WO2022121363A1 - 一种依次断开导体和熔体的激励熔断器 - Google Patents

一种依次断开导体和熔体的激励熔断器 Download PDF

Info

Publication number
WO2022121363A1
WO2022121363A1 PCT/CN2021/113103 CN2021113103W WO2022121363A1 WO 2022121363 A1 WO2022121363 A1 WO 2022121363A1 CN 2021113103 W CN2021113103 W CN 2021113103W WO 2022121363 A1 WO2022121363 A1 WO 2022121363A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
conductor
arc
excitation
fuse
Prior art date
Application number
PCT/CN2021/113103
Other languages
English (en)
French (fr)
Inventor
戈西斌
段少波
石晓光
陈蓉蓉
王欣
王伟
Original Assignee
西安中熔电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中熔电气股份有限公司 filed Critical 西安中熔电气股份有限公司
Priority to US17/622,159 priority Critical patent/US11990304B2/en
Priority to EP21786074.1A priority patent/EP4040466A4/en
Priority to KR1020227008292A priority patent/KR20220084016A/ko
Priority to JP2021570382A priority patent/JP7394877B2/ja
Publication of WO2022121363A1 publication Critical patent/WO2022121363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • H01H39/006Opening by severing a conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/121Protection of release mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/143Electrical contacts; Fastening fusible members to such contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • H01H85/175Casings characterised by the casing shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/10Adaptation for built-in fuses
    • H01H9/106Adaptation for built-in fuses fuse and switch being connected in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus

Definitions

  • the present disclosure relates to the fields of electric power control and electric vehicles, and in particular, to an excitation fuse that controls and cuts off a current transmission circuit through an external signal.
  • inrush current such as short-term high current when electric vehicles start or climb a slope
  • break a certain size of fault current with a fast enough breaking speed or can not break a certain size of fault current with a fast enough breaking speed
  • the applicant has also developed a fuse, in which a parallel melt structure is used for auxiliary arc extinguishing; the main conductive terminal is disconnected by the driver to protect the circuit, To extinguish the arc, connect the melt in parallel across the main conductive terminals.
  • a parallel melt structure is used for auxiliary arc extinguishing; the main conductive terminal is disconnected by the driver to protect the circuit, To extinguish the arc, connect the melt in parallel across the main conductive terminals.
  • an instantaneous large current will pass through the melt and melt the melt, thereby achieving the purpose of arc extinguishing.
  • the technical problem to be solved by the present disclosure is to provide an excitation fuse that sequentially disconnects the conductor and the melt by mechanical force, which can more effectively extinguish a large number of arcs generated when the fuse is disconnected, improve the breaking capacity, and ensure The reliability of the fuse opening in the event of a fault is improved.
  • an excitation fuse for disconnecting the conductor and the melt in sequence, including a casing and a cavity in the casing; There is at least one conductor, and both ends of the conductor can be connected with an external circuit; at least one melt is arranged in parallel on the conductor; an excitation device and an interruption device are installed in the cavity on one side of the conductor; The excitation device can be actuated by receiving an external excitation signal to drive the breaking device to form at least one fracture on the conductor and the melt in sequence; at least one fracture on the conductor is connected in parallel with the melt.
  • a closed arc-extinguishing chamber filled with an arc-extinguishing medium is arranged on the casing; the melt is partially or entirely located in the arc-extinguishing medium.
  • At least one set of force-applying components is provided on the melt in the casing, and the force-applying components are driven by the breaking device to break the melt to form a fracture.
  • the force applying component is arranged on the melt outside the arc extinguishing medium; the force applying component includes at least one set of clamping components clamped on the melt; the breaking device disconnects the After the conductor, the clamping assembly can be driven to disconnect the melt in a linear or rotational displacement manner to form a fracture; when the melt is disconnected in a rotational manner, both ends of the clamping assembly are fixed at the place by a rotating shaft. on the housing.
  • the conductor has a rotation weak point
  • the breaking device can interrupt the conductor
  • each of the broken weak points of the conductor can form a fracture
  • the rotation weak point is arranged at the broken weak point.
  • One or both sides of the switch to form a single-door or double-door push-door structure the disconnected conductor can be pushed away by the interrupting device and rotate around the weak point of rotation without following any The interrupting device moves together, and the moving part of the interrupting device passes through the gap formed by the rotation of the conductor.
  • the weak points of rotation of the conductors are arranged on both sides of the weak points of the conductors to form the double-door push-door structure.
  • An arc-extinguishing structure is arranged in the housing, and the arc-extinguishing structure is located in or near the arc movement path of the double-door push-door structure, and performs arc-extinguishing between the two parts of the conductor after disconnection.
  • the breaking device includes a striking end having insulating material capable of forming an insulating wall with the housing after disconnecting the conductor, the insulating wall being capable of separating the disconnection on both sides after the conductor.
  • the breaking device includes melt impact ends, and the melt impact ends are located on both sides of the impact end with insulating material. Before the breaking device works, the impact end with insulating material is in contact with the conductor. The distance is smaller than the distance between the melt impact end and the melt;
  • the melt impact end is located below the impact end with insulating material and is connected in series with the impact end with insulating material.
  • the impact end with insulating material is connected to the impact end with insulating material.
  • the spacing of the conductors is smaller than the spacing between the melt impingement end and the melt.
  • the force applying component includes at least one push rod and at least one guide rod, the arc extinguishing medium is filled around the push rod and the guide rod, and the melt is located in the push rod and the guide rod. between the guide rods; one end of the push rod passes through and extends out of the arc extinguishing chamber; one end of the guide rod can be displaced into the reserved displacement space in the arc extinguishing chamber or extend out of the arc extinguishing chamber arc chamber; a blocking structure to prevent the leakage of the arc extinguishing medium is arranged between the push rod and the guide rod and the wall of the arc extinguishing chamber; when the interrupting device disconnects the conductor, it drives The push rod and the guide rod are displaced in a straight line to disconnect the melt, the two segments of the melt after disconnection are the cathode and the anode, respectively, and an arc path is formed between the cathode and the anode, The cathode and/or the anode are
  • the cathode When the cathode is in the arc-extinguishing medium, the anode is in the slit between the push rod and the casing; or, when the anode is in the arc-extinguishing medium, the The cathode is in the slot between the push rod and the housing.
  • the force applying assembly includes a rotating member rotatably arranged in the arc extinguishing chamber and a trigger member located outside the arc extinguishing chamber; the rotating member abuts or clamps the melt; the rotating member is connected to the A blocking structure to prevent the leakage of the arc-extinguishing medium is arranged between the arc-extinguishing chambers; after the interrupting device disconnects the conductor, the interrupting device can drive the trigger member to drive the rotating member to rotate in a rotational displacement manner breaking the melt;
  • the disconnected melts are the cathode and the anode respectively, the arc path is between the cathode and the anode, the cathode and/or the anode are still in the arc extinguishing medium, and part or all of the arc is The path is in the arc extinguishing medium.
  • the cathode When the cathode is in the arc-extinguishing medium, the anode is in the slit between the rotating member and the casing; or, when the anode is in the arc-extinguishing medium, the The cathode is in the slot between the rotating member and the casing.
