WO2019020080A1 - 一种通信方法及其装置 - Google Patents

一种通信方法及其装置 Download PDF

Info

Publication number
WO2019020080A1
WO2019020080A1 PCT/CN2018/097248 CN2018097248W WO2019020080A1 WO 2019020080 A1 WO2019020080 A1 WO 2019020080A1 CN 2018097248 W CN2018097248 W CN 2018097248W WO 2019020080 A1 WO2019020080 A1 WO 2019020080A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
network device
scan
indication information
Prior art date
Application number
PCT/CN2018/097248
Other languages
English (en)
French (fr)
Inventor
尚鹏
施弘哲
蒋鹏
金黄平
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019020080A1 publication Critical patent/WO2019020080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a communication method and apparatus thereof.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant antenna array gain can be obtained. Generally, the narrower the beam, the greater the signal gain. But at the same time, once the direction of the beam deviates from the user, the user does not receive a high quality wireless signal. In order to ensure the gain of the antenna array, the beam on the base station side and the beam on the user side need to be aligned to ensure cell coverage and link quality. Especially for the narrow beamforming technique, the selection error of the beam direction leads to a significant decrease in the signal to interference plus noise ratio (SINR). Therefore, how to quickly align the beam becomes one of the key technologies of beam management (BM) in the fifth generation of mobile communication (5 th -generation) systems.
  • SINR signal to interference plus noise ratio
  • the new radio (NR) mid-downlink beam management can be divided into three phases: P-1, P-2 and P-3.
  • P-1 phase the terminal device may select one or more transmit beams by measurement, and establish a transceiving beam association with one or more receive beams.
  • the transmit beam in the established transmit and receive beam association may be from one or more transmission receiver points (TRPs), and the receive beam may be from the terminal device.
  • TRPs transmission receiver points
  • the terminal device can update the transmit beam in one or more transmit and receive beam associations according to the measurement result.
  • the transmit beam can still come from one or more TRPs, but is generally smaller than the candidate range of the P-1 phase.
  • the terminal device can update the receive beam in one or more transmit and receive beam associations according to the measurement result.
  • the receive beam can still come from the terminal device.
  • the P-2 phase and the P-3 phase are a subset of the P-1 phase.
  • the main trend is periodic triggering.
  • the P-2/P-3 phase is mainly for further beam refinement or beam tracking, and is suitable for non-periodic triggering.
  • the technical problem to be solved by the embodiments of the present application is to provide a communication method and a device thereof, which can quickly trigger aperiodic beam scanning and improve beam management efficiency.
  • an embodiment of the present application provides a communication method, including:
  • Step 1 The network device determines to trigger aperiodic beam scanning for the terminal device
  • Step 2 The network device sends the first downlink control information that carries the scan indication information to the terminal device, where the scan indication information is used to trigger the terminal device to perform aperiodic beam scanning.
  • the present application provides a network device comprising means or means for performing the various steps of the above first aspect.
  • the present application provides a network device including at least one processing element for storing a program and data, and at least one storage element for performing an embodiment of the present application
  • the first aspect provides a method.
  • the application provides a network device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the present application provides a communication program for performing the method of the above first aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the fifth aspect is provided.
  • the network device sends the downlink control information that carries the scan indication information to the terminal device, so that the non-periodic beam scan can be triggered quickly, in advance. Avoid system interruptions, avoid channel quality degradation, and improve beam management efficiency.
  • the network device sends at least one beam configuration information to the terminal device before determining that the terminal device triggers the aperiodic beam scanning, and any one of the beam configuration information includes: At least one of beam scan width information, beam scan range information, beam scan direction information, and beam scan density information.
  • the network device sends at least one beam configuration information to the terminal device, so that the terminal device can select one type of beam configuration information from the at least one beam configuration information to determine beam scanning assistance information.
  • the beam configuration information is obtained by the network device according to the current receiving beam configuration of the terminal device, and the obtained beam configuration information is related to the current receiving beam of the terminal device.
  • the beam configuration information may be configured by the network device being centered on the current receiving beam of the terminal device, and the beam scanning width information in the obtained beam configuration information may be based on the beamwidth of the current receiving beam of the terminal device.
  • the beam scanning range information may be an angular range of scanning required on both sides centered on the current receiving beam of the terminal device.
  • the first downlink control information further includes beam configuration indication information, where the beam configuration indication information is used to indicate one of the at least one beam configuration information, That is, the network device instructs the terminal device to select which beam configuration information from the at least one beam configuration information, so that the terminal device determines the beam scanning assistance information.
  • the method further includes: receiving the beam scan assistance information from the terminal device;
  • the aperiodic beam scanning information is configured according to the beam scanning auxiliary information; the aperiodic beam scanning information is sent to the terminal device.
  • the network device configures the aperiodic beam scanning information according to the beam scanning assistance information reported by the terminal device, and sends the information to the terminal device, so that the terminal device performs the aperiodic beam scanning according to the aperiodic beam scanning information, if the beam scanning indication information is received.
  • the method further includes: performing, according to the trigger type, the terminal sent by the terminal device.
  • the device capability information determines beam scanning assistance information; configures aperiodic beam scanning information according to beam scanning assistance information; and transmits aperiodic beam scanning information to the terminal device.
  • the network device autonomously determines the beam scanning auxiliary information, and the terminal device does not need to report the terminal device, and the terminal device performs the aperiodic beam scanning according to the non-periodic beam scanning information when receiving the beam scanning indication information.
  • the first downlink control information further includes trigger type indication information, where the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger type.
  • the trigger type indication information indicates the first trigger type
  • the terminal device may be prompted to achieve beam optimization by aperiodic beam scanning, thereby improving system performance
  • the trigger type indication information indicates the second trigger type
  • the terminal device may be prompted to pass the aperiodic period. Beam scanning achieves the purpose of beam tracking, which in turn can avoid system interruptions in advance.
  • the method further includes: sending the trigger type indication information to the terminal device
  • the second downlink control information the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger type; send a beam scan request message to the terminal device; receive beam scan assistance information from the terminal device; and scan the auxiliary information according to the beam Configure aperiodic beam scanning information; send aperiodic beam scanning information to the terminal device.
  • the network device triggers the terminal device to perform aperiodic beam scanning, which can quickly trigger aperiodic beam scanning and improve beam management efficiency.
  • the first trigger type corresponds to the current beam scan attribute information does not satisfy the first preset trigger condition
  • the second trigger type corresponds to the received from the terminal device.
  • the reported information satisfies the second preset trigger condition.
  • the network device determines whether to trigger the terminal device to perform aperiodic beam scanning to achieve beam optimization.
  • the network device determines, according to the report information sent by the terminal device, whether to trigger the terminal to perform aperiodic beam scanning. The purpose of beam tracking is achieved.
  • the method before the network device sends the first downlink control information that carries the scan indication information to the terminal device, the method further includes: sending the second downlink control information to the terminal device.
  • the second downlink control information carries at least one of the beam type switching indication information or the port relationship indication information, where the beam type switching indication information is used to indicate whether to switch the beam type, and the port relationship indication information is used to indicate the current transmitting beam of the network device.
  • the antenna port is the quasi-co-location relationship with the antenna port of the last transmit beam; transmitting a beam scan request message to the terminal device; receiving beam scan auxiliary information from the terminal device; configuring the aperiodic beam scan information according to the beam scan auxiliary information; Send aperiodic beam scan information.
  • the terminal device determines the beam scanning auxiliary information according to at least one of the beam type switching indication information or the port relationship indication information, and reports the information to the network device, so as to quickly trigger the aperiodic beam scanning and improve the beam management efficiency.
  • the beam scanning auxiliary information is a descriptive term. On the one hand, it is used to describe the capability of the receiving beam on the terminal device side to participate in beam scanning. On the other hand, it is used to describe the terminal device when configuring the non-periodic beam scanning information on the network device side.
  • the beam scanning auxiliary information may be the number of receiving beams to be scanned on the terminal device side, the number of repetitions of the reference signal resources, and other names used to describe the essence of the above technology.
  • the embodiment of the present application provides another communication method, including:
  • Step 1 The terminal device receives, from the network device, first downlink control information that carries the scan indication information.
  • Step 2 The terminal device performs aperiodic beam scanning according to the scanning indication information.
  • the present application provides a terminal device, including means or means for performing the various steps of the above seventh aspect.
  • the present application provides a terminal device including at least one processing element and at least one storage element, wherein at least one storage element is used to store a program and data, and at least one processing element is used to perform the seventh aspect of the embodiment of the present application. The method provided.
  • the application provides a terminal device comprising at least one processing element (or chip) for performing the method of the above seventh aspect.
  • the present application provides a communication program for performing the method of the above seventh aspect when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the eleventh aspect.
  • the terminal device performs the aperiodic beam scanning in the case that the scanning indication information sent by the network device is received, so that the triggering of the aperiodic beam scanning can be quickly implemented, and the system interruption can be avoided in advance. To avoid channel quality degradation and improve beam management efficiency.
  • the method before the terminal device receives the first downlink control information that carries the scan indication information from the network device, the method further includes: receiving at least one beam from the network device.
  • Configuration information the beam configuration information including at least one of beam scan width information, beam scan range information, beam scan direction information, and beam scan density information.
  • the terminal device may store the at least one beam configuration information to determine one beam configuration information in the at least one beam configuration information according to the beam configuration indication information sent by the network device or according to the trigger type indication information and the preset capability information.
  • the beam configuration information is obtained by the network device according to the current receiving beam configuration of the terminal device, for example, configured by using the current receiving beam of the terminal device as a center. of.
  • the first downlink control information further includes beam configuration indication information, where the beam configuration indication information is used to indicate one of the at least one beam configuration information,
  • the terminal device selects one type of beam configuration information from the at least one beam configuration information according to the beam configuration indication information.
  • the terminal device before performing the aperiodic beam scanning according to the scanning indication information, the terminal device further performs the steps of: determining beam scanning assistance information according to the beam configuration indication information; Transmit beam scanning assistance information; receive aperiodic beam scan information from the network device.
  • the terminal device selects one type of beam configuration information according to the beam configuration indication information, and further determines beam scanning assistance information according to the selected beam configuration information.
  • the terminal device receives the aperiodic beam scan information from the network device before performing the aperiodic beam scanning according to the scan indication information, so that the scan indication information is received.
  • beam scanning can be performed based on the aperiodic beam scanning information.
  • the first downlink control information further includes trigger type indication information, where the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger.
  • the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger.
  • the terminal device before performing the aperiodic beam scanning according to the scan indication information, the terminal device further performs the step of: determining beam configuration information according to the trigger type indication information and the preset capability information. Determining beam scanning assistance information according to the determined beam configuration information; transmitting beam scanning assistance information to the network device; and receiving aperiodic beam scanning information from the network device.
  • the method before the terminal device receives the first downlink control information that carries the scan indication information from the network device, the method further includes: receiving, by the network device, a carry trigger type indication The second downlink control information of the information, the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger type; the beam scan request message is received from the network device; and the beam scan is determined according to the trigger type indication information and the preset capability information. Auxiliary information; transmitting beam scan assistance information to the network device; receiving non-periodic beam scan information from the network device.
  • the first trigger type corresponds to the current beam scan attribute information does not satisfy the first preset trigger condition
  • the second trigger type corresponds to receiving from the terminal device. The reported information satisfies the second preset trigger condition.
  • the method before the terminal device receives the first downlink control information that carries the scan indication information from the network device, the method further includes: receiving the second downlink from the network device. Controlling information, the second downlink control information carrying at least one of beam type switching indication information or port relationship indication information, the beam type switching indication information is used to indicate whether to switch the beam type, and the port relationship indication information is used to indicate the current state of the network device Whether the antenna port of the transmitting beam and the antenna port of the last transmitting beam are in a quasi-co-location relationship; receiving a beam scanning request message from the network device; determining beam scanning auxiliary information according to at least one of beam type switching indication information or port relationship indication information Sending beam scan assistance information to the network device; receiving aperiodic beam scan information from the network device.
  • the preset capability information refers to the self-beam capability information of the terminal device, and may include a beam width, a scanning range, a scanning density, and a scanning direction that can be achieved by the receiving beam of the terminal device.
  • the preset capability information may be different in different scenarios of the terminal device.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another communication method provided by an embodiment of the present application.
  • FIG. 7 is a simplified schematic diagram 1 of a device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a simplified schematic diagram 2 of a device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a simplified structure of a network device according to an embodiment of the present application.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • a radio access network is a part of a network that connects a terminal to a wireless network.
  • a RAN node (or device) is a node (or device) in a radio access network, which may also be referred to as a base station.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), station (station, STA), wireless fidelity (Wifi) or access point (AP).
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a network architecture applied to an embodiment of the present application.
  • the network architecture may be a network architecture of a wireless communication system, and may include a terminal device and a network device. It should be noted that the number and the configuration of the terminal device and the network device shown in FIG. 1 do not constitute a limitation on the embodiment of the present application. In an actual application, one network device may connect multiple terminal devices.
  • the network device can be connected to a core network device, which is not shown in FIG.
  • the network device may be a base station, and the base station may include a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU and the RRU can be placed in different places, for example, the RRU is pulled away, placed in an open area from high traffic, and the BBU is placed in the central computer room. BBUs and RRUs can also be placed in the same room. The BBU and RRU can also be different parts under one rack.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • GSM global system for mobile communications
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system includes, but is not limited to, a narrow band-internet of things (NB-IoT), and a global system for mobile communications (GSM).
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • TD-SCDMA Time division-synchronization code division multiple access
  • LTE long term evolution
  • future mobile communication system future mobile communication system.
  • the network device is a device deployed in a radio access network to provide a wireless communication function for a user equipment.
