the third precoding matrix and the third information.
  • the second device may receive the third information from the first device.
  • the present application provides a communication method, which can be implemented by the first device and the RIS.
  • the communication method may include the following steps: the first device obtains the first information.
  • the first device may also send second information to the RIS, where the second information is used to indicate the first precoding matrix and/or the second precoding matrix.
  • the RIS receives the second information to determine the first precoding matrix and/or the second precoding matrix.
  • the first precoding matrix and/or the second precoding matrix please refer to the description of the fifth aspect or the sixth aspect.
  • the method shown in the eighth aspect may also include the method implemented by the first device in any possible implementation manner of the fifth aspect and the method implemented by the RIS in the sixth aspect and any possible implementation manner thereof.
  • the method shown in the eighth aspect may also include the method implemented by the second device in the seventh aspect and any possible implementation thereof.
  • the communication method may also include the method implemented by the RIS in the first aspect and any possible implementation manner thereof and the method implemented by the network device in the second aspect and any possible implementation manner thereof, or include the method implemented by the network device in the second aspect and any possible implementation manner thereof.
  • a data transmission device can implement the method executed by RIS in the above first aspect, third aspect or fifth aspect and any possible design thereof, or be used to implement the above second aspect or third aspect and any possible design thereof by A method executed by a network device, or a method executed by a first device in realizing the above sixth aspect and any possible design thereof, or a method executed by a second device in realizing the above seventh aspect and any possible design thereof. method of execution.
  • the device is, for example, a RIS, a terminal device, a network device, a component in the RIS, a component in the terminal device, or a component in the network device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the above first to seventh aspects and any possible implementation manner, and the module may be
  • the hardware circuit may also be implemented by software, or the hardware circuit may be combined with software.
  • the device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function.
  • the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module).
  • the transceiver unit realizes the receiving function it can be called a receiving unit (sometimes also called a sending module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the collective name for functional modules is the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the collective name for functional modules is the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the collective name for functional modules is the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the device includes: a processor coupled to a memory and configured to execute instructions in the memory to implement the methods described in the above first to seventh aspects and any possible implementation manner.
  • the device also includes other components, such as antennas, input and output modules, interfaces, etc. These components can be hardware, software, or a combination of software and hardware.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store a computer program or instructions that, when executed, enable the method of any one of the first to seventh aspects to be implemented.
  • An eleventh aspect provides a computer program product containing instructions that, when run on a computer, enables the method described in any one of the first to seventh aspects to be implemented.
  • a chip system in a twelfth aspect, includes a logic circuit (or it may be understood that the chip system includes a processor, and the processor may include a logic circuit, etc.), and may also include an input and output interface.
  • the input and output interface can be used to receive messages or send messages.
  • the input and output interfaces can be the same interface, that is, the same interface can realize both the sending function and the receiving function; or the input and output interface includes an input interface and an output interface, and the input interface is used to realize the receiving function, that is, used to receive Message; the output interface is used to implement the sending function, that is, used to send messages.
  • the logic circuit can be used to perform operations other than the transceiver function in the methods described in the above first to eighth aspects and any possible implementation manner; the logic circuit can also be used to transmit messages to the input-output interface, or from the input-output interface Receive messages from other communication devices.
  • the chip system can be used to implement the methods described in the above first to seventh aspects and any possible implementation manner.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the chip system can also include a memory, which can be used to store instructions, and the logic circuit can call the instructions stored in the memory to implement corresponding functions.
  • a thirteenth aspect provides a communication system, which may include a device for implementing the first aspect and any possible design thereof and a device for implementing the second aspect and any possible design thereof, or may include a device using A device for realizing the third aspect and any possible design thereof and a device for realizing the fourth aspect and any possible design thereof, or, including a device for realizing the fifth aspect and any possible design thereof, a device for realizing The apparatus of the sixth aspect and any possible design thereof, and at least two means for implementing the apparatus of the seventh aspect and any possible design thereof.
  • Figure 1 is a schematic architectural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a beam scanning process
  • Figure 3 is a schematic diagram of the working principle of RIS
  • Figure 4 is a schematic architectural diagram of a RIS-based communication system provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a decoupling method of a RIS codebook provided by an embodiment of the present application
  • Figure 6 is a schematic diagram of the relationship between codebooks of RIS before and after decoupling provided by an embodiment of the present application
  • Figure 7 is a schematic diagram of the decoupling method of another RIS codebook provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a communication method provided by this application.
  • Figure 9 is a schematic flow chart of another communication method provided by this application.
  • Figure 10 is a schematic flow chart of another communication method provided by this application.
  • FIG 11 is a schematic flow chart of another communication method provided by this application.
  • Figure 12 is a schematic flow chart of another communication method provided by this application.
  • Figure 13 is a schematic flow chart of another communication method provided by this application.
  • Figure 14 is a schematic flow chart of another communication method provided by this application.
  • Figure 15 is a schematic flow chart of another communication method provided by this application.
  • Figure 16 is a schematic structural diagram of a communication device provided by this application.
  • Figure 17 is a schematic structural diagram of another communication device provided by the present application.
  • Figure 18 is a schematic structural diagram of another communication device provided by this application.
  • Embodiments of the present application provide a data transmission method and device.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • "and/or" describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, alone There are three situations B.
  • the character "/" generally indicates that the related objects are in an "or” relationship. At least one mentioned in this application refers to one or more; multiple refers to two or more.
  • the data transmission method provided by the embodiment of the present application can be applied to the fourth generation (4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) communication system, and can also be applied to the fifth generation (5th generation, 5G) Communication systems, such as 5G new radio (NR) communication systems, or various communication systems applied in the future, such as sixth generation (6th generation, 6G) communication systems.
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, wireless fidelity (wireless fidelity, Wifi) systems, long range radio (long range radio, LoRa) systems or car networking systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • a communication system 100 includes a network device 101 and a terminal device 102 .
  • the apparatus provided in the embodiment of this application can be applied to the network device 101 or to the terminal device 102.
  • FIG. 1 only shows one possible communication system architecture to which embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • the network device 101 is a node in a radio access network (radio access network, RAN), which can also be called a base station or a RAN node (or device).
  • radio access network radio access network
  • RAN radio access network
  • some examples of wireless access network equipment are: next-generation base station (gNodeB/gNB/NR-NB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network Controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, Or home Node B, HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite equipment, or network equipment in the 5G communication system, Or network equipment in possible future communication systems.
  • gNodeB/gNB/NR-NB next-generation base station
  • TRP transmission reception point
  • eNB
  • the network device 101 can also be other devices with network device functions.
  • the network device 101 can also be a device that serves as a network device in device-to-device (D2D) communication, Internet of Vehicles communication, and machine communication.
  • the network device 101 may also be a network device in a possible future communication system.
  • gNB may include centralized units (CU) and distributed units (DU).
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain Radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment 102 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users. , or it can be an IoT device.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices ( For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, smart home equipment ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in driverless driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (such as smart robots, hot air balloons, drones, airplanes), etc.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • vehicle-mounted devices For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • the terminal device may also be other devices with terminal functions.
  • the terminal device may also be a device that serves as a terminal function in D2D communication.
  • terminal equipment with wireless transceiver functions and chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • Beam management improves the broadcast mechanism based on wide beams in the LTE period, and uses narrow beams and polling scanning to cover the entire cell.
  • the purpose of beam management is to rationally design narrow beams and select appropriate time-frequency resources to transmit narrow beams.
  • Broadcast beams are designed to be narrow beams with fixed directions at most, N being a positive integer.
  • the broadcast beam coverage of the cell is completed by sending different narrow beams at different times.
  • the terminal equipment scans each narrow beam to obtain the optimal beam to complete synchronization and system message demodulation.
  • narrow beams have limited coverage.
  • One beam cannot completely cover all users in the cell, and it cannot guarantee that each user in the cell can obtain the maximum signal energy. Therefore, beam management is introduced.
  • gNB Based on the different characteristics of various channels or signals, gNB performs beam management on various channels or signals respectively, and selects the optimal beam for users to improve the coverage performance and user experience of various channels or signals.
  • beam scanning technology in 5G NR can be divided into the following three stages:
  • the network equipment sends a synchronization signal block (SSB) in all directions.
  • the terminal equipment scans with a wide beam. After scanning both the terminal equipment and the network equipment, the narrow beam range of the network equipment and the terminal equipment are determined. wide beam. Then the terminal device sends a physical random access channel (physical random access channel, PRACH) to perform random access.
  • SSB synchronization signal block
  • PRACH physical random access channel
  • the network equipment is fine-tuned.
  • the terminal equipment uses a specific wide beam to report the optimal SSB measurement report.
  • the network equipment scans with a narrow beam near the optimal beam. , determine the narrow beam of gNB.
  • the network equipment fixes the beam, and the terminal equipment scans with a narrow beam to determine the narrow beam of the terminal equipment. After the P3 process is completed, the terminal equipment and network equipment are aligned with the narrow beam.
  • Codebook refers to a set of precoding matrices defined by the protocol. There are two ways for network equipment to obtain the precoding matrix V:
  • Method 1 The network equipment estimates the downlink channel matrix H based on the measurement of the uplink channel sounding reference signal (SRS) and the reciprocity of the uplink and downlink channels, and then obtains V.
  • SRS uplink channel sounding reference signal
  • TDD division duplex
  • Method 2 The terminal estimates the channel matrix H based on the measurement of the downlink reference signal, and then obtains V, and then feeds V back to the network device. Method 2 is also called precoding based on precoding matrix indication (PMI).
  • PMI precoding matrix indication
  • the current 3GPP protocol has a limited number of quantized definitions for the precoding matrix V.
  • the set of these limited precoding matrices can be called a codebook.
  • the precoding matrices in the codebook have corresponding numbers, and the terminal only needs to feed back the relevant numbers or parameters of these codebooks to indicate the precoding matrix.
  • Table 1 shows the codebook for 2 antenna ports.
  • the network device From the perspective of the transmitter, after layer mapping and antenna port mapping, the network device performs weighting processing on the data of each stream through the precoding matrix (also known as weight or codebook weight) in the codebook, and then through the normal
  • the orthogonal frequency division multiplexing (OFDM) signal generator can form a directional beam at the antenna port, thus realizing the conversion from layer to beam domain, that is, the data flow of each layer is carried on these beams and transmitted in space.
  • Reconfigurable intelligent meta-surface is a digitally reconfigurable artificial electromagnetic surface, which is composed of a large number of sub-wavelength digitally reconfigurable artificial electromagnetic units (or reflective elements) according to a certain An artificial composite structure formed by a macroscopic arrangement (periodic or non-periodic).
  • RIS can be divided into structures based on antenna arrays and structures based on metamaterial surfaces. By adjusting the phase shift of all reflective elements, the reflected signals can be configured to propagate in their desired direction. Due to the rapid development of metamaterials, the reflection coefficient of each element can be configured in real time to adapt to the dynamically fluctuating wireless propagation environment.
  • metamaterials because they are based on controlling electromagnetic waves by changing the spatial arrangement of digital coding units. That is, by changing the state distribution of basic units, the characteristics of the electromagnetic field at a specific spatial location can be controlled. , so in some embodiments, metamaterials may also be called digital electromagnetic metamaterials or electromagnetic coding metamaterials.
  • RIS can be mounted on a large flat surface (such as a wall or ceiling indoors, a building or sign outdoors) to reflect radio frequency (RF) energy around obstacles and create a virtual line of sight between the communication source and target. line of sight, LoS) propagation path.
  • RF radio frequency
  • the RIS module includes multiple RIS units, and different RIS units are connected through diodes, such as PIN diodes, varactor diodes, etc.
  • RIS can reflect received radio waves. It should be understood that when a radio wave propagates from one medium to another medium with a different refractive index, in addition to reflection, refraction occurs, so RIS can change the reflection phase difference of the radio wave. It can also be understood that RIS makes wireless waves follow the generalized Snell's law at the reflection or refraction interface. That is to say, RIS can make the reflection angle of radio waves not equal to the incident angle. Compared with the traditional surface (the reflection angle of wireless waves is reflection angle 1), the reflection angle of wireless waves can be made to reflection angle 2. In other words, compared with traditional surfaces, RIS has the ability to shape radio waves according to the generalized Snells' law.
  • the reflection coefficient of each RIS unit can be controlled.
  • the adjustment of the amplitude and/or phase of the received signal by the RIS unit can also be considered as adjusting the amplitude and/or phase of the RIS unit.
  • the reflection coefficient of each RIS unit is different, and the reflection angle or refraction angle of the RIS unit to the radio wave is also different. That is to say, multiple RIS units are controlled to adjust the amplitude and/or phase of the received signal respectively, and the reflection angle or refraction angle of the radio wave by the RIS can be adjusted, thereby collaboratively achieving fine three-dimensional directional signal enhancement or nulling. (3D) Passive beamforming.
  • the RIS unit can be controlled to adjust the amplitude and/or phase of the received signal by controlling the on-off state (on state or off state) of the PIN diode connected to the RIS unit. For example, by applying different bias voltages to the PIN diode, the PIN diode is in the on state or the off state, which also causes the RIS unit connected to the PIN diode to be in the on state or the off state.
  • the multiple RIS units included in the RIS are in different states, and the RIS adjusts the amplitude and/or phase of the received signal differently, so that the reflection coefficient of the RIS is also different.
  • the RIS module can be controlled to adjust the amplitude and/or phase of the received signal.
  • the reflection phase of the radio wave by the RIS is 180° different, thereby controlling the reflection coefficient of the RIS, that is, the phase and/or phase of the RIS. amplitude.
  • This can make the reflection angle of RIS to radio waves not equal to the incident angle, achieving directional beam forming.
  • This can improve the coverage and system capacity of wireless networks, so RIS can be widely used in communication systems.
  • RIS can be set up in the source node and/or the collaborating node, and RIS can be used to implement collaborative communication.
  • the reflection coefficient of RIS is different, and the reflection angle of wireless waves is also different, resulting in different beam directions. Therefore, it can be considered that the reflection coefficient of RIS can be used to adjust the beam direction of RIS. From this perspective, the reflection coefficient of RIS can also be called the beamforming parameter of RIS (this is used as an example below).
  • RIS can use intelligent controllers such as field programmable gate array (FPGA) to control the on-off state of the PIN diode.
  • FPGA field programmable gate array
  • Its workflow in a typical scenario can be as follows: the network device calculates the optimal reflection coefficient of the RIS and then sends it to the controller of the RIS through a dedicated feedback link. The design of the reflection coefficient depends on the channel state information (CSI). This coefficient is only updated when the CSI changes, and its duration is much longer than the data symbol duration.
  • CSI channel state information
  • each reflective element in a RIS panel has a PIN photodiode embedded within it. By controlling the voltage on the bias line, the PIN photodiode can be switched between "on” and “off” modes, thereby achieving a phase shift difference of ⁇ in radians.
  • RIS provides additional degrees of freedom to further improve system performance, especially for millimeter wave (mmWave) communications.
  • mmWave millimeter wave
  • the penetration loss of millimeter waves is very high, and the problem of high loss cannot be easily solved using large antenna arrays.
  • the amplitude and/or phase of the RIS unit can be adjusted based on instructions from the network device.
  • the adjustment of the amplitude and/or phase of the signal by the RIS corresponds to multiple precoding matrices in the codebook of the RIS.
  • the network device can indicate the index of the precoding matrix in the codebook to the RIS, and the RIS can adjust it according to the codebook of the network device. instructions, determine the precoding matrix with the index, and use the amplitude and/or phase corresponding to the precoding matrix to control the reflection coefficient of the RIS unit, so that the RIS unit implements signal reflection according to the instructions of the network device.
  • the codebook of this RIS is called the concatenated codebook of RIS.
  • the optimal precoding matrix is determined in the form of a single precoding matrix.
  • the outgoing direction of RIS is related to the outgoing beam of RIS and also related to the incident beam of RIS.
  • the combination of the incident beam and the outgoing beam of RIS corresponds to the RIS
  • the precoding matrix determines the incoming beam and outgoing beam used by the RIS. Only the incoming beam used by the RIS is aligned with the transmit beam of the network device, and, the incoming beam used by the RIS Only when the outgoing beam and the receiving beam of the UE are aligned can the downlink signal transmission performance be optimal.
  • RIS needs to scan all precoding matrices in the cascaded codebook, resulting in RIS
  • the scanning beam time and the number of precoding matrices that need to be scanned will increase significantly.
  • the number of incoming beams and outgoing beams of RIS are M and N respectively.
  • the cascaded codebook of RIS includes M ⁇ N precoding matrices.
  • the RIS uses the code A precoding matrix in this book. If the number of scans is reduced, for example, scanning only from M precoding matrices in the concatenated codebook, it will lead to a reduction in the accuracy of the optimal precoding matrix.
  • the precoding matrix in the concatenated codebook of RIS can be expressed by the following formula:
  • W BS and W UE respectively represent the precoding matrices used by the network equipment and the terminal equipment. That is, when the network equipment and the UE communicate through RIS, they can use W BS and W UE respectively.
  • H is the signal between the network device and the RIS
  • F is the channel between the RIS and the UE
  • This application provides a communication method for reducing the number of scans of the precoding matrix of RIS.
  • the cascaded codebook of RIS is decoupled into the incident side codebook and the outgoing side codebook. Therefore, the precoding matrix in the RIS cascaded codebook can be regarded as the incident side codebook.
  • the combination of the side precoding matrix and the outgoing side precoding matrix can also be said that based on the decoupling of the RIS precoding matrix, the RIS precoding matrix is decoupled into an incident side precoding matrix and an output side precoding matrix.
  • the input-side precoding matrix is included in the input-side codebook, and the output-side precoding matrix is included in the output-side codebook.
  • the incident side codebook of RIS refers to the network equipment side codebook of RIS
  • the output side codebook of RIS refers to the terminal equipment side codebook of RIS.
  • the input side codebook of RIS refers to the terminal equipment side codebook of RIS
  • the output side codebook of RIS refers to the network equipment side codebook of RIS.
  • the incident side codebook can be used to adjust the channel characteristics of the incident side of the RIS (or between the transmitter and the RIS), or that the incident side codebook can be used to be responsible for beamforming and scanning of the incident beam of the RIS.
  • the outgoing codebook can be used to adjust the channel characteristics on the outgoing side of the RIS (or between the RIS and the receiving end), or in other words, the outgoing codebook can be used to be responsible for beamforming and scanning of the outgoing beam of the RIS.
  • the RIS codebook can be decoupled based on the perspective of spatial division.
  • Figure 5 is a schematic diagram of decoupling the RIS codebook based on space division. It can be seen that, with the direction perpendicular to the RIS as the boundary, the precoding matrix ⁇ m,n in the cascade codebook of RIS can be decoupled into the incident side precoding matrix ⁇ m and the outgoing side precoding matrix ⁇ n .
  • both the input side codebook and the output side codebook include multiple precoding matrices.
  • m and n are the index of the input side precoding matrix and the index of the output side precoding matrix respectively.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 and ⁇ 3 on the network device side in Figure 5 respectively indicate that m is 0,
  • each incident beam of the RIS corresponds to a precoding matrix in the incident side codebook
  • each outgoing beam corresponds to a precoding matrix in the emission side codebook.
  • an example of the concatenated codebook of the RIS can also be decomposed based on the pitch angle and azimuth angle of the incident side beam and the outgoing side beam of the RIS.
  • it is the cascaded codebook ⁇ m,n (p, q) of RIS and the decoupled incident side codebook ⁇ m (p, q) and output side codebook ⁇ n (p, q) separate relationships.
  • p and q are the indexes of the RIS elements in the horizontal and vertical dimensions of the antenna array.
  • and Corresponding to the pitch angle and azimuth angle of the beam respectively; dx and dy are the spacing between arrays; ⁇ is the wavelength of the center frequency point of the antenna array. m and n are the index of the input side precoding matrix and the index of the output side precoding matrix respectively.
  • the RIS codebook can also be decoupled based on the angle of the wide and narrow beams.
  • Figure 7 is a schematic diagram of decoupling the RIS codebook based on the angle of a wide and narrow beam.
  • algorithm design can be used to turn a narrow beam into a wide beam to cover a larger scanning range and reduce the number of scans.
  • the precoding matrix of the RIS can be decoupled into a combination of a precoding matrix corresponding to a wide beam and a precoding matrix corresponding to a wide beam, or a combination of a precoding matrix corresponding to a wide beam and a precoding matrix corresponding to a narrow beam.
  • the codebook after RIS decoupling includes an incident-side precoding matrix corresponding to a wide beam, an exit-side precoding matrix corresponding to a narrow beam, an incident-side precoding matrix corresponding to a narrow beam, and an exit-side precoding matrix corresponding to a wide beam.
  • m and n are the index of the input side precoding matrix and the index of the output side precoding matrix respectively.
  • ⁇ 0 , ⁇ 1 and ⁇ 2 on the network device side in Figure 5 indicate that m is 0 and 1 respectively.
  • the RIS codebook can also be decoupled based on the angle of the discrete Fourier transform (DFT) beam.
  • DFT discrete Fourier transform
  • the DFT design has nothing to do with the angle and is only related to the number of antenna elements.
  • incident side codebook and the output side codebook after RIS decoupling are both expressed as:
  • N and M are the vertical and horizontal numbers of antennas, and n and m are the vertical and horizontal beam indexes. l and k are the vertical and horizontal scaling factors. Represents the Kronec product operation.
  • the cascade codebook of RIS is decoupled into the input side codebook of RIS and the output side codebook of RIS. For example, if the RIS has M incoming beams and N outgoing beams that need to be scanned in space, since both the incoming beams and outgoing beams will affect the channel between the network device and the UE, each beam scan needs to use 1 Incoming beam and 1 outgoing beam, that is to say, RIS has a total of M ⁇ N beams that need to be scanned.
  • RIS can fixedly use a precoding matrix in the incident side codebook and scan N precoding matrices in the outgoing side codebook to determine a precoding matrix in the outgoing side codebook.
  • the optimal precoding matrix, and RIS can fix a precoding matrix in the outgoing side codebook and scan M precoding matrices in the outgoing side codebook to determine an optimal precoding matrix in the incoming side codebook.
  • matrix, and according to the decoupling method it is easy to determine a precoding matrix in the RIS cascade codebook based on a precoding matrix in the incident side codebook and a precoding matrix in the outgoing side codebook.
  • the best precoding matrix in the codebook and the best precoding matrix in the output side codebook can determine the best precoding matrix of the RIS.
  • This process only scans the precoding matrix M+N times.
  • the number of precoding matrices in the cascaded codebook of RIS is much greater than 2. Therefore, in the method provided by the embodiment of the present application, the number of beam scans can be reduced from M ⁇ N times to M+N times, which reduces The number of scans of the RIS precoding matrix greatly shortens the scan delay.
  • this communication method does not reduce the accuracy of the optimal precoding matrix determination process to ensure communication performance.
  • this communication method can be performed by RIS and network equipment.
  • the RIS can be used to receive and/or reflect signals toward the receiving end, where the signal can come from the transmitting end.
  • the network device is the sending end and the terminal device is the receiving end.
  • the terminal device is the sending end and the network device is the receiving end.
  • Network devices can be senders or receivers. Among them, if the sending end is a network device, the receiving end is a terminal device, and this is downlink communication. If the sending end is a terminal device, the receiving end is a network device, and this is uplink communication.
  • a communication method provided by the embodiment of the present application may include the following steps:
  • RIS receives the first signal from the transmitting end through multiple precoding matrices in the first codebook of RIS.
  • RIS receives signals through multiple precoding matrices in the codebook, which means that RIS polling uses the configuration of incident side reflective elements corresponding to the multiple precoding matrices to change the phase and/or amplitude of the RIS unit, and Signals are received through RIS units having different phases and/or amplitudes of the RIS units.
  • the channel measurement information corresponding to the first signal is used to determine the first precoding matrix.
  • the first precoding matrix is included among the plurality of precoding matrices in the first codebook used by the RIS to receive the first signal.
  • the precoding matrix can also be replaced by codebook weights or weights. Therefore, the first precoding matrix may be replaced by the first weight value.
  • the precoding matrix of the RIS refers to the weight matrix corresponding to the adjustable phase and/or amplitude of each RIS unit on the RIS device. Therefore, when different precoding matrices are used, the phase and/or amplitude of the RIS unit of the RIS Or the amplitude is different.
  • the RIS can adopt the configuration of reflective elements corresponding to the precoding matrix, so that the phase and/or amplitude of the RIS unit can be adjusted. It can be understood that RIS can change the precoding matrix used when receiving or reflecting signals to change the amplitude, phase or rank characteristics of the wireless channel.
  • the first codebook in this application can be used to adjust the channel characteristics between the transmitter and the RIS. Therefore, the first codebook is the incident side codebook of the RIS.
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end. Therefore, the second codebook is the outgoing side codebook of the RIS.
  • the first codebook and/or the second codebook may be indicated by the network device, or may be determined based on decoupling of the third codebook, or may be protocol defined, preconfigured or predefined. There are no specific requirements for application. Among them, the third codebook can be used to adjust the channel characteristics between the transmitter, the RIS and the receiver. Therefore, the third codebook is the cascaded codebook of the RIS.
  • the precoding matrix in the first codebook is a precoding matrix used to change the phase and/or amplitude of the signal between the transmitter and the RIS
  • the second The precoding matrix in the codebook is a precoding matrix used to change the phase and/or amplitude of the signal between the RIS and the receiving end.
  • the third codebook is the precoding matrix in the first codebook and the precoding matrix in the second codebook.
  • the combination of coding matrices can be used to change the phase and/or amplitude of signals between the transmitter and the RIS and between the RIS and the receiver.
  • the third codebook can be decoupled to obtain the first codebook and the second codebook.
  • the decoupling method please refer to the description of the decoupling of the concatenated codebook of RIS in this application, which will not be described again here. It can be understood that in this application, a precoding matrix in the first codebook and a precoding matrix in the second codebook of RIS correspond to a precoding matrix in the third codebook of RIS.
  • a precoding matrix in the first codebook and a precoding matrix in the second codebook can be obtained by decoupling a precoding matrix in the third codebook, and/or, the A precoding matrix in the first codebook and a precoding matrix in the second codebook are combined to obtain a precoding matrix in the third codebook.
  • any precoding matrix in the third codebook is the product of a precoding matrix in the first codebook and a precoding matrix in the second codebook.
  • the precoding matrix with index 0 in the third codebook is obtained by combining the precoding matrix with index 0 in the first codebook and the precoding matrix with index 0 in the second codebook.
  • the precoding matrix with index 0 in the third codebook can be decoupled into the precoding matrix with index 0 in the first codebook and the precoding matrix with index 0 in the second codebook;
  • the precoding matrix with index 1 in the third codebook is obtained by combining the precoding matrix with index 0 in the first codebook and the precoding matrix with index 1 in the second codebook, or in other words, the precoding matrix with index 0 in the first codebook is
  • the precoding matrix with index 0 in the third codebook can be decoupled into the precoding matrix with index 0 in the first codebook and the precoding matrix with index 1 in the second codebook; in the third codebook
  • the precoding matrix with index 1 is obtained by combining the precoding matrix with index 1 in the first codebook and the precoding matrix with index 0 in the second codebook.
  • the first precoding matrix may be determined based on channel measurement information corresponding to the first signal.
  • the RIS may receive the first signal and measure the first signal to obtain channel measurement information corresponding to the first signal.
  • the channel measurement information may include CSI.
  • the channel measurement information corresponding to the first signal may include channel measurement results obtained by receiving the first signal according to multiple precoding matrices, such as reference signal received power (RSRP) or signal and interference plus noise. Ratio (signal to interference plus noise ratio, SINR), etc.
  • RSRP reference signal received power
  • SINR signal to interference plus noise ratio
  • the channel measurement information corresponding to the first signal may include time or sequence indication information of the precoding matrix with the best channel quality determined according to the channel measurement result (hereinafter referred to as the time of the precoding matrix with the best channel quality). Indication information, the order indication information of the precoding matrix with the best channel quality is called order indication information). In order to reduce overhead, the channel measurement information may not include the channel measurement result at this time, or may include only the channel measurement result of the precoding matrix with the best channel quality.
  • the channel measurement results corresponding to the signals may include multiple channel measurement values.
  • the multiple channel measurement values may correspond to different times (or time units), and the time corresponding to the channel measurement value is the time when the RIS uses the precoding matrix corresponding to the channel measurement value.
  • the time indication information may include, for example, the index of the time unit corresponding to the channel measurement result.