  • the excitation device is a gas generating device, an air cylinder, and a hydraulic cylinder that can be actuated by receiving an external excitation signal; when the excitation device is a gas generating device, the interrupting device is in sealing contact with the side wall of the housing or has a space left there. A gap of less than 0.1mm.
  • the conductor and/or the melt is provided with a breaking weak point which reduces the mechanical strength of the conductor and is convenient for breaking by the breaking device.
  • the breaking device is provided with at least one impact end, and the impact end is configured as a constricted end surface structure, a pointed structure, a chamfered knife line structure or a concave structure with a pointed middle at both ends.
  • the blocking structure is a seal arranged between the force applying component and the wall of the arc extinguishing chamber; or the interference fit between the force applying component and the wall of the arc extinguishing chamber; or when the arc extinguishing medium is solid granular, the force applying component and the arc extinguishing chamber wall are in interference fit.
  • the gap between the arc-extinguishing chamber walls is smaller than the particle size of the arc-extinguishing medium.
  • the excitation fuse for disconnecting the conductor and the melt in sequence of the present disclosure can be applied to a power distribution unit, or an energy storage device, or a new energy vehicle.
  • the energizing fuse of the present disclosure which disconnects the conductor and the melt in sequence, may have applications in power distribution equipment, energy storage equipment, automobiles, or other fields requiring circuit protection.
  • FIG. 1 is a schematic diagram of a longitudinal cross-sectional structure of the fuse of the present disclosure when it is not disconnected.
  • FIG. 2 is a schematic diagram of another viewing angle of FIG. 1 .
  • FIG. 3 is a schematic structural diagram of a melt, a push plate and a guide plate.
  • Fig. 4 is a schematic structural diagram of the disconnected weak point on the conductor, a in Fig. 4 is a side view of the conductor; b in Fig. 4 is a front view of the conductor.
  • FIG. 5 is a schematic cross-sectional structure diagram of another optional structure of the disclosed fuse when it is not disconnected.
  • FIG. 6 is a schematic cross-sectional structural diagram of the fuse in FIG. 5 after disconnection.
  • FIG. 7 is a schematic view of the structure in which the pressing block in FIG. 5 is an arc surface.
  • Fig. 8 is a schematic diagram of the structure of the push rod and the guide rod of the melt located in the arc extinguishing chamber.
  • FIG. 9 is a schematic structural diagram of a force-applying assembly that is disposed in the arc-extinguishing chamber to disconnect the melt in a rotational manner;
  • FIG. 10 is a schematic diagram of another alternative structure of the disclosed fuse when the conductor is disconnected and a U-shaped arc is generated.
  • the orientation or positional relationship indicated by the terms “inner”, “outer”, etc. is based on the orientation or positional relationship shown in the accompanying drawings, or the orientation that the product is usually placed in when it is used. Or the positional relationship is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present disclosure. Furthermore, the terms “first”, “second”, etc. are only used to differentiate the description and should not be construed to indicate or imply relative importance.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected in one piece; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • the excitation fuse (also referred to as a trigger fuse) proposed in the embodiments of the present disclosure mainly includes a housing, a conductor 3, a melt 6, an excitation device 4 (also referred to as a trigger device), and an interruption device; wherein.
  • the casing includes an upper casing 1 and a lower casing 2, a conductor 3 is arranged between the upper casing 1 and the lower casing 2, and both ends of the conductor 3 extend out of the casing, Can be connected to external circuits.
  • the contact surfaces of the upper casing 1 and the lower casing 2 are sealed by a sealing device.
  • the outer shell of the fuse is sealed with no ventilation holes, which can prevent foreign objects from polluting the fracture, and also prevent high-temperature arcs from spraying out of the shell to damage surrounding devices, improving the protection level.
  • the conductors 3 can also be all arranged in the casing, and then the two ends of the conductors are respectively connected to conductive terminals.
  • the conductive terminals are arranged at both ends of the casing and extend out of the casing, and are connected to the external circuit through the conductive terminals.
  • the shape of the conductor 3 can be a plate-like structure, and its cross-sectional shape can be any shape, such as circular, square, special-shaped, tubular, etc., and combinations thereof. In the following description, the conductor 3 is described by taking a plate-like structure as an example.
  • the number of conductors 3 may be one, or several conductors may be arranged in parallel in the casing.
  • the casing may be a combination of left and right casings, and is not limited to a combination of upper and lower casings.
  • the current flows through the two ends of the conductor 3 connected in series on the protection system circuit, which will not cause adverse effects on the melt 6. Moreover, because the conductor 3 has a large cross-section and a small resistance, the heat generation is small, the power consumption is low, and the current impact resistance is good.
  • a through cavity 30 is respectively opened on the casing located on the upper and lower sides of the conductor 3 .
  • the excitation device 4 and the interruption device 5 are sequentially arranged from top to bottom.
  • a limit step is provided in the cavity 30, and the excitation device 4 is installed at the limit step in the cavity 30, and is fixed on the casing by a pressing plate or a pressing sleeve (not shown).
  • the excitation device 4 can be connected to an external control device (not shown) that transmits excitation signals, and receives excitation signals from the control device.
  • the excitation signals are generally electrical signals.
  • the excitation device 4 can also be a mechanism such as an air cylinder, a hydraulic cylinder, a cam transmission device, etc., which can receive an external excitation signal to act and provide a linear displacement drive for the interruption device 5 .
  • the excitation device 4 is a gas generating device that stores chemical energy and is excited by electric current.
  • the interrupting device 5 may be a piston, a slider or a structure of a combination of the above components, as long as it can be driven by the excitation device 4 to cut off the conductor 3 .
  • the interruption device 5 is in sealing contact with the side wall of the casing or has a gap of less than 0.1 mm.
  • the sealing contact can be achieved by arranging a sealing member 41 such as a sealing ring between the breaking device 5 and the cavity 30 , or by the interference fit between the breaking device 5 and the cavity 30 .
  • the typical clearance is 0.1mm or less, a small amount of gas leakage will not affect the movement of the piston, and a good driving force can be obtained; if the piston is in sealing contact with the side wall of the housing, the obtained The pushing force is greater, but the frictional force on the piston is generally greater. Therefore, according to the driving force of the high-pressure gas generated by the gas generating device, it is determined whether the interruption device 5 is in sealing contact with the side wall of the housing or keeps a small gap.
  • a limiting structure is provided between the breaking device 5 and the cavity 30 .
  • the function of the limit structure is to maintain the position of the interrupting device 5 in the case of external vibration, to prevent the interrupting device 5 from accidentally interrupting the conductor 3 and the melt 6 due to vibration and other conditions, and to avoid the normal operation of the equipment installed with the fuse. work interferes.
  • the limiting structure can be a protrusion provided at intervals on the outer periphery of the breaking device 5 and a groove provided at a corresponding position of the cavity 30, and the protrusion is clamped in the groove to realize the limit; or the inner wall of the cavity 30 is spaced
  • the breaking device 5 is provided with a corresponding groove, and the ridges are clamped in the grooves of the breaking device 5 to limit the position.
  • a disconnected weak point 31 is provided on the conductor 3 located at the housing cavity 30 , and a rotational weak point 32 is provided on both sides of the disconnected weak point 31 near the shell wall of the housing cavity 30 .