  • the network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, TRPs, and the like.
  • the names of devices with base station functions may be different, for example, in LTE systems, called eNBs or eNodeBs, in third-generation (3rd generation, 3G) systems. , called NB and so on.
  • eNBs or eNodeBs in third-generation (3rd generation, 3G) systems.
  • 3G third-generation
  • the foregoing devices for providing wireless communication functions to user equipment are collectively referred to as network devices.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • terminal devices For convenience of description, in all embodiments of the present application, user equipments connected to network devices are collectively referred to as terminal devices.
  • the P-1 phase mainly tends to periodic beam scanning
  • the P-2/P-3 phase is mainly for further beam optimization, which tends to be non-periodic.
  • Beam scanning including semi-persistant beam scanning and aperiodic beam scanning).
  • the embodiment of the present application provides a communication method and device thereof, which can quickly trigger aperiodic beam scanning, avoid system interruption in advance, avoid channel quality degradation, and improve beam management efficiency.
  • the aperiodic beam scanning information related to the embodiment of the present application may include reference signal resource configuration information, measurement report configuration information, and the like.
  • the reference signal resource configuration information includes the configured reference signal resource, the number of repetitions of the reference signal resource, and the like.
  • the measurement report configuration information includes the measurement parameter to be reported by the configured terminal device, the reporting period of the measurement report, and the like.
  • the reference signal may be a channel state information reference signal (CSI-RS), and may be other reference signals.
  • the reference signal resource may be a time-frequency resource corresponding to the reference signal or the like.
  • the measurement parameters may include, but are not limited to, reference signal receiving power (RSRP), received signal strength indicator (RSSI), reference signal receiving quality (RSRQ), and signal to noise ratio. (signal to interference plus noise ratio, SINR) and the like.
  • the reporting period of the measurement report can indicate when the terminal device reports the measurement report.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present disclosure. The method is introduced from the perspective of interaction between a terminal device and a network device, and the method may include, but is not limited to:
  • Step S201 The network device determines to trigger aperiodic beam scanning for the terminal device.
  • the network device determines whether to trigger the aperiodic beam scanning for the terminal device according to the current beam scanning attribute information.
  • the beam scanning attribute information may include, but is not limited to, a beam width, a beam scanning density, a beam scanning direction, a beam scanning range, and the like.
  • the beam width can be a wide beam or a narrow beam.
  • the beam scan density can be an oversampling factor.
  • the beam scanning direction can be horizontal, vertical or horizontal + vertical.
  • the beam scanning range refers to the beam scanning angle range.
  • the current beam scanning attribute information refers to the beam scanning attribute information of the P-1 stage, which may be the beam scanning attribute information of the network equipment side at the stage, or the beam scanning attribute information of the terminal equipment side of the stage. There is no limit to this.
  • the network device can determine whether the current beam scanning attribute information meets the first preset trigger condition by using the following conditions, and further determining whether to trigger the aperiodic beam scanning for the terminal device.
  • Case 1 The beam width of the P-1 phase is a wide beam, and the required beamwidth for the non-periodic beam scanning is a narrow beam. That is, one of the first preset trigger conditions is a narrow beam, then it can be determined that the current beam scanning attribute information is not satisfied.
  • First preset trigger condition First preset trigger condition
  • Case 2 The beam scanning range of the P-1 phase is small, and the beam scanning range of the non-periodic beam scanning is large, that is, the second preset trigger condition is greater than or equal to the preset beam scanning range, if the current beam scanning range When the preset beam scanning range is smaller than the preset beam scanning range, it may be determined that the current beam scanning attribute information does not satisfy the first preset triggering condition;
  • Case 3 The beam scanning density of the P-1 stage is large, and the beam scanning density of the non-periodic beam scanning is large, that is, the third preset trigger condition is greater than or equal to the preset beam scanning density, if the current beam scanning density If the preset beam scanning density is less than the preset beam scanning density, it may be determined that the current beam scanning attribute information does not satisfy the first preset triggering condition;
  • Case 4 The beam scanning direction of the P-1 phase is horizontal or vertical.
  • the non-periodic beam scanning needs to increase the vertical direction or the horizontal direction. That is, the fourth preset triggering condition is the two beam scanning directions, so it needs to be increased.
  • the beam scanning direction it may be determined that the current beam scanning attribute information does not satisfy the first preset triggering condition;
  • the above four cases do not constitute a limitation that the current beam scanning attribute information does not satisfy the first preset trigger condition, and the actual application may also determine the current by using a combination of at least two of the above four cases. Whether the current beam scanning attribute information meets the first preset trigger condition is determined by other methods.
  • the network device may determine that the aperiodic beam scanning needs to be triggered for the terminal device.
  • the aperiodic beam scan may correspond to a P-2 phase, a P-3 phase, or a combination of the P-2 phase and the P-3 phase.
  • the P-2 phase and the P-3 phase can be either a single scan or a joint scan.
  • the network device needs to configure the aperiodic beam scanning information corresponding to the terminal device, including the reference signal resource configuration information and the measurement report configuration information.
  • the network device may determine the trigger type of the aperiodic beam scan triggered by the current beam scan attribute information that does not satisfy the first preset trigger condition as the first trigger type.
  • the network device determines whether to trigger aperiodic beam scanning for the terminal device according to the report information received from the terminal device.
  • the reporting information may be a measurement report, and the measurement report may include at least one of measurement parameters such as RSRP, RSSI, RSRQ, and SINR.
  • the reporting information may also be feedback information, and the feedback information may include hybrid automatic repeat request (HARQ) statistics, etc., when there is data transmission between the terminal device and the network device, the terminal device may send feedback to the network device. information.
  • HARQ hybrid automatic repeat request
  • the network device can determine whether the reported information meets the second preset trigger condition by using the following two conditions to determine whether to trigger the aperiodic beam scan for the terminal device.
  • Case 1 Whether one or more measurement parameters in the measurement report received from the terminal device are lower than the measurement parameter or a preset threshold of the measurement parameters, and if yes, it may be determined that the report information meets the second preset trigger condition, that is, One of the second preset trigger conditions is a preset threshold that is less than the measurement parameter.
  • the preset threshold of a certain measurement parameter may correspond to different values in different scenarios. The specific value of the preset threshold is not limited in the embodiment of the present application.
  • Case 2 Taking the HARQ statistics as an example, whether the HARQ statistics received from the terminal device are greater than or equal to the preset HARQ statistics, and if yes, determining that the reported information meets the second preset trigger condition, that is, the second preset trigger The second condition is greater than or equal to the preset HARQ statistics.
  • the specific value of the preset number of HARQ statistics is not limited in the embodiment of the present application.
  • the foregoing two situations do not constitute a limitation that the reported information satisfies the second preset trigger condition.
  • the combination of the foregoing two situations may also be used to determine whether the reported information meets the second preset trigger condition. It is also possible to determine whether the reported information satisfies the second preset trigger condition by other means.
  • the network device may determine that the aperiodic beam scan needs to be triggered for the terminal device, and the trigger type of the aperiodic beam scan triggered in this case may be determined as the second trigger type.
  • the first trigger type is that the network device actively triggers the aperiodic beam scanning according to the self information, and is mainly for further optimization of the P-1 phase, which can prompt the terminal device to achieve the beam optimization by using the aperiodic beam scanning.
  • the system triggers the non-periodic beam scanning according to the information sent by the terminal device when the terminal device sends information to the network device when the terminal device moves, rotates, or blocks the channel. In this way, the terminal device can be prompted to achieve beam tracking by aperiodic beam scanning, and system interruption can be avoided in advance.
  • Step S202 The network device sends, to the terminal device, first downlink control information that carries the scan indication information.
  • the terminal device receives the first downlink control information that carries the scan indication information from the network device.
  • the first downlink control information that carries the scan indication information is sent to the terminal device, and the scan indication information is used to trigger the terminal device to perform the aperiodic beam scan.
  • the downlink control information may be DCI (downlink control information) in the LTE system, and may also be downlink control information in the future communication system, which is not limited in this embodiment of the present application.
  • the scanning indication information may occupy one bit in the existing DCI format. For example, when the bit is “1”, it indicates that the terminal device is triggered to perform aperiodic beam scanning; and a new DCI format may be added.
  • a bit for example, when the bit is "1”, indicates that the terminal device is triggered to perform aperiodic beam scanning.
  • Step S203 The terminal device performs aperiodic beam scanning according to the scan indication information.
  • the terminal device When receiving the first downlink control information carrying the scan indication information, the terminal device performs aperiodic beam scanning. In the case of receiving the aperiodic beam scan information sent by the network device, the terminal device performs aperiodic beam scanning according to the aperiodic beam scan information.
  • the network device sends the downlink control information carrying the scan indication information to the terminal device in the case that the triggering the terminal device performs the aperiodic beam scan, so that the aperiodic beam scan can be quickly triggered and the beam is improved. Management efficiency.
  • FIG. 3 is a schematic flowchart of another communication method according to an embodiment of the present disclosure. The method is introduced from the perspective of interaction between a terminal device and a network device, and the method may include, but is not limited to:
  • Step S301 The network device sends beam configuration information to the terminal device; correspondingly, the terminal device receives beam configuration information from the network device;
  • the network device configures at least one type of beam configuration information for the terminal device, and any one of the beam configuration information may include at least one of beam scanning width information, beam scanning range information, beam scanning direction information, and beam scanning density information.
  • the beam scan width information may include horizontal beam width information and vertical beam width information, that is, a horizontal beam width value and a vertical beam width value.
  • the beam width may be a half-power beamwidth (HPBW), a first null beamwidth (FNBW), or the like.
  • the beam scanning range information refers to beam scanning angle range information.
  • the beam scanning direction information may include a horizontal direction, a vertical direction, a horizontal direction + a vertical direction.
  • the beam scan density information refers to the size of the oversampling factor.
  • the types of the above four types of information included in different beam configuration information may be different, and the contents of the above four types of information included may be different.
  • the beam configuration information 1 includes beam scanning width information 1 and beam scanning range information 1
  • the beam configuration information 2 includes beam scanning direction information 1 and beam scanning density information 1
  • the beam configuration information 3 includes beam scanning width information 2 and beam scanning range.
  • Information 1 the beam configuration information 1 is different from the information type included in the beam configuration information
  • the beam configuration information 3 is different from the content of the information included in the beam configuration information 1.
  • the beam configuration information is obtained by the network device according to the current receiving beam configuration of the terminal device.
  • the network device is configured with the current receiving beam of the terminal device as a center to obtain beam configuration information.
  • the content included in the beam configuration information may be the same as or different from the content included in the beam configuration information. Different from beamforming width information and beam scanning range information can be embodied.
  • the beam scan width information may be a zoom factor based on the beamwidth of the current receiving beam of the terminal device, for example, 1.5 times, 2 times, or 1 time, 1.5 times, etc., that is, at the current end of the terminal device.
  • the beamwidth of the receive beam is reduced or amplified.
  • the beam scanning range information may be an angular range of scanning required on both sides centered on the current receiving beam of the terminal device. In other words, in this embodiment, the beam scan width information and the beam scan range information are associated with the attribute information of the current receive beam.
  • the network device may configure at least one beam configuration information in radio resource control (RRC) signaling, and send RRC signaling carrying at least one beam configuration information to the terminal device.
  • RRC radio resource control
  • the network device can also configure and transmit beam configuration information in other ways.
  • Step S302 The network device determines to trigger aperiodic beam scanning for the terminal device.
  • Step S303 The network device sends the first downlink control information that carries the scan indication information to the terminal device.
  • the terminal device receives the first downlink control information that carries the scan indication information from the network device.
  • step S302 and step S303 For the specific implementation process of step S302 and step S303, refer to step S201 and step S202 of the embodiment shown in FIG. 2, and details are not described herein again.
  • Step S304 The terminal device determines beam scanning assistance information.
  • the first downlink control information further includes beam configuration indication information, where the beam configuration indication information is used to indicate one of the at least one beam configuration information. It can be understood that the beam configuration indication information indicates what beam configuration information is used by the terminal device.
  • the terminal device may determine one type of beam configuration information according to the beam configuration indication information, and obtain beam scanning auxiliary information according to the beam configuration information.
  • the algorithm or the method for obtaining the beam scanning assistance information according to the beam configuration information is not limited in the embodiment of the present application.
  • the first downlink control information further includes trigger type indication information, where the trigger type indication information is used to indicate that the trigger type is the first trigger type or the second trigger type.
  • the terminal device may determine beam configuration information according to the trigger type indication information and the preset capability information, that is, select one type of beam configuration information from the at least one beam configuration information.
  • the terminal device then derives beam scanning assistance information based on the determined beam configuration information.
  • the preset capability information refers to the self-beam capability information of the terminal device, and may include a beam width, a scanning range, a scanning density, and a scanning direction that can be achieved by the receiving beam of the terminal device.
  • the preset capability information may be different in different scenarios of the terminal device. It can be understood that, in the trigger type indicated by the trigger type indication information, the terminal device compares the preset capability information with the at least one beam configuration information, and then selects a beam configuration information that matches the preset capability information. Further, beam scanning assistance information is determined.
  • the beam scanning auxiliary information is a descriptive term and does not constitute a limitation on the embodiments of the present application, and may be described by other names in the future.
  • the beam scanning auxiliary information refers to the resource of the measurement reference signal required for the network device to configure the terminal device beam scanning, or the number of repetitions of the reference signal resource on the time-frequency resource, or the period type of the terminal device beam scanning, or measurement When reporting the parameters such as the reporting period, an auxiliary information related to the receiving beam scanning capability provided by the terminal device is required.
  • the specific implementation manner of the beam scanning auxiliary information is not limited in the embodiment of the present application, and some possible implementation manners, such as the number of receiving beams to be scanned, are listed. These implementation manners are consistent with the description of the technical nature of the beam scanning auxiliary information. Other names for describing the technical nature of the beam scanning auxiliary information are supposed to belong to the protection scope of the embodiments of the present application.
  • the embodiment of the present application introduces the number of receiving beams to be scanned as an example. After determining the beam configuration information, the terminal device determines the number of receive beams to be scanned according to the beam configuration information.
  • the number of receiving beams to be scanned may be a specific value or a numerical interval.
  • Step S305 The terminal device sends beam scanning assistance information to the network device; correspondingly, the network device receives beam scanning assistance information from the terminal device;
  • Step S306 The network device configures the aperiodic beam scanning information according to the beam scanning auxiliary information.
  • Step S307 The network device sends the aperiodic beam scanning information to the terminal device.
  • the terminal device receives the aperiodic beam scanning information from the network device.
  • Step S308 The terminal device performs aperiodic beam scanning.