  • the time unit may include time lengths such as time slots or symbols, and is not specifically limited.
  • the sequence indication information may include the time sequence of the corresponding channel measurement results among the plurality of channel measurement results corresponding to the first signal.
  • the RSRP of the received signal of the first signal can be numbered according to the time sequence in which the RIS adopts the precoding matrix, and the best RSRP number is used as the channel measurement information corresponding to the first signal.
  • the channel measurement results can include 5 RSRP values, and the 5 RSRP values are numbered 1-5 in chronological order. If the RSRP numbered 1 is the best, the order The indication information is number 1.
  • the time indication information may include the time slot number corresponding to the best RSRP.
  • the channel measurement information corresponding to the first signal may also include channel parameters such as channel quality indication (CQI) of the best channel quality.
  • CQI channel quality indication
  • the precoding matrix i.e., the first precoding matrix
  • the precoding matrix with the best channel quality in the first codebook of the RIS can be determined based on the channel measurement information corresponding to the first signal. ) to improve the incident side channel quality of RIS.
  • the RIS can determine the channel measurement corresponding to the first signal through signal measurement. information. For example, the RIS can obtain channel measurement results of the first signal when using different precoding matrices in the first codebook through channel measurement, or determine time indication information or sequence indication information based on the channel measurement results. Further, the RIS may select the precoding matrix with the best channel quality among the plurality of precoding matrices as the first precoding matrix according to the channel measurement information corresponding to the first signal.
  • the RIS may also send indication information of the first precoding matrix to the network device (such as the transmitting end or the receiving end).
  • the indication information of the precoding matrix may include the index of the precoding matrix in the codebook.
  • the indication information of the precoding matrix may also include the index of the beam corresponding to the precoding matrix.
  • the mapping relationship between the precoding matrix and the beam may be indicated by the network device or RIS, or may be determined in a protocol definition, preconfiguration or predefined manner.
  • the RIS can send the channel measurement information corresponding to the first signal to the network device (such as the sending end or the receiving end), and the network device can receive the channel measurement information corresponding to the first signal and the RIS according to the
  • the first precoding matrix is determined from the information of multiple precoding matrices in the first codebook used in the first signal.
  • the information about the precoding matrix used by the RIS when receiving the first signal may include indication information (such as index) of the multiple precoding matrices used by the RIS when receiving the first signal, or include the multiple precoding matrices.
  • indication information such as index
  • the usage time such as time slot
  • sequence information of the matrix such as time slot
  • the RIS may send to the network device information about the precoding matrices used by the RIS when receiving the first signal, that is, the multiple precoding matrices used by the RIS when deciding to receive the first signal, and/or the multiple precoding matrices decided to use.
  • the RIS instructs the network device; alternatively, the network device can send to the RIS the information of the precoding matrix used when the RIS receives the first signal, that is, the network device determines that the RIS receives the first signal.
  • the network device instructs the RIS.
  • the information of the precoding matrix used in the first signal can also be defined by the protocol or determined in a preconfigured or predefined manner.
  • the multiple precoding matrices default to all precoding in the first codebook.
  • Matrix the order in which multiple precoding matrices are used is related to the index size of the precoding matrix.
  • the network device may also send the first instruction information to the RIS.
  • the first indication information may be used to instruct the RIS to receive the first signal through multiple precoding matrices in the first codebook.
  • the first indication information may include information about the precoding matrix used by the RIS when receiving the first signal. Therefore, the network device knows the information about the precoding matrix used by the RIS when receiving the first signal.
  • the network device can determine the best RSRP based on the RSRP corresponding to the first signal, which is the xth RSRP adopted by the RIS in time sequence.
  • RSRP when the precoding matrix receives the first signal.
  • the network device can learn which precoding matrices with indexes in the first codebook the RIS uses to receive the first signal, and learn the time or sequence of these precoding matrices in the RIS. Therefore, the index of the x-th precoding matrix adopted by the RIS in time sequence in the first codebook can be known, that is, the first precoding matrix is determined.
  • x is a positive integer.
  • the precoding matrix used by the RIS when receiving the first signal is the precoding matrix with indexes 0, 1, 2, 3 and 4 in the first codebook, and 5
  • the temporal order of use of the precoding matrices is 5, 4, 3, 2 and 1, that is, the RIS uses the above five precoding matrices in order from large to small to receive the first signal.
  • RSI measures the RSRP of the first signal
  • it sends the sequence indication information determined based on the RSRP to the network device.
  • the network device receives the sequence indication information and indexes 0, 1, and 2 from the first codebook according to the sequence indication information.
  • the first precoding matrix is determined among the precoding matrices of , 3 and 4.
  • the sequence indication information only needs to feed back the time sequence number of the channel measurement information with the best channel quality.
  • the nth precoding matrix in the precoding matrix has the best channel quality. For example, if the RSRP obtained by receiving the first signal through the precoding matrix with index 0 is the best, the channel quality information of the first signal may include sequence indication information, and the value of the sequence indication information is 5, then the network The device may determine that the precoding matrix with index 0 is the first precoding matrix.
  • the network device may also send indication information of the first precoding matrix to the RIS, so that the RIS can learn the first precoding matrix.
  • the RIS and/or the network device may determine the incident side weight of the RIS, that is, determine the first precoding matrix. It can be understood that when the RIS uses the first precoding matrix to receive the signal from the transmitting end, the channel quality between the transmitting end and the RIS is the best.
  • the RIS reflects the second signal to the receiving end through multiple precoding matrices in the third codebook, and the second signal comes from the transmitting end.
  • RIS reflects signals to the receiving end through multiple precoding matrices in the third codebook, which means that RIS polling uses the configuration of reflective elements corresponding to the multiple precoding matrices to change the phase and/or the phase of the RIS unit. Amplitude, and reflect the signal from the transmitting end to the receiving end through RIS units with different phases and/or amplitudes of the RIS units.
  • the channel measurement information corresponding to the second signal is used to determine a second precoding matrix, and the second precoding matrix belongs to the second codebook. It can be understood that the plurality of precoding matrices in the third codebook used by the RIS when reflecting the second signal correspond to the first precoding matrix and the plurality of precoding matrices in the second codebook.
  • the second The plurality of precoding matrices in the codebook include the second precoding matrix.
  • multiple precoding matrices in the third codebook may be determined based on the first precoding matrix.
  • any precoding matrix in the third codebook can be decoupled into a precoding matrix in the first codebook and a precoding matrix in the second codebook.
  • the precoding matrix in the first codebook obtained after decoupling the multiple precoding matrices in the third codebook is the first precoding matrix, or it can be said that the multiple precoding matrices in the third codebook are
  • the coding matrix is obtained by combining the first precoding matrix with multiple precoding matrices in the second codebook.
  • the RIS can poll and use multiple precoding matrices in the third codebook to reflect the second signal, since the multiple precoding matrices all correspond to the first
  • the precoding matrix corresponds to multiple precoding matrices in the second codebook. Therefore, the second precoding matrix can be determined according to the channel measurement information corresponding to the second signal.
  • the second precoding matrix is included in the second codebook. Multiple precoding matrices in this book.
  • the channel measurement information corresponding to the second signal only reflects the channel change with the receiving end.
  • the channel change is caused by the RIS using different precoding matrices in the third codebook to reflect the second signal.
  • the multiple precoding matrices in the third codebook correspond to one precoding matrix in the first codebook (i.e., the first precoding matrix) and multiple precoding matrices in the second codebook. Therefore, The phase and amplitude of the RIS incident side corresponding to multiple precoding matrices are unchanged, so the channel between the transmitter and the RIS does not exist. This is caused by the RIS using the phase and/or amplitude parameters corresponding to different precoding matrices in the first codebook.
  • the channel between the RIS and the receiving end changes because the RIS respectively adopts the phase and/or amplitude parameters corresponding to multiple precoding matrices in the second codebook, that is, the channel changes are due to the outgoing side precoding of the RIS. It is caused by changes in the coding matrix (or phase and/or amplitude parameters), so the channel measurement information corresponding to the second signal can determine the output side precoding matrix (or phase sum) of the RIS that optimizes the channel quality between the RIS and the receiving end. / or amplitude parameters).
  • the channel measurement information corresponding to the second signal please refer to the description of the channel measurement information corresponding to the first signal in S801.
  • the channel measurement information corresponding to the second signal may include a channel measurement result corresponding to the second signal, or time indication information or sequence indication information determined based on the channel measurement result corresponding to the second signal.
  • the receiving end can determine the channel measurement information corresponding to the second signal.
  • the terminal device may receive the second signal reflected by the RIS and determine the channel measurement information corresponding to the second signal.
  • the network device may receive the second signal reflected by the RIS and determine the channel measurement information corresponding to the second signal.
  • the receiving end may receive the second signal and obtain channel measurement information corresponding to the second signal through measurement.
  • the receiving end or the transmitting end may also determine the second precoding matrix based on the channel measurement information corresponding to the second signal.
  • the receiving end may determine the second precoding matrix based on the channel measurement information corresponding to the second signal and the plurality of codes in the second codebook.
  • the information of the precoding matrices determines the second precoding matrix from the plurality of precoding matrices in the second codebook, wherein the information of the plurality of precoding matrices in the second codebook corresponds to the first precoding matrix. Multiple precoding matrices in the third codebook.
  • the receiving end may also send the channel measurement information corresponding to the second signal to the transmitting end, so that the transmitting end can, based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook,
  • the second precoding matrix is determined from a plurality of precoding matrices of the second codebook.
  • the index of the first precoding matrix in the first codebook is 0, and the respective indication information of the multiple precoding matrices in the second codebook includes the indices of the multiple precoding matrices in the second codebook, and the index They are 0, 1, 2, 3 and 4 respectively.
  • the precoding matrices with indexes 0, 1, 2, 3 and 4 respectively correspond to the precoding matrices with indexes 10, 9, 8, 7 and 6 in the third codebook.
  • RIS uses the index 10 in the third codebook.
  • 9, 8, 7 and 6 precoding matrices are used in the order of 5, 4, 3, 2 and 1 to receive the second signal.
  • the correspondence between the first precoding matrix, the indexes of multiple precoding matrices in the second codebook, the indexes of multiple precoding matrices in the third codebook, and the use order information As shown in table 2.
  • the above information on the multiple precoding matrices in the second codebook may include indication information (such as index) of the multiple precoding matrices in the second codebook, as shown in Table 2. row content.
  • the information of the plurality of precoding matrices in the second codebook may also include the information of the precoding matrix in the third codebook corresponding to the first precoding matrix and the plurality of precoding matrices in the second codebook.
  • Indication information (such as index), such as the content of row 3 in Table 2.
  • the information of the multiple precoding matrices in the second codebook may also include the relationship between the first precoding matrix and the multiple precoding matrices in the second codebook and the multiple precoding matrices in the third codebook.
  • the corresponding relationship such as the content of rows 1 to 3 in Table 2, or including the content of rows 2 to 3, represents the plurality of precoding matrices in the second codebook and the content in the third codebook. The correspondence between the multiple precoding matrices.
  • the information on the multiple precoding matrices in the second codebook may also include usage time information or usage order information corresponding to the multiple precoding matrices in the second codebook.
  • the usage sequence information can be used to indicate the correspondence between the indexes of the plurality of precoding matrices in the third codebook and the usage sequence numbers, for example, including row 2 and row 4 in Table 2.
  • the usage order information may include the contents of the 3rd and 4th rows to indicate the correspondence between the indexes of the multiple precoding matrices in the second codebook and the usage sequence numbers, or may include the 2nd to 4th rows. line content.
  • the information of the multiple precoding matrices in the second codebook may also include the correspondence between the first precoding matrix and the multiple precoding matrices in the second codebook, as shown in the first row of Table 2 and the contents of line 2.
  • the usage time information may be an index of the time unit of the precoding matrix in the third codebook used when the RIS reflects the second signal.
  • the usage sequence number in Table 2 can be replaced by the time unit index, or a row can be added to Table 2 to carry the time unit index.
  • the usage sequence information can be determined based on the usage time information.
  • the information of the multiple precoding matrices in the second codebook may include the contents of rows 1 to 4 in Table 2, or the contents of rows 2 to 4 of Table 2, or the contents of rows 2 to 3. content and the content of lines 3 to 4, etc., no examples will be given.
  • the optimal precoding matrix in the third codebook is determined based on the channel measurement information corresponding to the second signal. After indicating the order of the coding matrices, the precoding matrix in the second codebook corresponding to the best precoding matrix in the third codebook can be determined based on the contents of the 2nd and 4th rows.
  • the precoding matrix is the second precoding matrix. Coding matrix.
  • the RIS can send the information of multiple precoding matrices in the second codebook to the network device, that is, the RIS determines the multiple precoding matrices used to reflect the second signal, and/or determines the multiple precoding matrices used to reflect the second signal.
  • the RIS instructs the network device; alternatively, the network device can send the information of multiple precoding matrices in the second codebook of the RIS to the RIS, that is, the network device determines the RIS reflection
  • the network device indicates to the RIS.
  • the information of the multiple precoding matrices in the second codebook can also be defined by the protocol or determined in a preconfigured or predefined manner.
  • the multiple precoding matrices default to all the precoding matrices in the second codebook.
  • Precoding matrix, the order in which multiple precoding matrices are used in the third codebook is related to the index size of the precoding matrix.
  • the network device may also send second indication information to the RIS.
  • the second indication information may be used to instruct the RIS to receive the first signal through multiple precoding matrices in the third codebook.
  • the second indication information may include information about multiple precoding matrices in the second codebook, where the information about the multiple precoding matrices in the second codebook corresponds to the first precoding matrix. Multiple precoding matrices in the third codebook, therefore, the network device knows the information of the multiple precoding matrices in the second codebook.
  • the second indication information may include indication information of the plurality of precoding matrices in the second codebook.
  • the second indication information may include indication information of the first precoding matrix and/or indication information of multiple precoding matrices in the second codebook, and is determined by the RIS according to the indication information of the first precoding matrix and the second
  • the indication information of multiple precoding matrices in the codebook determines the multiple precoding matrices in the third codebook. Therefore, RIS does not need to be configured with all precoding matrices in the third codebook in advance, and only needs to be supported by RIS.
  • the precoding matrix in the third codebook is determined according to the precoding matrix in the first codebook and the precoding matrix in the second codebook.
  • the RIS may support determining the precoding matrix in the third codebook based on the precoding matrix in the first codebook and the precoding matrix in the second codebook through table lookup or calculation.
  • the multiple precoding matrices in the second codebook may also be preconfigured, predefined, or protocol-defined, for example, all precoding matrices in the second codebook.
  • the indication information of the first precoding matrix may also be sent independently of the second indication information, which is not specifically limited.
  • the second indication information may also include indication information of the plurality of precoding matrices in the third codebook. Therefore, RIS does not need to be processed, and the processing complexity of RIS can be reduced.
  • the network device can obtain information of multiple precoding matrices in the second codebook.
  • the terminal device can obtain information of multiple precoding matrices in the second codebook from the network device.
  • the receiving end can determine the best RSRP based on the RSRP corresponding to the second signal as the y-th RSRP adopted by the RIS in time sequence.
  • RSRP when the precoding matrix in the third codebook reflects the second signal.
  • the receiving end can determine the index of the precoding matrix in the second codebook corresponding to the precoding matrix in the yth third codebook adopted in chronological order,
  • the precoding matrix with the index in the second precoding matrix is determined to be the second precoding matrix.
  • the channel measurement information corresponding to the first signal includes sequence indication information, and the sequence indication information indicates y
  • the precoding matrix in the yth third codebook adopted by the RIS in time sequence reflects the second signal.
  • RSRP is the best RSRP.
  • the receiving end can determine the index of the precoding matrix in the second codebook corresponding to the precoding matrix in the yth third codebook adopted in chronological order, Thus, the precoding matrix with the index in the second precoding matrix is determined to be the second precoding matrix.
  • the terminal device can send channel measurement information corresponding to the second signal to the network device (ie, the transmitting end), so that The network device determines the second precoding matrix according to the channel measurement information corresponding to the second signal and the information of the plurality of precoding matrices in the second codebook. Wherein, the network device determines the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook. Refer to the method for determining the second precoding matrix when the network device serves as the receiving end. The method will not be described again.
  • the network device ie, the transmitting end
  • the RIS can also send the second codebook in the second codebook to the terminal device. Therefore, the terminal device can determine the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of the multiple precoding matrices in the second codebook.
  • the way for the terminal device to determine the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook can refer to the method of determining the second precoding matrix when the network device serves as the receiving end. The method will not be described again.
  • the receiving end can also send the channel measurement information corresponding to the second signal to the RIS, so that the RIS can determine the second precoding matrix according to the channel measurement information corresponding to the second signal and the second codebook.
  • the information of the plurality of precoding matrices determines the second precoding matrix.
  • the RIS determines the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook. Refer to the method for determining the second precoding matrix when the network device serves as the receiving end. The method will not be described again.
  • the receiving end, the transmitting end or the RIS can determine the second precoding matrix according to the channel measurement information corresponding to the second signal.
  • the receiving end or the transmitting end may send the indication information of the second precoding matrix to the RIS, so that the RIS can determine the second precoding matrix according to the second precoding matrix from the receiving end or the transmitting end.
  • the indication information of the coding matrix determines the second precoding matrix.
  • the second precoding matrix may be determined by the terminal device, network device or RIS according to the channel measurement information corresponding to the second signal.
  • the terminal device or the network device also sends the indication information of the second precoding matrix to the RIS, so that the RIS can determine the second precoding matrix based on the second precoding matrix from the terminal device or the network device.
  • the indication information of the matrix determines the second precoding matrix.
  • the RIS can receive the first signal and reflect the second signal, where the channel measurement information corresponding to the first signal and the channel measurement information of the second signal can be used to determine the first precoding matrix and the second signal respectively. precoding matrix.
  • the first precoding matrix and the second precoding matrix correspond to the third precoding matrix in the third codebook, so the determination of the precoding matrix in the third codebook of the RIS can be achieved.
  • the method of determining the third precoding matrix according to the first precoding matrix and the second precoding matrix corresponds to the method of decoupling the third codebook to obtain the first codebook and the second codebook.
  • the third precoding matrix may be obtained by multiplying the first precoding matrix and the second precoding matrix.
  • the third precoding matrix can also be obtained based on the addition of the first precoding matrix and the second precoding matrix.
  • the RIS does not need to be configured with a third codebook. It only needs to determine the third codebook based on the first precoding matrix and the second precoding matrix after learning the first precoding matrix and the third precoding matrix.
  • the precoding matrix for in the precoding matrix is not need to be configured with a third codebook.
  • the process shown in Figure 8 may also include: the RIS sending the codebook information of the RIS to the network device.
  • the codebook information of RIS includes but is not limited to: the first codebook, the second codebook, the third codebook of RIS, the method information and prediction of decoupling the third codebook to obtain the first codebook and the second codebook.
  • the scanning range of the beam may indicate the maximum range covered by the beam after configuring all precoding matrices of the RIS.
  • the scanning range of the beam is, for example, 120 degrees horizontally and 60 degrees vertically.
  • the network device may send configuration information to at least one of the RIS, the sending end or the receiving end, to configure the RIS to perform the method shown in Figure 8 above.
  • RIS can be configured to perform the method shown in Figure 8 above through pre-configuration, pre-definition or protocol definition.
  • the transmitter can use a beam aligned with the RIS, such as a beam whose direction is aligned with the RIS position.
  • the transmission codebook of the transmitting end includes multiple precoding matrices, and the transmitting end can use the precoding matrix with the best channel quality between the transmitting end and the RIS to send signals (including but not limited to the first signal and the second signal) to the RIS.
  • the transmitting end can also use any precoding matrix in the transmission codebook, and then determine the first precoding matrix and/or the second precoding matrix in the process shown in Figure 8. The optimal precoding matrix in the transmit codebook of the transmitter.
  • the receiving end can use the beam aligned with the RIS to receive signals (including but not limited to the first signal and the second signal), or, after the process shown in Figure 8, the receiving end can use the receiving end's receiving code Any precoding matrix in this receives the signal.
  • the sending end is the network device and the receiving end is the terminal device.
  • the network device may send first instruction information to the RIS to instruct the RIS to receive the first signal using multiple precoding matrices in the first codebook (ie, the network device side codebook of the RIS).
  • the network device may also send the first signal to the RIS, and the RIS receives the first signal through multiple precoding matrices in the first codebook, and determines the first signal from the multiple precoding matrices based on the channel measurement information corresponding to the first signal. a precoding matrix.
  • the RIS may also send indication information of the first precoding matrix to the network device, and accordingly, the network device may determine the first precoding matrix based on the indication information. Further, after determining the first precoding matrix, the network device may determine multiple precoding matrices in the third codebook (ie, the concatenated codebook of the RIS) based on the first precoding matrix, and the multiple precoding matrices correspond to A plurality of precoding matrices in the first precoding matrix and the second codebook (that is, the terminal device side codebook of the RIS).
  • the third codebook ie, the concatenated codebook of the RIS
  • the network device may further send second instruction information to instruct the RIS to receive the first signal using multiple precoding matrices in the third codebook, where the multiple precoding matrices correspond to the first precoding matrix and the second codebook. multiple precoding matrices.
  • the network device may also send a second signal to the RIS, and the RIS reflects the second signal to the terminal device through multiple precoding matrices in the third codebook.
  • the terminal device receives the second signal and determines channel measurement information corresponding to the second signal.
  • the terminal device sends channel measurement information corresponding to the second signal to the network device, and the network device determines the second precoding matrix based on the channel measurement information corresponding to the second signal and information on multiple precoding matrices in the second codebook.
  • the information of multiple precoding matrices in the second codebook may include the content shown in Table 2.
  • the network device may further send indication information of the second precoding matrix to the RIS, and accordingly, the RIS may determine the second precoding matrix based on the indication information.
  • the network device may also send indication information of the first precoding matrix and indication information of the second precoding matrix to the RIS to instruct the RIS to use the precoding matrix corresponding to the first precoding matrix and the second precoding matrix (i.e., the third precoding matrix). Coding matrix) transmits signals between network equipment and terminal equipment.
  • the network device may also send control information to the RIS to instruct the RIS to use the time or sequence of multiple precoding matrices in the first codebook when receiving the first signal.
  • the network device may also send indication information of the time-frequency resources occupied by the first signal to the RIS, and the RIS may determine the time-frequency resources occupied by the first signal based on the indication information, so as to receive the first signal according to the time-frequency resources.
  • the network device may send control information to the RIS to instruct the RIS to use the time or sequence of multiple precoding matrices in the third codebook when reflecting the second signal.
  • the network device may also send indication information of the time-frequency resources occupied by the second signal to the RIS, and the RIS may determine the indication information of the time-frequency resources occupied by the second signal based on the indication information, so as to reflect the third signal based on the time-frequency resources.
  • the sending end is the terminal device and the receiving end is the network device.
  • the network device may send first instruction information to the RIS to instruct the RIS to receive the first signal using multiple precoding matrices in the first codebook (that is, the terminal device side codebook of the RIS).
  • the network device may also send indication information of the time-frequency resources occupied by the first signal to the terminal device, so that the terminal device sends the first signal through the time-frequency resources.
  • the terminal device may send the first signal to the RIS, and the RIS receives the first signal according to a plurality of precoding matrices in the first codebook, and determines the first signal from the plurality of precoding matrices according to the channel measurement information corresponding to the first signal. precoding matrix.
  • the RIS may also send indication information of the first precoding matrix to the network device, and accordingly, the network device may determine the first precoding matrix based on the indication information.
  • the network device may determine multiple precoding matrices in the third codebook (ie, the concatenated codebook of the RIS) based on the first precoding matrix, and the multiple precoding matrices correspond to A plurality of precoding matrices in the first precoding matrix and the second codebook (that is, the network device codebook of the RIS).
  • the network device may also send second instruction information to the RIS to instruct the RIS to use multiple precoding matrices in the third codebook to receive the first signal.
  • the multiple precoding matrices correspond to the first precoding matrix and the second codebook. Multiple precoding matrices in this book.
  • the network device may also send indication information of the time-frequency resources occupied by the second signal to the terminal device, so that the terminal device sends the second signal through the time-frequency resources.
  • the terminal device may also send a second signal, and the RIS reflects the second signal to the network device through multiple precoding matrices in the third codebook.
  • the network device receives the second signal and determines the channel measurement information corresponding to the second signal.
  • the network device may further determine the second precoding matrix according to the channel measurement information corresponding to the second signal and the information of the plurality of precoding matrices in the second codebook.
  • the information of multiple precoding matrices in the second codebook may include the content shown in Table 2.
  • the network device may further send indication information of the second precoding matrix to the RIS to instruct the RIS to use the precoding matrix corresponding to the first precoding matrix and the second precoding matrix (ie, the third precoding matrix) to transmit the network device and the terminal device. signals between.
  • the network device may also send control information to the RIS for instructing the RIS to use multiple precoding matrices in the first codebook to receive the time or sequence of the first signal.
  • the network device may also send indication information of the time-frequency resources occupied by the first signal to the RIS, and the RIS may determine the time-frequency resources occupied by the first signal based on the indication information, and receive the first signal based on the time-frequency resources.
  • the network device may also send control information to the RIS or the terminal device to instruct the RIS to use multiple precoding matrices in the second codebook to reflect the time or sequence of the second signal. .
  • the network device may also send indication information of the time-frequency resources occupied by the second signal to the RIS, and the RIS may determine the time-frequency resources occupied by the second signal based on the indication information, and reflect the second signal based on the time-frequency resources.
  • the RIS can also report capability information to the network device, and the capability information can indicate that the RIS has the ability to measure channels and/or determine the precoding matrix.
  • the embodiment of the present application also provides another communication method, as shown in Figure 11.
  • the difference from the communication method shown in Figure 8 is that in the process shown in Figure 11, the RIS is not required to have measurement capabilities, and it is not required to first determine the optimal codebook on the incident side of the RIS.
  • the first precoding matrix is determined first and then the second precoding matrix is determined.
  • the first precoding matrix is included in the incident side codebook of the RIS, and the second precoding matrix is included in the outgoing side of the RIS. In the side code book.
  • a communication method provided by the embodiment of the present application may include the following steps:
  • the RIS reflects the third signal to the receiving end through the first set of precoding matrices.
  • the third signal comes from the transmitting end.
  • the channel measurement information corresponding to the third signal is used to determine the fourth precoding matrix.
  • the first group of precoding matrices are multiple precoding matrices in the third codebook.
  • the first group of precoding matrices corresponds to a plurality of precoding matrices in the fourth codebook and one precoding matrix in the fifth codebook
  • the plurality of precoding matrices in the fourth codebook include the Four precoding matrices. That is to say, the fourth precoding matrix can be determined from the plurality of precoding matrices in the fourth codebook according to the channel measurement information corresponding to the third signal.
  • the fourth codebook and the fifth codebook are respectively one of the first codebook and the second codebook of the RIS, and the fourth codebook and the fifth codebook are different. Therefore, the fourth precoding matrix is a precoding matrix in the first codebook or a precoding matrix in the second codebook.
  • the first codebook can be used to adjust the channel characteristics between the transmitter and the RIS, or it can be said that the first codebook is the incident side codebook of the RIS.
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end. In other words, the second codebook is the outgoing side codebook of the RIS.
  • the first codebook and the second codebook are used to determine the third codebook.
  • the third codebook is used to adjust the channel characteristics between the transmitter, the RIS and the receiver. In other words, the third codebook is the cascaded codebook of the RIS.
  • the first group of precoding matrices corresponds to multiple precoding matrices in the fourth codebook and one precoding matrix in the fifth codebook, which means that the multiple precoding matrices in the first group of precoding matrices are respectively Corresponds to one precoding matrix in the fifth codebook and one of multiple precoding matrices in the fourth codebook.
  • the channel measurement information corresponding to the third signal may include the channel measurement result of the third signal, or include the time determined based on the channel measurement result of the third signal. Instructions or sequence instructions.
  • the fourth precoding matrix may be determined by the RIS, the receiving end or the transmitting end according to the channel measurement information corresponding to the third signal and the information of multiple precoding matrices in the fourth codebook. It can be understood that the way for the RIS, the receiving end or the transmitting end to determine the fourth precoding matrix based on the channel measurement information corresponding to the third signal and the information of multiple precoding matrices in the fourth codebook can be referred to the aforementioned RIS, receiving end. Or the description of how the transmitting end determines the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook will not be described again.