  • the purpose of providing the broken weak point 31 is to reduce the mechanical strength of the conductor 3 .
  • the following measures to weaken the fracture strength can be selected or used simultaneously: reduce the fracture cross-sectional area, so that the broken weak point 31 is formed into a structure with a reduced cross-sectional area, such as U-shaped grooves, V-shaped grooves, holes , hollow, etc.
  • the weak point 31 can be set in the cross-section of the conductor 3 at any angle, using a variable-section structure to generate stress concentration in the transition area, such as reserving a gap, or using shear force; fracture; Use low-strength conductor 3 materials, such as tin, etc.; use mechanical force to press and/or fix prefabricated fractures, etc.
  • the measures for weakening the fracture strength are not limited to the above measures. Bending notches are respectively provided on the conductors 3 on both sides of the broken weak point 31 , and the bending notches help the conductors 3 to be bent along them after being broken. It is also possible to have no bend notch.
  • the conductors 3 located in the casing can be arranged in a flat-line shape, or can be arranged in a downwardly concave glyph-shaped structure.
  • the zigzag structure can better match and locate the conductor 3 with the upper casing 1 and the lower casing 2 .
  • a space is provided on the lower case 2 below the conductor 3 for the broken part to drop after the conductor 3 is broken.
  • At least one melt 6 is connected in parallel to the conductor 3 located in the housing. As shown in FIG. 1 and FIG. 2 , in the embodiment, two melts 6 are connected in parallel on the conductor 3 , which are respectively located on both sides of the conductor 3 . Both ends of the melt 6 are located at the ends of the broken weak point 31 .
  • the melt 6 By connecting the melt 6 in parallel on both sides of the fracture of the conductor 3, when the conductor 3 is fractured, most of the fault current energy about 60-70% passes through the parallel melt 6. Therefore, the arrangement of the parallel melt 6 can greatly reduce the number of conductors.
  • the fault current energy at the fracture of 3 is conducive to the rapid recovery of the insulation performance of the fracture, and the insulation performance can be restored within a few milliseconds; but when the fault current is small and not enough to blow the parallel melt 6, or the time to pass the parallel melt 6 is insufficient, The parallel melt 6 cannot be blown in time or cannot be blown, which will cause the circuit to fail to be disconnected in time. Therefore, in the present disclosure, by making the interrupting device 5 interrupt the conductor 3 and the melt 6 in sequence, the circuit is disconnected to ensure that Breaking reliability. In the normal flow state, the current mainly flows through both ends of the conductor 3, and only a very weak current flows through the parallel melt 6, so the melt 6 can be regarded as a conductor.
  • the force application component is a set of clamping components clamped on both sides of the melt 6, including a push plate 61 and a guide plate 62.
  • the push plate 61 and the guide plate 62 are connected to connect the melt 6 It is fixed between the push plate 61 and the guide plate 62, so that the push plate 61 and the guide plate 62 form a set of relatively fixed clamping assemblies.
  • the push plate 61 and the guide plate 62 are fixed on the casing by a positioning structure (not shown).
  • the push plate 61 When the push plate 61 is driven by the breaking device 5 , it can overcome the positioning of the positioning structure, displace and break the melt 6 .
  • An arc extinguishing chamber 60 is provided in the casings on both sides of the push plate 61 and the guide plate 62 , and the arc extinguishing chamber 60 is filled with an arc extinguishing medium 63 .
  • Conductor 3 is connected.
  • the melt 6 is provided with a fuse weak point and a broken weak point 31 for mechanically breaking the melt 6, and the settings of the fuse weak point and the broken weak point 31 do not affect each other, that is, the melt 6 does not mechanically break after being broken. Affects melt 6 fusing, and does not affect melt 6 mechanically disconnecting after melt 6 fusing.
  • the arc extinguishing medium 63 may be a combination of densely filled bulk particles and colloids, or may be a liquid, which may be selected according to actual arc extinguishing requirements.
  • the arc at the fracture of the melt 6 is prevented from spreading by the arc extinguishing medium.
  • the breaking process the combination of quick cutting and fuse arc extinguishing principle is adopted, and the breaking capacity is basically not affected by air pressure and temperature and humidity, which improves the arc extinguishing capacity, so it can break a larger fault current and improve the breaking capacity.
  • the weak point for fusing is set in the arc extinguishing medium 63
  • the weak point 31 for breaking can be set in the arc extinguishing medium 63 or outside the arc extinguishing medium 63 and close to one side or both sides of the push plate 61 and the guide plate 62 on the melt 6.
  • the broken weak point 31 can be arranged at the bend of the melt 6 to facilitate the breaking of the melt 6 .
  • the weak point of fusing can be a narrow-diameter structure or a structure or material that is coated with low-temperature molten metal on the surface of the melt 6 to produce a metallurgical effect layer to accelerate the fusing speed, or a section of low-melting point material is lapped on the melt 6 .
  • the structure of the part of the melt 6 located in the arc extinguishing chamber 60 is set as a trapezoidal structure 66, as shown in FIG.
  • the broken weak point 31 is provided at the bend of the trapezoidal structure. In this way, when the melt 6 is disconnected, it is easier to pull the melt 6 off.
  • a space for the downward displacement of the guide plate 62 is opened in the casing just below the guide plate 62 , and a buffer layer is provided at the bottom of the space.
  • the height of the space is at least greater than the displacement distance of the guide plate 62 when the melt 6 is broken.
  • the part of the lower casing 2 located below the melt 6 is processed separately from other parts of the lower casing 2 to form the melt bottom casing 64 .
  • a partial arc-extinguishing chamber 60 and a space below the melt 6 are opened on the melt bottom shell 64 , and then the guide plate 62 is set on the opening of the space below the melt 6 through a limiting structure. , and then fix the melt 6 on the melt bottom shell 64, and finally put the push plate 61, so that the melt 6, the push plate 61, the guide plate 62, the space below the melt 6, and part of the arc extinguishing cavity Parts such as the chamber 60 are formed as an integrated structure.
  • Part of the arc extinguishing chamber 60 corresponding to the melt bottom shell 64 and a space below the conductor 3 are respectively opened on the lower casing 2 .
  • a mounting recess opening downward is formed in the lower case 2 .
  • the melt 6 and the integrated structure below it are integrally installed on the lower casing 2 to form a seal at the contact surface with the lower casing 2.
  • Part of the arc extinguishing chamber 60 of the melt bottom casing 64 and the lower casing 2 are sealed.
  • Part of the arc extinguishing chamber 60 of the housing 2 is butted to form a complete sealed chamber, which is then fixed by screws.
  • the melt 6 can be arranged at a certain distance directly below the conductor 3, or can be arranged below the outer sides of the two sides of the edge of the conductor 3. No matter how the position of the melt 6 is set, the conditions it meets are all in the interruption device 5. After the impact end breaks the conductor 3, the melt 6 can also be broken. Therefore, the impact end structure of the breaking device 5 or the vertical distance between the conductor 3 and the melt 6 can be determined according to the interval time required for breaking the conductor 3 and the melt 6 .