  • the network device When receiving the beam scanning indication information, the network device performs aperiodic beam scanning according to the received aperiodic beam scanning information, that is, performs scanning according to the reference signal resource configuration information, and performs measurement reporting according to the measurement report configuration information.
  • the network device sends at least one beam configuration information before the downlink control information carrying the scan indication information is sent to the terminal device, so that the terminal device determines a beam configuration information according to the determined beam configuration.
  • the information is used to determine the beam scanning auxiliary information, and the beam scanning auxiliary information is fed back to the network device, so that the network device can accurately configure the aperiodic beam scanning information to avoid waste of resources, and is also beneficial for the network device and the terminal device to quickly implement aperiodic beam scanning, which is fast. Achieve beam alignment.
  • FIG. 4 is a schematic flowchart of still another communication method according to an embodiment of the present application.
  • the method is introduced from the perspective of interaction between a terminal device and a network device, and the method is the same as the embodiment shown in FIG. 2 and FIG. 3. No longer repeat, the method may include but is not limited to:
  • Step S401 The network device sends, to the terminal device, second downlink control information that carries the trigger type indication information.
  • the terminal device receives the second downlink control information that carries the trigger type indication information from the network device.
  • Step S402 The network device sends a beam scan request message to the terminal device; correspondingly, the terminal device receives a beam scan request message from the network device;
  • step S401 and S402 does not limit the sequence of steps S401 and S402, and the two steps may be performed simultaneously, or the step S402 may be performed before step S401. Simultaneous execution increases processing speed and processing time.
  • the beam scanning request message may be carried in the second downlink control information, which may save the downlink signaling overhead, in addition to the trigger type indication information being carried in the second downlink control information.
  • the beam scanning request message and the trigger type indication information are carried in different downlink control information.
  • Step S403 The terminal device determines beam scanning assistance information according to the trigger type indication information and the preset capability information.
  • the terminal device determines, according to the preset capability information, the maximum number of receive beams to be scanned. It should be noted that if the number of receiving beams to be scanned determined by the terminal device is 1, it indicates that the terminal device unit needs or cannot perform the aperiodic beam scanning in the P-3 phase at this time.
  • the terminal device may determine the minimum number of receive beams to be scanned according to the preset capability information.
  • the minimum number of receive beams to be scanned refers to the minimum number of receive beams that the terminal device needs to meet the full scan. For example, the beam scan range is the largest, but the beam scan width is wider, and the beam scan density is relatively small (the beam scan interval is relatively large). In the case of the terminal device, the terminal device can feed back the minimum number of receive beams to be scanned.
  • the terminal device may determine the number of receive beams when the P-1 phase is beam-scanned as the number of receive beams to be scanned.
  • Step S404 The terminal device sends beam scanning assistance information to the network device; correspondingly, the network device receives beam scanning assistance information from the terminal device;
  • Step S405 The network device configures the aperiodic beam scanning information according to the beam scanning auxiliary information.
  • Step S406 The network device sends the aperiodic beam scanning information to the terminal device.
  • the terminal device receives the aperiodic beam scanning information from the network device.
  • Step S407 The network device determines to trigger aperiodic beam scanning for the terminal device.
  • the network device When the network device sends the aperiodic beam scanning information to the terminal device, it may be determined that the terminal device needs to be triggered to perform the aperiodic beam scanning.
  • Step S408 The network device sends the first downlink control information that carries the scan indication information to the terminal device.
  • the terminal device receives the first downlink control information that carries the scan indication information from the network device.
  • Step S409 The terminal device performs aperiodic beam scanning.
  • the terminal device performs aperiodic beam scanning according to the received aperiodic beam scanning information when receiving the beam scanning indication information.
  • the network device after the network device handshakes with the terminal device, the network device triggers the terminal device to perform aperiodic beam scanning, which can quickly trigger aperiodic beam scanning and improve beam management efficiency.
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present application. The method is introduced from the perspective of interaction between a terminal device and a network device, and the method and the embodiment shown in FIG. 2, FIG. 3, and FIG. The same part will not be described again, and the method may include but is not limited to:
  • Step S501 The network device determines to trigger aperiodic beam scanning for the terminal device.
  • Step S502 The network device sends the first downlink control information that carries the scan indication information to the terminal device.
  • the terminal device receives the first downlink control information that carries the scan indication information from the network device.
  • Step S503 The network device determines beam scanning assistance information according to the trigger type and the terminal device capability information sent by the terminal device.
  • the terminal device capability information sent by the terminal device is sent by the terminal device to the network device in the initial access process, where the terminal device capability information includes a receiving beam quantity interval that the terminal device can support, and may further include other capability information of the terminal device.
  • the network device may determine that the number of receive beams to be scanned of the terminal device is the maximum number of receive beams that the terminal device can support.
  • the network device may determine that the number of receive beams to be scanned of the terminal device is the minimum number of receive beams that the terminal device can support.
  • the network device may determine that the number of receive beams to be scanned of the terminal device is the same as the number of receive beams in the P-1 phase.
  • Step S504 The network device configures the aperiodic beam scanning information according to the beam scanning auxiliary information:
  • Step S505 The network device sends the aperiodic beam scanning information to the terminal device.
  • the terminal device receives the aperiodic beam scanning information from the network device.
  • Step S506 The terminal device performs aperiodic beam scanning.
  • the terminal device performs aperiodic beam scanning according to the received aperiodic beam scanning information when receiving the beam scanning indication information.
  • the terminal device does not need to report the beam scanning assistance information to the network device, and the network device can determine the beam scanning assistance information autonomously.
  • FIG. 6 is a schematic flowchart of still another communication method according to an embodiment of the present application. The method is introduced from the perspective of interaction between a terminal device and a network device, and the method and the embodiment shown in FIG. 2, FIG. 3, and FIG. The same part will not be described again, and the method may include but is not limited to:
  • Step S601 The network device sends the second downlink control information to the terminal device, where the second downlink control information carries at least one of beam type handover indication information or port relationship indication information; and correspondingly, the terminal device receives the second from the network device.
  • the second downlink control information carries at least one of beam type handover indication information or port relationship indication information; and correspondingly, the terminal device receives the second from the network device.
  • the beam type switching indication information is used to indicate whether the terminal device switches the beam type of the receiving beam, and the beam type may be a discrete fourier transform (DFT) beam or other beam.
  • DFT discrete fourier transform
  • the beam type switching indication information may occupy one bit in the existing DCI format. For example, when the bit is “0”, it indicates that the beam type is not switched, that is, the receiving beam type used by the terminal device at the current time is consistent with the previous time; the bit is When "1", it indicates the switching beam type.
  • the scan indication information may also add a bit in the existing DCI format to indicate whether to switch the beam type.
  • the antenna port relationship indication information is used to indicate whether the antenna port of the current transmit beam of the network device and the antenna port of the last transmit beam are in a quasi co-located (QCL) relationship.
  • the antenna port of the current transmit beam may be the antenna port corresponding to the transmit beam of the current device that participates in the aperiodic beam scan.
  • the antenna port of the last transmit beam may be the corresponding transmit beam of the network device that participates in the aperiodic beam scan.
  • Antenna port It should be noted that the antenna ports involved in the embodiments of the present application are all logical antenna ports.
  • the embodiment of the present application does not limit the method for determining, by the network device, whether the antenna port of the current transmit beam and the antenna port of the last transmit beam are QCL.
  • the network device may use the antenna port of the current transmit beam and the antenna port of the last transmit beam. Whether it is located in the same panel to determine that, if the antenna port 1 of the current transmit beam and the antenna port 4 of the last transmit beam are located on the same panel, it can be considered that the antenna port 1 of the current transmit beam and the antenna port 4 of the last transmit beam are QCL relationship.
  • the network device may have more than one antenna port corresponding to the transmit beam of the aperiodic beam scan, and the network device may determine the current if at least one antenna port of the current transmit beam is in a QCL relationship with at least one antenna port of the last transmit beam.
  • the antenna port of the transmit beam is in QCL relationship with the antenna port of the last transmit beam.
  • the antenna port relationship indication information may occupy one bit in the existing DCI format. For example, when the bit is “0”, the antenna port of the current transmit beam is in a QCL relationship with the antenna port of the last transmit beam. In this case, The aperiodic beam scanning of the terminal device can achieve the purpose of beam optimization; when the bit is "1", the antenna port indicating the current transmitting beam and the antenna port of the last transmitting beam are not in the QCL relationship.
  • the antenna port relationship indication information may also add a bit in the existing DCI format to indicate whether it is a QCL relationship.
  • the two antenna ports are considered to be QCL relations.
  • the large-scale features include at least one of the following: delay spread, Doppler spread, Doppler shift, average gain, average delay, and spatial receive parameters.
  • the QCL definition may be updated according to the progress of the NR, and the embodiment of the present application is not limited to the current definition.
  • Step S602 The network device sends a beam scan request message to the terminal device; correspondingly, the terminal device receives the beam scan request message from the network device;
  • step S601 and S602 does not limit the sequence of steps S601 and S602, and the two steps may be performed simultaneously, or the step S602 may be performed before step S601. Simultaneous execution increases processing speed and processing time.
  • the beam scanning request message may be carried in the second downlink control information, except that at least one of the beam type switching indication information or the port relationship indication information may be carried in the second downlink control information. This saves downlink signaling overhead.
  • At least one of the beam scanning request message and the beam type switching indication information or the port relationship indication information is carried in different downlink control information.
  • Step S603 The terminal device determines beam scanning assistance information according to at least one of beam type switching indication information or port relationship indication information.
  • the terminal device may determine the last reported beam scanning assistance information as the current beam scanning auxiliary information. Or the terminal device determines the beam scanning auxiliary information according to the preset capability information; if the beam type switching indication information indicates the switching beam type, the terminal device determines the beam scanning auxiliary information according to the new beam type, and the specific determining manner or algorithm is in the present application.
  • the embodiment is not limited.
  • the terminal device If the second downlink control information includes the port relationship indication information, if the port relationship indication information indicates that the antenna port of the current transmit beam of the network device is in a QCL relationship with the antenna port of the last transmit beam, the terminal device is configured according to the preset capability information. Determining the beam scanning auxiliary information such as the maximum number of receiving beams to be scanned; if the port relationship indication information indicates that the antenna port of the current transmitting beam of the network device is not in the QCL relationship with the antenna port of the last transmitting beam, the terminal device may report the last time The beam scanning assistance information is determined to be the beam scanning assistance information for this time, or the beam scanning assistance information is determined according to the preset capability information.
  • the terminal device determines the beam scanning assistance information by considering the beam type switching indication information and the port relationship indication information.
  • Step S604 The terminal device sends beam scanning assistance information to the network device; correspondingly, the network device receives beam scanning assistance information from the terminal device;
  • Step S605 The network device configures the aperiodic beam scanning information according to the beam scanning auxiliary information.
  • Step S606 The network device sends the aperiodic beam scanning information to the terminal device.
  • the terminal device receives the aperiodic beam scanning information from the network device.
  • Step S607 The network device determines to trigger aperiodic beam scanning for the terminal device.
  • Step S608 The network device sends, to the terminal device, first downlink control information that carries the scan indication information.
  • the terminal device receives the first downlink control information that carries the scan indication information from the network device.
  • Step S609 The terminal device performs aperiodic beam scanning.
  • the terminal device performs aperiodic beam scanning according to the received aperiodic beam scanning information when receiving the beam scanning indication information.
  • the terminal device determines the beam scanning assistance information according to at least one of the beam type switching indication information or the port relationship indication information, and reports the information to the network device, and can also quickly trigger the aperiodic beam scanning. Improve the efficiency of beam management.
  • FIG. 7 is a simplified schematic diagram of a device according to an embodiment of the present disclosure.
  • the device may be a terminal device 10, or may be a chip or a circuit, such as a chip or a circuit that can be disposed on the terminal device.
  • the terminal device 10 can correspond to the terminal device in the above method.
  • the device can include a processor 110 and a memory 120.
  • the memory 120 is configured to store instructions, and the processor 110 is configured to execute the instructions stored in the memory 120 to implement step S203 in the method corresponding to FIG. 2; step S304 and step S308 in the method corresponding to FIG. 3; Step S403 and step S409 in the method corresponding to FIG. 4; step S506 in the method corresponding to FIG. 5; and step S603 and step S609 in the method corresponding to FIG.
  • the device may further include a receiver 140 and a transmitter 150. Further, the device may further include a bus system 130, wherein the processor 110, the memory 120, the receiver 140, and the transmitter 150 may be connected by the bus system 130.
  • the processor 110 is configured to execute instructions stored by the memory 120 to control the receiver 140 to receive signals and control the transmitter 150 to transmit signals to complete the steps of the terminal device in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device can be adapted for use in the system shown in FIG.
  • FIG. 8 shows only the main components of the terminal device.
  • the terminal device 10 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal device, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the processor may be used to perform aperiodic beam scanning, and may also be used to determine beam scanning auxiliary information.
  • the memory can be used to store the programs required by the processor for aperiodic beam scanning, and can also be used by the storage processor to determine the beam scanning assistance information.
  • FIG. 8 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the terminal device 10, and the processor having the processing function is regarded as the processing unit 102 of the terminal device 10.
  • the terminal device 10 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • FIG. 9 is a simplified schematic diagram of a device according to an embodiment of the present disclosure.
  • the device may be a network device 20, or may be a chip or a circuit, such as a chip that can be disposed in a network device or Circuit.
  • the network device 20 corresponds to the network device in the above method.
  • the device can include a processor 210 and a memory 220.
  • the memory 220 is used to store instructions, and the processor 210 is configured to execute the instructions stored in the memory 220, so that the device implements the foregoing step S201 in the method corresponding to FIG. 2; step S302 in the method corresponding to FIG. And step S306; step S405 and step S407 in the method corresponding to FIG. 4; step S501, step S503 and step S504 in the method corresponding to FIG. 5; step S605 and step S607 in the method corresponding to FIG.
  • the network may further include a receiver 240 and a transmitter 250. Still further, the network can also include a bus system 230.
  • the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230, and the processor 210 is configured to execute instructions stored in the memory 220 to control the receiver 240 to receive signals and control the transmitter 250 to send signals.
  • the steps of the network device in the above method are completed.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application, which may be a schematic structural diagram of a base station.
  • the base station can be applied to the system as shown in FIG. 1.
  • the base station 20 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202.
  • RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the downlink control information described in the foregoing embodiments to the terminal device.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital video disk (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital video disk (DVD)
  • DVD digital video disk
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及其装置,其中方法包括如下步骤:网络设备确定针对终端设备触发非周期波束扫描;向所述终端设备发送携带扫描指示信息的第一下行控制信息,所述扫描指示信息用于触发所述终端设备进行非周期波束扫描;所述终端设备从所述网络设备接收携带所述扫描指示信息的所述第一下行控制信息,根据所述扫描指示信息进行非周期波束扫描。本申请实施例可以快速触发非周期波束扫描,提供波束管理效率。