  • the information of the multiple precoding matrices in the fourth codebook may include respective indication information of the multiple precoding matrices in the fourth codebook. (such as index), the correspondence between the precoding matrix in the fifth codebook and the plurality of precoding matrices in the fourth codebook and the plurality of precoding matrices in the third codebook, or the fourth code
  • the index of the first precoding matrix in the first codebook in Table 2 can be replaced with the index of the precoding matrix in the fifth codebook, and multiple precoding matrices in the second codebook in Table 2 can be replaced.
  • the index of the matrix may be replaced with the indexes of multiple precoding matrices in the fourth codebook, and then the information of the multiple precoding matrices in the fourth codebook may include the replaced Table 2.
  • the network device may also send indication information of the fourth precoding matrix to the RIS, so that the RIS determines the fourth precoding matrix based on the indication information. If the fourth precoding matrix is determined by the RIS, optionally, the RIS may send indication information of the fourth precoding matrix to the network device, so that the network device determines the fourth precoding matrix according to the indication information.
  • the network device may send third indication information to the RIS to instruct the RIS to reflect the third signal to the receiving end through the first set of precoding matrices.
  • the third indication information may include indication information of the first group of precoding matrices (such as the index of each precoding matrix in the first group of precoding matrices in the third codebook).
  • the third indication information may include indication information of multiple precoding matrices in the fourth codebook and/or indication information of one precoding matrix in the fifth codebook. Therefore, the RIS can be used according to the indication information of multiple precoding matrices.
  • the indication information and the indication information of a precoding matrix in the fifth codebook determine the first group of precoding matrices.
  • the plurality of precoding matrices in the fourth codebook may also be preconfigured, predefined, or protocol-defined, for example, all precoding matrices in the fourth codebook.
  • a precoding matrix in the fifth codebook may also be preconfigured, predefined, or protocol-defined, for example, a default precoding matrix.
  • the RIS reflects the fourth signal to the receiving end through the second set of precoding matrices.
  • the fourth signal comes from the transmitting end, and the channel measurement information corresponding to the fourth signal is used to determine the fifth precoding matrix.
  • the second group of precoding matrices is a plurality of precoding matrices in the third codebook.
  • the second group of precoding matrices corresponds to a fourth precoding matrix and a plurality of precoding matrices in a fifth codebook
  • the plurality of precoding matrices in the fifth codebook include the fifth precoding matrix. That is to say, the fifth precoding matrix can be determined from the plurality of precoding matrices in the fifth codebook according to the channel measurement information corresponding to the fourth signal.
  • the second group of precoding matrices corresponds to the fourth precoding matrix and a plurality of precoding matrices in the fifth codebook, which means that the plurality of precoding matrices in the second group of precoding matrices are respectively related to the fourth precoding matrix.
  • the matrix corresponds to one of multiple precoding matrices in the fifth codebook.
  • the channel measurement information corresponding to the fourth signal may include the channel measurement result of the fourth signal, or include the time determined based on the channel measurement result of the fourth signal. Instructions or sequence instructions.
  • the fifth precoding matrix may be determined by the RIS, the receiving end or the transmitting end according to the channel measurement information corresponding to the fourth signal and the information of multiple precoding matrices in the fifth codebook. It can be understood that the way for the RIS, the receiving end or the transmitting end to determine the fifth precoding matrix based on the channel measurement information corresponding to the fourth signal and the information of multiple precoding matrices in the fifth codebook can be referred to the aforementioned RIS, receiving end. Or the description of how the transmitting end determines the second precoding matrix based on the channel measurement information corresponding to the second signal and the information of multiple precoding matrices in the second codebook will not be described again.
  • the information of the plurality of precoding matrices in the fifth codebook may include respective indication information of the plurality of precoding matrices in the fifth codebook. (such as index), the correspondence between the fourth precoding matrix and multiple precoding matrices in the fifth codebook and multiple precoding matrices in the third codebook, or multiple precoding matrices in the fifth codebook Usage time information or usage order information corresponding to the precoding matrix.
  • the index of the first precoding matrix in the first codebook in Table 2 can be replaced with the index of the fourth precoding matrix in the fourth codebook, and multiple precoding matrices in the second codebook in Table 2 can be replaced.
  • the index of the coding matrix may be replaced with the indexes of multiple precoding matrices in the fifth codebook, and then the information of the multiple precoding matrices in the fifth codebook may include the replaced Table 2.
  • the network device may also send indication information of the fifth precoding matrix to the RIS, so that the RIS determines the fifth precoding matrix based on the indication information. If the fifth precoding matrix is determined by the RIS, optionally, the RIS may send indication information of the fifth precoding matrix to the network device, so that the network device determines the fifth precoding matrix according to the indication information.
  • the network device may send fourth indication information to the RIS to instruct the RIS to reflect the fourth signal to the receiving end through the second set of precoding matrices.
  • the fourth indication information may include indication information of the second group of precoding matrices (such as the index of each precoding matrix in the second group of precoding matrices in the third codebook).
  • the fourth indication information may include indication information of the fourth precoding matrix and/or indication information of multiple precoding matrices in the fifth codebook. Therefore, the RIS may use the indication information of the fourth precoding matrix and the indication information of the fifth codebook.
  • the indication information of multiple precoding matrices in the five codebooks determines the second group of precoding matrices.
  • the plurality of precoding matrices in the fifth codebook may also be preconfigured or predefined, for example, all precoding matrices in the fifth codebook.
  • the indication information of the fourth precoding matrix may also be sent independently of the fourth indication information, and is not specifically limited.
  • the RIS can reflect the third signal through the first set of precoding matrices, and reflect the fourth signal through the second set of precoding matrices, where the channel measurement information corresponding to the third signal and the channel of the fourth signal
  • the measurement information may be used to determine the fourth precoding matrix and the fifth precoding matrix, respectively.
  • the fourth precoding matrix and the fifth precoding matrix can be used to determine the sixth precoding matrix, so the determination of the precoding matrix in the third codebook of the RIS can be achieved.
  • the method of determining the sixth precoding matrix based on the fourth precoding matrix and the fifth precoding matrix corresponds to the method of decoupling the third codebook to obtain the first codebook and the second codebook.
  • the network device can send information to the RIS to indicate that the fourth codebook is the first codebook or the second codebook, or to indicate that the fifth codebook is the first codebook.
  • This or the fifth codebook can also use a default method to determine whether the fourth codebook is the first codebook or the second codebook. For example, by default, RIS scans the first codebook first, that is, the fourth codebook is the first codebook, and the network device only It is necessary to indicate the index to be scanned in the first codebook.
  • the network device may carry information in the third indication information and/or the fourth indication information to indicate that the fourth codebook is the first codebook or the second codebook, or to indicate the fifth codebook. It is the first codebook or the fifth codebook.
  • the process shown in Figure 11 may also include: the RIS sending the codebook information of the RIS to the network device.
  • the codebook information of RIS includes but is not limited to: the first codebook, the second codebook, the third codebook of RIS, the method information of decoupling the third codebook to obtain the first codebook and the second codebook, and the beam scanning range.
  • the network device may also indicate to the RIS the codebook that needs to be scanned (or needs to be repeated (repetition off)) when reflecting the third signal and/or the fourth signal, and/or the instruction A codebook that does not need to be scanned (or needs to be fixed, or does not need to be repeated (repetition on)).
  • the codebook that needs to be scanned when reflecting the third signal is the fourth codebook
  • the codebook that does not need to be scanned when reflecting the third signal is the fifth codebook
  • the codebook that does not need to be scanned during reflection is the fourth codebook.
  • the network device may send information to the RIS indicating that it is not necessary to scan the incident side codebook, then the fourth codebook is the outgoing side codebook, and the fifth codebook is the incident side codebook.
  • the network device may send information to the RIS indicating that it is not necessary to scan the outgoing side codebook, then the fifth codebook is the incoming side codebook, and the fourth codebook is the outgoing side codebook.
  • the RIS can also be configured to determine the codebook that needs to be scanned or not when reflecting the third signal, and/or the codebook that needs to be scanned or not when reflecting the fourth signal, through preconfiguration, predefinition, protocol definition or negotiation. No need to scan the codebook. It can be understood that the codebook that RIS needs to scan when reflecting the third signal is different from the codebook that RIS needs to scan when reflecting the fourth signal.
  • These two codebooks are the incident side codebook and the output side codebook of RIS respectively. one.
  • the sending end is the terminal device and the receiving end is the network device.
  • RIS can report RIS codebook information to the network device.
  • the network device may send control information to the RIS, which may include third indication information, used to instruct the RIS to reflect the third signal to the receiving end through the first set of precoding matrices.
  • the third indication information may include usage time information or usage order information of the precoding matrix when the RIS reflects the third signal, and/or the index of the precoding matrix that needs to be fixed when reflecting the third signal.
  • the precoding matrix that needs to be fixed when reflecting the third signal is a precoding matrix in the fifth codebook.
  • control information may also include indication information of the order in which the incident side codebook and the output side codebook of the RIS are scanned.
  • the indication information may be used to indicate a fourth codebook from the first codebook and the second codebook, or to indicate a fifth codebook from the first codebook and the second codebook. For example, when the indication information indicates that the fourth codebook is the first codebook, it means that the codebook on the incident side of the RIS is scanned first, and then the codebook on the outgoing side of the RIS is scanned.
  • control information may also include indication information of time-frequency resources occupied by the third signal and/or the fourth signal, and the RIS may determine the time-frequency resources occupied by the third signal and/or the fourth signal based on the indication information, so as to Reflect the third signal and/or the fourth signal according to the time-frequency resource.
  • the network device may also send indication information of the time-frequency resources occupied by the third signal to the terminal device, so that the terminal device sends the third signal according to the time-frequency resources.
  • the terminal device can send a third signal, and the RIS reflects the third signal to the network device through a first set of precoding matrices, where the first set of precoding matrices corresponds to multiple precoding matrices in the fourth codebook. Coding matrix and a precoding matrix in the fifth codebook.
  • the network device may receive the third signal and determine the channel measurement information corresponding to the third signal. The network device may also determine the fourth precoding matrix from the plurality of precoding matrices in the fourth codebook based on the channel measurement information corresponding to the third signal and the information of the plurality of precoding matrices in the fourth codebook.
  • the network device may also send control information to the RIS, which may include fourth indication information.
  • the fourth indication information may include usage time information or usage order information of the precoding matrix when the RIS reflects the fourth signal, and/or the index of the precoding matrix that needs to be fixed when reflecting the fourth signal.
  • the precoding matrix that needs to be fixed when reflecting the signal is the fourth precoding matrix.
  • control information may also include indication information of time-frequency resources occupied by the fourth signal, and the RIS may determine the time-frequency resources occupied by the fourth signal based on the indication information, so as to reflect the fourth signal according to the time-frequency resources.
  • the network device may also send indication information of the time-frequency resources occupied by the fourth signal to the terminal device.
  • the terminal device may also send a fourth signal, and the RIS reflects the fourth signal through a second set of precoding matrices, where the second set of precoding matrices corresponds to the fourth precoding matrix and the fifth codebook. Multiple precoding matrices.
  • the network device receives the fourth signal and determines channel measurement information corresponding to the fourth signal.
  • the network device may also determine the fifth precoding matrix from the plurality of precoding matrices in the fifth codebook based on the channel measurement information corresponding to the fourth signal and the information of the plurality of precoding matrices in the fifth codebook.
  • the network device may send the indication information of the fourth precoding matrix and/or the indication information of the fifth precoding matrix to the RIS.
  • the indication information of the fourth precoding matrix may be sent before the network device sends the control information including the fourth precoding information, or may be sent after the fifth precoding matrix is determined.
  • the indication information of the fourth precoding matrix may also be included in There are no specific limitations in this control information.
  • RIS only needs to receive the first signal through M precoding matrices in the first codebook (that is, using M precoding matrices), and through N in the second codebook
  • Precoding matrices reflect the second signal (that is, N precoding matrices are used), and a total of M+N precoding matrices are used, that is, M+N precoding matrix scans are performed without using the third codebook respectively.
  • the codebook scanning method shown in Figure 8 or Figure 11 can greatly reduce the scanning precoding compared to the codebook scanning scheme based on the third codebook. number of matrices, reducing scan time.
  • the embodiment of the present application also provides another communication method for reducing signaling overhead in the codebook scanning process of RIS.
  • the first device may serve as one of the sending end and the receiving end. It can be understood that in this application, the first device and the second device can communicate through RIS.
  • the first device is the sending end and the second device is the receiving end, or the first device is the receiving end and the second device is the sending end.
  • a communication method provided by the embodiment of the present application includes the following steps:
  • the first device obtains the first information.
  • the first information is used to determine the first precoding matrix and/or the second precoding matrix, the first precoding matrix belongs to the first codebook, and the second precoding matrix belongs to the second codebook.
  • a precoding matrix in the first codebook and a precoding matrix in the second codebook of RIS correspond to a precoding matrix in the third codebook of RIS.
  • the first codebook can be used to adjust channel characteristics between the transmitter and the RIS, that is, the first codebook is the incident side codebook of the RIS.
  • the second codebook is used to adjust the channel characteristics between the RIS and the receiving end, that is, the second codebook is the outgoing side codebook of the RIS.
  • the first codebook and/or the second codebook may be indicated by the network device, or may be determined based on decoupling of the third codebook, or may be protocol defined, preconfigured or predefined. There are no specific requirements for application.
  • the third codebook can be used to adjust the channel characteristics between the transmitter, the RIS and the receiver, that is, the third codebook is the cascaded codebook of the RIS.
  • the first precoding matrix and/or the second precoding matrix may be determined based on the third precoding matrix and the first information.
  • the third precoding matrix is a precoding matrix in the third codebook.
  • RIS can use multiple precoding matrices in the third codebook to reflect the signal between the transmitter and the receiver.
  • the channel measurement information corresponding to the signal can be used to obtain the signal from the multiple precoding matrices in the third codebook. Determine the third precoding matrix.
  • the first device sends second information to the RIS, where the second information is used to indicate the first precoding matrix and/or the second precoding matrix.
  • the second information may include indication information (such as an index) of the first precoding matrix and/or indication information (such as an index) of the second precoding matrix.
  • the RIS can determine the first precoding matrix and/or the second precoding matrix according to the second information, where the first precoding matrix is the incident side precoding matrix of the RIS, and the second precoding matrix is the exit-side precoding matrix of RIS. Since the second information only needs to indicate the first precoding matrix and/or the second precoding matrix and does not need to indicate the precoding matrix in the third codebook of the RIS, signaling overhead can be saved.
  • each incident beam corresponds to an incident side precoding matrix of RIS
  • each outgoing beam corresponds to an outgoing side precoding matrix of RIS.
  • the method shown in Figure 13 indicates the first precoding matrix and the second precoding matrix.
  • the precoding matrix in the concatenated codebook of RIS at least It can save 6 bits of signaling overhead and use lower quadrature amplitude modulation (QAM) order to improve communication reliability.
  • QAM quadrature amplitude modulation
  • the first device, the RIS or the second device can use multiple precoders in the third codebook according to the channel measurement information corresponding to the reference signal and the third codebook used when the RIS reflects the reference signal. matrix information to determine the third precoding matrix.
  • the information of the multiple precoding matrices in the third codebook used when RIS reflects the reference signal may include the information used when RIS reflects the reference signal.
  • Indication information (such as index) of the precoding matrix and usage time information or usage order information of the multiple precoding matrices.
  • the first device may determine the third precoding matrix, and determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and third information.
  • the third precoding matrix may be determined by the first device or the second device according to the channel measurement information.
  • the first information includes third information
  • the third information indicates the correspondence between the first codebook, the second codebook, and the third codebook.
  • the first device may also obtain channel measurement information, and determine a third precoding matrix based on the channel measurement information, where the third precoding matrix belongs to the third codebook.
  • the first device may also determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the third information may be sent to the first device by the RIS or the second device, where the second device may obtain the third information from the RIS.
  • the first device can obtain the third information according to protocol definition, preconfiguration or predefined manner.
  • the channel measurement information can be obtained based on the measurement of the reference signal.
  • the reference signal is transmitted between the first device and the second device via the RIS.
  • the RIS uses multiple precoding matrices in the third codebook to receive and modulate the reference signal.
  • the channel measurement information may include channel measurement results corresponding to the reference signal, such as RSRP or SINR, or the channel measurement information may include the best channel quality determined based on the channel measurement results corresponding to the reference signal. chronological indication information.
  • the reference signal may be sent by the first device, reflected by RIS polling using multiple precoding matrices in the third codebook, and received by the second device.
  • the first device may receive channel measurement information from the second device, and the channel measurement information is obtained by measuring the reference signal by the second device.
  • the reference signal may be sent by the second device, reflected by RIS polling using multiple precoding matrices in the third codebook, and received by the first device.
  • the first device may measure the reference signal to obtain channel measurement information.
  • the third information may include the correspondence between the precoding matrix in the first codebook, the precoding matrix in the second codebook, and the precoding matrix in the third codebook.
  • the third information may include information on a method for decoupling the third codebook to determine the first codebook and the second codebook, for example, including the functional relationship satisfied between the first codebook, the second codebook and the third codebook, For example, the functional relationship is shown in Figure 6.
  • the third information may include a functional relationship satisfied between the precoding matrix in the first codebook, the precoding matrix in the second codebook, and the precoding matrix in the third codebook.
  • the first information is used to indicate the first precoding matrix and/or the second precoding matrix.
  • the first information includes the first precoding matrix.
  • indication information (such as index) of the coding matrix and/or indication information (such as index) of the second precoding matrix.
  • the first device may send a reference signal
  • the second device may measure the reference signal and determine the channel measurement information corresponding to the reference signal, and determine the third precoding matrix based on the channel measurement information.
  • the second device may also determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the second device may also send a reference signal
  • the first device may measure the reference signal and determine the channel measurement information corresponding to the reference signal
  • the first device may transmit the reference signal to the second device.
  • the first device and/or RIS may send the third information to the second device.
  • the third information please refer to the description in the previous possible implementation manner.
  • the first device is a network device or a device included in the network device
  • the second device is a terminal device or a device included in the terminal device. Therefore, the first precoding matrix and/or the second precoding matrix may be indicated to the RIS by the network device.
  • the network device sends a reference signal to the terminal device.
  • the first device shown in Figure 13 is the network device and the second device is the terminal device as an example for description.
  • the RIS can send codebook information to the network device.
  • the codebook information may also include the scanning range of the beam corresponding to the precoding matrix.
  • the codebook information includes third information.
  • the network device can also send control information to the RIS, including usage time information or usage sequence information of multiple precoding matrices in the concatenated codebook when the RIS reflects the reference signal.
  • the RIS may also send usage time information or usage sequence information of multiple precoding matrices in the concatenated codebook to the network device when the RIS reflection reference signal is used.
  • the usage time information or usage sequence information of multiple precoding matrices in the concatenated codebook includes, for example, the correspondence between the precoding matrix in the third codebook and the index of the time unit using the precoding matrix. relation.
  • Table 5 shows an exemplary correspondence between the precoding matrix and the scanning time slot. It can be seen that from time slot 0 to time slot 3, RIS uses a precoding matrix in the third codebook ⁇ m,n to reflect the reference signal.
  • ⁇ m,n represents the precoding matrix in the third codebook
  • m and n are respectively the incident side beam index and the outgoing side beam index corresponding to the precoding matrix. Therefore, the RIS can use the precoding matrix with index 3 in the third codebook in time slot 0, use the precoding matrix with index 1 in the third codebook in time slot 1, and so on.
  • the third information may include a precoding matrix correspondence relationship as shown in Table 6, which correspondence relationship may be used to indicate the precoding matrix in the third codebook, the precoding matrix in the first codebook, and the second codebook. Correspondence between precoding matrices in this paper.
  • ⁇ m and ⁇ n respectively represent the precoding matrix in the first codebook and the precoding matrix in the second codebook
  • m and n are respectively the incident side beam index and the outgoing side beam index corresponding to the precoding matrix.
  • the precoding matrix with index 3 in the third codebook corresponds to the precoding matrix with index 1 in the first codebook and the precoding matrix with index 1 in the second codebook. It can be understood that the precoding matrix in the third codebook can be decoupled into its corresponding precoding matrix in the first codebook and its corresponding precoding matrix in the second codebook.
  • Table 4 and Table 5 can be combined into one table, such as shown in Table 7.
  • the network device may send a reference signal, and the RIS may reflect the reference signal to the terminal device through multiple precoding matrices in the third codebook.
  • the terminal equipment receives the reference signal and measures the reference signal to determine the channel measurement information corresponding to the reference signal.
  • the terminal device sends channel measurement information corresponding to the reference signal to the network device.
  • the network device determines the third precoding matrix of the RIS based on the channel measurement information corresponding to the received reference signal and the information of multiple precoding matrices in the third codebook.
  • the network device further determines the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the network device sends second information to the RIS for indicating the first precoding matrix and/or the second precoding matrix.
  • the terminal device in downlink communication, can receive control information from the network device, which can include third information, and therefore can obtain the third information, where the third information can be sent by the RIS through codebook information to Internet equipment. Therefore, the terminal device can determine the third precoding matrix of the RIS according to the measurement result of the downlink signal. Further, the terminal device can determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information of the RIS. matrix, so that when feeding back channel measurements to the network device, the terminal device can send indication information of the first precoding matrix and/or indication information of the second precoding matrix to the network device to reduce signaling overhead.
  • the network device or RIS can send control information to the terminal device, including third information, so that the terminal device determines the first precoding matrix according to the third precoding matrix of the RIS and the third information. precoding matrix and/or second precoding matrix.
  • the network device may send the third information to the terminal device before, at the same time, or after the network device sends the reference signal.
  • the network device can also send control information to the terminal device to indicate the information of multiple precoding matrices in the third codebook, so that after the terminal device obtains the channel measurement information corresponding to the reference signal through measurement, it can and the information of multiple precoding matrices in the third codebook to determine the third precoding matrix. Further, the terminal device determines the first precoding matrix and/or the second precoding matrix of the RIS according to the third precoding matrix and the third information.
  • the terminal device can also send second information to the network device.
  • the network device or RIS may also send the corresponding relationships shown in Table 5 and Table 6, or the corresponding relationship shown in Table 7, to the terminal device.
  • the terminal device in Fig. 15 corresponds to the first device shown in Fig. 13, and the network device shown in Fig. 15 corresponds to the second device shown in Fig. 13.
  • the action of the terminal device receiving the control information including the third information from the network device may correspond to S1301 shown in Figure 13; in Figure 15, the action of the terminal device sending the second information to the network device, This may correspond to S1302 shown in Figure 13 .
  • the optimal precoding matrix here includes the first precoding matrix, the second precoding matrix, the third precoding matrix or the fourth precoding matrix in this application.
  • embodiments of the present application also provide a communication device.
  • the communication device may include hardware structures and/or software modules that perform corresponding functions.
  • Those skilled in the art should easily realize that the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • the communication device can be used to implement the functions of the RIS, the network device, the first device or the second device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device can be any network device or terminal device as shown in Figure 1, Figure 3, Figure 4, Figure 5 or Figure 7, or can be any network device or terminal device as shown in Figure 3 to Figure 5 or Figure Any RIS shown in 7 can also be a module (such as a chip) applied to terminal equipment, network equipment or RIS.
  • a module such as a chip
  • the communication device 1600 includes a processing unit 1610 and a communication unit 1620, where the communication unit 1620 may also be a transceiver unit or an input/output interface.
  • the communication device 1600 can be used to implement the functions of the RIS, the network device, the first device or the second device in the method embodiments shown in FIGS. 8 to 15 .
  • the communication unit 1620 may be configured to receive the first signal from the transmitting end through multiple precoding matrices in the first codebook of the RIS.
  • the communication unit 1620 may also be configured to reflect the second signal to the receiving end through multiple precoding matrices in the third codebook.
  • the processing unit 1610 may be configured to determine the first precoding matrix from multiple precoding matrices in the first codebook of the RIS according to the channel measurement information corresponding to the first signal. matrix.
  • the communication unit 1620 may also be configured to receive channel measurement information corresponding to the first signal.
  • the processing unit 1610 may also be configured to determine the first precoding matrix from a plurality of precoding matrices in the first codebook of the RIS according to the channel measurement information corresponding to the first signal.
  • the communication unit 1620 may also be configured to send the indication information of the first precoding matrix to the network device.
  • the communication unit 1620 may be further configured to send channel measurement information corresponding to the first signal to a network device, where the network device includes the sending end or the receiving end.
  • the communication unit 1620 may be further configured to receive indication information of the first precoding matrix from a network device, and the processing unit 1610 may be configured to determine the first precoding matrix based on the indication information of the first precoding matrix. The first precoding matrix.
  • the communication unit 1620 may also be configured to receive first indication information from the network device.
  • the communication unit 1620 may also be configured to receive indication information of the second precoding matrix from a network device, and the processing unit 1610 may be configured to determine the second precoding matrix based on the indication information of the second precoding matrix.
  • the second precoding matrix may also be configured to receive indication information of the second precoding matrix from a network device, and the processing unit 1610 may be configured to determine the second precoding matrix based on the indication information of the second precoding matrix. The second precoding matrix.
  • the communication unit 1620 may also be configured to receive channel measurement information corresponding to the second signal from the network device.
  • the processing unit 1610 may be configured to determine the second precoding matrix from a plurality of precoding matrices in the second codebook according to the received channel measurement information corresponding to the second signal.
  • the communication unit 1620 may be further configured to send the indication information of the second precoding matrix to the network device.
  • the communication unit 1620 may also be configured to receive second indication information from the network device.
  • the communication unit 1620 may be used to send first indication information to the RIS.
  • the communication unit 1620 may also be used to send second indication information to the RIS.
  • the communication unit 1620 may be further configured to receive indication information from the first precoding matrix of the RIS.
  • the communication unit 1620 may also be configured to receive channel measurement information corresponding to the first signal from the RIS.
  • the processing unit 1610 may also determine the first precoding matrix from a plurality of precoding matrices in the first codebook of the RIS according to the channel measurement information corresponding to the first signal.
  • the communication unit 1620 may be further configured to send indication information of the first precoding matrix to the RIS.
  • the communication unit 1620 may be further configured to send indication information of the second precoding matrix to the RIS.
  • the communication unit 1620 may also be configured to send channel measurement information corresponding to the second signal to the RIS.
  • the communication unit 1620 may also be configured to receive indication information of the second precoding matrix from the RIS.
  • the processing unit 1610 may also be configured to determine the second precoding matrix according to the indication information of the second precoding matrix.
  • the communication unit 1620 may be configured to reflect the third signal to the receiving end through the first set of precoding matrices.
  • the communication unit 1620 may also be configured to reflect the fourth signal to the receiving end through the second set of precoding matrices.
  • the communication unit 1620 may also be configured to receive third indication information from the network device.
  • the communication unit 1620 may be further configured to receive indication information of the fourth precoding matrix from a network device.
  • the processing unit 1610 may also be configured to determine the fourth precoding matrix according to the indication information of the fourth precoding matrix.
  • the communication unit 1620 may also be configured to receive fourth indication information from the network device.
  • the communication unit 1620 may be further configured to receive indication information of the fifth precoding matrix from a network device.
  • the processing unit 1610 may also be configured to determine the fifth precoding matrix according to the indication information of the fifth precoding matrix.
  • the communication unit 1620 may be used to send third indication information to the RIS.
  • the communication unit 1620 may also be used to send fourth indication information to the RIS.
  • the communication unit 1620 may be further configured to send indication information of the fourth precoding matrix to the RIS.
  • the communication unit 1620 may be further configured to send indication information of the fifth precoding matrix to the RIS.
  • the processing unit 1610 may be used to obtain the first information.
  • the communication unit 1620 may also be used to send second information to the RIS.
  • the first information includes third information
  • the processing unit 1610 may be configured to determine a third precoding matrix, and determine the first precoding matrix and/or the third precoding matrix according to the third precoding matrix and the third information. or the second precoding matrix.
  • the communication unit 1620 may be used to receive the first information from the RIS.
  • the first information is used to indicate the first precoding matrix and/or the second precoding matrix
  • the first information comes from the second device
  • the processing unit 1610 further It may be used to determine the first precoding matrix and/or the second precoding matrix according to the first information
  • the communication unit 1620 may be used to receive the first information from the second device.
  • the communication unit 1620 may be configured to receive the third information from the RIS and send the third information to the second device.
  • the communication unit 1620 may be used to send third information to the first device.