  • the impact end of the breaking device 5 can be provided as three independent parts: the impact end 51 facing the breaking part of the conductor 3 and having insulating material, and the impact end 51 located in Both sides of the impact end 51 with insulating material are configured to break the melt impact end 52 of the melt 6, thereby breaking the conductor 3 and the melt 6, respectively. Since the melt 6 is located below the conductor 3, the melt impact end 52 and the impact end 51 with insulating material are arranged at a height, and the melt impact end 52 and the impact end 51 with insulating material are determined according to the disconnection time between the conductor 3 and the melt 6. The ends 51 are respectively distanced from the melt 6 and the conductor 3, and the conductor 3 and the melt 6 are disconnected successively according to the interval.
  • the distance between the impact end 51 with insulating material and the conductor 3 in the embodiment is smaller than the distance between the melt impact end 52 and the melt 6 to ensure that the conductor 3 and the melt 6 can be interrupted in sequence.
  • the melt impact end 52 is located below the impact end 51 with insulating material and is connected in series with the impact end 51 with insulating material. Before the breaking device 5 works, the impact end 51 with insulating material is connected to the conductor 3 The distance is smaller than the distance between the melt impact end 52 and the melt 6 .
  • the melt impact end 52 located below the impact end 51 with insulating material can also play the same role, and can be selected according to the spatial arrangement of the product.
  • the impact end 51 with insulating material can move to a position in contact with the casing, and form an insulating wall with the casing, so that the conductors 3 on both sides are separated after being disconnected.
  • the width of the impact end 51 with insulating material is greater than the width of the conductor 3 to form the insulating wall.
  • other methods capable of forming the insulating wall can also be selected.
  • the melt 6 will have an instantaneous overvoltage in the process of fusing or breaking
  • two isolated chambers are formed under the isolation effect of the insulating wall, which can prevent the overvoltage from breaking down the upper fracture through the air, thereby Prevent re-ignition; in the process of forming two independent chambers at both ends of the fracture, the arc can be squeezed into the slit, which is conducive to arc extinguishing.
  • the formation of the insulating wall improves the reliability of the fuse of the present disclosure.
  • the end faces of the impact end 51 and the melt impact end 52 with insulating material can be set as a tip structure, a blade-like structure, a shrink end surface structure, a chamfered knife structure or a narrow plane structure, etc., which is convenient for cutting the conductor 3 and the melt 6. Break the weak point 31 to form a fracture.
  • a plate-like structure such as the push plate 61 and the guide plate 62 as shown in FIG. 3 is arranged on the melt 6, the end face of the melt impact end 52 is set to a plane structure, which is convenient to push the push plate 61 to make the melt 6 Disconnect.
  • the impact end of the breaking device 5 first breaks the conductor 3, and then continues to displace, and the melt 6 is broken by breaking the impact end of the conductor 3, and a fracture is formed on the conductor 3 and the melt 6 successively.
  • the conductor 3 has a weak point 105 for rotation
  • the interruption device 5 can interrupt the conductor 3
  • each weak point 31 of the conductor 3 can form a fracture
  • the weak point 105 for rotation is set at the weak point of disconnection.
  • One or both sides of the position 31 to form a single door or double door push door structure the conductor 3 after disconnection can be pushed open by the interrupting device 5 and rotate around the weak point 105 without following the interrupting device. 5 move together, and the moving part of the interrupting device 5 passes through the gap formed by the rotation of the conductor 3 .
  • the rotational weakness 105 is provided on both sides of the disconnected weakness 31 .
  • the breaking device 5 breaks down the conductor 3 to form a single breaking point
  • the conductor 3 continues to be pushed by the breaking device 5, and rotates with the weak point 105 as the turning point, just like pushing two doors open, and will not fall, It will not stand up and jam the interrupting device 5 due to falling.
  • the breaking device 5 continues to move downward, so as to ensure that the melt 70 can continue to be broken.
  • the embodiment is provided in the form of a double door with two rotational weak points 105 . It can also be considered that only one rotation weak point 105 is provided, and when pushed, the conductor 3 is broken like a single door.
  • setting the weak point 105 can make the force applied by the breaking device 5 smaller and more uniform, and the conductor 3 can be broken while maintaining a uniform breaking force, and can also make the breaking point As the conductor 3 is disconnected, the arc is stretched into a U shape along the disconnection direction, which is beneficial to arc extinguishing.
  • FIG. 10 shows an embodiment in which two rotational weak points 105 are arranged on both sides of the disconnected weak point of the conductor 3 to form a double door sliding door structure.
  • the arc extinguishing structure is located in or near the arc movement path of the double door push door structure to extinguish the arc between the two parts after the conductor 3 is disconnected.
  • the head of the moving part can use insulating material to cool the arc and help extinguish the arc; the head of the moving part can also be coated with insulating material that can generate gas to help extinguish the arc; it can also be used in the movement of the head of the moving part.
  • a metal arc extinguishing grid, an insulating arc extinguishing grid or a slit is arranged in front of the direction to help extinguish the arc.
  • a metal arc extinguishing grid 101 can be embedded to segment the arc and cool the arc; as shown on the left, insulating protrusions 102 can be provided at intervals or provided at intervals
  • the insulating sheet 103 is used to form an insulating gap arc extinguishing structure, so that the arc extends along the surface of the insulating wall, elongates the path of the arc, and realizes slit arc extinguishing and cooling arc extinguishing; it can also be coated on the shell 2 below the fracture.
  • These methods can be implemented individually or in combination.
  • the conductor 3 can form a symmetrical U-shaped arc H after a single point is disconnected, and the electromotive force of the huge arc acts on the conductive particles, so that the arc moves to the front space faster than the head of the breaking device 5 , the movement speed can exceed several thousand meters per second, and the arc is quickly elongated.
  • the above-mentioned arc extinguishing structure is arranged on the shell wall and in the space in front of the moving direction of the U-shaped arc, which can increase the arc voltage and make the shunt current of the current (I), that is, the conductor 3 current (current in the direction of I1), transfer faster to On the melt 106 (current in the I2 direction), the melt 106 is blown faster; and the arc is further elongated to cool the arc, and the insulation resistance effect can be established faster, so as to withstand the overvoltage when the melt 106 is blown and prevent it from being broken down .
  • I the conductor 3 current
  • the interruption of the melt 106 can be in the form of pressing block rotation as described below, or in the form of joint interruption of the push rod 81 and the guide rod 82 in FIG. 8 , or in the form of FIG. 9 .
  • Rotation breaks form.
  • the breaking rod 104 is used, and the melt 106 passes through the breaking rod 104 .
  • the breaking device 5 moves down further and pushes the breaking rod 104 to move down, the melt 106 can be pulled and broken.
  • the arc-extinguishing medium 63 can be surrounded by the surrounding arc-extinguishing medium 63 , and the breaking rod 104 and the casing are kept sealed to prevent leakage of the arc-extinguishing medium 63 .
  • the force-applying component includes two sets of clamping components 74 arranged on the melt 70 at intervals, and a disconnecting notch 75 is formed between the two sets of clamping components 74 to facilitate the breaking of the melt 70 .
  • Each set of clamping assemblies 74 includes a pair of pressing blocks 71 disposed on both sides of the melt 70 .
  • the adjacent surfaces of the two pressing blocks 71 located on the same side of the melt 70 are arc-shaped surfaces. In this way, a trumpet-shaped disconnecting recess 75 can be formed between the two sets of clamping assemblies 74, so that the impact end of the piston can enter the disconnecting recess.