Description

一种通信方法及其装置
本申请要求于2017年7月28日提交中国专利局、申请号为201710636632.0、申请名称为“一种通信方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种通信方法及其装置。
背景技术
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的天线阵列增益。通常波束越窄,信号增益越大。但同时,一旦波束的方向偏离用户,用户反而接收不到高质量的无线信号。为了保证获得天线阵列增益,基站侧的波束和用户侧的波束需要对齐以保证小区覆盖和链路质量。特别是对于窄波束赋形技术而言,波束方向的选择误差会导致信号与干扰加噪声比(signal to interference plus noise ratio,SINR)明显的降低。因此,如何将波束快速对准便成为第五代移动通信(5 th-generation)系统中波束管理(beam management,BM)的关键技术之一。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)相关会议中,新空口(new radio,NR)中下行波束管理可以分为三个阶段:P-1,P-2和P-3。其中,在P-1阶段,终端设备可以通过测量选择一个或多个发送波束,与一个或多个接收波束建立收发波束关联。所建立的收发波束关联中的发送波束可以来自于一个或多个传输接入点(transmission receiver point,TRP),接收波束可以来自于终端设备。通过建立的收发波束关联,TRP与终端设备之间可以进行正常的通信业务。在P-2阶段,终端设备可以根据测量结果对一个或多个收发波束关联中的发送波束进行更新。发送波束仍然可以来自于一个或多个TRP,但一般比P-1阶段的候选范围小。在P-3阶段,终端设备可以根据测量结果对一个或多个收发波束关联中的接收波束进行更新。接收波束仍然可以来自于终端设备。可以理解的是,P-2阶段和P-3阶段是P-1阶段的子集。P-1阶段,主要倾向于周期性触发,P-2/P-3阶段主要是为了进一步波束优化(beam refinement)或者快速波束跟踪(beam tracking),适合非周期性触发。
为了避免终端设备的移动(movement)、旋转(rotation)以及信道堵塞(channel blockage)所带来的信道质量下降,为了提前避免系统中断(outage)的发生,如何快速触发非周期波束扫描是亟待解决的问题。
发明内容
本申请实施例所要解决的技术问题在于,提供一种通信方法及其装置,可以快速触发非周期波束扫描,提高波束管理效率。
第一方面,本申请实施例提供一种通信方法,包括:
步骤1:网络设备确定针对终端设备触发非周期波束扫描;
步骤2:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息,扫描指示信息用于触发终端设备进行非周期波束扫描。
第二方面,本申请提供一种网络设备,包括用于执行以上第一方面各个步骤的单元或手段(means)。
第三方面,本申请提供一种网络设备,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请实施例第一方面种提供的方法。
第四方面,本申请提供一种网络设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第五方面,本申请提供一种通信程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第六方面,提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
可见,在第一方面至第六方面,网络设备在确定触发终端设备进行非周期波束扫描的情况下,向终端设备发送携带扫描指示信息的下行控制信息,从而可以快速触发非周期波束扫描,提前避免系统中断的发生,避免信道质量下降,提高波束管理效率。
基于第一方面至第六方面,在一种可能实现的方式中,网络设备在确定针对终端设备触发非周期波束扫描之前,向终端设备发送至少一种波束配置信息,任意一种波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。网络设备向终端设备发送至少一种波束配置信息,以便终端设备可以从至少一种波束配置信息中选择一种波束配置信息来确定波束扫描辅助信息。
基于第一方面至第六方面,在一种可能实现的方式中,上述波束配置信息是网络设备根据终端设备的当前接收波束配置得到的,这样得到的波束配置信息与终端设备的当前接收波束相关。例如,上述波束配置信息可以是网络设备以终端设备的当前接收波束为中心进行配置得到的,这样得到的波束配置信息中的波束扫描宽度信息可以是基于终端设备的当前接收波束的波束宽度的缩放倍数,波束扫描范围信息可以是以终端设备的当前接收波束为中心,两边所需扫描的角度范围。
基于第一方面至第六方面,在一种可能实现的方式中,第一下行控制信息还包括波束配置指示信息,该波束配置指示信息用于指示至少一种波束配置信息中的一种,即由网络设备指示终端设备从至少一种波束配置信息中选择哪一种波束配置信息,以便终端设备确定波束扫描辅助信息。
基于第一方面至第六方面,在一种可能实现的方式中,网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之后,还执行步骤:从终端设备接收波束扫描辅助信息;根据波束扫描辅助信息配置非周期波束扫描信息;向终端设备发送非周期波束扫描信息。网络设备根据终端设备上报的波束扫描辅助信息配置非周期波束扫描信息,并发送至终端设备,以便终端设备在接收到波束扫描指示信息的情况下,根据非周期波束扫描信息进行非周期波束扫描。
基于第一方面至第六方面,在一种可能实现的方式中,网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之后,还执行步骤:根据触发类型和终端设备发送的终 端设备能力信息确定波束扫描辅助信息;根据波束扫描辅助信息配置非周期波束扫描信息;向终端设备发送非周期波束扫描信息。网络设备自主确定波束扫描辅助信息,无需终端设备上报,终端设备在接收到波束扫描指示信息的情况下,根据非周期波束扫描信息进行非周期波束扫描。
基于第一方面至第六方面,在一种可能实现的方式中,第一下行控制信息还包括触发类型指示信息,触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。触发类型指示信息指示第一触发类型时,可以促使终端设备通过非周期波束扫描达到波束优化的目的,进而可以提升系统性能;触发类型指示信息指示第二触发类型时,可以促使终端设备通过非周期波束扫描达到波束跟踪的目的,进而可以提前避免系统中断的发生。
基于第一方面至第六方面,在一种可能实现的方式中,网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之前,还执行步骤:向终端设备发送携带触发类型指示信息的第二下行控制信息,触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;向终端设备发送波束扫描请求消息;从终端设备接收波束扫描辅助信息;根据波束扫描辅助信息配置非周期波束扫描信息;向终端设备发送非周期波束扫描信息。网络设备与终端设备进行握手之后,网络设备才触发终端设备进行非周期波束扫描,这样可以快速触发非周期波束扫描,提高波束管理效率。
基于第一方面至第六方面,在一种可能实现的方式中,第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,第二触发类型对应于从终端设备接收的上报信息满足第二预设触发条件。可以理解的是,网络设备根据当前的波束扫描属性信息确定是否触发终端设备进行非周期波束扫描以达到波束优化的目的,网络设备根据终端设备发送的上报信息确定是否触发终端进行非周期波束扫描以达到波束跟踪的目的。
基于第一方面至第六方面,在一种可能实现的方式中,网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之前,还执行步骤:向终端设备发送第二下行控制信息,该第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中至少一种,波束类型切换指示信息用于指示是否切换波束类型,端口关系指示信息用于指示网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;向终端设备发送波束扫描请求消息;从终端设备接收波束扫描辅助信息;根据波束扫描辅助信息配置非周期波束扫描信息;向终端设备发送非周期波束扫描信息。终端设备根据波束类型切换指示信息或端口关系指示信息中的至少一种确定波束扫描辅助信息,并上报至网络设备,可以达到快速触发非周期波束扫描,提高波束管理效率的目的。
上述波束扫描辅助信息是一个描述性用词,一方面,用于描述终端设备侧的接收波束参与波束扫描的能力;另一方面,用于描述网络设备侧配置非周期波束扫描信息时兼顾终端设备所需的参考信息或描述网络设备侧的发送波束参与波束扫描的重复次数。上述波束扫描辅助信息可以是终端设备侧的待扫描的接收波束数量,也可以是参考信号资源的重复次数,还可以其他用于描述上述技术本质的名称。
第七方面,本申请实施例提供另一种通信方法,包括:
步骤1:终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
步骤2:终端设备根据扫描指示信息进行非周期波束扫描。
第八方面,本申请提供一种终端设备,包括用于执行以上第七方面各个步骤的单元或手段(means)。
第九方面,本申请提供一种终端设备,包括至少一个处理元件和至少一个存储元件,其中至少一个存储元件用于存储程序和数据,至少一个处理元件用于执行本申请实施例第七方面种提供的方法。
第十方面,本申请提供一种终端设备,包括用于执行以上第七方面的方法的至少一个处理元件(或芯片)。
第十一方面,本申请提供一种通信程序,该程序在被处理器执行时用于执行以上第七方面的方法。
第十二方面,提供一种程序产品,例如计算机可读存储介质,包括第十一方面的程序。
可见,在第七方面至第十二方面,终端设备在接收到网络设备发送的扫描指示信息的情况下,进行非周期波束扫描,从而可以快速实现触发非周期波束扫描,提前避免系统中断的发生,避免信道质量下降,提高波束管理效率。
基于第七方面至第十二方面,在一种可能实现的方式中,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还执行步骤:从网络设备接收至少一种波束配置信息,该波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。终端设备可对至少一种波束配置信息进行存储,以便根据网络设备发送的波束配置指示信息或根据触发类型指示信息和预设能力信息在至少一种波束配置信息中确定一种波束配置信息。
基于第七方面至第十二方面,在一种可能实现的方式中,波束配置信息是网络设备根据终端设备的当前接收波束配置得到的,例如,以终端设备的当前接收波束为中心进行配置得到的。
基于第七方面至第十二方面,在一种可能实现的方式中,第一下行控制信息还包括波束配置指示信息,波束配置指示信息用于指示至少一种波束配置信息中的一种,以便终端设备根据波束配置指示信息从至少一种波束配置信息中选择一种波束配置信息。
基于第七方面至第十二方面,在一种可能实现的方式中,终端设备根据扫描指示信息进行非周期波束扫描之前,还执行步骤:根据波束配置指示信息确定波束扫描辅助信息;向网络设备发送波束扫描辅助信息;从网络设备接收非周期波束扫描信息。终端设备根据波束配置指示信息选择一种波束配置信息,进而根据选择的波束配置信息确定波束扫描辅助信息。
基于第七方面至第十二方面,在一种可能实现的方式中,终端设备根据扫描指示信息进行非周期波束扫描之前,从网络设备接收非周期波束扫描信息,从而在接收到扫描指示信息的情况下,可根据非周期波束扫描信息进行波束扫描。
基于第七方面至第十二方面,在一种可能实现的方式中,第一下行控制信息还包括触发类型指示信息,触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。在第一触发类型下,终端设备进行非周期波束扫描可达到波束优化的目的;在第二触发类型下,终端设备进行非周期波束扫描可达到波束跟踪的目的。
基于第七方面至第十二方面,在一种可能实现的方式中,终端设备根据扫描指示信息 进行非周期波束扫描之前,还执行步骤:根据触发类型指示信息和预设能力信息确定波束配置信息;根据确定的波束配置信息确定波束扫描辅助信息;向网络设备发送波束扫描辅助信息;从网络设备接收非周期波束扫描信息。
基于第七方面至第十二方面,在一种可能实现的方式中,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还执行步骤:从网络设备接收携带触发类型指示信息的第二下行控制信息,触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;从网络设备接收波束扫描请求消息;根据触发类型指示信息和预设能力信息确定波束扫描辅助信息;向网络设备发送波束扫描辅助信息;从网络设备接收非周期波束扫描信息。
基于第七方面至第十二方面,在一种可能实现的方式中,第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,第二触发类型对应于从终端设备接收的上报信息满足第二预设触发条件。
基于第七方面至第十二方面,在一种可能实现的方式中,述终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还执行步骤:从网络设备接收第二下行控制信息,该第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中的至少一种,波束类型切换指示信息用于指示是否切换波束类型,端口关系指示信息用于指示网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;从网络设备接收波束扫描请求消息;根据波束类型切换指示信息或端口关系指示信息中的至少一种确定波束扫描辅助信息;向网络设备发送波束扫描辅助信息;从网络设备接收非周期波束扫描信息。
上述预设能力信息指的是终端设备的自身波束能力信息,可以包括终端设备的接收波束所能达到的波束宽度、扫描范围、扫描密度和扫描方向等。终端设备在不同的场景下,预设能力信息可能有所不同。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是应用本申请实施例的网络架构示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的另一种通信方法的流程示意图;
图4是本申请实施例提供的又一种通信方法的流程示意图;
图5是本申请实施例提供的又一种通信方法的流程示意图;
图6是本申请实施例提供的又一种通信方法的流程示意图;
图7是本申请实施例提供的设备的简化示意图一;
图8是本申请实施例提供的一种终端设备的简化结构示意图;
图9是本申请实施例提供的设备的简化示意图二;