  • the communication unit 1620 may also be used to receive second information from the first device.
  • the communication unit 1620 may be used to obtain third information.
  • the processing unit 1610 may be used to determine a third precoding matrix.
  • the communication unit 1620 may also be configured to send first information to the first device, where the first information is used to indicate the first precoding matrix and/or the second precoding matrix.
  • the processing unit 1610 may also be configured to determine the first precoding matrix and/or the second precoding matrix according to the third precoding matrix and the third information.
  • the communication unit 1620 may be used to receive third information from the first device.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. In the device, it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • FIG 17 shows a communication device 1700 provided by an embodiment of the present application, which is used to implement the communication method provided by the present application.
  • the communication device 1700 may be a communication device applying the communication method, a component in the communication device, or a device that can be used in conjunction with the communication device.
  • the communication device 1700 may be a RIS, a network device, a first device or a second device.
  • the communication device 1700 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1700 includes at least one processor 1720, which is used to implement the communication method provided by the embodiment of the present application.
  • the communication device 1700 may also include an output interface 1710, which may also be called an input-output interface.
  • the output interface 1710 may be used to communicate with other devices through a transmission medium, and its functions may include sending and/or receiving.
  • the communication device 1700 is a chip, it communicates with other chips or devices through the output interface 1710 .
  • the processor 1720 may be used to implement the method in the above method embodiment.
  • the processor 1720 can be used to perform actions performed by the processing unit 1610, and the output interface 1710 can be used to perform actions performed by the communication unit 1620, which will not be described again.
  • the communication device 1700 may also include at least one memory 1730 for storing program instructions and/or data.
  • Memory 1730 and processor 1720 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1720 may cooperate with the memory 1730.
  • Processor 1720 may execute program instructions stored in memory 1730. At least one of the at least one memory may be integrated with the processor.
  • the memory 1730 can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it can also be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 1720 may be a general processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • FIG 18 shows a communication device 1800 provided by an embodiment of the present application, which is used to implement the communication method provided by the present application.
  • the communication device 1800 may be a communication device that applies the communication method shown in the embodiment of the present application, may be a component in the communication device, or may be a device that can be used in conjunction with the communication device.
  • the communication device 1800 may be a RIS, a network device, a first device or a second device.
  • the data transmission device 1800 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • Some or all of the communication methods using Huygens equivalent surfaces provided in the above embodiments can be implemented by hardware or software.
  • the data transmission device 1800 can include: an input interface circuit 1801, Logic circuit 1802 and output interface circuit 1803.
  • the input interface circuit 1801 can be used to perform the above-mentioned receiving action performed by the communication unit 1620
  • the output interface circuit 1803 can be used to perform the above-mentioned sending action performed by the communication unit 1620
  • the logic circuit 1802 may be used to perform the above-mentioned actions performed by the processing unit 1610, which will not be described again.
  • the data transmission device 1800 may be a chip or an integrated circuit during specific implementation.
  • Embodiments of the present application provide a computer-readable storage medium storing a computer program.
  • the computer program includes instructions for executing the above method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the above method embodiments.
  • the embodiment of the present application provides a communication system.
  • the communication system may include at least two of the network equipment, the sending end, the RIS or the receiving end for implementing any of the methods shown in Figure 8 or Figure 11, or include at least two of the methods for implementing Figures 9 to 10, At least two of the network equipment, RIS or terminal equipment of the method shown in any one of Figure 12, Figure 14 or Figure 15, or include a first device and RIS for implementing the method shown in Figure 13.
  • the communication system may include the structure shown in Figure 3 or Figure 4.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Abstract

本申请提供一种通信方法及装置,用于降低RIS的预编码矩阵的扫描次数。基于该方法,RIS通过RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,第一信号对应的信道测量信息可用于确定第一码本中的多个预编码矩阵中的第一预编码矩阵。RIS还可通过第三码本中的多个预编码矩阵向接收端反射第二信号,其中,该第三码本中的多个预编码矩阵对应于第一预编码矩阵和第二码本中的多个预编码矩阵,因此根据第二信号对应的信道测量信息可确定第二码本中的多个预编码矩阵中的第二预编码矩阵,第一预编码矩阵和第二预编码矩阵对应于第三码本中的一个预编码矩阵,可实现RIS的预编码矩阵的确定。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,通过可重构智能表面(reconfigurable intelligent meta-surface,RIS)控制信道特征的RIS辅助网络的技术,被认为是扩大无线通信网络覆盖范围的关键使能技术。在网络设备与终端设备之间有RIS参与信号传输时,RIS通过RIS的最佳预编码矩阵反射网络设备和终端设备之间的信号,能够令网络设备与终端设备之间的信道质量最佳。
参考现确定网络设备和终端设备通信时的最佳预编码矩阵的确定过程,在网络设备与终端设备之间有RIS参与信号传输时,需要扫描RIS的码本中的大量预编码矩阵以确定RIS的最佳预编码矩阵,存在预编码矩阵扫描次数过多的问题,导致扫描时延增加。
发明内容
本申请提供一种通信方法及装置,用以提供一种确定RIS的预编码矩阵确定方式,以降低RIS的预编码矩阵的扫描次数。
第一方面,本申请提供一种通信方法,以降低RIS的预编码矩阵的扫描次数。该方法可由RIS或RIS中的组件(如RIS装置)实施。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是RIS为例,该方法可以通过以下步骤实现:RIS通过所述RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,所述第一信号对应的信道测量信息用于确定第一预编码矩阵,所述第一码本中的多个预编码矩阵包括所述第一预编码矩阵,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第二码本用于所述RIS和接收端之间信道特征的调整,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整。所述RIS还可通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号,所述第二信号来自于所述发送端,所述第二信号对应的信道测量信息用于确定第二预编码矩阵,所述第三码本中的多个预编码矩阵对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,所述第二码本中的多个预编码矩阵包括所述第二预编码矩阵。
基于第一方面所示方法,RIS通过RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,因此根据第一信号对应的信道测量信息可确定第一码本中的多个预编码矩阵中的第一预编码矩阵。RIS还可通过第三码本中的多个预编码矩阵向接收端反射第二信号,其中,该第三码本中的多个预编码矩阵对应于第一预编码矩阵和第二码本中的多个预编码矩阵,因此根据第二信号对应的信道测量信息可确定第二码本中的多个预编码矩阵中的第二预编码矩阵。由于第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵对应于第三码本中的一个预编码矩阵,因此RIS可以根据第一预编码矩阵和第二预编码矩阵确定第三码本中的一个预编码矩阵,并使用该预编码矩阵反射发送端与接收端之间的信号,实现了RIS的最佳预编码矩阵的确定。
假设以上第一码本中的多个预编码矩阵的数量为M,第二码本中的多个预编码矩阵的数量为N,M、N为正整数,由于第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵对应于第三码本中的一个预编码矩阵,因此,第三码本总共包括M×N个预编码矩阵,也就是说,如果扫描第三码本中的全部预编码矩阵,则RIS需要扫描M×N个预编码矩阵才能确定最佳预编码矩阵。而在第一方面所示方法中,由于RIS在反射第二信号时采用的第三码本中的多个预编码矩阵对应于第一预编码矩阵和第二码本中的N个预编码矩阵,因此,该第三码本中的多个预编码矩阵的数量为N,也就是说,该方法中RIS只需要通过M个预编码矩阵接收第一信号,并通过N个预编码矩阵反射第二信号,因此共扫描M+N个预编码矩阵即可确定RIS的最佳预编码矩阵,相比于扫描第三码本中的全部预编码矩阵的方案,在M或N大于2时,可以降低波束扫描次数,减少扫描时延。
在一种可能的实现方式中,RIS还可根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
基于该实现方式,可由RIS根据接收的第一信号对应的信道测量信息确定第一预编码矩阵,实现第一预编码矩阵的灵活确定。
在一种可能的实现方式中,RIS还可向网络设备发送所述第一预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端,所述第一预编码矩阵的指示信息用于确定所述第一预编码矩阵。
基于该实现方式,RIS在确定第一预编码矩阵后,可向网络设备指示第一预编码矩阵,从而令网络设备确定第一预编码矩阵。
在一种可能的实现方式中,RIS还可向网络设备发送所述第一信号对应的信道测量信息,所述网络设备包括所述发送端或所述接收端。
基于该实现方式,RIS可向网络设备发送第一信号对应的信道测量信息,使得网络设备根据第一信号对应的信道测量信息确定第一预编码矩阵,实现第一预编码矩阵的灵活确定。
在一种可能的实现方式中,RIS还可接收来自于所述网络设备的所述第一预编码矩阵的指示信息,并根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
基于该实现方式,RIS可根据网络设备发送的第一预编码矩阵的指示信息,确定第一预编码矩阵。
在一种可能的实现方式中,RIS可接收来自于网络设备的第一指示信息,所述第一指示信息用于指示所述RIS通过所述RIS的第一码本中的多个预编码矩阵接收所述第一信号。
基于该实现方式,RIS可基于第一指示信息,通过第一码本中的多个预编码矩阵接收所述第一信号,以实现第一码本中预编码矩阵的扫描。
在一种可能的实现方式中,RIS还可接收来自于网络设备的所述第二预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端。RIS还可根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
基于该实现方式,可由RIS根据接收的第二预编码矩阵的指示信息确定第二预编码矩阵,实现第二预编码矩阵的灵活确定。
在一种可能的实现方式中,RIS还可接收来自于网络设备的所述第二信号对应的信道测量信息,所述网络设备包括所述发送端或所述接收端。所述RIS还可根据接收的所述第二信号对应的信道测量信息,从所述第二码本中的多个预编码矩阵中确定所述第二预编码 矩阵。
基于该实现方式,可由RIS根据接收的第二信号对应的信道测量信息,从第二码本中的多个预编码矩阵中确定第二预编码矩阵,实现第二预编码矩阵的灵活确定。
在一种可能的实现方式中,RIS还可向所述网络设备发送所述第二预编码矩阵的指示信息,所述第二预编码矩阵的指示信息用于确定所述第二预编码矩阵。
基于该实现方式,RIS在确定第二预编码矩阵后,可向网络设备指示第二预编码矩阵,从而令网络设备确定第二预编码矩阵。
在一种可能的实现方式中,RIS还可接收来自于所述网络设备的第二指示信息,所述第二指示信息用于指示所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号。
基于该实现方式,RIS可基于第二指示信息,通过第三码本中的多个预编码矩阵发送所述第二信号。可选的,所述第二指示信息可包括所述第二码本中的多个预编码矩阵的指示信息,或者,所述第二指示信息包括所述第三码本中的多个预编码矩阵的指示信息。
第二方面,本申请提供一种通信方法,以降低RIS的预编码矩阵的扫描次数。该方法可由第一装置实施,该第一装置可以是网络设备或网络设备中的组件(如芯片或芯片系统)。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是网络设备为例,该方法可以通过以下步骤实现:网络设备向RIS发送第一指示信息,所述第一指示信息用于指示所述RIS通过所述RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,所述第一信号对应的信道测量信息用于确定第一预编码矩阵,所述第一码本中的多个预编码矩阵包括所述第一预编码矩阵,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第二码本用于所述RIS和接收端之间信道特征的调整,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整。网络设备还可向所述RIS发送第二指示信息,所述第二指示信息用于指示所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射第二信号,所述第二信号来自于所述发送端,所述第二信号对应的信道测量信息用于确定第二预编码矩阵,所述第三码本中的多个预编码矩阵对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,所述第二码本中的多个预编码矩阵包括所述第二预编码矩阵。
在一种可能的实现方式中,网络设备还可接收来自于所述RIS的所述第一预编码矩阵的指示信息。所述网络设备还可根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
在一种可能的实现方式中,所述网络设备还可接收来自于所述RIS的所述第一信号对应的信道测量信息。所述网络设备还可根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
在一种可能的实现方式中,所述网络设备还可向所述RIS发送所述第一预编码矩阵的指示信息,所述第一预编码矩阵的指示信息用于确定所述第一预编码矩阵。
在一种可能的实现方式中,所述网络设备还可向所述RIS发送所述第二预编码矩阵的指示信息,所述第二预编码矩阵的指示信息用于确定所述第二预编码矩阵。
在一种可能的实现方式中,所述网络设备还可向所述RIS发送所述第二信号对应的信 道测量信息。所述网络设备还可接收来自于所述RIS的所述第二预编码矩阵的指示信息。所述网络设备还可根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
在一种可能的实现方式中,所述网络设备包括所述发送端或所述接收端。
第三方面,本申请提供一种通信方法,以降低RIS的预编码矩阵的扫描次数。该方法可由RIS或RIS中的组件(如RIS装置)实施。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是RIS为例,该方法可以通过以下步骤实现:RIS通过第一组预编码矩阵向接收端反射第三信号,所述第三信号来自于发送端,所述第三信号对应的信道测量信息用于确定第四预编码矩阵,所述第一组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第一组预编码矩阵对应于第四码本中的多个预编码矩阵以及第五码本中的一个预编码矩阵,所述第四码本中的多个预编码矩阵包括所述第四预编码矩阵。所述RIS还可通过第二组预编码矩阵向所述接收端反射第四信号,所述第二组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第二组预编码矩阵对应于所述第四预编码矩阵以及所述第五码本中的多个预编码矩阵,所述第四信号对应的信道测量信息用于确定第五预编码矩阵,所述第五码本中的多个预编码矩阵包括所述第五预编码矩阵。其中,所述第四码本和所述第五码本分别为所述RIS的第一码本或所述RIS的第二码本,且所述第四码本和所述第五码本不同,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整。
基于第三方面所示方法,RIS可通过第一组预编码矩阵反射第三信号,并通过第二组预编码矩阵反射第四信号,其中,第三信号对应的信道测量信息和第四信号的信道测量信息可分别用于确定第四预编码矩阵和第五预编码矩阵。第四预编码矩阵和第五预编码矩阵可用于确定第六预编码矩阵,因此可实现RIS的第三码本中的预编码矩阵的确定。其中,第四码本和第五码本分别为第一码本和第二码本中的一个。
假设以上第四码本为第一码本,其中包括的预编码矩阵的数量为M,第五码本为第二码本,其中包括的预编码矩阵的数量为N,M、N为正整数,由于第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵对应于第三码本中的一个预编码矩阵,因此,第三码本总共包括M×N个预编码矩阵,也就是说,如果扫描第三码本中的全部预编码矩阵,则RIS需要扫描M×N个预编码矩阵才能确定最佳预编码矩阵。而在第三方面所示方法中,由于RIS在反射第三信号时采用的第一组预编码矩阵对应于第四码本中的M个预编码矩阵和第五码本中的1个预编码矩阵,也就是扫描了M个预编码矩阵,并且,RIS在反射第四信号时采用的第二组预编码矩阵对应于第四预编码矩阵和第五码本最后弄得N个预编码矩阵,也就是扫描了N个预编码矩阵,也就是说,该方法中RIS共扫描M+N个预编码矩阵即可确定RIS的最佳预编码矩阵,相比于扫描第三码本中的全部预编码矩阵的方案,在M或N大于2时,可以降低波束扫描次数,减少扫描时延。
在一种可能的实现方式中,RIS还可接收来自于网络设备的第三指示信息,所述第三指示信息用于指示所述RIS通过第一组预编码矩阵向所述接收端反射所述第三信号。
基于该实现方式,RIS可基于第三指示信息,通过第四码本中的多个预编码矩阵发射 所述第三信号。可选的,第三指示信息具体包括所述第四码本中的多个预编码矩阵的指示信息,或者,所述第三指示信息具体包括所述第一组预编码矩阵的指示信息。
在一种可能的实现方式中,所述RIS还可接收来自于网络设备的所述第四预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端。所述RIS还可根据所述第四预编码矩阵的指示信息确定所述第四预编码矩阵。
基于该实现方式,可由网络设备向RIS指示第四预编码矩阵,可实现第四预编码矩阵的灵活确定。
在一种可能的实现方式中,所述RIS接收来自于网络设备的第四指示信息,所述第四指示信息用于指示所述RIS通过第二组预编码矩阵向所述接收端反射所述第四信号。
基于该实现方式,RIS可基于第四指示信息,通过第五码本中的多个预编码矩阵反射所述第四信号。可选的,第四指示信息具体包括所述第五码本中的多个预编码矩阵的指示信息,或者,所述第四指示信息具体包括所述第二组预编码矩阵的指示信息。
在一种可能的实现方式中,所述RIS还可接收来自于网络设备的所述第五预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端。所述RIS还可根据所述第五预编码矩阵的指示信息确定所述第五预编码矩阵。
基于该实现方式,可由网络设备向RIS指示第五预编码矩阵,可实现第五预编码矩阵的灵活确定。
第四方面,本申请提供一种通信方法,以降低RIS的预编码矩阵的扫描次数。该方法可由第一装置实施,该第一装置可以是网络设备或网络设备中的组件(如芯片或芯片系统)。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是网络设备为例,该方法可以通过以下步骤实现:网络设备向RIS发送第三指示信息,所述第三指示信息用于指示所述RIS通过第一组预编码矩阵向接收端反射第三信号,所述第三信号来自于发送端,所述第三信号对应的信道测量信息用于确定第四预编码矩阵,所述第一组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第一组预编码矩阵对应于第四码本中的多个预编码矩阵以及第五码本中的一个预编码矩阵,所述第四码本中的多个预编码矩阵包括所述第四预编码矩阵。所述网络设备向所述RIS发送第四指示信息,所述第三指示信息用于指示所述RIS通过第二组预编码矩阵向所述接收端反射第四信号,所述第二组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第二组预编码矩阵对应于所述第四预编码矩阵以及所述第五码本中的多个预编码矩阵,所述第四信号对应的信道测量信息用于确定第五预编码矩阵,所述第五码本中的多个预编码矩阵包括所述第五预编码矩阵。其中,所述第四码本和所述第五码本分别为所述RIS的第一码本或所述RIS的第二码本,且所述第四码本和所述第五码本不同,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整。
在一种可能的实现方式中,所述第三指示信息具体包括所述第四码本中的多个预编码矩阵的指示信息,或者,所述第三指示信息具体包括所述第一组预编码矩阵的指示信息。
在一种可能的实现方式中,所述第四指示信息具体包括所述第五码本中的多个预编码矩阵的指示信息,或者,所述第四指示信息具体包括第二组预编码矩阵的指示信息。
在一种可能的实现方式中,所述网络设备还可向所述RIS发送所述第四预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端,所述第四预编码矩阵的指示信息用于确定所述第四预编码矩阵。
在一种可能的实现方式中,所述网络设备还可向所述RIS发送所述第五预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端,所述第五预编码矩阵的指示信息用于确定所述第五预编码矩阵。
可以理解,以上第四方面及其可能的实现方式的有益效果,可参见对于第三方面及相应的可能的实现方式的有益效果的说明,不再赘述。
第五方面,本申请提供一种通信方法,用以降低RIS的码本反馈开销。该方法可由第一装置实施,第一装置可以是终端设备、网络设备、终端设备中的组件(如芯片或芯片系统)或网络设备中的组件(如芯片或芯片系统)。第一装置可用于接收或发送参考信号和/或数据,或者说,第一装置可以是发送端或接收端。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是第一装置为例,该方法可以通过以下步骤实现:第一装置获取第一信息,该第一信息用于确定第一预编码矩阵和/或第二预编码矩阵,该第一预编码矩阵属于第一码本,该第二预编码矩阵属于第二码本,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,该第三码本用于发送端、RIS和接收端之间信道特征的调整,该第一码本用于该发送端和该RIS之间信道特征的调整,该第二码本用于该RIS和该接收端之间信道特征的调整。该第一装置还可向该RIS发送第二信息,该第二信息用于指示该第一预编码矩阵和/或该第二预编码矩阵。
基于第五方面所示方法,第一装置可以向RIS发送第二信息来指示第一预编码矩阵和/或第二预编码矩阵。其中,由于第一码本和该第二码本用于确定第三码本,因此RIS可根据第一预编码矩阵和/或第二预编码矩阵可用于确定第三码本中的预编码矩阵,而不需要由第一装置向RIS指示第三码本中的预编码矩阵。可以理解,第三码本中预编码矩阵的数量为第一码本中预编码矩阵的数量和第二码本中预编码矩阵的数量的乘积,因此从第三码本中指示一个预编码矩阵所需信令开销大于指示第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵的开销。
在一种可能的实现方式中,该第一信息包括第三信息,该第三信息指示该第一码本中的预编码矩阵、该第二码本中的预编码矩阵和该第三码本中的预编码矩阵之间的对应关系。第一装置还可确定第三预编码矩阵,第三预编码矩阵属于该第三码本。该第一装置还可根据该第三预编码矩阵和该第三信息确定该第一预编码矩阵和/或该第二预编码矩阵。可选的,该第一装置可通过测量获得信道测量信息,或接收来自于第二装置的信道测量信息,并根据该信道测量信息确定该第三预编码矩阵。或者,第一装置可接收来自于第二装置的第三预编码矩阵的指示信息,并根据指示信息确定第三预编码矩阵。其中,该第一装置为发送端,第二装置为接收端,或者,第一装置为接收端,第二装置为发送端。