  • Port 75 disconnects melt 70 .
  • Both ends of the pressing block 71 are fixed on the housing through the rotating shaft 73 .
  • the arc extinguishing chambers 72 are located on both sides of the two sets of clamping assemblies 74 .
  • the breaking device 5 breaks the conductor 3, its impact end enters the breaking notch 75 between the two groups of pressing blocks 71, and then the melt 70 is broken from the breaking notch 75; at the same time, the arc of the pressing block 71
  • the shape surface is pressed by the breaking device 5, and the pressing block 71 drives the melt 70 located therebetween to rotate along the rotating shaft 73, so that the melt 70 at both ends of the pressing block 71 is broken.
  • Multiple fractures are formed in the melt 70 . It can be seen from FIG. 5 and FIG. 6 that both ends of the melt 70 are connected in parallel to the conductors 3 on both sides of the multiple fractures. Since the three fractures are formed at the same time, most of the overcurrent energy passes through the melt 70 connected in parallel at the three fractures.
  • the arc generated at each fracture is very small, and the air arc extinguishing is very effective. It is easy to achieve, and the insulation performance at the fracture will recover quickly.
  • the melt 70 is fused in the arc-extinguishing medium 63, it is mechanically disconnected by the interrupting device 5 and forms at least two fractures. With the participation of the partial pressure and the arc-extinguishing medium 63, the arc at the fracture of the melt 70 is also quickly extinguished. arc.
  • the surface of the pressing block 71 on the opposite side of the melt 70 is a protruding arc surface, and the top surface or the bottom surface of the pressing block 71 in FIG. In this way, a trumpet-shaped cut-off notch 75 is formed between the two groups of pressing blocks 71 .
  • the cavity wall of the cavity 30 where the pressure block 71 is located may be an arc surface matching the arc surface of the pressure block 71 .
  • the pressure block 71 can rotate smoothly along the arc surface of the cavity 30 .
  • the melt 70 located on both sides of the pressing block 71 is placed in the arc extinguishing chamber 72 in the casing, and the arc extinguishing chamber 72 is filled with the arc extinguishing medium 63 .
  • the clamping assembly in the above-mentioned FIGS. 3 and 5 is used as a force applying assembly for applying force to the melt 40 , which can drive the clamping assembly to displace through the breaking device 5 , and then break the melt 40 .
  • the breaking weak point 31 may be located outside the arc extinguishing chamber 72 or inside the arc extinguishing chamber 72 .
  • the force applying components and the melt similar to FIG. 3 and FIG. 6 can also be located in the arc extinguishing chamber 60. Since the arc extinguishing chamber 60 is filled with the arc extinguishing medium, it is necessary to solve the problem that the clamping component drives the melt in the arc extinguishing medium. The displacement is disconnected, and the arc extinguishing medium will not leak.
  • the force applying assembly and the melt 6 are located in the arc extinguishing chamber 60 .
  • the force-applying component is a clamping component that is clamped on the melt 6.
  • a push rod 81 and a guide rod 82 are oppositely disposed on both sides of the melt 6 to form a clamping assembly.
  • the upper end of the push rod 81 passes upward through the wall of the arc-extinguishing chamber 60 ; You can also not stick out. When it is not extended, the impact end of the piston needs to enter the wall of the arc extinguishing chamber 60 to drive the push rod 81 .
  • the arc-extinguishing medium 63 is covered around the push rod 81 and the guide rod 82, and the melt 6 is also partially wrapped by the arc-extinguishing medium 63 to ensure that the melt 6 is hit by the push rod 81 and the guide rod 82. After breaking, it can also be wrapped in the arc extinguishing medium 63 to improve the arc extinguishing effect.
  • the conductor 3 and the melt 6 of the present disclosure are two-section disconnected structures, the conductor 3 is a copper bar with a larger cross-section, and the melt 6 has a smaller cross-section.
  • the conductor 3 with large cross-section has strong current capacity, small resistance and small temperature rise, but has weak breaking capacity and slow arc extinguishing speed.
  • the melt 6 in the arc-extinguishing medium 63 has a smaller cross-section, is easier to break, has a strong breaking capacity, and has a fast arc-extinguishing speed, but has a weak current-carrying capacity. By connecting the two in parallel and disconnecting them successively, both current carrying and breaking capacity can be taken into account, and the breaking speed can be improved. This design can also make the overall weight of the fuse lighter and smaller.
  • Breaking is achieved by two rapid interruptions, firstly breaking the conductive copper bar, and then breaking the melt 6, which can greatly shorten the arc extinguishing time and achieve rapid protection.
  • the melt 6 Under the high current, the melt 6 is rapidly fused in the arc extinguishing medium 63, the circuit is disconnected, and the melt 6 is pulled off by the push rod 81 moving downward, which further enhances the insulating ability (the arc energy is low under high current, and the fusing speed is fast, Melt 6 has a large fuse fracture, and the arc is easily extinguished).
  • the melt 6 is pulled and broken by the push rod 81 moving downward, and the breaking fracture moves in the arc extinguishing medium 63 (such as sand).
  • the fuses work together to extinguish the arc and establish insulation.
  • the melt 6 does not melt in the arc extinguishing medium 63, the melt 6 is pulled and broken by the push rod 81 moving downward, and the pulling fracture moves in the arc extinguishing medium 63 (such as sand), thereby extinguishing the arc and establishing Insulation environment (the arc energy is low under small current, and the fusing speed is slow, but the arc drawn and broken in the arc extinguishing medium 63 is easy to be extinguished).
  • the arc extinguishing medium 63 such as sand
  • the two sections of melt 6 after disconnection are the cathode and the anode respectively, the arc path is between the cathode and the anode, the cathode and/or the anode are still in the arc-extinguishing medium 63, and part or all of the arc path is in the arc-extinguishing medium. 63.
  • the cathode when the cathode is in the arc extinguishing medium 63, the anode is in the slit between the push rod 81 and the casing; or, when the anode is in the arc extinguishing medium 63, the cathode is in the push rod 81 and the casing in the slit between the bodies.
  • the arc extinguishing medium 63 adopts a solid arc extinguishing medium, so that a wall with better blocking effect is formed between the push rod 81, the guide rod 82 and the melt 6, so as to avoid the arc pressure under the arc pressure.
  • Airflow conduction occurs, and since there is no arc extinguishing medium 63 passing through the gap, the blocking effect will not be affected, and the filling density of the arc extinguishing medium 63 will not be affected. In this way, the melt 6 will not have a large air space before and after the interruption to cause the arc to break down, which can improve the arc extinguishing effect.
  • the surface of the casing contacting the arc extinguishing medium 63 can be further designed as a smooth surface, In this way, the frictional force of the push rod 81 and the guide rod 82 during movement can be reduced, and the vibration and noise during interruption can be reduced. And because the movement is smoother and the resistance is smaller, there will be less friction between the fracture of the conductor 3 and the interrupting device 5, and between the fracture of the melt 6 and the arc extinguishing medium 63, which can help reduce temperature and reduce friction and heat generation. .