图10是本申请实施例提供的一种网络设备的简化结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)无线接入网(radio access network,RAN)是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、站点(station,STA)、无线保真(wireless fidelity,Wifi)或接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参见图1,是应用本申请实施例的网络架构示意图,该网络架构可以是无线通信系统的网络架构,可以包括终端设备和网络设备。需要说明的是,图1所示的终端设备和网络设备的数量和形态并不构成对本申请实施例的限定,实际应用中,一个网络设备可以连接多个终端设备。网络设备可以连接到核心网设备,核心网设备未在图1中示出。其中,网络设备可以是基站,基站可以包含基带单元(baseband unit,BBU)和远端射频单元(remote radio unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于离高话务量的开阔区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统 (long term evolution,LTE)、第五代移动通信系统以及未来移动通信系统。
本申请实施例中,所述网络设备是一种部署在无线接入网中,用以为用户设备提供无线通信功能的装置。所述网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点,TRP等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为eNB或者eNodeB,在第三代(3rd Generation,3G)系统中,称为NB等。为方便描述,本申请所有实施例中,上述为用户设备提供无线通信功能的装置统称为网络设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。为方便描述,本申请所有实施例中,与网络设备相连接的用户设备统称为终端设备。
NR下行波束管理所分的三个阶段中,P-1阶段主要倾向于周期性(periodic)波束扫描,P-2/P-3阶段主要是为了进一步波束优化,倾向于非周期(non-periodic)波束扫描(包括半持续(semi-persistant)波束扫描和不定期(aperiodic)波束扫描)。
为了避免移动终端的移动、旋转以及信道堵塞所带来的信道质量下降,为了提前避免系统中断的发生,如何快速触发非周期波束扫描是亟待解决的问题。
鉴于此,本申请实施例提供一种通信方法及其装置,可以快速触发非周期波束扫描,提前避免系统中断的发生,避免信道质量下降,提高波束管理效率。
本申请实施例所涉及的非周期波束扫描信息可以包括参考信号资源配置信息和测量报告配置信息等。参考信号资源配置信息包括配置的参考信号资源、参考信号资源的重复次数等等,测量报告配置信息包括配置的终端设备所需上报的测量参数、测量报告的上报周期等等。其中,参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),还可以是其他参考信号。参考信号资源可以是参考信号对应的时频资源等。测量参数可以包括但不限于参考信号接收功率(reference signal receiving power,RSRP)、接收的信号强度指示(received signal strength indicator,RSSI)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal to interference plus noise ratio,SINR)等。测量报告的上报周期可以指示终端设备何时上报测量报告。
下面将结合附图2-附图6对本申请实施例提供的通信方法进行详细介绍。
请参见图2,是本申请实施例提供的一种通信方法的流程示意图,该方法从终端设备与网络设备交互的角度进行介绍,该方法可以包括但不限于:
步骤S201:网络设备确定针对终端设备触发非周期波束扫描;
在一种可能实现的方式中,网络设备根据当前的波束扫描属性信息来确定是否针对终端设备触发非周期波束扫描。
其中,波束扫描属性信息可以包括但不限于波束宽度、波束扫描密度、波束扫描方向、波束扫描范围等。波束宽度可以是宽波束或窄波束。波束扫描密度可以是过采样因子(oversampling factor)。波束扫描方向可以是水平方向、垂直方向或水平+垂直方向。波束扫描范围指的是波束扫描角度范围。
当前的波束扫描属性信息指的是P-1阶段的波束扫描属性信息,可以是该阶段网络设备侧的波束扫描属性信息,也可以是该阶段终端设备侧的波束扫描属性信息,本申请实施 例对此不做限定。
网络设备可通过以下几种情况来确定当前的波束扫描属性信息是否满足第一预设触发条件,进而确定是否针对终端设备触发非周期波束扫描。
情况一:P-1阶段的波束宽度为宽波束,非周期波束扫描所需波束宽度为窄波束,即第一预设触发条件之一为窄波束,那么可以确定当前的波束扫描属性信息不满足第一预设触发条件;
情况二:P-1阶段的波束扫描范围较小,非周期波束扫描的波束扫描范围较大,即第一预设触发条件之二为大于或等于预设波束扫描范围,若当前的波束扫描范围小于预设波束扫描范围时,可以确定当前的波束扫描属性信息不满足第一预设触发条件;
情况三:P-1阶段的波束扫描密度较大,非周期波束扫描的波束扫描密度较大,即第一预设触发条件之三为大于或等于预设波束扫描密度,若当前的波束扫描密度小于预设波束扫描密度,可以确定当前的波束扫描属性信息不满足第一预设触发条件;
情况四:P-1阶段的波束扫描方向为水平方向或垂直方向,非周期波束扫描需要增加垂直方向或水平方向,即第一预设触发条件之四为两个波束扫描方向,那么在需要增加波束扫描方向的情况下,可以确定当前的波束扫描属性信息不满足第一预设触发条件;
需要说明的是,上述四种情况并不构成对当前的波束扫描属性信息不满足第一预设触发条件的限定,实际应用中还可以通过上述四种情况中至少两种情况的组合来确定当前的波束扫描属性信息是否满足第一预设触发条件,还可以通过其他方式来确定当前的波束扫描属性信息是否满足第一预设触发条件。
在当前的波束扫描属性信息不满足第一预设触发条件的情况下,网络设备可以确定需要针对终端设备触发非周期波束扫描。非周期波束扫描可以对应于P-2阶段、P-3阶段或P-2阶段与P-3阶段的组合。P-2阶段与P-3阶段可以是单独扫描,也可以联合扫描。针对非周期波束扫描,尤其针对P-3阶段,网络设备需要配置终端设备对应的非周期波束扫描信息,包括参考信号资源配置信息和测量报告配置信息等。
网络设备可将在当前的波束扫描属性信息不满足第一预设触发条件的情况下所触发的非周期波束扫描的触发类型确定为第一触发类型。
在另一种可能实现的方式中,网络设备根据从终端设备接收的上报信息来确定是否针对终端设备触发非周期波束扫描。
其中,上报信息可以是测量报告,测量报告可以包括RSRP、RSSI、RSRQ、SINR等测量参数中的至少一种。上报信息还可以是反馈信息,反馈信息可以包括混合自动重传请求(hybrid auto repeat request,HARQ)统计信息等,当终端设备与网络设备之间存在数据传输时,终端设备可向网络设备发送反馈信息。
网络设备可通过以下两种情况来确定上报信息是否满足第二预设触发条件,进而确定是否针对终端设备触发非周期波束扫描。
情况一:从终端设备接收的测量报告中的一个或多个测量参数是否低于该测量参数或这些测量参数的预设阈值,若是,可以确定上报信息满足第二预设触发条件,即此时第二预设触发条件之一为小于测量参数的预设阈值。某个测量参数的预设阈值可以在不同的场景下对应不同的值,预设阈值的具体数值在本申请实施例中不做限定。
情况二:以HARQ统计信息为例,从终端设备接收的HARQ统计信息是否大于或等于预设HARQ统计数量,若是,可以确定上报信息满足第二预设触发条件,即此时第二预设触发条件之二为大于或等于预设HARQ统计数量。预设HARQ统计数量的具体数值在本申请实施例中不做限定。
需要说明的是,上述两种情况并不构成对上报信息满足第二预设触发条件的限定,实际应用中还可以通过上述两种情况的组合来确定上报信息是否满足第二预设触发条件,还可以通过其他方式来确定上报信息是否满足第二预设触发条件。
在上报信息满足第二预设触发条件的情况下,网络设备可以确定需要针对终端设备触发非周期波束扫描,可以将该情况下所触发的非周期波束扫描的触发类型确定为第二触发类型。
可以理解的是,第一触发类型,是网络设备根据自身信息主动触发非周期波束扫描,主要是针对P-1阶段的进一步优化,可以促使终端设备通过非周期波束扫描达到波束优化的目的,可以提升系统性能,避免信道质量下降;第二触发类型,是在终端设备的移动、旋转或信道堵塞等导致终端设备向网络设备发送信息时,网络设备根据终端设备发送的信息触发非周期波束扫描,如此,可以促使终端设备通过非周期波束扫描达到波束跟踪的目的,可以提前避免系统中断的发生。
步骤S202:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息;相应地,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
网络设备在确定针对终端设备触发非周期波束扫描之后或同时,向终端设备发送携带扫描指示信息的第一下行控制信息,扫描指示信息用于触发终端设备进行非周期波束扫描。
下行控制信息可以是LTE系统中的DCI(downlink control information),还可以是未来通信系统中的下行控制信息,本申请实施例对此不做限定。以DCI为例,扫描指示信息可以占用现有DCI格式中的一个比特,例如,该比特为“1”时,表示触发终端设备进行非周期波束扫描;也可以在现有DCI格式中新增一个比特,例如,该比特为“1”时,表示触发终端设备进行非周期波束扫描。
步骤S203:终端设备根据扫描指示信息进行非周期波束扫描;
终端设备在接收到携带扫描指示信息的第一下行控制信息时,进行非周期波束扫描。在接收到网络设备发送的非周期波束扫描信息的情况下,终端设备根据非周期波束扫描信息进行非周期波束扫描。
在图2所描述的实施例中,网络设备在确定触发终端设备进行非周期波束扫描的情况下,向终端设备发送携带扫描指示信息的下行控制信息,从而可以快速触发非周期波束扫描,提高波束管理效率。
请参见图3,是本申请实施例提供的另一种通信方法的流程示意图,该方法从终端设备与网络设备交互的角度进行介绍,该方法可以包括但不限于:
步骤S301:网络设备向终端设备发送波束配置信息;相应地,终端设备从网络设备接收波束配置信息;
网络设备针对终端设备配置至少一种波束配置信息,任意一种波束配置信息可以包括 波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。
波束扫描宽度信息可以包括水平波束宽度信息和垂直波束宽度信息,即水平波束宽度值和垂直波束宽度值。其中,波束宽度可以是半功率波束宽度(half-power beamwidth,HPBW),第一零点波束宽度(first null beamwidth,FNBW)等。波束扫描范围信息指的是波束扫描角度范围信息。波束扫描方向信息可以包括水平方向、垂直方向、水平方向+垂直方向。波束扫描密度信息指的是过采样因子的大小。
可以理解的是,不同波束配置信息所包括的上述四种信息的种类可能有所差别,所包括的上述四种信息的内容可能有所差别。例如,波束配置信息1包括波束扫描宽度信息1和波束扫描范围信息1,波束配置信息2包括波束扫描方向信息1和波束扫描密度信息1,波束配置信息3包括波束扫描宽度信息2和波束扫描范围信息1,波束配置信息1与波束配置信息所包括的信息种类不同,波束配置信息3与波束配置信息1所包括的信息的内容不同。
在一种实施方式中,上述波束配置信息为网络设备根据终端设备的当前接收波束配置得到的,例如,网络设备以终端设备的当前接收波束为中心进行配置,得到波束配置信息。
此时,波束配置信息所包括的内容可与上述波束配置信息所包括的内容相同,也可以不相同。不相同可以体现在波束扫描宽度信息和波束扫描范围信息。
在该种实施方式中,波束扫描宽度信息可以是基于终端设备的当前接收波束的波束宽度的缩放倍数,例如缩小1.5倍、2倍,或放大1倍、1.5倍等,即在终端设备的当前接收波束的波束宽度的基础上缩小或放大。波束扫描范围信息可以是以终端设备的当前接收波束为中心,两边所需扫描的角度范围。换言之,该种实施方式中,波束扫描宽度信息和波束扫描范围信息与当前接收波束的属性信息相关联。
网络设备可在无线资源控制(radio resource control,RRC)信令中配置至少一种波束配置信息,向终端设备发送携带至少一种波束配置信息的RRC信令。网络设备也可通过其他方式配置、发送波束配置信息。
步骤S302:网络设备确定针对终端设备触发非周期波束扫描;
步骤S303:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息;相应地,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
步骤S302和步骤S303的具体实现过程可参见图2所示实施例的步骤S201和步骤S202,在此不再赘述。
步骤S304:终端设备确定波束扫描辅助信息;
在一种可能的实现方式中,第一下行控制信息还包括波束配置指示信息,该波束配置指示信息用于指示至少一种波束配置信息中的一种。可以理解的是,波束配置指示信息指示终端设备采用何种波束配置信息。
终端设备可根据波束配置指示信息确定一种波束配置信息,根据该种波束配置信息得出波束扫描辅助信息。具体根据波束配置信息得到波束扫描辅助信息的算法或方式在本申请实施例中不做限定。
在一种可能的实现方式中,第一下行控制信息还包括触发类型指示信息,触发类型指 示信息用于指示触发类型为第一触发类型或第二触发类型。
终端设备可根据触发类型指示信息和预设能力信息确定波束配置信息,即从至少一种波束配置信息中选择一种波束配置信息。然后终端设备根据确定的波束配置信息得出波束扫描辅助信息。其中,预设能力信息指的是终端设备的自身波束能力信息,可以包括终端设备的接收波束所能达到的波束宽度、扫描范围、扫描密度和扫描方向等。终端设备在不同的场景下,预设能力信息可能有所不同。可以理解的是,终端设备在触发类型指示信息所指示的触发类型下,将预设能力信息与至少一种波束配置信息进行对比,进而选择出与预设能力信息匹配的一种波束配置信息,进而确定出波束扫描辅助信息。
上述两种可能的实现方式中,波束扫描辅助信息是一种描述性用词,并不构成对本申请实施例的限定,未来可能采用其他名称来描述。
波束扫描辅助信息指的是,网络设备在配置终端设备波束扫描所需的测量参考信号的资源,或者测量参考信号资源在时频资源上的重复次数,或者终端设备波束扫描的周期类型,或者测量报告的上报周期等参数时,需要终端设备提供的与其接收波束扫描能力相关的一项辅助信息。本申请实施例中不限定波束扫描辅助信息的具体实现方式,列举了一些可能的实现方式,例如待扫描的接收波束数量等,这些实现方式符合上述波束扫描辅助信息的技术本质的描述。其他用于描述波束扫描辅助信息的技术本质的名称,理应属于本申请实施例的保护范围。
本申请实施例以待扫描的接收波束数量为例进行介绍。终端设备在确定波束配置信息之后,根据波束配置信息确定待扫描的接收波束数量。待扫描的接收波束数量可以是一个具体的数值,也可以是一个数值区间。
步骤S305:终端设备向网络设备发送波束扫描辅助信息;相应地,网络设备从终端设备接收波束扫描辅助信息;
步骤S306:网络设备根据波束扫描辅助信息配置非周期波束扫描信息;
步骤S307:网络设备向终端设备发送非周期波束扫描信息;相应地,终端设备从网络设备接收非周期波束扫描信息;
步骤S308:终端设备进行非周期波束扫描;
网络设备在接收到波束扫描指示信息的情况下,根据接收到的非周期波束扫描信息进行非周期波束扫描,即根据参考信号资源配置信息进行扫描,根据测量报告配置信息进行测量上报。
在图3所描述的实施例中,网络设备在向终端设备发送携带扫描指示信息的下行控制信息之前,发送至少一种波束配置信息,以便终端设备确定一种波束配置信息,根据确定的波束配置信息确定波束扫描辅助信息,向网络设备反馈波束扫描辅助信息,从而网络设备可以准确地配置非周期波束扫描信息,避免资源的浪费,还有利于网络设备和终端设备快速实现非周期波束扫描,快速实现波束对齐。
请参见图4,是本申请实施例提供的又一种通信方法的流程示意图,该方法从终端设备与网络设备交互的角度进行介绍,该方法与图2、图3所示实施例相同的部分,不再赘述,该方法可以包括但不限于:
步骤S401:网络设备向终端设备发送携带触发类型指示信息的第二下行控制信息;相应地,终端设备从网络设备接收携带触发类型指示信息的第二下行控制信息;
步骤S402:网络设备向终端设备发送波束扫描请求消息;相应地,终端设备从网络设备接收波束扫描请求消息;
需要说明的是,本申请实施例不限定步骤S401和步骤S402执行的先后顺序,两个步骤可同时执行,也可以步骤S402在步骤S401之前执行。同时执行,可提高处理速度,缩短处理时长。
在一种实施方式中,除了触发类型指示信息可携带在第二下行控制信息中之外,波束扫描请求消息也可携带在第二下行控制信息中,这样可节省下行信令开销。
在一种实施方式中,波束扫描请求消息与触发类型指示信息携带在不同的下行控制信息中。
步骤S403:终端设备根据触发类型指示信息和预设能力信息确定波束扫描辅助信息;
若触发类型指示信息所指示的触发类型为第一触发类型,终端设备根据预设能力信息确定最大待扫描的接收波束数量。需要说明的是,若终端设备确定的待扫描的接收波束数量为1,则表明此时终端设备部需要或没有能力进行P-3阶段的非周期波束扫描。
若触发类型指示所指示的触发类型为第二触发类型,终端设备可根据预设能力信息确定最小待扫描的接收波束数量。最小待扫描的接收波束数量指的是终端设备满足全扫描所需要的最少的接收波束数量,例如,在波束扫描范围最大,但波束扫描宽度比较宽,波束扫描密度比较小(波束扫描间隔比较大)的情况下,终端设备可反馈最小待扫描的接收波束数量。
在一种实施方式中,若触发类型指示所指示的触发类型为第二触发类型,终端设备可将P-1阶段进行波束扫描时的接收波束数量确定为待扫描的接收波束数量。
步骤S404:终端设备向网络设备发送波束扫描辅助信息;相应地,网络设备从终端设备接收波束扫描辅助信息;
步骤S405:网络设备根据波束扫描辅助信息配置非周期波束扫描信息;
步骤S406:网络设备向终端设备发送非周期波束扫描信息;相应地,终端设备从网络设备接收非周期波束扫描信息;
步骤S407:网络设备确定针对终端设备触发非周期波束扫描;
网络设备在向终端设备发送了非周期波束扫描信息的情况下,可确定需要触发终端设备进行非周期波束扫描。
步骤S408:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息;相应地,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
步骤S409:终端设备进行非周期波束扫描;
终端设备在接收到波束扫描指示信息的情况下,根据接收到的非周期波束扫描信息进行非周期波束扫描。
在图4所描述的实施例中,网络设备与终端设备进行握手之后,网络设备才触发终端设备进行非周期波束扫描,这样可以快速触发非周期波束扫描,提高波束管理效率。
请参见图5,是本申请实施例提供的又一种通信方法的流程示意图,该方法从终端设备与网络设备交互的角度进行介绍,该方法与图2、图3、图4所示实施例相同的部分,不再赘述,该方法可以包括但不限于:
步骤S501:网络设备确定针对终端设备触发非周期波束扫描;
步骤S502:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息;相应地,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
步骤S503:网络设备根据触发类型和终端设备发送的终端设备能力信息确定波束扫描辅助信息;
其中,终端设备发送的终端设备能力信息,由终端设备在初始接入过程中向网络设备发送,终端设备能力信息包括终端设备可支持的接收波束数量区间,还可以包括终端设备的其他能力信息。
若触发类型为第一触发类型,则网络设备可确定终端设备的待扫描的接收波束数量为终端设备可支持的最大接收波束数量。
若触发类型为第一触发类型,则网络设备可确定终端设备的待扫描的接收波束数量为终端设备可支持的最小接收波束数量。
在一种实施方式中,若触发类型为第一触发类型,则网络设备可确定终端设备的待扫描的接收波束数量与P-1阶段的接收波束数量相同。
步骤S504:网络设备根据波束扫描辅助信息配置非周期波束扫描信息:
步骤S505:网络设备向终端设备发送非周期波束扫描信息;相应地,终端设备从网络设备接收非周期波束扫描信息;
步骤S506:终端设备进行非周期波束扫描;
终端设备在接收到波束扫描指示信息的情况下,根据接收到的非周期波束扫描信息进行非周期波束扫描。
在图5所描述的实施例中,终端设备无需向网络设备上报波束扫描辅助信息,网络设备可自主确定波束扫描辅助信息。
请参见图6,是本申请实施例提供的又一种通信方法的流程示意图,该方法从终端设备与网络设备交互的角度进行介绍,该方法与图2、图3、图4所示实施例相同的部分,不再赘述,该方法可以包括但不限于:
步骤S601:网络设备向终端设备发送第二下行控制信息,该第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中的至少一种;相应地,终端设备从网络设备接收该第二下行控制信息;
其中,波束类型切换指示信息用于指示终端设备是否切换接收波束的波束类型,波束类型可以是离散傅里叶变换(discrete fourier transform,DFT)波束或其他波束。
波束类型切换指示信息可以占用现有DCI格式中的一个比特,例如,该比特为“0”时,指示不切换波束类型,即当前时刻终端设备所用的接收波束类型与上一次一致;该比特为“1”时,指示切换波束类型。扫描指示信息也可以在现有DCI格式中新增一个比特来指示是否切换波束类型。
其中,天线端口关系指示信息用于指示网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址(quasi co-located,QCL)关系。当前发送波束的天线端口可以是网络设备侧本次参与非周期波束扫描的发送波束所对应的天线端口,上次发送波束的天线端口可以是网络设备上一次参与非周期波束扫描的发送波束所对应的天线端口。需要说明的是,本申请实施例中所涉及的天线端口均为逻辑天线端口。
本申请实施例不限定网络设备确定当前发送波束的天线端口与上次发送波束的天线端口是否为QCL关系的方法,例如,网络设备可根据当前发送波束的天线端口与上次发送波束的天线端口是否位于同一个面板来确定,假设当前发送波束的天线端口1和上次发送波束的天线端口4位于同一个面板,则可以认为当前发送波束的天线端口1与上次发送波束的天线端口4为QCL关系。
网络设备参与非周期波束扫描的发送波束所对应的天线端口可能不止一个,网络设备可在当前发送波束的至少一个天线端口与上次发送波束的至少一个天线端口为QCL关系的情况下,确定当前发送波束的天线端口与上次发送波束的天线端口为QCL关系。
天线端口关系指示信息可以占用现有DCI格式中的一个比特,例如,该比特为“0”时,指示当前发送波束的天线端口与上次发送波束的天线端口为QCL关系,这种情况下,终端设备进行非周期波束扫描可以达到波束优化的目的;该比特为“1”时,指示当前发送波束的天线端口与上次发送波束的天线端口不为QCL关系。天线端口关系指示信息也可以在现有DCI格式中新增一个比特来指示是否为QCL关系。
在3GPPNR的相关定义中,如果一个天线端口上符号对应的信道大尺度特性可以从另外一个天线端口所发送的符号推导得知,则认为这两个天线端口是QCL关系。大尺度特性包括以下至少一个方面:时延扩展、多普勒扩展、多普勒频移、平均增益、平均时延以及空间接收参数。QCL定义有可能根据NR的进展有所更新,本申请实施例不限定于当前定义。
步骤S602:网络设备向终端设备发送波束扫描请求消息;相应地,终端设备从网络设备接收波束扫描请求消息;
需要说明的是,本申请实施例不限定步骤S601和步骤S602执行的先后顺序,两个步骤可同时执行,也可以步骤S602在步骤S601之前执行。同时执行,可提高处理速度,缩短处理时长。
在一种实施方式中,除了波束类型切换指示信息或端口关系指示信息中的至少一种可携带在第二下行控制信息中之外,波束扫描请求消息也可携带在第二下行控制信息中,这样可节省下行信令开销。
在一种实施方式中,波束扫描请求消息与波束类型切换指示信息或端口关系指示信息中的至少一种携带在不同的下行控制信息中。
步骤S603:终端设备根据波束类型切换指示信息或端口关系指示信息中的至少一种确定波束扫描辅助信息;
在第二下行控制信息包括波束类型切换指示信息的情况下,若波束类型切换指示信息指示不切换波束类型,则终端设备可将上一次上报的波束扫描辅助信息确定为这次的波束扫描辅助信息,或终端设备根据预设能力信息来确定波束扫描辅助信息;若波束类型切换 指示信息指示切换波束类型,则终端设备根据新的波束类型来确定波束扫描辅助信息,具体确定方式或算法在本申请实施例中不做限定。
在第二下行控制信息包括端口关系指示信息的情况下,若端口关系指示信息指示网络设备的当前发送波束的天线端口与上次发送波束的天线端口为QCL关系,则终端设备根据预设能力信息确定最大待扫描的接收波束数量等波束扫描辅助信息;若端口关系指示信息指示网络设备的当前发送波束的天线端口与上次发送波束的天线端口不为QCL关系,则终端设备可将上一次上报的波束扫描辅助信息确定为这次的波束扫描辅助信息,或根据预设能力信息确定波束扫描辅助信息。
在第二下行控制信息包括波束类型切换指示信息和端口关系指示信息的情况下,终端设备综合考虑波束类型切换指示信息和端口关系指示信息确定波束扫描辅助信息。
步骤S604:终端设备向网络设备发送波束扫描辅助信息;相应地,网络设备从终端设备接收波束扫描辅助信息;
步骤S605:网络设备根据波束扫描辅助信息配置非周期波束扫描信息;
步骤S606:网络设备向终端设备发送非周期波束扫描信息;相应地,终端设备从网络设备接收非周期波束扫描信息;
步骤S607:网络设备确定针对终端设备触发非周期波束扫描;
步骤S608:网络设备向终端设备发送携带扫描指示信息的第一下行控制信息;相应地,终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
步骤S609:终端设备进行非周期波束扫描;
终端设备在接收到波束扫描指示信息的情况下,根据接收到的非周期波束扫描信息进行非周期波束扫描。
在图6所描述的实施例中,终端设备根据波束类型切换指示信息或端口关系指示信息中的至少一种确定波束扫描辅助信息,并上报至网络设备,同样可以达到快速触发非周期波束扫描,提高波束管理效率的目的。
根据前述方法,图7为本申请实施例提供的设备的简化示意图一,如图7所示,该设备可以为终端设备10,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。该终端设备10可以对应上述方法中的终端设备。
该设备可以包括处理器110和存储器120。该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如图2对应的方法中的步骤S203;如图3对应的方法中的步骤S304和步骤S308;如图4对应的方法中的步骤S403和步骤S409;如图5对应的方法中的步骤S506;如图6对应的方法中的步骤S603和步骤S609。
进一步的,该设备还可以包括、接收器140和发送器150。进一步的,该设备还可以进一步包括总线系统130,其中,处理器110、存储器120、接收器140和发送器150可以通过总线系统130相连。
处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中终端设备的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器 220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其它步骤请参见前述方法或其它实施例中关于这些内容的描述,此处不做赘述。
图8为本申请实施例提供的一种终端设备的简化结构示意图。该终端设备可适用于图1所示出的系统中。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备10包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。应用在本申请实施例中,处理器可以用于进行非周期波束扫描,还可以用于确定波束扫描辅助信息。存储器可以用于存储处理器进行非周期波束扫描所需的程序,还可以用于存储处理器确定波束扫描辅助信息的程序。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备10的收发单元101,将具有处理功能的处理器视为终端设备10的处理单元102。如图8所示,终端设备10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图9为本申请实施例提供的设备的简化示意图二,如图9所示,该设备可以为网络设备20,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。该网络设备20对应上述方法中的网络设备。该设备可以包括处理器210和存储器220。该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以使所述设备实现前述如图2对应的方法中的步骤S201;如图3对应的方法中的步骤S302和步骤S306;如图4对应的方法中的步骤S405和步骤S407;如图5对应的方法中的步骤S501、步骤S503和步骤S504;如图6对应的方法中的步骤S605和步骤S607。
进一步的,该网络还可以包括接收器240和发送器250。再进一步的,该网络还可以包括总线系统230。
其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中网络设备的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其它步骤请参见前述方法或其它实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图10为本申请实施例提供的一种网络设备的简化结构示意图,如可以为基站的结构示意图。如图10所示,该基站可应用于如图1所示的系统中。基站20包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的下行控制信息。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是物理上设置在一 起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑 块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字化视频光盘(digital video disk,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    网络设备确定针对终端设备触发非周期波束扫描;
    所述网络设备向所述终端设备发送携带扫描指示信息的第一下行控制信息,所述扫描指示信息用于触发所述终端设备进行非周期波束扫描。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备确定针对终端设备触发非周期波束扫描之前,还包括:
    所述网络设备向所述终端设备发送至少一种波束配置信息,所述波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述波束配置信息是所述网络设备根据所述终端设备的当前接收波束配置得到的。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一下行控制信息还包括波束配置指示信息,所述波束配置指示信息用于指示所述至少一种波束配置信息中的一种。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之后,还包括:
    所述网络设备从所述终端设备接收波束扫描辅助信息;
    所述网络设备根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述网络设备向所述终端设备发送所述非周期波束扫描信息。
  6. 根据权利要求1所述的方法,其特征在于,所述网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之后,还包括:
    所述网络设备根据触发类型和所述终端设备发送的终端设备能力信息确定波束扫描辅助信息;
    所述网络设备根据波束扫描辅助信息配置非周期波束扫描信息;
    所述网络设备向所述终端设备发送所述非周期波束扫描信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一下行控制信息还包括触发类型指示信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。
  8. 根据权利要求1所述的方法,其特征在于,所述网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之前,还包括:
    所述网络设备向所述终端设备发送携带触发类型指示信息的第二下行控制信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;
    所述网络设备向所述终端设备发送波束扫描请求消息;
    所述网络设备从所述终端设备接收波束扫描辅助信息;
    所述网络设备根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述网络设备向所述终端设备发送所述非周期波束扫描信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,所述第二触发类型对应于从所述终端设备接收 的上报信息满足第二预设触发条件。
  10. 根据权利要求1所述的方法,所述网络设备向终端设备发送携带扫描指示信息的第一下行控制信息之前,还包括:
    所述网络设备向所述终端设备发送第二下行控制信息,所述第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中的至少一种,所述波束类型切换指示信息用于指示是否切换波束类型,所述端口关系指示信息用于指示所述网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;
    所述网络设备向所述终端设备发送波束扫描请求消息;
    所述网络设备从所述终端设备接收波束扫描辅助信息;
    所述网络设备根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述网络设备向所述终端设备发送所述非周期波束扫描信息。
  11. 一种通信方法,其特征在于,包括:
    终端设备从网络设备接收携带扫描指示信息的第一下行控制信息;
    所述终端设备根据所述扫描指示信息进行非周期波束扫描。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还包括:
    所述终端设备从所述网络设备接收至少一种波束配置信息,所述波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。
  13. 根据权利要求12所述的方法,其特征在于,所述波束配置信息是所述网络设备根据所述终端设备的当前接收波束配置得到的。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一下行控制信息还包括波束配置指示信息,所述波束配置指示信息用于指示所述至少一种波束配置信息中的一种。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备根据所述扫描指示信息进行非周期波束扫描之前,还包括:
    所述终端设备根据所述波束配置指示信息确定波束扫描辅助信息;
    所述终端设备向所述网络设备发送所述波束扫描辅助信息;
    所述终端设备从所述网络设备接收非周期波束扫描信息。
  16. 根据权利要求11所述的方法,其特征在于,所述终端设备根据所述扫描指示信息进行非周期波束扫描之前,还包括:
    所述终端设备从所述网络设备接收非周期波束扫描信息。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一下行控制信息还包括触发类型指示信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。
  18. 根据权利要求12、13或17所述的方法,其特征在于,所述终端设备根据所述扫描指示信息进行非周期波束扫描之前,还包括:
    所述终端设备根据所述触发类型指示信息和预设能力信息确定波束配置信息;
    所述终端设备根据确定的波束配置信息确定波束扫描辅助信息;
    所述终端设备向所述网络设备发送所述波束扫描辅助信息;
    所述终端设备从所述网络设备接收非周期波束扫描信息。
  19. 根据权利要求11所述的方法,其特征在于,所述终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还包括:
    所述终端设备从所述网络设备接收携带触发类型指示信息的第二下行控制信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;
    所述终端设备从所述网络设备接收波束扫描请求消息;
    所述终端设备根据所述触发类型指示信息和预设能力信息确定波束扫描辅助信息;
    所述终端设备向所述网络设备发送所述波束扫描辅助信息;
    所述终端设备从所述网络设备接收非周期波束扫描信息。
  20. 根据权利要求17或19所述的方法,其特征在于,所述第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,所述第二触发类型对应于从所述终端设备接收的上报信息满足第二预设触发条件。
  21. 根据权利要求11所述的方法,其特征在于,所述终端设备从网络设备接收携带扫描指示信息的第一下行控制信息之前,还包括:
    所述终端设备从所述网络设备接收第二下行控制信息,所述第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中的至少一种,所述波束类型切换指示信息用于指示是否切换波束类型,所述端口关系指示信息用于指示所述网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;
    所述终端设备从所述网络设备接收波束扫描请求消息;
    所述终端设备根据所述波束类型切换指示信息或所述端口关系指示信息中的至少一种确定波束扫描辅助信息;
    所述终端设备向所述网络设备发送所述波束扫描辅助信息;
    所述终端设备从所述网络设备接收非周期波束扫描信息。
  22. 一种网络设备,其特征在于,包括处理器和收发器;
    所述处理器,用于确定针对终端设备触发非周期波束扫描;
    所述收发器,用于向所述终端设备发送携带扫描指示信息的第一下行控制信息,所述扫描指示信息用于触发所述终端设备进行非周期波束扫描。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述收发器,还用于向所述终端设备发送至少一种波束配置信息,所述波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。
  24. 根据权利要求23所述的网络设备,其特征在于,所述波束配置信息是所述网络设备根据所述终端设备的当前接收波束配置得到的。
  25. 根据权利要求23或24所述的网络设备,其特征在于,所述第一下行控制信息还包括波束配置指示信息,所述波束配置指示信息用于指示所述至少一种波束配置信息中的一种。
  26. 根据权利要求22-25任一项所述的网络设备,其特征在于,
    所述收发器,还用于从所述终端设备接收波束扫描辅助信息;
    所述处理器,还用于根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述收发器,还用于向所述终端设备发送所述非周期波束扫描信息。
  27. 根据权利要求22所述的网络设备,其特征在于,
    所述处理器,还用于根据触发类型和所述终端设备发送的终端设备能力信息确定波束扫描辅助信息;
    所述处理器,还用于根据波束扫描辅助信息配置非周期波束扫描信息;
    所述收发器,还用于向所述终端设备发送所述非周期波束扫描信息。
  28. 根据权利要求26或27所述的网络设备,其特征在于,所述第一下行控制信息还包括触发类型指示信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。
  29. 根据权利要求22所述的网络设备,其特征在于,
    所述收发器,还用于向所述终端设备发送携带触发类型指示信息的第二下行控制信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;
    所述收发器,还用于向所述终端设备发送波束扫描请求消息;
    所述收发器,还用于从所述终端设备接收波束扫描辅助信息;
    所述处理器,还用于根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述收发器,还用于向所述终端设备发送所述非周期波束扫描信息。
  30. 根据权利要求28或29所述的网络设备,其特征在于,所述第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,所述第二触发类型对应于从所述终端设备接收的上报信息满足第二预设触发条件。
  31. 根据权利要求22所述的网络设备,
    所述收发器,还用于向所述终端设备发送第二下行控制信息,所述第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中至少一种,所述波束类型切换指示信息用于指示是否切换波束类型,所述端口关系指示信息用于指示所述网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;
    所述收发器,还用于向所述终端设备发送波束扫描请求消息;
    所述收发器,还用于从所述终端设备接收波束扫描辅助信息;
    所述处理器,还用于根据所述波束扫描辅助信息配置非周期波束扫描信息;
    所述收发器,还用于向所述终端设备发送所述非周期波束扫描信息。
  32. 一种终端设备,其特征在于,包括处理器和收发器;
    所述收发器,用于从网络设备接收携带扫描指示信息的第一下行控制信息;
    所述处理器,用于根据所述扫描指示信息进行非周期波束扫描。
  33. 根据权利要求32所述的终端设备,其特征在于,
    所述收发器,还用于从所述网络设备接收至少一种波束配置信息,所述波束配置信息包括波束扫描宽度信息、波束扫描范围信息、波束扫描方向信息和波束扫描密度信息中的至少一种。
  34. 根据权利要求33所述的终端设备,其特征在于,所述波束配置信息是所述网络设 备根据所述终端设备的当前接收波束配置得到的。
  35. 根据权利要求33或34所述的终端设备,其特征在于,所述第一下行控制信息还包括波束配置指示信息,所述波束配置指示信息用于指示所述至少一种波束配置信息中的一种。
  36. 根据权利要求35所述的终端设备,其特征在于,
    所述处理器,还用于根据所述波束配置指示信息确定波束扫描辅助信息;
    所述收发器,还用于向所述网络设备发送所述波束扫描辅助信息;
    所述收发器,还用于从所述网络设备接收非周期波束扫描信息。
  37. 根据权利要求36所述的终端设备,其特征在于,
    所述收发器,还用于从所述网络设备接收非周期波束扫描信息。
  38. 根据权利要求36或37所述的终端设备,其特征在于,所述第一下行控制信息还包括触发类型指示信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型。
  39. 根据权利要求33、34或38所述的终端设备,其特征在于,
    所述处理器,还用于根据所述触发类型指示信息和预设能力信息确定波束配置信息;
    所述处理器,还用于根据确定的波束配置信息确定波束扫描辅助信息;
    所述收发器,还用于向所述网络设备发送所述波束扫描辅助信息;
    所述收发器,还用于从所述网络设备接收非周期波束扫描信息。
  40. 根据权利要求32所述的终端设备,其特征在于,
    所述收发器,还用于从所述网络设备接收携带触发类型指示信息的第二下行控制信息,所述触发类型指示信息用于指示触发类型为第一触发类型或第二触发类型;
    所述收发器,还用于从所述网络设备接收波束扫描请求消息;
    所述处理器,还用于根据所述触发类型指示信息和预设能力信息确定波束扫描辅助信息;
    所述收发器,还用于向所述网络设备发送所述波束扫描辅助信息;
    所述收发器,还用于从所述网络设备接收非周期波束扫描信息。
  41. 根据权利要求38或40所述的终端设备,其特征在于,所述第一触发类型对应于当前的波束扫描属性信息不满足第一预设触发条件,所述第二触发类型对应于从所述终端设备接收的上报信息满足第二预设触发条件。
  42. 根据权利要求32所述的终端设备,其特征在于,
    所述收发器,还用于从所述网络设备接收第二下行控制信息,所述第二下行控制信息携带波束类型切换指示信息或端口关系指示信息中的至少一种,所述波束类型切换指示信息用于指示是否切换波束类型,所述端口关系指示信息用于指示所述网络设备的当前发送波束的天线端口与上次发送波束的天线端口是否为准共址关系;
    所述收发器,还用于从所述网络设备接收波束扫描请求消息;
    所述处理器,还用于根据所述波束类型切换指示信息或所述端口关系指示信息中的至少一种确定波束扫描辅助信息;
    所述收发器,还用于向所述网络设备发送所述波束扫描辅助信息;
    所述收发器,还用于从所述网络设备接收非周期波束扫描信息。
  43. 一种网络设备,其特征在于,包括处理单元和收发单元;
    所述处理单元,用于确定针对终端设备触发非周期波束扫描;
    所述收发单元,用于向所述终端设备发送携带扫描指示信息的第一下行控制信息,所述扫描指示信息用于触发所述终端设备进行非周期波束扫描。
  44. 一种终端设备,其特征在于,包括收发单元和处理单元;
    所述收发单元,用于从网络设备接收携带扫描指示信息的第一下行控制信息;
    所述处理单元,用于根据所述扫描指示信息进行非周期波束扫描。
  45. 一种通信系统,其特征在于,包括如权利要求22-31中任一项所述的网络设备,和如权利要求32-42中任一项所述的终端设备;或包括如权利要求43所述的网络设备和权利要求44所述的终端设备。
  46. 一种芯片,其特征在于,所述芯片用于执行如权利要求1-10任一项所述的通信方法,或执行如权利要求11-21任一项所述的通信方法。
  47. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的通信方法,或执行如权利要求11-21任一项所述的通信方法。
PCT/CN2018/097248 2017-07-28 2018-07-26 一种通信方法及其装置 WO2019020080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710636632.0 2017-07-28
CN201710636632.0A CN109309519B (zh) 2017-07-28 2017-07-28 一种通信方法及其装置