基于该实现方式,可由第一装置根据信道测量信息确定第一码本中的第三预编码矩阵,并根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。因此实现第一预编码矩阵和/或第二预编码矩阵的灵活确定。
在一种可能的实现方式中,该第一装置可接收来自于该RIS的该第三信息。因此试下第三信息的灵活获取。
在一种可能的实现方式中,该第一信息用于指示该第一预编码矩阵和/或该第二预编码矩阵,该第一装置可接收来自于第二装置的该第一信息。
基于该实现方式,第一装置可根据第一预编码矩阵和/或第二预编码矩阵的指示信息确定第一预编码矩阵和/或第二预编码矩阵,实现第一预编码矩阵和/或第二预编码矩阵的灵活确定。
在一种可能的实现方式中,第一装置还可向该第二装置发送第三信息,该第三信息指示该第一码本、第二码本和第三码本之间的对应关系。基于该实现方式,第一装置可向第二装置发送第三信息,用于第二装置根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。
第六方面,本申请提供一种通信方法,用以降低RIS的码本扫描时长。该方法可由RIS或RIS中的组件实施。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是RIS为例,该方法可以通过以下步骤实现:RIS向第一装置发送第三信息,该第三信息指示RIS的第一码本中的预编码矩阵、RIS的第二码本中的预编码矩阵和RIS的第三码本中的预编码矩阵之间的对应关系,所述第一码本中的一个预编码矩阵和所述第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,该第三码本用于发送端、该RIS和接收端之间信道特征的调整,该第一码本用于该发送端和该RIS之间信道特征的调整,该第二码本用于该RIS和该接收端之间信道特征的调整。RIS还可接收来自于该第一装置的第二信息,该第二信息用于指示第一预编码矩阵和/或第二预编码矩阵,该第一预编码矩阵属于第一码本,该第二预编码矩阵属于第二码本。
可以理解,以上第六方面及其可能的实现方式的有益效果,可参见对于第五方面及相应的可能的实现方式的有益效果的说明,不再赘述。
第七方面,本申请提供一种通信方法,用以降低RIS的码本反馈开销。该方法可由第二装置实施,第二装置可以是终端设备、网络设备、终端设备中的组件(如芯片或芯片系统)或网络设备中的组件(如芯片或芯片系统)。第二装置可用于可以是接收或发送用于进行RIS的码本扫描的信号和/或数据的设备或设备中的组件(如芯片或芯片系统),或者说,第二装置可以是发送端或接收端。示例性的,第二装置可以是终端设备、网络设备、终端设备中的组件或网络设备中的组件实施。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是第二装置为例,该方法可以通过以下步骤实现:第二装置获取第三信息,该第三信息指示RIS的第一码本中的预编码矩阵、RIS的第二码本中的预编码矩阵和RIS的第三码本中的预编码矩阵之间的对应关系,所述第一码本中的一个预编码矩阵和RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,该第三码本用于发送端、RIS和接收端之间信道特征的调整,该第一码本用于该发送端和该RIS之间信道特征的调整,该第二码本用于该RIS和该接收端之间信道特征的调整。该第二装置还可根据信道测量信息确定第三预编码矩阵,该第三预编码矩阵属于该第三码本。该第二装置还可向第一装置发送第一信息,该第一信息用于指示第一预编码矩阵和/或第二预编码矩阵,该第一预编码矩阵属于第一码本,该第二预编码矩阵属于第二码本,该第一预编码矩阵和/或第二预编码矩阵根据该第三预编码矩阵和该第三信息确定。
在一种可能的实现方式中,该第二装置可接收来自于该第一装置的该第三信息。
可以理解,以上第七方面及其可能的实现方式的有益效果,可参见对于第五方面及相 应的可能的实现方式的有益效果的说明,不再赘述。
第八方面,本申请提供一种通信方法,该通信方法可由第一装置及RIS实施。以执行主体是第一装置和RIS为例,该通信方法可包括以下步骤:第一装置获取第一信息。第一信息可参见第五方面的描述。该第一装置还可向RIS发送第二信息,该第二信息用于指示第一预编码矩阵和/或第二预编码矩阵。相应的,RIS接收第二信息,以确定第一预编码矩阵和/或第二预编码矩阵。第一预编码矩阵和/或第二预编码矩阵可参见第五方面或第六方面的描述。
第八方面所示方法还可包括第五方面的任一可能的实现方式中由第一装置实现的方法以及第六方面及其任一可能的实现方式中由RIS实现的方法。可选的,第八方面所示方法还可包括第七方面及其任一可能的实现方式中由第二装置实现的方法。
或者,该通信方法还可包括由第一方面及其任一可能的实现方式中由RIS实现的方法和由第二方面及其任一可能的实现方式中由网络设备实现的方法,或包括由第三方面及其任一可能的实现方式中由RIS实现的方法和由第四方面及其任一可能的实现方式中网络设备实现的方法。
第九方面,提供一种数据传输装置。该装置可以实现上述第一方面、第三方面或第五方面及其任意可能的设计中由RIS执行的方法,或者,用于实现以上第二方面或第三方面及其任意可能的设计中由网络设备执行的方法,或者,用于实现以上第六方面及其任意可能的设计中由第一装置执行的方法,或者,用于实现以上第七方面及其任意可能的设计中由第二装置执行的方法。该装置例如为RIS、终端设备、网络设备、RIS中的组件、终端设备中的组件或网络设备中的组件。
一种可选的实现方式中,该装置可以包括执行以上第一方面至第七方面及任意可能的实现方式中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可选的实现方式中,该装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
再例如,该装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面至第七方面及任意可能的实现方式中所描述的方法。可选的,该装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得第一方面至第七方面中任一方面的方法被实现。
第十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得第一方面至第七方面中任一方面所述的方法被实现。
第十二方面,提供一种芯片系统,该芯片系统包括逻辑电路(或理解为,该芯片系统包括处理器,处理器可包括逻辑电路等),还可以包括输入输出接口。该输入输出接口可以用于接收消息,也可以用于发送消息。输入输出接口可以是相同的接口,即,同一个接 口既能够实现发送功能也能够实现接收功能;或者,输入输出接口包括输入接口以及输出接口,输入接口用于实现接收功能,即,用于接收消息;输出接口用于实现发送功能,即,用于发送消息。逻辑电路可用于执行上述第一方面至第八方面及任意可能的实现方式中所描述的方法中除收发功能之外的操作;逻辑电路还可用于向输入输出接口传输消息,或者从输入输出接口接收来自其他通信装置的消息。该芯片系统可用于实现上述第一方面至第七方面及任意可能的实现方式中所描述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
可选的,该芯片系统还可以包括存储器,存储器可用于存储指令,逻辑电路可调用存储器所存储的指令来实现相应功能。
第十三方面,提供一种通信系统,该通信系统可以包括用于实现第一方面及其任意可能的设计的装置和用于实现第二方面及其任意可能的设计的装置,或者,包括用于实现第三方面及其任意可能的设计的装置和用于实现第四方面及其任意可能的设计的装置,或者,包括用于实现第五方面及其任意可能的设计的装置、用于实现第六方面及其任意可能的设计的装置,以及用于实现第七方面及其任意可能的设计的装置中的至少两个装置。
附图说明
图1为本申请实施例提供的一种无线通信系统的架构示意图;
图2为一种波束扫描过程示意图;
图3为RIS的工作原理示意图;
图4为本申请实施例提供的一种基于RIS的通信系统的架构示意图;
图5为本申请实施例提供的一种RIS的码本的解耦方式示意图;
图6为本申请实施例提供的一种解耦前后RIS的码本的关系示意图;
图7为本申请实施例提供的另一种RIS的码本的解耦方式示意图;
图8为本申请提供的一种通信方法的流程示意图;
图9为本申请提供的另一种通信方法的流程示意图;
图10为本申请提供的另一种通信方法的流程示意图;
图11为本申请提供的另一种通信方法的流程示意图;
图12为本申请提供的另一种通信方法的流程示意图;
图13为本申请提供的另一种通信方法的流程示意图;
图14为本申请提供的另一种通信方法的流程示意图;
图15为本申请提供的另一种通信方法的流程示意图;
图16为本申请提供的一种通信装置的结构示意图;
图17为本申请提供的另一种通信装置的结构示意图;
图18为本申请提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例提供一种数据传输方法及装置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在 三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的数据传输方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的方法还可以应用于蓝牙系统、无线保真(wireless fidelity,Wifi)系统、远距离无线电(long range radio,LoRa)系统或车联网系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
为了便于理解本申请实施例,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些无线接入网设备的举例为:下一代基站(gNodeB/gNB/NR-NB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。网络设备101还可以是其他具有网络设备功能的设备,例如,网络设备101还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备101还可以是未来可能的通信系统中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备, 也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
下面对本申请实施例可能涉及的技术术语进行介绍。
(1)波束管理。5G NR改进了LTE时期基于宽波束的广播机制,而采用窄波束和轮询扫描覆盖整个小区的机制。波束管理的目的就是合理设计窄波束,并选择合适时频资源发送窄波束。
广播波束最多设计为N个方向固定的窄波束,N为正整数。通过在不同时刻发送不同的窄波束完成小区的广播波束覆盖。终端设备通过扫描每个窄波束,获得最优波束,完成同步和系统消息解调。
相对宽波束(比如LTE波束),窄波束的覆盖范围有限,一个波束无法完整的覆盖小区内的所有用户,也无法保证小区内的每个用户都能获得最大的信号能量。所以引入波束管理,基于各类信道或信号的不同特征,gNB对各类信道或信号分别进行波束管理,并为用户选择最优的波束,提升各类信道或信号的覆盖性能及用户体验。
如图2所示,5G NR中的波束扫描技术可分为以下三个阶段:
P1阶段,粗对齐,首先网络设备全向发送同步信号块(synchronization signal block,SSB),终端设备用宽波束扫描,终端设备和网络设备都扫一遍后,确定网络设备的窄波束范围和终端设备的宽波束。然后终端设备发送物理随机接入信道(physical random access channel,PRACH),进行随机接入。
P2阶段,网络设备精调,在网络设备与终端设备之间建立RRC连接之后,终端设备用特定的宽波束上报最优的SSB测量报告,网络设备在最优的波束附近,用窄波束扫一遍,确定gNB的窄波束。
P3阶段,网络设备固定波束,终端设备再用窄波束扫描,以此确定终端设备的窄波束,P3过程结束之后,终端设备和网络设备都用窄波束对准。
(2)码本,是指协议定义的一组预编码矩阵,网络设备获得预编码矩阵V的方式存在两种方式:
方式一:网络设备基于上行信道探测参考信号(sounding reference signal,SRS)的测量和上下行信道的互易性来估计出下行信道矩阵H,进而得到V,但该方式仅在时分双工(time division duplex,TDD)系统可以应用。方式一又称为基于SRS的预编码。
方式二:终端基于下行参考信号的测量来估计出信道矩阵H,进而得到V,然后将V反馈给网络设备。方式二又称为基于预编码矩阵指示(precoding matrix indication,PMI)的预编码。
其中对于第二种方式,为了降低实现复杂度和反馈开销,目前3GPP协议对于预编码矩阵V进行了有限个量化定义,这些有限个的预编码矩阵的集合可称为码本。码本中的预编码矩阵具有对应的编号,而终端只需要反馈这些码本的相关编号或参数即可指示预编码矩阵。
表1展示的是2天线端口的码本。
表1
Figure PCTCN2022115644-appb-000001
从发射端的角度来看,经过层映射和天线端口映射后,网络设备通过码本中的预编码矩阵(或称为权值或码本权值)对于每一流的数据进行加权处理,再经过正交频分复用(orthogonal frequency division multiplexing,OFDM)信号生成器可以在天线端口形成一个指向型的波束,从而实现了层到波束域的转换,即每一层的数据流承载在这些波束上并在空间中传输。
以表1为例,当传输层数为1时,索引0对应的预编码矩阵为
Figure PCTCN2022115644-appb-000002
(3)可重构智能表面(reconfigurable intelligent meta-surface,RIS),是一种数字式可重构的人工电磁表面,由大量亚波长的数字可重构人工电磁单元(或反射元件)按一定的宏观排列方式(周期性或非周期性)形成的人工复合结构。根据反射元件的具体材料,RIS可分为基于天线阵的结构和基于超材料面的结构。通过调整所有反射元件的相移,反射信号可以配置以朝它们所需的方向传播。由于超材料的快速发展,每个元件的反射系数可以实时配置,以适应动态波动的无线传播环境。
由于RIS的基本单元和排列方式都可任意设计,因此能突破传统材料在原子或分子层面难以精确操控的限制,构造出传统材料与传统技术不能实现的超常规媒质参数,例如既包括正介电常数和负介电常数的媒质参数。具有超常规媒质参数的材料可称为超构材料或超材料,由于是基于通过改变数字编码单元的空间排布来控制电磁波,即通过改变基本单元的状态分布可以控制特定空间位置的电磁场的特性,所以在一些实施例中,超构材料也可以称为数字电磁超材料或电磁编码超材料。
RIS可以安装在大型平面上(例如室内的墙壁或天花板、室外的建筑物或标志),以便 反射障碍物周围的射频(radio frequency,RF)能量,并在通信源和目标之间创建虚拟视线(line of sight,LoS)传播路径。
示例性的,请参见图3,为RIS模块的工作原理示意图。如图3所示,RIS模块包括多个RIS单元,不同的RIS单元之间通过二极管连接,例如PIN二极管、变容二极管等。RIS可对接收到无线波进行反射。应理解,无线波从一种介质传播到另一种具有不同折射率的介质时,除了发生反射还会发生折射,所以RIS可以改变无线波的反射相位差。也可以理解为,RIS使得无线波在反射或折射界面上遵循广义斯涅耳定律。也就是RIS可使得无线波的反射角可以不等于入射角。相对于传统表面(无线波的反射角是反射角1)来说,可以使得无线波的反射角为反射角2。换句话说,RIS相对于传统表面,RIS具有根据广义斯涅尔斯定律对无线波整形的能力。
具体的,通过控制RIS单元对接收的信号进行幅度和/或相位的调整,可控制每个RIS单元的反射系数。RIS单元对接收的信号进行幅度和/或相位的调整也可以认为是调整RIS单元的幅度和/或相位。应理解,每个RIS单元的反射系数不同,该RIS单元对无线波的反射角或者折射角也有所不同。也就是控制多个RIS单元分别对接收的信号进行幅度和/或相位的调整,可调整RIS对无线波的反射角或者折射角,从而协同地实现用于定向信号增强或零陷的精细的三维(3D)无源波束形成。
在一些实施例中,可通过控制连接RIS单元的PIN二极管的通断状态(开启状态或关闭状态)来控制RIS单元对接收的信号进行幅度和/或相位的调整。例如通过为PIN二极管施加不同的偏压,使得该PIN二极管处于开启状态或关闭状态,也就使得与该PIN二极管连接的RIS单元处于开启状态或关闭状态。RIS包括的多个RIS单元处于不同状态,RIS对接收信号的幅度和/或相位的调整量不同,使得RIS的反射系数也所有不同。所以通过控制RIS单元的状态可控制RIS模块对接收信号的幅度和/或相位的调整,例如使得RIS对无线波的反射相位相差180°,进而控制RIS的反射系数,即RIS的相位和/或幅度。这样可使得RIS对无线波的反射角不等于入射角,实现定向波束形成。从而可提升无线网络的覆盖和系统容量,所以RIS可广泛应用于通信系统。例如在本申请实施例中,可在源节点和/或协作节点中设置RIS,利用RIS实现协作通信。RIS的反射系数不同,对无线波的反射角也不同,导致波束方向也有所不同,所以可认为RIS的反射系数可用于调整RIS的波束方向。从这个角度来讲,RIS的反射系数也可以称为RIS的波束赋形参数(下文以此为例)。
可选的,RIS可采用编程门阵列(field programmable gate array,FPGA)等智能控制器控制PIN二极管的通断状态。其在典型场景中的工作流程可以如下:网络设备计算RIS的最佳反射系数,然后通过专用反馈链路发送到RIS的控制器。反射系数的设计取决于信道状态信息(channel state information,CSI),该系数仅在CSI变化时更新,其延续时间比数据符号持续时间长得多。例如,RIS面板中的每个反射元件都嵌入了一个PIN光电二极管。通过偏置线控制电压,PIN光电二极管可以在“开”和“关”模式之间切换,从而实现弧度π的相移差。
通过调节RIS的反射元件的相移,反射信号可以与来自直接路径(或直连链路,即非经过RIS反射的路径)的信号叠加,以增强所需的信号功率,或破坏性地组合以减轻多用户干扰的有害影响。因此,RIS提供了额外的自由度,以进一步改善系统性能,特别是对于毫米波(mmWave)通信。通常,毫米波的穿透损耗很高,使用大型天线阵列无法轻易解决损耗高的问题。在直连链路被阻塞,也可以部署RIS来构建辅助传输链路。
可以理解,可基于网络设备的指示,实现RIS单元的幅度和/或相位的调整。例如,将RIS对于信号的幅度和/或相位的调整对应于RIS的码本中的多个预编码矩阵,网络设备可向RIS指示预编码矩阵在码本中的索引,RIS可根据网络设备的指示,确定具有该索引的预编码矩阵,并采用该预编码矩阵所对应的幅度和/或相位控制RIS单元的反射系数,使得RIS单元按照网络设备的指示实现信号反射。后续为方便说明,将该RIS的码本称为RIS的级联码本。
可以理解,如图4所示,当网络设备与终端设备之间有RIS参与信号传输时,使用单一预编码矩阵的形式进行最佳预编码矩阵的确定。以下行信号发送为例,在RIS辅助通信的波束扫描过程中,RIS的出射方向与RIS的出射波束相关,也与RIS的入射波束相关,其中,RIS的入射波束与出射波束的组合对应于RIS的级联码本中的一个预编码矩阵,也就是说,该预编码矩阵决定了RIS采用的入射波束和出射波束,只有RIS采用的入射波束与网络设备的发送波束对齐,并且,RIS采用的出射波束和UE的接收波束对齐,下行信号的传输性能才能达到最佳。
因此为了确定RIS的最佳预编码矩阵,需要在RIS的全部入射波束和全部出射波束的集合进行扫描,也就是说,需要RIS对于级联码本中的全部预编码矩阵进行扫描,导致RIS的扫描波束时间和需要扫描的预编码矩阵的数量会大量增加。例如,RIS的入射波束和出射波束的数量分别为M和N,则对于RIS而言,RIS的级联码本包括M×N个预编码矩阵,因此为了确定最佳预编码矩阵,实际上需要通过RIS切换预编码矩阵(即RIS根据预编码矩阵对应的幅度和/或相位调整RIS单元的相位和/或幅度)进行I=M×N次波束扫描,其中,每次波束扫描,RIS采用码本中的一个预编码矩阵。如果减少扫描次数,例如,仅从级联码本中的M个预编码矩阵进行扫描,则会导致最佳预编码矩阵的准确度降低。
举例来说,如果基于最大化UE的接收功率的准则确定最佳预编码矩阵,RIS的级联码本中的预编码矩阵可通过以下公式表示:
Figure PCTCN2022115644-appb-000003
其中,W BS和W UE分别表示网络设备和终端设备各自采用的预编码矩阵,即网络设备和UE在通过RIS通信时,可分别采用W BS和W UE。H是网络设备与RIS之间的信号,F是RIS与UE之间的信道,exp(jΦ i)是RIS的第i个预编码矩阵,i=1、2、……、I。也就是说,如采用波束扫描的形式确定RIS的预编码矩阵,需要遍历I个RIS的预编码矩阵,选择令UE的接收功率最大化的RIS的预编码矩阵。
本申请提供一种通信方法,用于降低RIS的预编码矩阵的扫描次数。
本申请中,基于RIS的码本的解耦,将RIS的级联码本解耦为入射侧码本和出射侧码本,因此,RIS的级联码本中的预编码矩阵可视为入射侧预编码矩阵和出射侧预编码矩阵的结合。或者也可以说,基于对RIS的预编码矩阵的解耦,将RIS的预编码矩阵解耦为入射侧预编码矩阵和出射侧预编码矩阵。其中,入射侧预编码矩阵包括在入射侧码本中,出射侧预编码矩阵包括在出射侧码本中。
本申请中,在下行信号的发送过程中,RIS的入射侧码本是指RIS的网络设备侧码本,RIS的出射侧码本是指RIS的终端设备侧码本。同理,在上行信号的发送过程中,RIS的 入射侧码本是指RIS的终端设备侧码本,RIS的出射侧码本是指RIS的网络设备侧码本。可以理解,入射侧码本可用于调整RIS的入射侧(或发送端与RIS之间)的信道特征,或者说,入射侧码本可用于负责RIS的入射波束的波束赋形和扫描。出射侧码本可用于调整RIS的出射侧(或RIS与接收端之间)的信道特征,或者说,出射码本可用于负责RIS的出射波束的波束赋形和扫描。
可选的,本申请实施例中可基于空间划分的角度对RIS的码本进行解耦。
以下行通信为例,图5是一种基于空间划分的角度对RIS的码本进行解耦的示意图。可见,以垂直于RIS的方向为边界,RIS的级联码本中的预编码矩阵Φ m,n可解耦为入射侧预编码矩阵Φ m和出射侧预编码矩阵Φ n。其中,入射侧码本和出射侧码本均包含多个预编码矩阵。其中,m和n分别是入射侧预编码矩阵的索引和出射侧预编码矩阵的索引,例如,图5中网络设备一侧的Ф 0、Ф 1、Ф 2和Ф 3分别表示m为0、1、2和3的入射侧预编码矩阵,终端设备侧的Ф 0、Ф 1、Ф 2分别表示n=0、1和2时的出侧预编码矩阵。可以理解,RIS的每个入射波束均对应于入射侧码本中的一个预编码矩阵,每个出射波束均对应于出射侧码本中的一个预编码矩阵。
此外,也可基于RIS的入射侧波束和出射侧波束的俯仰角和方位角分解RIS的级联码本的示例。例如图6所示,为RIS的级联码本Φ m,n(p,q)和解耦后的入射侧码本Φ m(p,q)和出射侧码本Φ n(p,q)分别的关系式。其中,p和q是RIS的阵子在天线阵列水平和垂直维上的索引。θ和
Figure PCTCN2022115644-appb-000004
分别对应的是波束的俯仰角和方位角;dx和dy是阵子之间的间距;λ是天线阵列的中心频点的波长。m和n分别是入射侧预编码矩阵的索引和出射侧预编码矩阵的索引。
可选的,还可基于宽窄波束的角度对RIS的码本进行解耦。
仍以下行通信为例,图7是一种基于宽窄波束的角度对RIS的码本进行解耦的示意图。例如,可以通过算法设计,使得窄波束变成宽波束,来覆盖更大的扫描范围,减少扫描次数。相应的,RIS的预编码矩阵可解耦为宽波束对应的预编码矩阵与宽波束对应的预编码矩阵的组合,或宽波束对应的预编码矩阵和窄波束对应的预编码矩阵的组合。例如,RIS解耦后的码本包括,对应于宽波束的入射侧预编码矩阵、对应于窄波束出射侧预编码矩阵、对应于窄波束的入射侧预编码矩阵和对应于宽波束的出射侧预编码矩阵中至少两项的组合。图7中,m和n分别是入射侧预编码矩阵的索引和出射侧预编码矩阵的索引,例如,图5中网络设备一侧的Ф 0、Ф 1和Ф 2分别表示m为0、1和2的入射侧预编码矩阵,终端设备侧的Ф 0、Ф 1、Ф 2分别表示n=0、1、2和2时的出侧预编码矩阵。可见,入射侧预编码矩阵Ф 1和出射侧预编码矩阵Ф 2为宽波束。每个入射波束均对应于入射侧码本中的一个预编码矩阵,每个出射波束均对应于出射侧码本中的一个预编码矩阵。
可选的,还可基于离散傅里叶变换(discrete Fourier transform,DFT)波束的角度,对RIS的码本进行解耦。其中,DFT设计和角度无关,只与天线阵子个数有关。
例如,RIS解耦后的入射侧码本和出射侧码本均表示为:
Figure PCTCN2022115644-appb-000005
其中,N和M是天线垂直和水平的个数,n和m是垂直和水平的波束索引。l和k是垂直和水平的缩放因子。
Figure PCTCN2022115644-appb-000006
表示克罗内科积运算。
基于以上解耦方式,将RIS的级联码本解耦为RIS的入射侧码本和RIS的出射侧码本。比如,如果RIS在空间上有M个入射波束和N个出射波束需要进行扫描,由于入射波束和出射波束均会对网络设备与UE之间的信道产生影响,因此每次波束扫描需要采用1个入射波束和1个出射波束,也就是说,RIS共有M×N个波束需要进行扫描。经过码本解耦,在波束扫描过程中,RIS可以固定采用入射侧码本中的一个预编码矩阵,并扫描出射侧码本中的N个预编码矩阵,从而确定出射侧码本中的一个最佳预编码矩阵,以及,RIS可以固定采用出射侧码本中的一个预编码矩阵,并扫描出射侧码本中的M个预编码矩阵,从而确定入射侧码本中的一个最佳预编码矩阵,而根据解耦方式,容易根据入射侧码本中的一个预编码矩阵和出射侧码本中的一个预编码矩阵确定RIS级联码本中的一个预编码矩阵,因此,根据入射侧码本中的最佳预编码矩阵和出射侧码本中的最佳预编码矩阵可以确定RIS的最佳预编码矩阵,该过程仅进行M+N次预编码矩阵的扫描。一般来说,RIS的级联码本中的预编码矩阵的数量远大于2,因此本申请实施例提供的方法中,可将波束扫描次数从M×N次减少为M+N次,减少了RIS的预编码矩阵的扫描次数,极大缩短了扫描时延。并且,该通信方法不会降低最佳预编码矩阵确定过程的准确度,以确保通信性能。
下面对本申请实施例提供的通信方法进行介绍。可选的,该通信方法可由RIS和网络设备执行。其中,RIS可用于接收和/或将信号向接收端反射,其中,该信号可来自于发送端。可以理解,在下行通信中,网络设备是发送端,终端设备是接收端,在上行通信中,终端设备是发送端,网络设备是接收端。网络设备可以是发送端或接收端。其中,如果发送端为网络设备,则接收端为终端设备,此时为下行通信。如果发送端为终端设备,则接收端为网络设备,此时为上行通信。
如图8所示,本申请实施例提供的一种通信方法可包括以下步骤:
S801:RIS通过RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号。
本申请中,RIS通过码本中的多个预编码矩阵接收信号,是指RIS轮询采用该多个预编码矩阵对应的入射侧反射元件的配置来改变RIS单元的相位和/或幅度,并通过具有不同RIS单元的相位和/或幅度的RIS单元接收信号。
其中,第一信号对应的信道测量信息用于确定第一预编码矩阵。RIS接收第一信号所采用的第一码本中的多个预编码矩阵中包括所述第一预编码矩阵。
本申请中,预编码矩阵也可替换为码本权值或权值。因此,第一预编码矩阵可替换为第一权值。本申请中,RIS的预编码矩阵指RIS设备上每个RIS单元可调节的相位和/或幅度所对应的权值矩阵,因此在采用不同的预编码矩阵时,RIS的RIS单元的相位和/或幅度不同。其中,RIS可以采用预编码矩阵对应的反射元件的配置,使得RIS单元的相位和/或幅度得到调节。可以理解,RIS可改变接收或反射信号时采用的预编码矩阵,来改变无线信道的幅相或秩等特性。
本申请中的第一码本可以用于发送端和RIS之间信道特征的调整,因此,该第一码本为RIS的入射侧码本。此外,第二码本用于RIS和接收端之间信道特征的调整,因此,第二码本为RIS的出射侧码本。可选的,第一码本和/或第二码本可以是网络设备指示的,或者,可以是根据第三码本解耦确定的,或者可以是协议定义、预配置或预定义的,本申请不具体要求。其中,第三码本可用于发送端、RIS和接收端之间信道特征的调整,因此,第三码本为RIS的级联码本。基于对RIS的第三码本的解耦原理,本申请中,第一码本中的预编码矩阵是用于改变发送端与RIS之间信号的相位和/或幅度的预编码矩阵,第二码本 中的预编码矩阵是用于改变RIS与接收端之间信号的相位和/或幅度的预编码矩阵,第三码本为第一码本中的预编码矩阵和第二码本中预编码矩阵的结合,可用于改变发送端与RIS之间以及RIS与接收端之间信号的相位和/或幅度。
示例性的,可以对第三码本解耦获得第一码本和第二码本,解耦方式可参见本申请中对于RIS的级联码本的解耦的说明,这里不再赘述。可以理解,本申请中,第一码本中的一个预编码矩阵和RIS的第二码本中的一个预编码矩阵,对应于RIS的第三码本中的一个预编码矩阵。可选的,可以通过对第三码本中的一个预编码矩阵的解耦,获得第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵,和/或,可以将第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵组合后获得第三码本中的一个预编码矩阵。例如,第三码本中的任一个预编码矩阵,为第一码本中的一个预编码矩阵与第二码本中的一个预编码矩阵的乘积。
举例来说,第三码本中的索引为0的预编码矩阵,为根据第一码本中的索引为0的预编码矩阵和第二码本中的索引为0的预编码矩阵结合获得的,或者说,第三码本中的索引为0的预编码矩阵可解耦为第一码本中的索引为0的预编码矩阵和第二码本中的索引为0的预编码矩阵;第三码本中的索引为1的预编码矩阵,为根据第一码本中的索引为0的预编码矩阵和第二码本中的索引为1的预编码矩阵结合获得的,或者说,第三码本中的索引为0的预编码矩阵,可解耦为第一码本中的索引为0的预编码矩阵和第二码本中的索引为1的预编码矩阵;第三码本中的索引为1的预编码矩阵,为根据第一码本中的索引为1的预编码矩阵和第二码本中的索引为0的预编码矩阵结合获得的,或者说,第三码本中的索引为1的预编码矩阵,为根据第一码本中的索引为0的预编码矩阵和第二码本中的索引为1的预编码矩阵结合获得的,以此类推。
本申请中,第一预编码矩阵可以是根据第一信号对应的信道测量信息确定的。其中,可由RIS接收第一信号并对第一信号进行测量,获得第一信号对应的信道测量信息。可选的,信道测量信息可包括CSI。
举例来说,第一信号对应的信道测量信息可以包括根据多个预编码矩阵接收第一信号所获得的信道测量结果,如参考信号接收功率(reference signal received power,RSRP)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等。
此外,第一信号对应的信道测量信息可以包括根据信道测量结果所确定的具有最佳信道质量的预编码矩阵的时间或顺序指示信息(以下称具有最佳信道质量的预编码矩阵的时间为时间指示信息,称具有最佳信道质量的预编码矩阵的顺序指示信息为顺序指示信息)。为了降低开销,此时信道测量信息可不包括信道测量结果,或者,仅包括具有最佳信道质量的预编码矩阵的信道测量结果。
可以理解,由于RIS通过多个预编码矩阵接收或反射信号,因此,信号对应的信道测量结果可以包括多个信道测量值。该多个信道测量值可对应不同的时间(或时间单元),信道测量值对应的时间即RIS采用信道测量值对应的预编码矩阵的时间。
其中,时间指示信息例如可包括信道测量结果对应的时间单元的索引。本申请中,时间单元可包括时隙或符号等时间长度,不具体限定。
顺序指示信息可包括对应的信道测量结果在第一信号对应的多个信道测量结果中的时间顺序。
以RSRP为例,可以按照RIS采用预编码矩阵的时间先后顺序对第一信号的接收信号 的RSRP进行编号,并将RSRP最佳的编号作为第一信号对应的信道测量信息。例如,RIS轮询采用5个预编码矩阵,则信道测量结果可包括5个RSRP取值,按照时间顺序将5个RSRP取值分别编号为1-5,如果编号1的RSRP最佳,则顺序指示信息为编号1。此外,时间指示信息可包括最佳RSRP所对应的时隙编号。
可选的,第一信号对应的信道测量信息还可包括该最佳信道质量的信道质量指示(channel quality indication,CQI)等信道参数。
由于RIS在采用第一码本中的不同的预编码矩阵时,RIS的RIS单元的幅度和/或相位的调整不同,因此,在RIS采用不同的预编码矩阵时接收的第一信号的信道测量信息会存在变化,导致第一信号在到达RIS时的信道发生变化。也就是说,第一信号对应的信道测量信息存在变化,因此根据第一信号对应的信道测量信息可以确定RIS的第一码本中令信道质量最好的预编码矩阵(即第一预编码矩阵),来提高RIS的入射侧信道质量。