  • the lower end of the guide rod 82 is penetrated downward in the wall of the arc extinguishing chamber 60, and a space for the displacement of the guide rod 82 is reserved between the lower end of the guide rod 82 and the wall of the arc extinguishing chamber 60, and the space allows the push rod 81 and the guide rod 82 to move.
  • the lead rod 82 can break the melt 6 and create a fracture in the melt 6 .
  • a buffer layer may be provided at the bottom of the gap.
  • the lower end of the guide rod 82 can also extend out of the wall of the arc-extinguishing chamber 60.
  • the contact between the push rod 81 and the guide rod 82 and the arc extinguishing chamber 60 is an interference fit to prevent the arc extinguishing medium 63 from leaking.
  • a seal can also be provided between the push rod 81 , the guide rod 82 and the contact surface of the arc extinguishing chamber 60 wall for sealing.
  • the push rod 81 and the guide rod 82 are respectively fixed on the housing by positioning structures (not shown) to maintain their initial positions.
  • the positioning structure can be a protrusion on the push rod 81 or the guide rod 82 and is nested on the housing. Both the fusing weakness and the breaking weakness 31 of the melt 6 are provided on the melt 6 located in the arc extinguishing chamber 60 .
  • the push rods 81 and the guide rods 82 may be arranged facing each other or not, or one push rod 81 pushes several guide rods 82 to move, or multiple push rods 81 drive one guide rod 82 to move. It only needs to satisfy that the push rod 81 can drive the guide rod 82 to displace together.
  • the conductor 3 Since the disconnection of the melt 6 is realized by the push rod 81 and the guide rod 82, the conductor 3 will not be in contact with the melt 6 after disconnection, and the first stage is completed after the interruption device 5 interrupts the conductor 3
  • the push rod 81 is pressed against the push rod 81 and pushed, it is a second-stage movement, the two-stage movement will not interfere, and there will be no falling conductor 3 touching the melt 6, which can avoid the melt 6
  • the arc during disconnection affects the surrounding structures through the dropped conductor 3 or breaks down the surrounding air, thereby improving the arc extinguishing effect.
  • the force-applying component performs linear motion under the drive of the breaking device 5
  • the structure of the clamping component can also be changed to perform a rotational motion to break the melt 6 .
  • the force-applying component is a rotating component, which is a simple structural schematic diagram of breaking the melt 94 in a rotational displacement manner.
  • the rotating assembly includes a rotating member 90 disposed in the arc extinguishing chamber 92, and the rotating member 90 is fixed on the housing 91 through a rotating shaft. A part of the rotating member 90 protrudes into the arc extinguishing chamber 92 and serves as a triggering member, and the rotating member 90 is in sealing contact with the wall of the arc extinguishing chamber 92 .
  • the sealing contact is a seal seal or an interference fit.
  • the rotating member 90 located in the arc extinguishing chamber 92 is provided with a clamping groove for fixing the melt 94 or a clamping hole for the melt 94 to pass through, and the opening direction of the clamping groove and the opening of the clamping hole The direction is perpendicular to the axial direction of the rotating shaft, that is, the rotating member 90 can abut or clamp the melt 94, the melt 94 is fixed on the rotating member 90, and when the rotating member 90 rotates, the melt 94 can be disconnected and formed fracture.
  • the disconnected melts 94 are the cathode and the anode respectively, the arc path is between the cathode and the anode, the cathode and/or the anode are still in the arc extinguishing medium 63 , and part or all of the arc path is in the arc extinguishing medium 63 .
  • the cathode When the cathode is in the arc-extinguishing medium 63, the anode is in the slit between the rotating member 90 and the casing; or, when the anode is in the arc-extinguishing medium 63, the cathode is in the slit between the rotating member 90 and the casing seam.
  • the above-mentioned melt 94 can be directly connected to the conductor 3 through both ends of the melt 94, and the melt 94 can also be connected to the conductor 3 through connecting wires.
  • the breaking device 5 is a piston structure.
  • the excitation device 4 is a gas generating device
  • the interrupting device 5 is a piston as an example, the working principle and the arc extinguishing principle are explained.
  • the gas generating device receives and ignites an excitation signal from the outside, and the excitation signal is generally an electrical signal.
  • the gas generating device is ignited, the high-pressure gas is released through chemical reaction, and the piston is driven by the high-pressure gas.
  • the piston overcomes the limit of the limit structure under the action of the high-pressure gas, and moves in the direction of the conductor 3, and disconnects the conductor 3 from the weak point 31.
  • the conductor 3 and the melt 6 are interrupted in turn by the piston, so that the fuse is disconnected. Due to the small fault current, the conductor The arc formed at the 3 fracture and the melt 6 fracture is also small, and it is easy to extinguish the arc.
  • a reliable physical fracture is formed by two quick breaks, and the insulation performance is excellent after breaking.
  • the current flows through the two ends of the conductive plate connected in series on the protection system loop, which will not cause adverse effects on the melt, and because the conductive plate has a large cross-section and a small resistance, the heat generation is small and the power consumption is low.
  • the breaking capacity is basically not affected by air pressure and temperature and humidity, which improves the arc extinguishing capacity, so it can break a larger fault current and improve the Breaking ability; Breaking is achieved by two rapid interruptions, first interrupting the conductive copper bar, and then interrupting the melt, which can greatly shorten the arc extinguishing time and achieve rapid protection; through two rapid interruptions, a reliable physical fracture is formed. Excellent insulation performance; the outer shell is sealed with no ventilation holes, which can prevent foreign objects from polluting the fracture, and also prevent high-temperature arcs from spraying out of the shell to damage surrounding devices, improving the protection level.