Publications (1)

Publication Number Publication Date
WO2019020080A1 true WO2019020080A1 (zh) 2019-01-31

Family

ID=65039974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097248 WO2019020080A1 (zh) 2017-07-28 2018-07-26 一种通信方法及其装置

Country Status (2)

Country Link
CN (1) CN109309519B (zh)
WO (1) WO2019020080A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756426B (zh) * 2019-03-29 2023-04-07 华为技术有限公司 一种选择接收波束的方法及装置
CN115866631A (zh) * 2022-04-21 2023-03-28 中兴通讯股份有限公司 信息传输方法、第一节点、第二节点和存储介质
CN117580059A (zh) * 2022-08-08 2024-02-20 华为技术有限公司 通信方法与通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453255A (zh) * 2007-11-28 2009-06-10 华为技术有限公司 一种波束成形的方法、系统和装置
CN103092113A (zh) * 2013-01-06 2013-05-08 中国电子科技集团公司第十研究所 航管波束扫描的时间控制方法
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
WO2016144506A1 (en) * 2015-03-12 2016-09-15 Qualcomm Incorporated Signaling for millimeter wave interference and scheduling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114268419A (zh) * 2015-08-13 2022-04-01 株式会社Ntt都科摩 用户设备、用户设备的方法以及系统
US10374839B2 (en) * 2015-08-13 2019-08-06 Lg Electronics Inc. Operation method of user equipment in relation to CSI-RS in wireless communication system and apparatus supporting the same
CN106953676A (zh) * 2016-01-07 2017-07-14 索尼公司 无线通信方法和无线通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453255A (zh) * 2007-11-28 2009-06-10 华为技术有限公司 一种波束成形的方法、系统和装置
CN103092113A (zh) * 2013-01-06 2013-05-08 中国电子科技集团公司第十研究所 航管波束扫描的时间控制方法
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
WO2016144506A1 (en) * 2015-03-12 2016-09-15 Qualcomm Incorporated Signaling for millimeter wave interference and scheduling

Also Published As

Publication number Publication date
CN109309519B (zh) 2021-05-11
CN109309519A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
TWI822969B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
JP6957654B2 (ja) 測定設定方法、端末および基地局
WO2019136724A1 (zh) Srs传输方法及相关设备
EP3958604A1 (en) Communication method and apparatus
WO2018068260A1 (zh) 一种测量报告方法及相关设备
CN109462425B (zh) 一种波束扫描指示方法及其装置
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US20220394504A1 (en) Beam pair training method and communication apparatus
US11350329B2 (en) Signal management method, related apparatus, and related system
US10411851B2 (en) Wireless communication method, device and system
WO2018036341A1 (zh) 一种业务处理方法及相关设备
WO2019020080A1 (zh) 一种通信方法及其装置
WO2015024205A1 (zh) 无线通信装置及方法
EP4354934A1 (en) Communication method and communication apparatus
CN115176492A (zh) 通信方法、装置及设备
US20230354252A1 (en) Positioning information transmission method and apparatus
JP2023532803A (ja) ビーム指示方法、ネットワークデバイス、端末、装置及び記憶媒体
WO2017041718A1 (zh) 一种数据传输方法、设备和系统
US20230140502A1 (en) Beam indication method and communications apparatus
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
CN114208262B (zh) 载波测量方法和装置
WO2018171647A1 (zh) 一种资源配置方法及其装置
WO2019220647A1 (ja) ユーザ装置及び基地局装置
WO2024140691A1 (zh) 信息传输方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837893

Country of ref document: EP

Kind code of ref document: A1