在一种可能的实现方式中,如果RIS具备信号测量和根据信道测量信息确定最佳预编码矩阵的能力,则当RIS接收第一信号后,RIS可以通过信号测量确定第一信号对应的信道测量信息。例如,RIS可以通过信道测量,获得采用第一码本中的不同预编码矩阵时第一信号的信道测量结果,或根据信道测量结果确定时间指示信息或顺序指示信息。进一步RIS还可根据第一信号对应的信道测量信息选择多个预编码矩阵中信道质量最好的预编码矩阵作为第一预编码矩阵。
此外可选的,还可由RIS向网络设备(如发送端或接收端)发送第一预编码矩阵的指示信息。本申请中,预编码矩阵的指示信息可包括预编码矩阵在码本中的索引。此外,预编码矩阵的指示信息还可包括预编码矩阵对应的波束的索引。预编码矩阵与波束之间的映射关系可以是网络设备或RIS指示的,或者可以是通过协议定义、预配置或预定义的方式确定的。
在另一种可能的实现方式中,RIS可将第一信号对应的信道测量信息发送至网络设备(如发送端或接收端),并由网络设备根据第一信号对应的信道测量信息和RIS接收第一信号时采用的第一码本中的多个预编码矩阵的信息,从第一码本的多个预编码矩阵中确定第一预编码矩阵。
可选的,RIS接收第一信号时采用的预编码矩阵的信息可包括RIS在接收第一信号时采用的该多个预编码矩阵分别的指示信息(如索引),或包括该多个预编码矩阵的使用时间(如时隙)或顺序信息。
本申请中,可由RIS向网络设备发送RIS接收第一信号时采用的预编码矩阵的信息,即在由RIS决定接收第一信号时采用的多个预编码矩阵,和/或决定采用的多个预编码矩阵的时间或顺序后,由RIS向网络设备进行指示;或者,可由网络设备向RIS发送RIS接收第一信号时采用的预编码矩阵的信息,即在由网络设备决定RIS接收第一信号时采用的多个预编码矩阵,和/或决定采用的多个预编码矩阵的时间或顺序后,由网络设备向RIS进行指示。此外,该第一信号时采用的预编码矩阵的信息也可以是协议定义的或通过预配置或预定义方式确定的,比如,该多个预编码矩阵默认为第一码本中的全部预编码矩阵,多个预编码矩阵的使用顺序与预编码矩阵的索引大小有关。
可选的,S801之前,网络设备还可向RIS发送第一指示信息。该第一指示信息可用于指示RIS通过该第一码本中的多个预编码矩阵接收该第一信号。可选的,该第一指示信息中可包括RIS接收第一信号时采用的预编码矩阵的信息,因此,网络设备已知RIS接收第 一信号时采用的预编码矩阵的信息。
以信道测量结果包括RSRP为例,在第一信号对应的信道测量信息包括信道测量结果时,网络设备可根据第一信号对应的RSRP确定最佳的RSRP,为RIS按照时间顺序采用的第x个预编码矩阵接收第一信号时的RSRP。网络设备根据RIS接收第一信号时采用的预编码矩阵的信息可以获知RIS采用第一码本中具有哪些索引的预编码矩阵接收第一信号,以及获知RIS这些预编码矩阵的时间或先后顺序,因此可以获知RIS按照时间顺序采用的第x个预编码矩阵在第一码本中的索引,即确定第一预编码矩阵。其中,x为正整数。
在第一信号对应的信道测量信息包括顺序指示信息时,RIS接收第一信号时采用的预编码矩阵为第一码本中索引为0、1、2、3和4的预编码矩阵,且5个预编码矩阵时间上的先后使用顺序为5、4、3、2和1,即RIS按照索引由大到小的顺序先后采用以上5个预编码矩阵接收第一信号。相应的,RSI测得第一信号的RSRP后,向网络设备发送根据RSRP确定的顺序指示信息,网络设备接收顺序指示信息,并根据顺序指示信息从第一码本中索引为0、1、2、3和4的预编码矩阵中确定第一预编码矩阵。其中,为了降低开销,顺序指示信息只需要反馈信道质量最好的信道测量信息的时间顺序编号,时间顺序编号例如是n,n=1、2、3、4或5,表示RIS在采用5个预编码矩阵中的第n个预编码矩阵时的信道质量最好。例如,如果RIS通过索引为0的预编码矩阵接收第一信号所获得的RSRP最佳,则第一信号的信道质量信息中可包括顺序指示信息,该顺序指示信息的取值为5,则网络设备可确定索引为0的预编码矩阵为第一预编码矩阵。
可选的,在由网络设备确定第一预编码矩阵后,还可由网络设备向RIS发送第一预编码矩阵的指示信息,使得RIS获知该第一预编码矩阵。
基于S801,可由RIS和/或网络设备确定RIS的入射侧权值,即确定第一预编码矩阵。可以理解,在RIS采用第一预编码矩阵接收来自于发送端的信号时,发送端与RIS之间的信道质量最佳。
S802:RIS通过第三码本中的多个预编码矩阵向接收端反射第二信号,该第二信号来自于所述发送端。
本申请中,RIS通过第三码本中的多个预编码矩阵向接收端反射信号,是指RIS轮询采用该多个预编码矩阵对应的反射元件的配置来改变RIS单元的相位和/或幅度,并通过具有不同RIS单元的相位和/或幅度的RIS单元,将来自于发送端的信号向接收端反射。
其中,该第二信号对应的信道测量信息用于确定第二预编码矩阵,该第二预编码矩阵属于第二码本。可以理解,RIS反射第二信号时采用的第三码本中的多个预编码矩阵,对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,该第二码本中的多个预编码矩阵包括该第二预编码矩阵。
可选的,第三码本中的多个预编码矩阵可以是根据第一预编码矩阵确定的。如前述,第三码本中的任一预编码矩阵可解耦为第一码本中的一个预编码矩阵和第二码本中的一个预编码矩阵的。在S802中,第三码本中的多个预编码矩阵解耦后获得的第一码本中的预编码矩阵为第一预编码矩阵,或者可以说,该第三码本中的多个预编码矩阵为第一预编码矩阵分别与第二码本中的多个预编码矩阵结合所获得的。
可以理解,在通过S801确定第一预编码矩阵后,S802中RIS可以轮询采用该第三码本中的多个预编码矩阵反射第二信号,由于该多个预编码矩阵均对应于第一预编码矩阵,且对应于第二码本中的多个预编码矩阵,因此,根据第二信号对应的信道测量信息可以确 定第二预编码矩阵,该第二预编码矩阵包括在该第二码本中的多个预编码矩阵。
其中,第二信号对应的信道测量信息仅体现与接收端之间的信道变化,该信道变化是由于RIS采用第三码本中的不同预编码矩阵反射第二信号所导致的。具体来说,该第三码本中的多个预编码矩阵对应于第一码本中的一个预编码矩阵(即第一预编码矩阵)和第二码本中的多个预编码矩阵,因此多个预编码矩阵对应的RIS入射侧相位和幅度不变,因此在发送端与RIS之间的信道不存在由于RIS采用第一码本中不同预编码矩阵对应的相位和/或幅度参数而产生变化,而在RIS与接收端之间的信道因为RIS分别采用第二码本中的多个预编码矩阵对应的相位和/或幅度参数而存在变化,即该信道变化是因为RIS的出射侧预编码矩阵(或相位和/或幅度参数)变化导致的,因此第二信号对应的信道测量信息能够确定令RIS与接收端之间的信道质量最佳的RIS的出射侧预编码矩阵(或相位和/或幅度参数)。
其中,第二信号对应的信道测量信息可参见S801中对于第一信号对应的信道测量信息的描述。例如,第二信号对应的信道测量信息可包括第二信号对应的信道测量结果,或包括根据第二信号对应的信道测量结果确定的时间指示信息或顺序指示信息。
本申请中,可由接收端确定第二信号对应的信道测量信息。例如,在下行通信中,可由终端设备接收RIS反射的第二信号,并确定第二信号对应的信道测量信息。在上行通信中,可由网络设备接收RIS反射的第二信号,并确定第二信号对应的信道测量信息。
示例性的,可由接收端接收第二信号,并通过测量获得第二信号对应的信道测量信息。
可选的,还可由接收端或发送端根据第二信号对应的信道测量信息确定第二预编码矩阵,例如,由接收端根据第二信号对应的信道测量信息,以及第二码本中的多个预编码矩阵的信息,从第二码本的多个预编码矩阵中确定第二预编码矩阵,其中,该第二码本中的多个预编码矩阵的信息和第一预编码矩阵对应于第三码本中的多个预编码矩阵。又如,也可由接收端将第二信号对应的信道测量信息发送至发送端,从而由发送端根据第二信号对应的信道测量信息,以及第二码本中的多个预编码矩阵的信息,从第二码本的多个预编码矩阵中确定第二预编码矩阵。
下面结合表2对第二码本中的多个预编码矩阵的信息进行说明。
例如,第一预编码矩阵在第一码本中的索引为0,第二码本中的多个预编码矩阵分别的指示信息包括第二码本中的多个预编码矩阵的索引,该索引分别为0、1、2、3和4。索引0、1、2、3和4的预编码矩阵分别对应于第三码本中的索引为10、9、8、7和6的预编码矩阵,RIS采用第三码本中的索引为10、9、8、7和6的预编码矩阵接收第二信号的先后使用顺序为5、4、3、2和1。可选的,该示例中,第一预编码矩阵、第二码本中的多个预编码矩阵的索引、第三码本中多个预编码矩阵的索引,以及使用顺序信息之间的对应关系如表2所示。
表2
Figure PCTCN2022115644-appb-000007
Figure PCTCN2022115644-appb-000008
可选的,以上第二码本中的多个预编码矩阵的信息中,可包括第二码本中的多个预编码矩阵分别的指示信息(如索引),如表2所示的第2行内容。
第二码本中的多个预编码矩阵的信息中,还可包括与第一预编码矩阵和该第二码本中的多个预编码矩阵所对应的第三码本中的预编码矩阵的指示信息(如索引),如表2中第3行的内容。
第二码本中的多个预编码矩阵的信息中,还可包括第一预编码矩阵和该第二码本中的多个预编码矩阵以及第三码本中的多个预编码矩阵之间的对应关系,如表2中第1至3行的内容,或者,包括第2行至第3行的内容,来表示第二码本中的该多个预编码矩阵与该第三码本中的该多个预编码矩阵之间的对应关系。
第二码本中的多个预编码矩阵的信息中,还可包括第二码本中的多个预编码矩阵对应的使用时间信息或使用顺序信息。以使用顺序信息为例,使用顺序信息可用于指示该第三码本中的该多个预编码矩阵的索引与使用顺序编号之间的对应关系,例如包括表2中第2行及第4行的内容,以指示第二码本中的预编码矩阵的使用顺序编号。又如,使用顺序信息可包括第3行及第4行的内容,以指示第二码本中多个预编码矩阵的索引与使用顺序编号之间的对应关系,或包括第2行至第4行的内容。
此外,第二码本中的多个预编码矩阵的信息还可包括第一预编码矩阵和第二码本中的多个预编码矩阵之间的对应关系,如表2所示的第1行和第2行内容。
可选的,使用时间信息可以是RIS反射第二信号时采用第三码本中的预编码矩阵的时间单元的索引。例如,表2中的使用顺序编号可替换为时间单元索引,或者,在表2中增加一行,用于携带时间单元索引。使用顺序信息可根据使用时间信息确定。
示例性的,第二码本中的多个预编码矩阵的信息可包括表2中第1至4行的内容,或包括表2中第2至4行的内容,或包括第2至3行的内容及第3至4行的内容等等,不再举例。
以第二码本中的多个预编码矩阵的信息包括表2中的第2行和第4行内容为例,在根据第二信号对应的信道测量信息确定第三码本中的最佳预编码矩阵的顺序指示信息后,可根据第2行和第4行内容确定第三码本中的最佳预编码矩阵对应的第二码本中的预编码矩阵,该预编码矩阵即第二预编码矩阵。
本申请中,可由RIS向网络设备发送该第二码本中的多个预编码矩阵的信息,即在由RIS决定反射第二信号所采用的多个预编码矩阵,和/或决定采用的多个预编码矩阵的时间或顺序后,由RIS向网络设备进行指示;或者,可由网络设备向RIS发送RIS该第二码本中的多个预编码矩阵的信息,即在由网络设备决定RIS反射第二信号所采用的多个预编码矩阵,和/或决定采用的多个预编码矩阵的时间或顺序后,由网络设备向RIS进行指示。此外,该第二码本中的多个预编码矩阵的信息也可以是协议定义的或通过预配置或预定义方式确定的,比如,该多个预编码矩阵默认为第二码本中的全部预编码矩阵,第三码本中多个预编码矩阵的使用顺序与预编码矩阵的索引大小有关。
可选的,在S802之前,网络设备还可向RIS发送第二指示信息。该第二指示信息可用于指示RIS通过该第三码本中的多个预编码矩阵接收该第一信号。可选的,该第二指示 信息中可包括第二码本中的多个预编码矩阵的信息,其中,该第二码本中的多个预编码矩阵的信息和第一预编码矩阵对应于第三码本中的多个预编码矩阵,因此,网络设备已知该第二码本中的多个预编码矩阵的信息。或者,第二指示信息中可包括该第二码本中的该多个预编码矩阵的指示信息。
示例性的,第二指示信息可包括第一预编码矩阵的指示信息和/或第二码本中的多个预编码矩阵的指示信息,由RIS根据第一预编码矩阵的指示信息和第二码本中的多个预编码矩阵的指示信息确定该第三码本中的该多个预编码矩阵,因此,不需要RIS提前配置有第三码本中的全部预编码矩阵,只需要RIS支持根据第一码本中的预编码矩阵和第二码本中的预编码矩阵确定第三码本中的预编码矩阵。例如,RIS可以支持根据第一码本中的预编码矩阵和第二码本中的预编码矩阵通过查表或计算等方式确定第三码本中的预编码矩阵。可选的,第二码本中的多个预编码矩阵也可以是预配置或预定义或协议定义的,例如为第二码本中的全部预编码矩阵。第一预编码矩阵的指示信息也可独立于第二指示信息发送,不具体限定。
此外,第二指示信息也可以包括该第三码本中的该多个预编码矩阵的指示信息,因此不需要RIS做处理,可以降低RIS的处理复杂度。
作为一种可能的确定第二预编码矩阵的实现方式,在接收端包括网络设备时,网络设备可获得该第二码本中的多个预编码矩阵的信息。此外,在接收端包括终端设备时,终端设备可从网络设备获得第二码本中的多个预编码矩阵的信息。
以信道测量结果包括RSRP为例,在第二信号对应的信道测量信息包括信道测量结果时,接收端可根据第二信号对应的RSRP,确定最佳的RSRP为RIS按照时间顺序采用的第y个第三码本中的预编码矩阵反射第二信号时的RSRP。进一步根据表2中第2至4行的内容,接收端可确定采用按照时间顺序采用的第y个第三码本中的预编码矩阵所对应的第二码本中的预编码矩阵的索引,从而确定第二预编码矩阵中具有该索引的预编码矩阵为第二预编码矩阵。
同理,在第一信号对应的信道测量信息包括顺序指示信息,且顺序指示信息指示y时,表示RIS按照时间顺序采用的第y个第三码本中的预编码矩阵反射第二信号时的RSRP为最佳的RSRP。进一步根据表2中第2至4行的内容,接收端可确定采用按照时间顺序采用的第y个第三码本中的预编码矩阵所对应的第二码本中的预编码矩阵的索引,从而确定第二预编码矩阵中具有该索引的预编码矩阵为第二预编码矩阵。
作为另一种可能的确定第二预编码矩阵的实现方式,可选的,在接收端包括终端设备时,终端设备可向网络设备(即发送端)发送第二信号对应的信道测量信息,使得网络设备根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵。其中,网络设备根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵的方式,可参照网络设备作为接收端时确定第二预编码矩阵的方式,不再赘述。
作为另一种可能的确定第二预编码矩阵的实现方式,可选的,在接收端包括终端设备时,也可以由网络设备(即发送端)或RIS向终端设备发送第二码本中的多个预编码矩阵的信息,因此可以由终端设备根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵。其中,终端设备根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵的方式,可参照网络设备作为接 收端时确定第二预编码矩阵的方式,不再赘述。
作为另一种可能的确定第二预编码矩阵的实现方式,还可由接收端向RIS发送第二信号对应的信道测量信息,使得RIS根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵。其中,RIS根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵的方式,可参照网络设备作为接收端时确定第二预编码矩阵的方式,不再赘述。
因此本申请中,可由接收端、发送端或RIS根据第二信号对应的信道测量信息确定第二预编码矩阵。其中,如果由接收端或发送端确定第二预编码矩阵,则可由接收端或发送端将第二预编码矩阵的指示信息发送至RIS,使得RIS可根据来自于接收端或发送端的第二预编码矩阵的指示信息,确定第二预编码矩阵。或者说,可由终端设备、网络设备或RIS根据第二信号对应的信道测量信息确定第二预编码矩阵。如果由终端设备或网络设备确定第二预编码矩阵,还由终端设备或网络设备将第二预编码矩阵的指示信息发送至RIS,使得RIS可根据来自于终端设备或网络设备的第二预编码矩阵的指示信息,确定第二预编码矩阵。
基于图8所示流程,RIS可接收第一信号并反射第二信号,其中,第一信号对应的信道测量信息和第二信号的信道测量信息可分别用于确定第一预编码矩阵和第二预编码矩阵。第一预编码矩阵和第二预编码矩阵对应于第三码本中的第三预编码矩阵,因此可实现RIS的第三码本中的预编码矩阵的确定。
其中,根据第一预编码矩阵和第二预编码矩阵确定第三预编码矩阵的方式,与解耦第三码本获得第一码本和第二码本的方式相对应。可选的,第三预编码矩阵可根据第一预编码矩阵和第二预编码矩阵相乘获得。此外,对于图6所示解耦方式,也可根据第一预编码矩阵和第二预编码矩阵相加获得第三预编码矩阵。
可选的,本申请中,RIS不需要配置有第三码本,只需要在获知第一预编码矩阵和第三预编码矩阵后,根据第一预编码矩阵和第二预编码矩阵确定第三预编码矩阵中的对于的预编码矩阵。
可以理解,图8所示流程还可包括:RIS将RIS的码本信息发送至网络设备。其中,RIS的码本信息包括但不限于:RIS的第一码本、第二码本、第三码本、解耦第三码本获得第一码本和第二码本的方式信息和预编码矩阵对应的波束的扫描范围中的至少一项。其中,波束的扫描范围可指示RIS在配置所有预编码矩阵后波束覆盖的最大范围。波束的扫描范围例如是水平120度、垂直60度。
可选的,在S801之前,可由网络设备向RIS、发送端或接收端中的至少一个发送配置信息,用于配置RIS执行以上图8所示方法。或者,也可通过预配置、预定义或协议定义等方式,配置RIS执行以上图8所示方法。
此外,在S801之前,发送端可以采用与RIS对齐的波束,如采用波束方向与RIS位置对齐的波束。例如,在发送端的发送码本中包括多个预编码矩阵,发送端可以采用与RIS之间信道质量最好的预编码矩阵向RIS发送信号(包括但不限于第一信号和第二信号)。或者,在图8所示流程中,发送端也可以采用发送码本中的任一预编码矩阵,在图8所示流程确定第一预编码矩阵和/或第二预编码矩阵之后,再确定发送端的发送码本中的最佳预编码矩阵。同理,在S802之前,接收端可采用与RIS对齐的波束接收信号(包括但不限于第一信号和第二信号),或者,在图8所示流程之后,接收端可采用接收端的接收码本 中的任一预编码矩阵接收信号。
下面以上行通信和下行通信为例,介绍基于图8所示流程可能的实现方式。
如图9所示,在下行通信中,发送端为网络设备,接收端为终端设备。当RIS具有信道测量能力时,网络设备可向RIS发送第一指示信息,用于指示RIS采用第一码本(即RIS的网络设备侧码本)中的多个预编码矩阵接收第一信号。网络设备还可向RIS发送第一信号,RIS通过第一码本中的多个预编码矩阵接收第一信号,并根据第一信号对应的信道测量信息,从该多个预编码矩阵中确定第一预编码矩阵。RIS还可向网络设备发送第一预编码矩阵的指示信息,相应的,网络设备可根据该指示信息确定第一预编码矩阵。进一步,网络设备可在确定第一预编码矩阵后,根据第一预编码矩阵确定第三码本(即RIS的级联码本)中的多个预编码矩阵,该多个预编码矩阵对应于第一预编码矩阵和第二码本(即RIS的终端设备侧码本)中的多个预编码矩阵。网络设备进一步可发送第二指示信息,用于指示RIS采用第三码本中的多个预编码矩阵接收第一信号,该多个预编码矩阵对应于第一预编码矩阵和第二码本中的多个预编码矩阵。网络设备还可向RIS发送第二信号,RIS通过第三码本中的多个预编码矩阵向终端设备反射第二信号。终端设备接收第二信号,并确定第二信号对应的信道测量信息。终端设备向网络设备发送第二信号对应的信道测量信息,网络设备根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵。示例性的,第二码本中的多个预编码矩阵的信息可包括如表2所示内容。网络设备进一步可以向RIS发送第二预编码矩阵的指示信息,相应的,RIS可根据该指示信息确定第二预编码矩阵。网络设备还可向RIS发送第一预编码矩阵的指示信息以及第二预编码矩阵的指示信息,以指示RIS采用第一预编码矩阵和第二预编码矩阵对应的预编码矩阵(即第三预编码矩阵)传输网络设备和终端设备之间的信号。
此外可选的,网络设备还可向RIS发送控制信息,用于指示RIS接收第一信号时采用第一码本中的多个预编码矩阵的时间或顺序。可选的,网络设备还可向RIS发送第一信号占用的时频资源的指示信息,RIS可根据该指示信息确定第一信号占用的时频资源,以根据该时频资源接收第一信号。
可选的,网络设备可以在发送第二信号之前,向RIS发送控制信息,用于指示RIS反射第二信号时采用第三码本中的多个预编码矩阵的时间或顺序。可选的,网络设备还可向RIS发送第二信号占用的时频资源的指示信息,RIS可根据该指示信息确定第二信号占用的时频资源的指示信息,以根据该时频资源反射第二信号。
如图10所示,上行通信中,发送端为终端设备,接收端为网络设备。当RIS具有信道测量能力时,网络设备可向RIS发送第一指示信息,用于指示RIS采用第一码本(即RIS的终端设备侧码本)中的多个预编码矩阵接收第一信号。可选的,网络设备还可向终端设备发送第一信号占用的时频资源的指示信息,以便终端设备通过该时频资源发送第一信号。终端设备可以向RIS发送第一信号,RIS根据第一码本中的多个预编码矩阵接收第一信号,并根据第一信号对应的信道测量信息,从该多个预编码矩阵中确定第一预编码矩阵。RIS还可向网络设备发送第一预编码矩阵的指示信息,相应的,网络设备可根据该指示信息确定第一预编码矩阵。进一步,网络设备可在确定第一预编码矩阵后,根据第一预编码矩阵确定第三码本(即RIS的级联码本)中的多个预编码矩阵,该多个预编码矩阵对应于第一预编码矩阵和第二码本(即RIS的网络设备码本)中的多个预编码矩阵。网络设 备还可向RIS发送第二指示信息,用于指示RIS采用第三码本中的多个预编码矩阵接收第一信号,该多个预编码矩阵对应于第一预编码矩阵和第二码本中的多个预编码矩阵。可选的,网络设备还可向终端设备发送第二信号占用的时频资源的指示信息,以便终端设备通过该时频资源发送第二信号。终端设备还可发送第二信号,RIS通过第三码本中的多个预编码矩阵向网络设备反射第二信号。相应的,网络设备接收第二信号,并确定第二信号对应的信道测量信息。网络设备进一步可根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵。示例性的,第二码本中的多个预编码矩阵的信息可包括如表2所示内容。网络设备进一步可以向RIS发送第二预编码矩阵的指示信息,以指示RIS采用第一预编码矩阵和第二预编码矩阵对应的预编码矩阵(即第三预编码矩阵)传输网络设备和终端设备之间的信号。
此外可选的,网络设备还可向RIS发送控制信息,用于指示RIS采用第一码本中的多个预编码矩阵接收第一信号的时间或顺序。可选的,网络设备还可向RIS发送第一信号占用的时频资源的指示信息,RIS可根据该指示信息确定第一信号占用的时频资源,并根据该时频资源接收第一信号。可选的,在终端设备发送第二信号之前,还可由网络设备向RIS或终端设备发送控制信息,用于指示RIS采用第二码本中的多个预编码矩阵反射第二信号的时间或顺序。可选的,网络设备还可向RIS发送第二信号占用的时频资源的指示信息,RIS可根据该指示信息确定第二信号占用的时频资源,并根据该时频资源反射第二信号。
可选的,图9和图10所示流程中,RIS还可向网络设备上报能力信息,能力信息可指示RIS具备信道测量和/或确定预编码矩阵的能力。
本申请实施例还提供另一种通信方法,如图11所示。与图8所示通信方法的区别在于,图11所示流程中,不要求RIS具备测量能力,并且,不要求先确定RIS的入射侧最佳码本。而图8所示流程中,先确定第一预编码矩阵后确定第二预编码矩阵,其中,第一预编码矩阵包括在RIS的入射侧码本中,第二预编码矩阵包括在RIS的出射侧码本中。
如图11所示,本申请实施例提供的一种通信方法可包括以下步骤:
S1101:RIS通过第一组预编码矩阵向接收端反射第三信号,第三信号来自于发送端,第三信号对应的信道测量信息用于确定第四预编码矩阵。
S1101中,该第一组预编码矩阵为第三码本中的多个预编码矩阵。其中,该第一组预编码矩阵对应于第四码本中的多个预编码矩阵和第五码本中的一个预编码矩阵,该第四码本中的该多个预编码矩阵包括该第四预编码矩阵。也就是说,可根据第三信号对应的信道测量信息从该第四码本中的该多个预编码矩阵中确定第四预编码矩阵。
本申请中,第四码本和第五码本分别是RIS的第一码本和第二码本中的一个,且第四码本与第五码本不同。因此第四预编码矩阵为第一码本中的一个预编码矩阵或第二码本中的一个预编码矩阵。其中,如S801中的描述,第一码本可以用于发送端和RIS之间信道特征的调整,或者可以说,该第一码本为RIS的入射侧码本。第二码本为用于RIS和接收端之间信道特征的调整,或者可以说,第二码本为RIS的出射侧码本。第一码本和第二码本用于确定第三码本。第三码本用于发送端、RIS和接收端之间信道特征的调整,或者可以说,第三码本为RIS的级联码本。
可以理解,第一组预编码矩阵对应于第四码本中的多个预编码矩阵和第五码本中的一个预编码矩阵是指,第一组预编码矩阵中的多个预编码矩阵分别与第五码本中的一个预编码矩阵和第四码本中的多个预编码矩阵中的一个对应。
参见本申请对于第一信号或第二信号对应的信道测量信息的描述,第三信号对应的信道测量信息可包括第三信号的信道测量结果,或包括根据第三信号的信道测量结果确定的时间指示信息或顺序指示信息。
此外,可由RIS、接收端或发送端根据第三信号对应的信道测量信息和第四码本中的多个预编码矩阵的信息确定第四预编码矩阵。可以理解,由RIS、接收端或发送端根据第三信号对应的信道测量信息和第四码本中的多个预编码矩阵的信息确定第四预编码矩阵的方式,可参见前述RIS、接收端或发送端根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵的说明,不再赘述。
其中,参见前述对于第二码本的多个预编码矩阵的信息的说明,第四码本中的多个预编码矩阵的信息可包括第四码本中的多个预编码矩阵分别的指示信息(如索引)、第五码本中的该预编码矩阵和该第四码本中的多个预编码矩阵以及第三码本中的多个预编码矩阵之间的对应关系,或第四码本中的多个预编码矩阵对应的使用时间信息或使用顺序信息。例如,将表2中第一预编码矩阵在第一码本中的索引可替换为第五码本中的该预编码矩阵的索引,以及,将表2中第二码本中多个预编码矩阵的索引可替换为第四码本中多个预编码矩阵的索引,则第四码本中的多个预编码矩阵的信息可包括替换后的表2。
可选的,如果由接收端或发送端确定第四预编码矩阵,则还可由网络设备向RIS发送第四预编码矩阵的指示信息,使得RIS根据该指示信息确定第四预编码矩阵。如果由RIS确定第四预编码矩阵,则可选的,可由RIS向网络设备发送第四预编码矩阵的指示信息,使得网络设备根据该指示信息确定第四预编码矩阵。
可选的,在S1101之前,可由网络设备向RIS发送第三指示信息,用于指示RIS通过第一组预编码矩阵向接收端反射第三信号。其中,第三指示信息可包括第一组预编码矩阵的指示信息(如第一组预编码矩阵中的每个预编码矩阵在第三码本中的索引)。或者,第三指示信息可包括该第四码本中的多个预编码矩阵的指示信息和/或第五码本中的一个预编码矩阵的指示信息,因此可由RIS根据多个预编码矩阵的指示信息和第五码本中的一个预编码矩阵的指示信息确定第一组预编码矩阵。第四码本中的多个预编码矩阵也可以是预配置或预定义或协议定义的,例如为第四码本中的全部预编码矩阵。第五码本中的一个预编码矩阵也可以是预配置或预定义或协议定义的,例如为一个默认的预编码矩阵。
S1102:RIS通过第二组预编码矩阵向接收端反射第四信号,第四信号来自于发送端,第四信号对应的信道测量信息用于确定第五预编码矩阵。
S1102中,该第二组预编码矩阵为第三码本中的多个预编码矩阵。其中,该第二组预编码矩阵对应于第四预编码矩阵和第五码本中的多个预编码矩阵,该第五码本中的该多个预编码矩阵包括该第五预编码矩阵。也就是说,可根据第四信号对应的信道测量信息从该第五码本中的该多个预编码矩阵中确定第五预编码矩阵。
可以理解,第二组预编码矩阵对应于第四预编码矩阵和第五码本中的多个预编码矩阵是指,第二组预编码矩阵中的多个预编码矩阵分别与第四预编码矩阵和第五码本中的多个预编码矩阵中的一个对应。
参见本申请对于第一信号或第二信号对应的信道测量信息的描述,第四信号对应的信道测量信息可包括第四信号的信道测量结果,或包括根据第四信号的信道测量结果确定的时间指示信息或顺序指示信息。
此外,可由RIS、接收端或发送端根据第四信号对应的信道测量信息和第五码本中的 多个预编码矩阵的信息确定第五预编码矩阵。可以理解,由RIS、接收端或发送端根据第四信号对应的信道测量信息和第五码本中的多个预编码矩阵的信息确定第五预编码矩阵的方式,可参见前述RIS、接收端或发送端根据第二信号对应的信道测量信息和第二码本中的多个预编码矩阵的信息确定第二预编码矩阵的说明,不再赘述。
其中,参见前述对于第二码本的多个预编码矩阵的信息的说明,第五码本中的多个预编码矩阵的信息可包括第五码本中的多个预编码矩阵分别的指示信息(如索引)、第四预编码矩阵和该第五码本中的多个预编码矩阵以及第三码本中的多个预编码矩阵之间的对应关系,或第五码本中的多个预编码矩阵对应的使用时间信息或使用顺序信息。例如,将表2中第一预编码矩阵在第一码本中的索引可替换为第四预编码矩阵在第四码本中的索引,以及,将表2中第二码本中多个预编码矩阵的索引可替换为第五码本中多个预编码矩阵的索引,则第五码本中的多个预编码矩阵的信息可包括替换后的表2。
可选的,如果由接收端或发送端确定第五预编码矩阵,则还可由网络设备向RIS发送第五预编码矩阵的指示信息,使得RIS根据该指示信息确定第五预编码矩阵。如果由RIS确定第五预编码矩阵,则可选的,可由RIS向网络设备发送第五预编码矩阵的指示信息,使得网络设备根据该指示信息确定第五预编码矩阵。
可选的,在S1102之前,可由网络设备向RIS发送第四指示信息,用于指示RIS通过第二组预编码矩阵向接收端反射第四信号。其中,第四指示信息可包括第二组预编码矩阵的指示信息(如第二组预编码矩阵中的每个预编码矩阵在第三码本中的索引)。或者,第四指示信息可包括第四预编码矩阵的指示信息和/或该第五码本中的多个预编码矩阵的指示信息,因此可由RIS根据第四预编码矩阵的指示信息和该第五码本中的多个预编码矩阵的指示信息确定第二组预编码矩阵。第五码本中的多个预编码矩阵也可以是预配置或预定义的,例如为第五码本中的全部预编码矩阵。第四预编码矩阵的指示信息也可独立于第四指示信息发送,不具体限定。
基于图11所示流程,RIS可通过第一组预编码矩阵反射第三信号,并通过第二组预编码矩阵反射第四信号,其中,第三信号对应的信道测量信息和第四信号的信道测量信息可分别用于确定第四预编码矩阵和第五预编码矩阵。第四预编码矩阵和第五预编码矩阵可用于确定第六预编码矩阵,因此可实现RIS的第三码本中的预编码矩阵的确定。
其中,根据第四预编码矩阵和第五预编码矩阵确定第六预编码矩阵的方式,与解耦第三码本获得第一码本和第二码本的方式相对应。
可选的,图11所示流程中,可由网络设备向RIS发送信息,用于指示第四码本为第一码本或第二码本,或者,用于指示第五码本为第一码本或第五码本。此外,RIS也可采用默认方式确定第四码本为第一码本或第二码本,例如,默认RIS先扫描第一码本,即第四码本为第一码本,则网络设备只需要指示第一码本中需要扫描的索引即可。
可选的,网络设备可以在第三指示信息和/或第四指示信息中携带信息,用于指示第四码本为第一码本或第二码本,或者,用于指示第五码本为第一码本或第五码本。
可以理解,图11所示流程还可包括:RIS将RIS的码本信息发送至网络设备。其中,RIS的码本信息包括但不限于:RIS的第一码本、第二码本、第三码本、解耦第三码本获得第一码本和第二码本的方式信息、波束的扫描范围。
可选的,在图11所示流程中,还可由网络设备向RIS指示反射第三信号和/或第四信号时需要扫描(或需要重复(repetition off))的码本,和/或,指示不需要扫描(或称为需 要固定,或不需要重复(repetition on))的码本。其中,在反射第三信号时需要扫描的码本即为第四码本,在反射第三信号时不需要扫描的码本即为第五码本;在反射第四信号时需要扫描的码本即为第五码本,在反射时不需要扫描的码本即为第四码本。例如,在S1101之前,网络设备可向RIS发送用于指示不需要扫描入射侧码本的信息,则第四码本为出射侧码本,第五码本为入射侧码本。又如,在S1105之前,网络设备可向RIS发送用于指示不需要扫描出射侧码本的信息,则第五码本为入射侧码本,第四码本为出射侧码本。
此外,也可通过预配置、预定义、协议定义或协商确定等方式,令RIS确定在反射第三信号时需要扫描或不需要扫描的码本,和/或在反射第四信号时需要扫描或不需要扫描的码本。可以理解,RIS在反射第三信号时需要扫描的码本与RIS在反射第四信号时需要扫描的码本不同,这两个码本分别为RIS的入射侧码本和出射侧码本中的一个。
下面以上行通信为例,介绍基于图11所示流程的方法。
如图12所示,上行通信中,发送端为终端设备,接收端为网络设备。RIS可以向网络设备上报RIS的码本信息。网络设备可以向RIS发送控制信息,其中可包括第三指示信息,用于指示RIS通过第一组预编码矩阵向接收端反射第三信号。第三指示信息可包括RIS在反射第三信号时的预编码矩阵的使用时间信息或使用顺序信息,和/或,反射第三信号时需要固定的预编码矩阵的索引。其中,反射第三信号时需要固定的预编码矩阵为第五码本中的一个预编码矩阵。