Landscapes

  • Fuses (AREA)

Abstract

一种依次断开导体(3)和熔体(6)的激励熔断器,以及应用激励熔断器的配电单元、或储能设备、或新能源汽车,熔断器包括壳体(1,2)及壳体中的空腔(30);在壳体及空腔中穿设有至少一根导体,导体两端可与外部电路连接;在导体上并联设置有至少一根熔体;在导体一侧的空腔中安装有激励装置(4)和打断装置(5);激励装置可接收外部激励信号动作,驱动打断装置依次在导体和熔体上分别形成至少一个断口;导体上至少一个断口与熔体并联。熔断器可依次延时断开导体和熔体,拓宽了分断电流范围,提高了分断能力和灭弧能力。

Description

一种依次断开导体和熔体的激励熔断器
相关申请的交叉引用
本公开要求于2020年12月11日提交中国专利局的申请号为202011458690.7、名称为“一种依次断开导体和熔体的激励熔断器”的中国专利申请以及于2021年6月24日提交中国专利局的申请号为202110702549.5、名称为“一种依次断开导体和熔体的激励熔断器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电力控制和电动汽车领域,尤其涉及一种通过外部信号控制切断电流传输电路的激励熔断器。
背景技术
用于电路过电流保护的产品是基于流过熔断器电流产生的热量熔断的熔断器,存在主要的问题是如何选择与负载匹配的热熔熔断器。例如在保护新能源车主回路的情况下,如果负载出现低倍数过载或短路的情况,选用低电流规格的熔断器不能防止电流短时间过冲的情况,如果选用高电流规格的熔断器不能满足快速保护的要求。目前向新能源车辆提供能量的锂电池包,短路分为完全短路和不完全短路。完全短路时,电路直接接通,短路电流很大,可达到几千安。不完全短路时,电路中串入了一个有一定阻值的导体限流,导致短路电流较小,甚至不超过额定电流(取决于串入的导体电阻)。在不完全短路的情况下,输出电流大约是额定电流的几倍,但这样大小的电流难以使熔断器在足够短的时间内熔断,熔断器不能发挥保护作用,而这样大小的电流足已损坏电池包中的电路器件,导致电池包发热起火燃烧。由于耐受电流发热和分断电流发热引起的熔化,都源于流过熔断器的电流,此种采用电流的发热熔断的保护器件无法在具有较大额定电流或耐受较强的短时过载/冲击电流(例如电动汽车启动或爬坡时的短时大电流)的条件下,以足够快的分断速度分断一定大小的故障电流,或者无法既能够以足够快的分断速度分断一定大小的故障电流,还能够实现较高额定电流,或耐受较大的过载/冲击电流而不损伤。
另外一个热熔熔断器存在的问题是不能和外部设备通讯,不能由除电流之外的其它信号触发,例如车辆ECU、BMS或者其它传感器发出的信号等。如果在车辆出现严重碰撞、泡水或者暴晒后电池温度过高等情况下不能及时切断电路,则有可能导致电池包燃烧最终损毁车辆的严重事件的发生。
目前,市场上已经存在一种具有快速分断的切断开口结构的熔断器,其主要包括气体 发生装置、导电端子和用于承接掉落的导电端子的容置腔,气体发生装置产生高压气体带动活塞冲断导电端子,断裂后的导电端子向下掉落至容置腔中,实现电路快速断开的目的。但是,其还存在有一些不足和缺陷,诸如,受限于空气的灭弧能力,难以分断大的故障电流;电弧直接利用空气冷却,分断能力受气压和温湿度影响较大;分断过程中,电弧直接灼烧活塞刀的冲击部,活塞刀的燃烧会影响到顺利灭弧;分断过程中,除了活塞刀对电弧有限的扰动外,没有其他结构或机构辅助灭弧,因此前述熔断器的灭弧能力有限,分断能力有限。
基于上述熔断器辅助灭弧的弊端,申请人还研发出了一种熔断器,在该熔断器中,采用并联熔体结构进行辅助灭弧;通过驱动器将主导电端子断开,从而保护电路,为了灭弧,在主导电端子上并联熔体。在断开熔断器主导电端子以进行电路保护时,瞬间大电流会通过熔体并使熔体熔断,由此实现灭弧的目的。
这种具有并联熔体的激励熔断器还存在一定缺陷:在实际使用中,在断开导电板后,熔体可能会因某些意外原因而不能熔断,或熔断时间比设计的熔断时间长,导致整个电路无法及时彻底断开,造成巨大损失,尤其是在新能源汽车的运行和使用中,可能会造成车毁人伤的严重事故。因此,必须解决如何确保熔断器能够可靠地断开的技术问题。
发明内容
本公开所要解决的技术问题是提供一种通过机械力依次断开导体和熔体的激励熔断器,可以更有效地对熔断器断开时产生的大量电弧进行灭弧,提高分断能力,同时确保了在故障发生时熔断器断开的可靠性。
为解决上述技术问题,本公开提供的技术方案一种依次断开导体和熔体的激励熔断器,包括壳体及壳体中的空腔;在所述壳体及所述空腔中穿设有至少一根导体,所述导体两端可与外部电路连接;在所述导体上并联设置有至少一根熔体;在所述导体一侧的空腔中安装有激励装置和打断装置;所述激励装置可接收外部激励信号动作,驱动所述打断装置依次在所述导体和所述熔体上分别形成至少一个断口;所述导体上至少一个断口与所述熔体并联。
在所述壳体上设置有封闭的填充有灭弧介质的灭弧腔室;所述熔体部分或全部位于所述灭弧介质中。
在位于所述壳体内的所述熔体上设置有至少一组施力组件,所述施力组件在所述打断装置驱动下断开熔体形成断口。
所述施力组件设置在位于所述灭弧介质外部的熔体上;所述施力组件包括至少一组夹持在所述熔体上的夹持组件;所述打断装置断开所述导体后可驱动所述夹持组件以直线或 旋转位移方式断开所述熔体形成断口;当以旋转方式断开所述熔体时,所述夹持组件的两端通过旋转轴固定在所述壳体上。
在所述熔体上设置有至少一组所述夹持组件,在所述夹持组件间形成断开凹口;所述打断装置断开所述导体后冲击所述断开凹口断开所述熔体。
所述导体具有转动薄弱处,所述打断装置能够打断所述导体,所述导体的每一个所述断开薄弱处都能够形成一个断口,所述转动薄弱处设置于所述断开薄弱处的一侧或两侧以形成单开门或者双开门的推门结构,断开后的所述导体能够被所述打断装置推开并以所述转动薄弱处为轴转动而并不随着所述打断装置一起移动,所述打断装置运动的部分从所述导体转动形成的空隙中通过。
所述导体的转动薄弱处设置于所述导体的断开薄弱处的两侧,形成所述双开门的推门结构,所述打断装置断开所述导体后,所述打断装置的运动部分从所述导体转动形成的空隙中通过;在所述导体通过电流的情况下,断开的两段所述导体之间形成电弧,所述电弧受到所述打断装置的运动部分的作用以及电动力的作用而环绕运动部分的头部,并持续运动和拉长。
所述壳体内设置有灭弧结构,所述灭弧结构位于所述双开门的推门结构的电弧运动路径中或附近,对所述导体断开后的两部分之间的电弧进行灭弧。
所述打断装置包括具有绝缘材料的冲击端,所述具有绝缘材料的冲击端能够在断开所述导体后与所述壳体形成绝缘墙,所述绝缘墙能够隔开两侧的断开后的所述导体。
所述打断装置包括熔体冲击端,所述熔体冲击端位于所述具有绝缘材料的冲击端的两侧,所述打断装置工作前,所述具有绝缘材料的冲击端与所述导体的间距小于所述熔体冲击端与所述熔体的间距;
或者是,所述熔体冲击端位于所述具有绝缘材料的冲击端的下方且与所述具有绝缘材料的冲击端串联,所述打断装置工作前,所述具有绝缘材料的冲击端与所述导体的间距小于所述熔体冲击端与所述熔体的间距。