可选的,控制信息还可包括RIS的入射侧码本和出射侧码本扫描的先后顺序的指示信息。指示信息可用于从第一码本和第二码本中指示第四码本,或用于从第一码本和第二码本中指示第五码本。例如,当该指示信息指示第四码本为第一码本时,则表示先对RIS的入射侧码本进行扫描,后对RIS的出射侧码本进行扫描。
可选的,控制信息还可包括第三信号和/或第四信号占用的时频资源的指示信息,RIS可根据该指示信息确定第三信号和/或第四信号占用的时频资源,以根据该时频资源反射第三信号和/或第四信号。
可选的,在终端设备发送第三信号之前,网络设备还可向终端设备发送第三信号占用的时频资源的指示信息,使得终端设备根据该时频资源发送第三信号。
如图12所示,终端设备可发送第三信号,由RIS通过第一组预编码矩阵向网络设备反射第三信号,其中,第一组预编码矩阵对应于第四码本中的多个预编码矩阵和第五码本中的一个预编码矩阵。相应的,网络设备可接收第三信号,并确定第三信号对应的信道测量信息。网络设备还可根据第三信号对应的信道测量信息和第四码本中多个预编码矩阵的信息,从第四码本中的多个预编码矩阵中确定第四预编码矩阵。
可选的,在确定第四预编码矩阵后,网络设备还可向RIS发送控制信息,其中可包括第四指示信息。第四指示信息可包括RIS在反射第四信号时的预编码矩阵的使用时间信息或使用顺序信息,和/或,反射第四信号时需要固定的预编码矩阵的索引。对于第四信号来说,反射信号时需要固定的预编码矩阵为第四预编码矩阵。
可选的,控制信息还可包括第四信号占用的时频资源的指示信息,RIS可根据该指示信息确定第四信号占用的时频资源,以根据该时频资源反射第四信号。
此外可选的,在终端设备发送第四信号之前,网络设备还可向终端设备发送第四信号占用的时频资源的指示信息。
如图12所示,终端设备还可发送第四信号,RIS通过第二组预编码矩阵反射第四信号,其中,第二组预编码矩阵对应于第四预编码矩阵和第五码本中的多个预编码矩阵。网络设备接收第四信号并确定第四信号对应的信道测量信息。网络设备还可根据第四信号对应的信道测量信息和第五码本中多个预编码矩阵的信息,从第五码本中的多个预编码矩阵中确定第五预编码矩阵。
可选的,网络设备可向RIS发送第四预编码矩阵的指示信息和/或第五预编码矩阵的指示信息。其中,第四预编码矩阵的指示信息可以在网络设备发送包含第四只是信息的控制信息之前发送,也可以在确定第五预编码矩阵后发送,第四预编码矩阵的指示信息还可以包括在该控制信息中,不具体限定。
可以理解,基于图8至图12所示流程,假设第一码本中的多个预编码矩阵的数量为M,且第二码本中的多个预编码矩阵的数量为N,则第三码本中的预编码矩阵的数量为I=M×N,因此,如果RIS分别采用第三码本中的多个预编码矩阵反射发送端与接收端之间的信号,需要分别采用=M×N个预编码矩阵才能完成对于第三码本中的多个预编码矩阵的扫描。而按照以上图8或图11所示方法,RIS只需要通过第一码本中的M个预编码矩阵接收第一信号(即采用M个预编码矩阵),并通过第二码本中的N个预编码矩阵反射第二信号(即采用N个预编码矩阵),总共采用M+N个预编码矩阵,即进行M+N次预编码矩阵扫描,而不需要分别采用第三码本中的I=M×N个预编码矩阵,可以极大的减少扫描次数,降低扫描时长。
如表3所示,以M、N=128为例,图8或图11所示方法进行码本扫描,相比于根据第三码本进行码本扫描的方案,可极大减少扫描预编码矩阵的数量,减少扫描时间。
表3
Figure PCTCN2022115644-appb-000009
可选的,M小于N,例如,M=Y×N,0<Y<1。由于网络设备与RIS之间的位置关系一般较为固定,因此,在解耦级联码本的过程中可适当减少RIS的网络设备侧码本中的预编码矩阵的数量,使得RIS的网络设备侧码本的数量小于RIS的终端设备侧码本的数量。和/或,可减少RIS的网络设备侧码本的扫描范围,使得RIS的网络设备侧码本的扫描范围小于RIS的终端设备侧码本的扫描范围。
本申请实施例还提供另一种通信方法,用于降低RIS的码本扫描过程中的信令开销。
下面以执行主体是第一装置和RIS为例,对该方法进行介绍。其中,第一装置可作为发送端和接收端中的一个。可以理解,本申请中,第一装置与第二装置之间可通过RIS进行通信。例如,第一装置为发送端且第二装置为接收端,或者,第一装置为接收端且第二装置为发送端。
如图13所示,本申请实施例提供的一种通信方法包括以下步骤:
S1301:第一装置获取第一信息。其中,第一信息用于确定第一预编码矩阵和/或第二预编码矩阵,第一预编码矩阵属于第一码本,第二预编码矩阵属于第二码本。
其中如S801中的描述,第一码本中的一个预编码矩阵和RIS的第二码本中的一个预编码矩阵,对应于RIS的第三码本中的一个预编码矩阵。该第一码本可以用于发送端和RIS之间信道特征的调整,即第一码本为RIS的入射侧码本。此外,第二码本用于RIS和接收端之间信道特征的调整,即第二码本为RIS的出射侧码本。可选的,第一码本和/或第二码本可以是网络设备指示的,或者,可以是根据第三码本解耦确定的,或者可以是协议定义、预配置或预定义的,本申请不具体要求。其中,第三码本可用于发送端、RIS和接收端之间信道特征的调整,即第三码本为RIS的级联码本。
其中,第一预编码矩阵和/或第二预编码矩阵可根据第三预编码矩阵和第一信息确定。第三预编码矩阵为第三码本中的一个预编码矩阵。具体来说,RIS可采用第三码本中的多个预编码矩阵反射发送端与接收端之间的信号,该信号对应的信道测量信息可用于从第三码本中的多个预编码矩阵中确定第三预编码矩阵。
S1302:第一装置向RIS发送第二信息,第二信息用于指示第一预编码矩阵和/或第二预编码矩阵。
可选的,第二信息可包括第一预编码矩阵的指示信息(如索引)和/或第二预编码矩阵的指示信息(如索引)。
因此基于图13所示方法,RIS可根据第二信息确定第一预编码矩阵和/或第二预编码矩阵,其中,第一预编码矩阵为RIS的入射侧预编码矩阵,第二预编码矩阵为RIS的出射侧预编码矩阵。由于第二信息仅需要指示第一预编码矩阵和/或第二预编码矩阵,而不需要指示RIS的第三码本中的预编码矩阵,可节省信令开销。
仍以空间上有M个入射波束和N个出射波束需要进行扫描为例,每个入射波束对应于RIS的一个入射侧预编码矩阵,且每个出射波束对应于RIS的一个出射侧预编码矩阵,因此第三码本包括I=M×N个预编码矩阵,因此若指示第三码本中的一个预编码矩阵,存在较大的信令开销。若根据图13所示方法,只需要从M个入射侧预编码矩阵中指示第一预编码矩阵,并且从N个预编码矩阵中指示第二预编码矩阵,能够极大降低信令开销。
如表4所示,以M,N=128为例,图13所示方法指示第一预编码矩阵和第二预编码矩阵,相比于指示RIS的级联码本中的预编码矩阵,至少可节省6比特信令开销,并可采用更低的正交振幅调制(quadrature amplitude modulation,QAM)阶数以提高通信可靠性。
表4
M=128,N=128 指示RIS的级联码本 指示第一预编码矩阵和第二预编码矩阵
空口指示开销 14比特(bits) 8bits
调制阶数 16QAM 8QAM
参考S802中的描述,图13所示的方法中,可由第一装置、RIS或第二装置根据参考信号对应的信道测量信息和RIS反射参考信号时采用的第三码本中的多个预编码矩阵的信息,确定第三预编码矩阵。
其中,参见S802中对于第三码本中的多个预编码矩阵的信息的说明,RIS反射参考信号时采用的第三码本中的多个预编码矩阵的信息可包括RIS反射参考信号时采用的预编码 矩阵的指示信息(如索引)和该多个预编码矩阵的使用时间信息或使用顺序信息。
以第一装置确定第三预编码矩阵为例,第一装置可确定第三预编码矩阵,并根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。其中,第三预编码矩阵可由第一装置或第二装置根据信道测量信息确定。
作为图13所示方法的一种可能的实现方式,在S1301中,第一信息包括第三信息,第三信息指示第一码本、第二码本和第三码本之间的对应关系。第一装置还可获取信道测量信息,并根据该信道测量信息确定第三预编码矩阵,第三预编码矩阵属于第三码本。第一装置还可根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。
可选的,在该实现方式中,可由RIS或第二装置向第一装置发送第三信息,其中,第二装置可从RIS获得第三信息。或者可选的,第一装置可根据协议定义、预配置或预定义方式获得第三信息。其中,信道测量信息可根据对于参考信号的测量获得,参考信号在第一装置和第二装置之间经由RIS传输,RIS采用第三码本中的多个预编码矩阵接收并调制该参考信号。
其中,如S801中的描述,信道测量信息可包括参考信号对应的信道测量结果,如RSRP或SINR等,或者,该信道测量信息可包括根据参考信号对应的信道测量结果所确定的最佳信道质量的时间顺序指示信息。
可选的,参考信号可由第一装置发送,由RIS轮询采用第三码本中的多个预编码矩阵反射该参考信号,并由第二装置接收参考信号。相应的,第一装置可接收来自于第二装置的信道测量信息,信道测量信息由第二装置测量参考信号获得。
或者可选的,参考信号可由第二装置发送,由RIS轮询采用第三码本中的多个预编码矩阵反射参考信号,并由第一装置接收该参考信号。相应的,第一装置可测量参考信号以获得信道测量信息。
可以理解,在该实现方式中,第三信息可包括第一码本中的预编码矩阵、第二码本中的预编码矩阵和第三码本中的预编码矩阵之间的对应关系。或者,第三信息可包括解耦第三码本确定第一码本和第二码本的方式信息,例如包括第一码本、第二码本和第三码本之间满足的函数关系,例如,函数关系例如图6所示。或者,第三信息可包括第一码本中的预编码矩阵、第二码本中的预编码矩阵和第三码本中的预编码矩阵之间满足的函数关系。
作为图13所示实施例的另一种可能的实现方式,S1301中,第一信息用于指示该第一预编码矩阵和/或该第二预编码矩阵,例如,第一信息包括第一预编码矩阵的指示信息(如索引)和/或第二预编码矩阵的指示信息(如索引)。
可选的,在该实现方式中,可由第一装置发送参考信号,由第二装置对参考信号进行测量并确定参考信号对应的信道测量信息,并根据信道测量信息确定第三预编码矩阵。此外,还可由第二装置根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。
另外可选的,在该可能的实现方式中,还可由第二装置发送参考信号,由第一装置对参考信号进行测量并确定参考信号对应的信道测量信息,并由第一装置向第二装置发送参考信号对应的信道测量信息。因此可由第二装置根据信道测量信息确定第三预编码矩阵,并根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。
可选的,该实现方式中,可由第一装置和/或RIS向第二装置发送该第三信息。第三信息可参见前一种可能的实现方式中的描述。
作为一种示例,在图13所示流程中,第一装置为网络设备或网络设备所包括的装置,第二装置为终端设备或终端设备所包括的装置。因此,可由网络设备向RIS指示第一预编码矩阵和/或第二预编码矩阵。
下面以下行通信为例,介绍基于图13所示流程的方法。
如图14所示,在下行通信中,由网络设备向终端设备发送参考信号,这里以图13所示的第一装置为网络设备且第二装置为终端设备为例进行描述。可选的,在发送参考信号之前,RIS可向网络设备发送码本信息。示例性的,码本信息还可包括预编码矩阵对应的波束的扫描范围。对应于S1301,码本信息种包括第三信息。此外,网络设备还可向RIS发送控制信息,其中包括RIS反射参考信号时级联码本中的多个预编码矩阵的使用时间信息或使用顺序信息。另外,也可由RIS向网络设备发送RIS反射参考信号时级联码本中的多个预编码矩阵的使用时间信息或使用顺序信息。
RIS反射参考信号时级联码本中的多个预编码矩阵的使用时间信息或使用顺序信息,例如包括第三码本中的预编码矩阵与采用预编码矩阵的时间单元的索引之间的对应关系。
以时间单元是时隙为例,如表5所示,为一种示例性的预编码矩阵与扫描时隙之间的对应关系。可见,RIS在时隙0至时隙3,RIS分别采用第三码本Φ m,n中的一个预编码矩阵反射参考信号。
表5
时隙 0 1 2 3
Φ m,n 3 1 2 0
其中,Φ m,n表示第三码本中的预编码矩阵,m和n分别为预编码矩阵对应的入射侧波束索引和出射侧波束索引。因此,RIS可以在时隙0采用第三码本中的索引为3的预编码矩阵,在时隙1采用第三码本中索引为1的预编码矩阵,以此类推。
可选的,第三信息可包括如表6所示的预编码矩阵对应关系,该对应关系可用于指示第三码本中的预编码矩阵与第一码本中的预编码矩阵和第二码本中的预编码矩阵之间的对应关系。
表6
Φ m,n 3 1 2 0
Φ mn 1,1 0,1 1,0 0,0
其中,Φ m和Φ n分别表示第一码本中的预编码矩阵和第二码本中的预编码矩阵,m和n分别为预编码矩阵对应的入射侧波束索引和出射侧波束索引。根据表5可知,第三码本中的索引为3的预编码矩阵对应于第一码本中索引为1的预编码矩阵以及第二码本中索引为1的预编码矩阵。可以理解,第三码本中的预编码矩阵可解耦为其对应的第一码本中的预编码矩阵和其对应的第二码本中的预编码矩阵。
此外可选的,表4和表5可合并为一个表,例如表7所示。
表7
扫描时隙 0 1 2 3
Φ m,n 3 1 2 0
Φ mn 1,1 0,1 1,0 0,0
此外在图14中,网络设备可发送参考信号,RIS可通过第三码本中的多个预编码矩阵向终端设备反射参考信号。相应的,终端设备接收参考信号,对参考信号进行测量以确定参考信号对应的信道测量信息。终端设备向网络设备发送参考信号对应的信道测量信息。网络设备根据接收到的参考信号对应的信道测量信息和第三码本中的多个预编码矩阵的信息,确定RIS的第三预编码矩阵。网络设备进一步根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。对应于S1302,网络设备向RIS发送第二信息,用于指示第一预编码矩阵和/或第二预编码矩阵。
如图15所示,在下行通信中,终端设备可以接收来自于网络设备的控制信息,其中可包括第三信息,因此能够获得第三信息,其中,第三信息可由RIS通过码本信息发送至网络设备。因此,终端设备可以根据下行信号的测量结果确定RIS的第三预编码矩阵,进一步,终端设备可根据RIS的第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵,从而终端设备在向网络设备反馈信道测量时,可向网络设备发送第一预编码矩阵的指示信息和/或第二预编码矩阵的指示信息,以降低信令开销。
此外,图15与图14所示流程的区别在于,可由网络设备或RIS向终端设备发送控制信息,其中包括第三信息,以便终端设备根据RIS的第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。例如,可以在网络设备发送参考信号之前、同时或之后,由网络设备向终端设备发送第三信息。
此外,还可由网络设备向终端设备发送控制信息,用于指示第三码本中的多个预编码矩阵的信息,以便终端设备在通过测量获得参考信号对应的信道测量信息后,根据信道测量信息和第三码本中的多个预编码矩阵的信息,确定第三预编码矩阵。进一步,由终端设备根据第三预编码矩阵和第三信息确定RIS的第一预编码矩阵和/或第二预编码矩阵。
图15中,还可由终端设备向网络设备发送第二信息。
示例性的,图15中,还可由网络设备或RIS向终端设备发送表5和表6所示对应关系,或者表7所示对应关系。
可以理解,图15中的终端设备对应于图13所示的第一装置,图15所示的网络设备对应于图13所示的第二装置。例如,图15中,终端设备接收来自于网络设备的包括第三信息的控制信息的动作,可对应于图13所示的S1301;图15中,终端设备向网络设备发送第二信息的动作,可对应于图13所示的S1302。
可选的,本申请中,如果多个预编码矩阵对应的信道测量结果相同,或者,最佳信道测量结果的时间指示信息或顺序指示信息对应于多个预编码矩阵,则可从多个预编码矩阵中选择一个预编码矩阵作为最佳预编码矩阵,选择的方式包括随机选择、按照索引由大到小或由小到大的方式选择等,不作具体要求。可以理解,这里的最佳预编码矩阵包括本申请中的第一预编码矩阵、第二预编码矩阵、第三预编码矩阵或第四预编码矩阵。
可以理解的是,为了实现上述实施例中功能,本申请实施例还提供一种通信装置。该 通信装置可包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图16至图18为本申请的实施例提供的可能的通信装置的结构示意图。该通信装置可以用于实现上述方法实施例中RIS、网络设备、第一装置或第二装置的功能,因此也能实现上述方法实施例所具备的有益效果。在一种可能的实现中,该通信装置可以是如图1、图3、图4、图5或图7所示的任一网络设备或终端设备,也可以是如图3至图5或图7所示的任一RIS,还可以是应用于终端设备、网络设备或RIS的模块(如芯片)。相关细节和效果可以参见前述实施例的描述。
如图16所示,通信装置1600包括处理单元1610和通信单元1620,其中通信单元1620还可以为收发单元或输入输出接口等。通信装置1600可用于实现上述图8至图15所示方法实施例中RIS、网络设备、第一装置或第二装置的功能。
示例性的,当通信装置1600用于实现图8所示的方法实施例中RIS的功能时:
通信单元1620可用于通过RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号。通信单元1620还可用于通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号。
在一种可能的实现方式中,处理单元1610可用于根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于接收第一信号对应的信道测量信息。处理单元1610还可用于根据第一信号对应的信道测量信息,从RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于向网络设备发送所述第一预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于向网络设备发送所述第一信号对应的信道测量信息,所述网络设备包括所述发送端或所述接收端。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的所述第一预编码矩阵的指示信息,处理单元1610可用于根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的第一指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的所述第二预编码矩阵的指示信息,处理单元1610可用于根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的所述第二信号对应的信道测量信息。处理单元1610可用于根据接收的所述第二信号对应的信道测量信息,从所述第二码本中的多个预编码矩阵中确定所述第二预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于向所述网络设备发送所述第二预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于所述网络设备的第二 指示信息。
当通信装置1600用于实现图8所示的方法实施例中网络设备的功能时:
通信单元1620可用于向RIS发送第一指示信息。通信单元1620还可用于向所述RIS发送第二指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于所述RIS的所述第一预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于所述RIS的所述第一信号对应的信道测量信息。处理单元1610还可用根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于向所述RIS发送所述第一预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于向所述RIS发送所述第二预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于向所述RIS发送所述第二信号对应的信道测量信息。通信单元1620还可用于接收来自于所述RIS的所述第二预编码矩阵的指示信息。处理单元1610还可用于根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
当通信装置1600用于实现图11所示的方法实施例中RIS的功能时:
通信单元1620可用于通过第一组预编码矩阵向接收端反射第三信号。通信单元1620还可用于通过第二组预编码矩阵向所述接收端反射第四信号。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的第三指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的所述第四预编码矩阵的指示信息。处理单元1610还可用于根据所述第四预编码矩阵的指示信息确定所述第四预编码矩阵。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的第四指示信息。
在一种可能的实现方式中,通信单元1620还可用于接收来自于网络设备的所述第五预编码矩阵的指示信息。处理单元1610还可用于根据所述第五预编码矩阵的指示信息确定所述第五预编码矩阵。
当通信装置1600用于实现图11所示的方法实施例中网络设备的功能时:
通信单元1620可用于向RIS发送第三指示信息。通信单元1620还可用于向RIS发送第四指示信息。
在一种可能的实现方式中,通信单元1620还可用于向所述RIS发送所述第四预编码矩阵的指示信息。
在一种可能的实现方式中,通信单元1620还可用于向所述RIS发送所述第五预编码矩阵的指示信息。
当通信装置1600用于实现图13所示的方法实施例中第一装置的功能时:
处理单元1610可用于获取第一信息。通信单元1620还可用于向RIS发送第二信息。
在一种可能的实现方式中,第一信息包括第三信息,处理单元1610可用于确定第三 预编码矩阵,以及根据第三预编码矩阵和第三信息确定所述第一预编码矩阵和/或第二预编码矩阵。
在一种可能的实现方式中,通信单元1620可用于接收来自于RIS的所述第一信息。
在一种可能的实现方式中,所述第一信息用于指示所述第一预编码矩阵和/或所述第二预编码矩阵,所述第一信息来自于第二装置,处理单元1610还可用于根据所述第一信息确定所述第一预编码矩阵和/或所述第二预编码矩阵。可选的,通信单元1620可用于接收来自于第二装置的第一信息。
在一种可能的实现方式中,通信单元1620可用于接收来自于RIS的第三信息,并向第二装置发送第三信息。
当通信装置1600用于实现图13所示的方法实施例中RIS的功能时:
通信单元1620可用于向第一装置发送第三信息。通信单元1620还可用于接收来自于第一装置的第二信息。
当通信装置1600用于实现图13所示的方法实施例相关的由第二装置实施的功能时:
通信单元1620可用于获取第三信息。处理单元1610可用于确定第三预编码矩阵。通信单元1620还可用于向第一装置发送第一信息,第一信息用于指示第一预编码矩阵和/或第二预编码矩阵。可选的,处理单元1610还可用于根据第三预编码矩阵和第三信息确定第一预编码矩阵和/或第二预编码矩阵。
在一种可能的实现方式中,通信单元1620可用于接收来自于第一装置的第三信息。
以上装置实施例涉及的术语和名词解释可参见前述方法实施例中的说明,这里不再展开。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图17所示为本申请实施例提供的通信装置1700,用于实现本申请提供的通信方法。该通信装置1700可以是应用该通信方法的通信装置,也可以是通信装置中的组件,或者是能够和通信装置匹配使用的装置。通信装置1700可以是RIS、网络设备、第一装置或第二装置。其中,该通信装置1700可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1700包括至少一个处理器1720,用于实现本申请实施例提供的通信方法。通信装置1700还可以包括输出接口1710,输出接口也可称为输入输出接口。在本申请实施例中,输出接口1710可用于通过传输介质和其它装置进行通信,其功能可包括发送和/或接收。例如,通信装置1700是芯片时,通过输出接口1710与其他芯片或器件进行传输。处理器1720可用于实现上述方法实施例该的方法。
示例性的,处理器1720可用于执行由处理单元1610执行的动作,输出接口1710可用于执行由通信单元1620执行的动作,不再赘述。
可选的,通信装置1700还可以包括至少一个存储器1730,用于存储程序指令和/或数据。存储器1730和处理器1720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1720可能和存储器1730协同操作。处理器1720可能执行存储器1730中 存储的程序指令。该至少一个存储器中的至少一个可以与处理器集成在一起。
在本申请实施例中,存储器1730可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,处理器1720可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
如图18所示为本申请实施例提供的通信装置1800,用于实现本申请提供的通信方法。该通信装置1800可以是应用本申请实施例所示通信方法的通信装置,也可以是通信装置中的组件,或者是能够和通信装置匹配使用的装置。通信装置1800可以是RIS、网络设备、第一装置或第二装置。其中,该数据传输装置1800可以为芯片系统或芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。上述实施例提供的应用惠更斯等效面的通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,数据传输装置1800可包括:输入接口电路1801、逻辑电路1802和输出接口电路1803。
可选的,以该装置用于实现接收端的功能为例,输入接口电路1801可用于执行上述由通信单元1620执行的接收动作,输出接口电路1803可用于执行上述由通信单元1620执行的发送动作,逻辑电路1802可用于执行上述由处理单元1610执行的动作,不再赘述。
可选的,数据传输装置1800在具体实现时可以是芯片或者集成电路。
本申请上述方法实施例描述的数据传输装置所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本申请实施例提供了一种通信系统。具体的,该通信系统可包括用于实现图8或图11中任一所示方法的网络设备、发送端、RIS或接收端中的至少两项,或包括用于实现图9至图10、图12、图14或图15中任一所示方法的网络设备、RIS或终端设备中的至少两项,或包括用于实现图13所示方法的第一装置和RIS。具体请参考上述方法实施例中的相关描述,这里不再赘述。该通信系统可包括图3或图4所示结构。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (72)

  1. 一种通信方法,其特征在于,包括:
    可重构智能表面RIS通过所述RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,所述第一信号对应的信道测量信息用于确定第一预编码矩阵,所述第一码本中的多个预编码矩阵包括所述第一预编码矩阵,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第二码本用于所述RIS和接收端之间信道特征的调整,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整;
    所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号,所述第二信号来自于所述发送端,所述第二信号对应的信道测量信息用于确定第二预编码矩阵,所述第三码本中的多个预编码矩阵对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,所述第二码本中的多个预编码矩阵包括所述第二预编码矩阵。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述RIS根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述RIS向网络设备发送所述第一预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端,所述第一预编码矩阵的指示信息用于确定所述第一预编码矩阵。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述RIS向网络设备发送所述第一信号对应的信道测量信息,所述网络设备包括所述发送端或所述接收端。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于所述网络设备的所述第一预编码矩阵的指示信息;
    所述RIS根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
  6. 如权利要求1-5中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的第一指示信息,所述第一指示信息用于指示所述RIS通过所述RIS的第一码本中的多个预编码矩阵接收所述第一信号。
  7. 如权利要求1-6中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的所述第二预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端;
    所述RIS根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
  8. 如权利要求1-6中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的所述第二信号对应的信道测量信息,所述网络设备包括所述发送端或所述接收端;
    所述RIS根据接收的所述第二信号对应的信道测量信息,从所述第二码本中的多个预编码矩阵中确定所述第二预编码矩阵。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述RIS向所述网络设备发送所述第二预编码矩阵的指示信息,所述第二预编码矩阵的指示信息用于确定所述第二预编码矩阵。
  10. 如权利要求1-9中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于所述网络设备的第二指示信息,所述第二指示信息用于指示所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号。
  11. 如权利要求10所述的方法,其特征在于,所述第二指示信息包括所述第二码本中的多个预编码矩阵的指示信息,或者,所述第二指示信息包括所述第三码本中的多个预编码矩阵的指示信息。
  12. 一种通信方法,其特征在于,包括:
    第一装置向可重构智能表面RIS发送第一指示信息,所述第一指示信息用于指示所述RIS通过所述RIS的第一码本中的多个预编码矩阵接收来自于发送端的第一信号,所述第一信号对应的信道测量信息用于确定第一预编码矩阵,所述第一码本中的多个预编码矩阵包括所述第一预编码矩阵,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第二码本用于所述RIS和接收端之间信道特征的调整,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整;
    所述第一装置向所述RIS发送第二指示信息,所述第二指示信息用于指示所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射第二信号,所述第二信号来自于所述发送端,所述第二信号对应的信道测量信息用于确定第二预编码矩阵,所述第三码本中的多个预编码矩阵对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,所述第二码本中的多个预编码矩阵包括所述第二预编码矩阵。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收来自于所述RIS的所述第一预编码矩阵的指示信息;
    所述第一装置根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
  14. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收来自于所述RIS的所述第一信号对应的信道测量信息;
    所述第一装置根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第一预编码矩阵的指示信息,所述第一预编码矩阵的指示信息用于确定所述第一预编码矩阵。
  16. 如权利要求12-15中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第二预编码矩阵的指示信息,所述第二预编码矩阵的指示信息用于确定所述第二预编码矩阵。
  17. 如权利要求12-16中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第二信号对应的信道测量信息;
    所述第一装置接收来自于所述RIS的所述第二预编码矩阵的指示信息;
    所述第一装置根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
  18. 如权利要求12-17中任一所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  19. 一种通信方法,其特征在于,包括:
    可重构智能表面RIS通过第一组预编码矩阵向接收端反射第三信号,所述第三信号来自于发送端,所述第三信号对应的信道测量信息用于确定第四预编码矩阵,所述第一组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第一组预编码矩阵对应于第四码本中的多个预编码矩阵以及第五码本中的一个预编码矩阵,所述第四码本中的多个预编码矩阵包括所述第四预编码矩阵;
    所述RIS通过第二组预编码矩阵向所述接收端反射第四信号,所述第二组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第二组预编码矩阵对应于所述第四预编码矩阵以及所述第五码本中的多个预编码矩阵,所述第四信号对应的信道测量信息用于确定第五预编码矩阵,所述第五码本中的多个预编码矩阵包括所述第五预编码矩阵;
    其中,所述第四码本和所述第五码本分别为所述RIS的第一码本或所述RIS的第二码本,且所述第四码本和所述第五码本不同,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的第三指示信息,所述第三指示信息用于指示所述RIS通过第一组预编码矩阵向所述接收端反射所述第三信号。
  21. 如权利要求20所述的方法,其特征在于,所述第三指示信息具体包括所述第四码本中的多个预编码矩阵的指示信息,或者,所述第三指示信息具体包括所述第一组预编码矩阵的指示信息。
  22. 如权利要求19-21中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的所述第四预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端;
    所述RIS根据所述第四预编码矩阵的指示信息确定所述第四预编码矩阵。
  23. 如权利要求19-22中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的第四指示信息,所述第四指示信息用于指示所述RIS通过第二组预编码矩阵向所述接收端反射所述第四信号。
  24. 如权利要求23所述的方法,其特征在于,所述第四指示信息具体包括所述第五码本中的多个预编码矩阵的指示信息,或者,所述第四指示信息具体包括所述第二组预编码矩阵的指示信息。
  25. 如权利要求19-24中任一所述的方法,其特征在于,所述方法还包括:
    所述RIS接收来自于网络设备的所述第五预编码矩阵的指示信息,所述网络设备包括所述发送端或所述接收端;
    所述RIS根据所述第五预编码矩阵的指示信息确定所述第五预编码矩阵。
  26. 一种通信方法,其特征在于,包括:
    第一装置向可重构智能表面RIS发送第三指示信息,所述第三指示信息用于指示所述RIS通过第一组预编码矩阵向接收端反射第三信号,所述第三信号来自于发送端,所述第三信号对应的信道测量信息用于确定第四预编码矩阵,所述第一组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第一组预编码矩阵对应于第四码本中的多个预编码矩阵以及第五码本中的一个预编码矩阵,所述第四码本中的多个预编码矩阵包括所述第四预编码矩阵;
    所述第一装置向所述RIS发送第四指示信息,所述第三指示信息用于指示所述RIS通过第二组预编码矩阵向所述接收端反射第四信号,所述第二组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第二组预编码矩阵对应于所述第四预编码矩阵以及所述第五码本中的多个预编码矩阵,所述第四信号对应的信道测量信息用于确定第五预编码矩阵,所述第五码本中的多个预编码矩阵包括所述第五预编码矩阵;
    其中,所述第四码本和所述第五码本分别为所述RIS的第一码本或所述RIS的第二码本,且所述第四码本和所述第五码本不同,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整。
  27. 如权利要求26所述的方法,其特征在于,所述第三指示信息具体包括所述第四码本中的多个预编码矩阵的指示信息,或者,所述第三指示信息具体包括所述第一组预编码矩阵的指示信息。
  28. 如权利要求26或27所述的方法,其特征在于,所述第四指示信息具体包括所述第五码本中的多个预编码矩阵的指示信息,或者,所述第四指示信息具体包括第二组预编码矩阵的指示信息。
  29. 如权利要求26-28中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第四预编码矩阵的指示信息,所述第一装置包括所述发送端或所述接收端,所述第四预编码矩阵的指示信息用于确定所述第四预编码矩阵。
  30. 如权利要求26-29中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第五预编码矩阵的指示信息,所述第一装置包括所述发送端或所述接收端,所述第五预编码矩阵的指示信息用于确定所述第五预编码矩阵。
  31. 如权利要求26-30中任一所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  32. 一种通信方法,其特征在于,包括:
    第一装置获取第一信息,所述第一信息用于确定第一预编码矩阵和/或第二预编码矩阵,所述第一预编码矩阵属于可重构智能表面RIS的第一码本,所述第二预编码矩阵属于所述RIS的第二码本,所述第一码本中的一个预编码矩阵和所述第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第三码本用于发送端、RIS和接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整;
    所述第一装置向所述RIS发送第二信息,所述第二信息用于指示所述第一预编码矩阵和/或所述第二预编码矩阵。
  33. 如权利要求32所述的方法,其特征在于,所述第一信息包括第三信息,所述第三信息指示所述第一码本中的预编码矩阵、所述第二码本中的预编码矩阵和所述第三码本中的预编码矩阵之间的对应关系,所述方法还包括:
    所述第一装置确定第三预编码矩阵,所述第三预编码矩阵属于所述第三码本;
    所述第一装置根据所述第三预编码矩阵和所述第三信息确定所述第一预编码矩阵和/或所述第二预编码矩阵。
  34. 如权利要求33所述的方法,其特征在于,所述第一装置获取第一信息,包括:
    所述第一装置接收来自于所述RIS的所述第一信息。
  35. 如权利要求32所述的方法,其特征在于,所述第一信息用于指示所述第一预编码矩阵和/或所述第二预编码矩阵,所述第一信息来自于第二装置,所述方法还包括:
    所述第一装置根据所述第一信息确定所述第一预编码矩阵和/或所述第二预编码矩阵;
    其中,所述第一装置为所述发送端,所述第二装置为所述接收端;或者,
    所述第一装置为所述接收端,所述第二装置为所述发送端。
  36. 如权利要求35所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收来自于所述RIS的第三信息,所述第三信息指示所述第一码本中的预编码矩阵、所述第二码本中的预编码矩阵和所述第三码本中的预编码矩阵之间的对应关系;
    所述第一装置向所述第二装置发送所述第三信息。
  37. 如权利要求31-34中任一所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  38. 一种通信方法,其特征在于,包括:
    可重构智能表面RIS向第一装置发送第三信息,所述第三信息用于指示所述RIS的第一码本中的预编码矩阵、所述RIS的第二码本中的预编码矩阵和所述RIS的第三码本中的预编码矩阵之间的对应关系,所述第三码本用于发送端、所述RIS和接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整;
    所述RIS接收第二信息,所述第二信息用于指示第一预编码矩阵和/或第二预编码矩阵,所述第一预编码矩阵属于所述第一码本,所述第二预编码矩阵属于所述第二码本。
  39. 如权利要求38所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  40. 一种通信方法,其特征在于,包括:
    第二装置获取第三信息,所述第三信息用于指示可重构智能表面RIS的第一码本中的预编码矩阵、所述RIS的第二码本中的预编码矩阵和所述RIS的第三码本中的预编码矩阵之间的对应关系,所述第一码本中的一个预编码矩阵和所述第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于发送端、所述RIS和接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整;
    所述第二装置根据信道测量信息确定第三预编码矩阵,所述第三预编码矩阵属于所述第三码本;
    所述第二装置向第一装置发送所述第一信息,所述第一信息用于指示第一预编码矩阵和/或第二预编码矩阵,所述第一预编码矩阵属于所述第一码本,所述第二预编码矩阵属于所述第二码本,所述第一预编码矩阵和/或所述第二预编码矩阵根据所述第三预编码矩阵和所述第三信息确定。
  41. 如权利要求40所述的方法,其特征在于,所述第二装置获取第三信息,包括:
    所述第二装置接收来自于所述第一装置的所述第三信息。
  42. 如权利要求40或41所述的方法,其特征在于,所述第一装置包括所述发送端,所述第二装置包括所述接收端;或者,
    所述第一装置包括所述接收端,所述第二装置包括所述发送端。
  43. 一种通信装置,其特征在于,包括:处理器;所述处理器用于执行存储器存储的一个或多个计算机程序,以使得所述通信装置执行如权利要求1-11中任一项所述的方法,或使得所述通信装置执行如权利要求12-18中任一项所述的方法,或使得所述通信装置执行如权利要求19-25中任一项所述的方法,或使得所述通信装置执行如权利要求26-31中任一项所述的方法,或使得所述通信装置执行如权利要求32-37中任一项所述的方法,或使得所述通信装置执行如权利要求38或39所述的方法,或使得所述通信装置执行如权利要求40-42中任一项所述的方法。
  44. 如权利要求43所述的通信装置,其特征在于,所述通信装置还包括所述存储器。
  45. 如权利要求43或44所述的通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  46. 一种通信装置,其特征在于,包括用于执行如权利要求1-11中任一项所述方法的模块,或者包括用于执行如权利要求12-18中任一项所述方法的模块,或者包括用于执行如权利要求19-25中任一项所述方法的模块,或者包括用于执行如权利要求26-31中任一项所述方法的模块,或者包括用于执行如权利要求32-37中任一项所述方法的模块,或者包括用于执行如权利要求38或39所述方法的模块,或者包括用于执行如权利要求40-42中任一项所述方法的模块。
  47. 一种芯片系统,其特征在于,所述芯片系统包括逻辑电路和输入输出接口,其中:
    所述输入输出接口用于与所述芯片系统之外的其他通信装置进行通信,所述逻辑电路用于执行如权利要求1-11中任一项所述的方法,或者,所述逻辑电路用于执行如权利要求12-18中任一项所述的方法,或者,所述逻辑电路用于执行如权利要求19-25中任一项所述的方法,或者,所述逻辑电路用于执行如权利要求26-31中任一项所述的方法,或者,所述逻辑电路用于执行如权利要求32-37中任一项所述的方法,或者,所述逻辑电路用于执行如权利要求38或39所述的方法,或者,所述逻辑电路用于执行如权利要求40-42中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-11中任一项所述的方法,或使得所述计算机执行如权利要求12-18中任一项所述的方法,或使得所述计算机执行如权利要求19-25中任一项所述的方法,或使得所述计算机执行如权利要求26-31中任一项所述的方法,或使得所述计算机执行如权利要求32-37中任一项所述的方法,或使得所述计算机执行如权利要求38或39所述的方法,或使得所述计算机执行如权利要求40-42中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-11中任一项所述的方法,或使得所述计算机执行如权利要求12-18中任一项所述的方法,或使得所述计算机执行如权利要求19-25中任一项所述的方法,或使得所述计算机执行如权利要求26-31中任一项所述的方法,或使得所述计算机执行如权利要求32-37中任一项所述的方法,或使得所述计算机执行如权利要求38或39所述的方法,或使得所述计算机执行如权利要求40-42中 任一项所述的方法。
  50. 一种通信系统,其特征在于,包括用于执行如权利要求1-11中任一项所述的方法的通信装置、以及用于执行如权利要求12-18中任一项所述的方法的通信装置;或者,
    包括用于执行如权利要求19-25中任一项所述的方法的通信装置、以及用于执行如权利要求26-31中任一项所述的方法的通信装置;或者,
    包括用于执行如权利要求32-37中任一项所述的方法的通信装置、以及用于执行如权利要求38或39所述的方法的通信装置;或者,
    包括用于执行如权利要求32-37中任一项所述的方法的通信装置、用于执行如权利要求38或39所述的方法的通信装置、以及用于执行如权利要求40-42中任一项所述的方法的通信装置。
  51. 一种通信方法,其特征在于,包括:
    第一装置向可重构智能表面RIS发送第一指示信息,所述第一指示信息用于指示所述RIS通过所述RIS的第一码本中的多个预编码矩阵接收来自于发送端的所述第一信号,所述第一信号对应的信道测量信息用于确定第一预编码矩阵,所述第一码本中的多个预编码矩阵包括所述第一预编码矩阵,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第二码本用于所述RIS和接收端之间信道特征的调整,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整;
    所述RIS接收所述第一指示信息;
    所述RIS通过所述第一码本中的多个预编码矩阵接收来自于所述发送端的所述第一信号;
    所述第一装置向所述RIS发送第二指示信息,所述第二指示信息用于指示所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射第二信号,所述第二信号来自于所述发送端,所述第二信号对应的信道测量信息用于确定第二预编码矩阵,所述第三码本中的多个预编码矩阵对应于所述第一预编码矩阵和所述第二码本中的多个预编码矩阵,所述第二码本中的多个预编码矩阵包括所述第二预编码矩阵;
    所述RIS接收所述第二指示信息;
    所述RIS通过所述第三码本中的多个预编码矩阵向所述接收端反射所述第二信号。
  52. 如权利要求51所述的方法,其特征在于,所述方法还包括:
    所述RIS根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多个预编码矩阵中确定所述第一预编码矩阵。
  53. 如权利要求52所述的方法,其特征在于,所述方法还包括:
    所述RIS向第一装置发送所述第一预编码矩阵的指示信息;
    所述第一装置接收来自于所述RIS的所述第一预编码矩阵的指示信息;
    所述第一装置根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
  54. 如权利要求51所述的方法,其特征在于,所述方法还包括:
    所述RIS向所述第一装置发送所述第一信号对应的信道测量信息;
    所述第一装置接收来自于所述RIS的所述第一信号对应的信道测量信息;
    所述第一装置根据所述第一信号对应的信道测量信息,从所述RIS的第一码本中的多 个预编码矩阵中确定所述第一预编码矩阵。
  55. 如权利要求54所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第一预编码矩阵的指示信息;
    所述RIS接收来自于所述第一装置的所述第一预编码矩阵的指示信息;
    所述RIS根据所述第一预编码矩阵的指示信息确定所述第一预编码矩阵。
  56. 如权利要求51-55中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第二预编码矩阵的指示信息;
    所述RIS接收来自于第一装置的所述第二预编码矩阵的指示信息;
    所述RIS根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
  57. 如权利要求51-55中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第二信号对应的信道测量信息;
    所述RIS接收来自于第一装置的所述第二信号对应的信道测量信息;
    所述RIS根据接收的所述第二信号对应的信道测量信息,从所述第二码本中的多个预编码矩阵中确定所述第二预编码矩阵。
  58. 如权利要求57所述的方法,其特征在于,所述方法还包括:
    所述RIS向所述第一装置发送所述第二预编码矩阵的指示信息;
    所述第一装置接收来自于所述RIS的所述第二预编码矩阵的指示信息;
    所述第一装置根据所述第二预编码矩阵的指示信息确定所述第二预编码矩阵。
  59. 如权利要求51-58中任一所述的方法,其特征在于,所述第二指示信息包括所述第二码本中的多个预编码矩阵的指示信息,或者,所述第二指示信息包括所述第三码本中的多个预编码矩阵的指示信息。
  60. 如权利要求51-59中任一所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  61. 一种通信方法,其特征在于,包括:
    第一装置向可重构智能表面RIS发送第三指示信息,所述第三指示信息用于指示所述RIS通过第一组预编码矩阵向接收端反射第三信号,所述第三信号来自于发送端,所述第三信号对应的信道测量信息用于确定第四预编码矩阵,所述第一组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第一组预编码矩阵对应于第四码本中的多个预编码矩阵以及第五码本中的一个预编码矩阵,所述第四码本中的多个预编码矩阵包括所述第四预编码矩阵;
    所述RIS接收来自于所述第一装置的所述第三指示信息;
    所述RIS通过所述第一组预编码矩阵向所述接收端反射所述第三信号;
    所述第一装置向所述RIS发送第四指示信息,所述第三指示信息用于指示所述RIS通过第二组预编码矩阵向所述接收端反射第四信号,所述第二组预编码矩阵为所述RIS的第三码本中的多个预编码矩阵,所述第二组预编码矩阵对应于所述第四预编码矩阵以及所述第五码本中的多个预编码矩阵,所述第四信号对应的信道测量信息用于确定第五预编码矩阵,所述第五码本中的多个预编码矩阵包括所述第五预编码矩阵;
    所述RIS接收来自于所述第一装置的所述第四指示信息;
    所述RIS通过所述第二组预编码矩阵向所述接收端反射所述第四信号;
    其中,所述第四码本和所述第五码本分别为所述RIS的第一码本或所述RIS的第二码 本,且所述第四码本和所述第五码本不同,所述第一码本中的一个预编码矩阵和所述RIS的第二码本中的一个预编码矩阵对应于所述第三码本中的一个预编码矩阵,所述第三码本用于所述发送端、所述RIS和所述接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整。
  62. 如权利要求61所述的方法,其特征在于,所述第三指示信息具体包括所述第四码本中的多个预编码矩阵的指示信息,或者,所述第三指示信息具体包括所述第一组预编码矩阵的指示信息。
  63. 如权利要求61或62所述的方法,其特征在于,所述第四指示信息具体包括所述第五码本中的多个预编码矩阵的指示信息,或者,所述第四指示信息具体包括所述第二组预编码矩阵的指示信息。
  64. 如权利要求61-63中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第四预编码矩阵的指示信息;
    所述RIS接收来自于第一装置的所述第四预编码矩阵的指示信息;
    所述RIS根据所述第四预编码矩阵的指示信息确定所述第四预编码矩阵。
  65. 如权利要求61-64中任一所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述RIS发送所述第五预编码矩阵的指示信息;
    所述RIS接收来自于第一装置的所述第五预编码矩阵的指示信息;
    所述RIS根据所述第五预编码矩阵的指示信息确定所述第五预编码矩阵。
  66. 如权利要求61-65中任一所述的方法,其特征在于,所述第一装置包括所述发送端或所述接收端。
  67. 一种通信方法,其特征在于,包括:
    第一装置获取第一信息,所述第一信息用于确定第一预编码矩阵和/或第二预编码矩阵,所述第一预编码矩阵属于可重构智能表面RIS的第一码本,所述第二预编码矩阵属于所述RIS的第二码本,所述第一码本中的一个预编码矩阵和所述第二码本中的一个预编码矩阵对应于所述RIS的第三码本中的一个预编码矩阵,所述第三码本用于发送端、RIS和接收端之间信道特征的调整,所述第一码本用于所述发送端和所述RIS之间信道特征的调整,所述第二码本用于所述RIS和所述接收端之间信道特征的调整;
    所述第一装置向所述RIS发送第二信息,所述第二信息用于指示所述第一预编码矩阵和/或所述第二预编码矩阵;
    所述RIS接收来自于所述第一装置的所述第二信息。
  68. 如权利要求67所述的方法,其特征在于,所述第一信息包括第三信息,所述第三信息指示所述第一码本中的预编码矩阵、所述第二码本中的预编码矩阵和所述第三码本中的预编码矩阵之间的对应关系,所述方法还包括:
    所述第一装置确定第三预编码矩阵,所述第三预编码矩阵属于所述第三码本;
    所述第一装置根据所述第三预编码矩阵和所述第三信息确定所述第一预编码矩阵和/或所述第二预编码矩阵。
  69. 如权利要求68所述的方法,其特征在于,所述方法还包括:
    所述RIS发送所述第三信息;
    所述第一装置获取第一信息,包括:
    所述第一装置接收来自于所述RIS的所述第一信息。
  70. 如权利要求67所述的方法,其特征在于,所述第一信息用于指示所述第一预编码矩阵和/或所述第二预编码矩阵,所述方法还包括:
    所述第二装置向所述第一装置发送所述第一信息;
    所述第一装置获取第一信息,包括:
    所述第一装置接收来自于所述第二装置的所述第一信息;
    所述方法还包括:
    所述第一装置根据所述第一信息确定所述第一预编码矩阵和/或所述第二预编码矩阵;
    其中,所述第一装置为所述发送端,所述第二装置为所述接收端;或者,
    所述第一装置为所述接收端,所述第二装置为所述发送端。
  71. 如权利要求70所述的方法,其特征在于,所述方法还包括:
    所述RIS向所述第一装置发送所述第三信息;
    所述第一装置接收来自于所述RIS的第三信息,所述第三信息指示所述第一码本中的预编码矩阵、所述第二码本中的预编码矩阵和所述第三码本中的预编码矩阵之间的对应关系;
    所述第一装置向所述第二装置发送所述第三信息;
    所述第二装置接收来自于所述第一装置的所述第三信息;
    所述第二装置根据信道测量信息确定第三预编码矩阵,所述第三预编码矩阵属于所述第三码本;
    所述第二装置根据所述第三预编码矩阵和所述第三信息确定所述第一预编码矩阵和/或所述第二预编码矩阵。
  72. 如权利要求67-69中任一所述的方法,其特征在于,所述第一装置为所述发送端,所述第二装置为所述接收端;或者,
    所述第一装置为所述接收端,所述第二装置为所述发送端。
PCT/CN2022/115644 2022-08-29 2022-08-29 一种通信方法及装置 WO2024044919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115644 WO2024044919A1 (zh) 2022-08-29 2022-08-29 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115644 WO2024044919A1 (zh) 2022-08-29 2022-08-29 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024044919A1 true WO2024044919A1 (zh) 2024-03-07

Family

ID=90100221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115644 WO2024044919A1 (zh) 2022-08-29 2022-08-29 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2024044919A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092746A1 (zh) * 2019-11-12 2021-05-20 华为技术有限公司 一种信道信息获取的方法
CN113193894A (zh) * 2021-04-27 2021-07-30 东南大学 可重构智能表面辅助的多用户miso下行无线通信谱效能效联合优化方法
CN113746764A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全向超表面的无线通信信道估计方法及系统
CN113794493A (zh) * 2021-05-31 2021-12-14 江苏理工学院 一种波束赋形方法、装置、计算机设备和存储介质
CN114640381A (zh) * 2022-03-16 2022-06-17 武汉瑞斯通信科技有限公司 一种智能超表面的反射系数计算方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092746A1 (zh) * 2019-11-12 2021-05-20 华为技术有限公司 一种信道信息获取的方法
CN113193894A (zh) * 2021-04-27 2021-07-30 东南大学 可重构智能表面辅助的多用户miso下行无线通信谱效能效联合优化方法
CN113794493A (zh) * 2021-05-31 2021-12-14 江苏理工学院 一种波束赋形方法、装置、计算机设备和存储介质
CN113746764A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全向超表面的无线通信信道估计方法及系统
CN114640381A (zh) * 2022-03-16 2022-06-17 武汉瑞斯通信科技有限公司 一种智能超表面的反射系数计算方法及系统

Similar Documents

Publication Publication Date Title
US10743320B2 (en) System and method for beamformed reference signals in three dimensional multiple input multiple output communications systems
RU2712127C1 (ru) Структура зондирующего опорного сигнала (srs) для сотовой системы дуплекса с временным разделением (tdd) миллиметровых волн
US11336347B2 (en) Beam management techniques for beam calibration
US11916820B2 (en) Reference signal configuration, information transmission, and information receiving methods and device
CN110071749B (zh) 一种天线选择指示方法、装置和系统
US10044477B2 (en) Method and base station for CSI process configuration and method and user equipment for CSI feedback
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
ES2905789T3 (es) Procedimiento y aparato para presentación de informes CSI de banda ancha en un sistema de comunicación inalámbrica avanzado
KR20230045455A (ko) 무선 통신 시스템에서 지능형 반사 평면을 기반한 데이터 통신을 위한 장치 및 방법
CN114448586A (zh) 指示工作模式的方法、装置及设备
CN114126062A (zh) 一种无线通信系统节点波束指示方法和设备
CN116868518A (zh) 包括多层透射可重新配置智能表面的无线电信网络
KR20230136614A (ko) 분산 mimo 시스템의 안테나 선택 방법 및 장치
Jiang et al. Wireless fronthaul for 5G and future radio access networks: Challenges and enabling technologies
AU2020358664A1 (en) Methods and apparatus for receiving and transmitting reference signals
Islam et al. Suitable beamforming technique for 5G wireless communications
TWI825180B (zh) 用於在無線設備中促進波束成形通訊的設備和方法
KR20210018781A (ko) 무선 통신 시스템들에서 csi 파라미터 구성을 위한 방법 및 장치
CN106452536B (zh) 用于多输入多输出通信的长期反馈的方法和装置
WO2024044919A1 (zh) 一种通信方法及装置
KR20160133159A (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
CN115499851A (zh) 通信方法、装置、电子设备、介质及程序产品
WO2024027387A1 (zh) 一种信息传输的方法和装置
US11916626B2 (en) Method and device for beam training using beamforming codebook
US20240146358A1 (en) Method and device for reporting channel state information in wireless communication system supporting reconfigurable intelligent surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956754

Country of ref document: EP

Kind code of ref document: A1