所述施力组件包括至少一根推杆和至少一根导引杆,所述推杆和所述导引杆周围填充有所述灭弧介质,所述熔体位于所述推杆和所述导引杆之间;所述推杆一端穿过并伸出所述灭弧腔室;所述导引杆一端可位移进入所述灭弧腔室中的预留位移空间或伸出所述灭弧腔室;所述推杆和所述导引杆与所述灭弧腔室壁间设置防止所述灭弧介质泄露的阻挡结构;当所述打断装置断开所述导体后,其驱动所述推杆及所述导引杆以直线方式位移断开所述熔体,断开后的两段所述熔体分别为阴极和阳极,所述阴极和所述阳极之间为电弧路径,所述阴极和/或所述阳极仍处于所述灭弧介质中,部分或者全部的电弧路径处于所述灭弧介质中。
当所述阴极处于所述灭弧介质中时,所述阳极处于所述推杆和所述壳体之间的狭缝中;或者是,当所述阳极处于所述灭弧介质中时,所述阴极处于所述推杆和所述壳体之间的狭缝中。
所述推杆与所述熔体之间、所述导引杆与所述熔体之间无间隙;或者具有微小间隙,所述微小间隙的大小不足以使断开后的两段所述熔体之间产生电弧并通过所述微小间隙。
所述施力组件包括旋转设置在灭弧腔室中的旋转构件和位于所述灭弧腔室外的触发构件;所述旋转构件抵持或者夹持所述熔体;所述旋转构件与所述灭弧腔室间设置防止灭弧介质泄露的阻挡结构;当打断装置断开所述导体后,所述打断装置可驱动所述触发构件,以驱使所述旋转构件转动,以旋转位移方式断开所述熔体;
断开后的所述熔体分别为阴极和阳极,所述阴极和所述阳极之间为电弧路径,所述阴极和/或所述阳极仍处于所述灭弧介质中,部分或者全部的电弧路径处于所述灭弧介质中。
当所述阴极处于所述灭弧介质中时,所述阳极处于所述旋转构件和所述壳体之间的狭缝中;或者是,当所述阳极处于所述灭弧介质中时,所述阴极处于所述旋转构件和所述壳体之间的狭缝中。
所述激励装置为可接收外部激励信号而动作的气体发生装置、气缸、液压缸;当激励装置为气体发生装置时,所述打断装置与所述壳体的侧壁间密封接触或留有小于0.1mm的间隙。
在所述导体及或所述熔体上设置有降低导体机械强度的便于打断装置打断的断开薄弱处。
所述打断装置设置有至少一个冲击端,所述冲击端设置为收缩状端面结构、尖状结构、斜切刀线结构或两端尖中间凹结构。
所述阻挡结构为施力组件与灭弧腔室壁间设置的密封件;或施力组件与灭弧腔室壁间过盈配合;或当灭弧介质为固体颗粒状时,施力组件与灭弧腔室壁间的间隙小于灭弧介质颗粒粒径。
本公开的依次断开导体和熔体的激励熔断器,可以应用在配电单元、或储能设备、或新能源汽车中。
本公开的依次断开导体和熔体的激励熔断器可以在配电设备、储能设备、汽车或其他需要电路保护的领域中的应用。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些内容,因此不应被看作是对范围 的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开的熔断器在未断开时的纵向剖面结构示意图。
图2为图1的另一个视角的示意图。
图3为熔体、推板以及导引板的结构示意图。
图4为导体上断开薄弱处的结构示意图,图4中的a为导体的侧视图;图4中的b为导体的正视图。
图5为本公开熔断器的另一中可选结构在未断开时的剖面结构示意图。
图6为图5中的熔断器断开后的剖面结构示意图。
图7为图5中的压块为弧形面的结构示意图。
图8为熔体的推杆和导引杆位于灭弧腔室中的结构示意图。
图9为设置在灭弧腔室中的以旋转方式断开熔体的施力组件的结构示意图;
图10为本公开熔断器的另一中可选结构在导体断开并产生U形电弧时的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分内容,而不是全部的内容。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是 两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
实施例
针对上述技术方案,现举出实施例并结合图示进行具体说明。
本公开实施例提出的的激励熔断器(也称为触发式熔断器)主要包括壳体、导体3、熔体6、激励装置4(也称为触发装置)、打断装置;其中。
壳体,参照图1和图2,包括上壳体1、下壳体2,在上壳体1与下壳体2之间设置有一根导体3,导体3的两端伸出壳体外部,可与外部电路连接。上壳体1与下壳体2的接触面通过密封装置密封。熔断器的外壳体密封设计,无透气孔,可防止外物污染断口,可也防止高温电弧喷出壳体损坏周围的器件,提高防护等级。导体3也可以全部设置在壳体内,然后在其两端分别连接导电端子,导电端子设置在壳体的两端并伸出壳体外部,通过导电端子与外部电路连接。导体3的形状可以是板状结构,其截面形状可以是任何形状,如圆形、方形、异形、管状等及其组合形状。在以下描述中,导体3均以板状结构为例进行说明。导体3可以是一根,也可以数根并联设置在壳体中。本公开以上壳体1、下壳体2的结构进行举例说明,壳体可以是左右壳体组合,不限于上下壳体组合。
电流通过串联在保护系统回路上的导体3两端流通,不会对熔体6造成不良影响,且由于导体3截面大、电阻小,故发热小,功耗低,而耐电流冲击性好。
在位于导体3上下两面的壳体上分别开设有贯通的空腔30。在导体3上方的上壳体1的空腔30中自上而下依次设置有激励装置4和打断装置5。在空腔30内设置有限位台阶,激励装置4安装在空腔30中的限位台阶处,并通过压板或压套(未图示)固定在壳体上。激励装置4可以与外部的发送激励信号的控制装置(未图示)连接,接收来自控制装置的激励信号,激励信号一般为电信号。
激励装置4还可以是气缸、液压缸、凸轮传动装置等可接收外部激励信号而动作并为打断装置5提供线位移驱动的机构。在实施例中,激励装置4为储存有化学能并通过电流激发的气体发生装置,可根据接收到直的外部激励信号而动作,产生大量高压气体,为打断装置5提供驱动力。
打断装置5可以是活塞、滑块类结构,也可以是上述构件组合的结构,其满足能被激励装置4驱动并切断导体3即可。当激励装置4为气体发生装置时,打断装置5与壳体的侧壁为密封接触或保留有小于0.1mm的间隙。密封接触可以是通过在打断装置5与空腔30间设置如密封圈等密封件41,或是通过打断装置5与空腔30过盈配合实现。对于尺寸为毫米级以上的活塞,典型间隙为0.1mm甚至更小,泄露少量的气体不会影响活塞运动,且能获得良好推动力;若活塞与壳体的侧壁为密封接触,则获得的推动力更大,但是活塞受 到的摩擦力一般也较大。因此,根据气体发生装置产生的高压气体的驱动力来决定打断装置5与壳体的侧壁是密封接触还是保留小间隙。
当打断装置5位于初始位置时,在打断装置5与空腔30间设置有限位结构。限位结构的作用是在外部震动的情况下保持打断装置5的位置,防止因为震动等情况导致打断装置5意外打断导体3和熔体6,避免对安装有熔断器的设备的正常工作造成干扰。
限位结构可以是在打断装置5的外周间隔设置的凸块以及在空腔30对应位置处设置的凹槽,凸块卡设在凹槽中实现限位;或者在空腔30内壁间隔设置凸棱,打断装置5上对应开设有凹槽,凸棱卡设在打断装置5的凹槽中进行限位。当激励装置4驱动打断装置5动作时,打断装置5可冲断该限位结构并位移。
参照图1,在位于壳体空腔30处的导体3上开设有断开薄弱处31,在断开薄弱处31的两侧靠近壳体内空腔30的壳壁位置处开设有转动薄弱处32。设置断开薄弱处31的目的在于降低导体3的机械强度。参照图4,可以选择使用或同时使用下列的削弱断口强度措施:减小断口截面面积,使断开薄弱处31形成为截面面积减小的结构,如开U型槽、开V型槽、孔、中空等或其组合结构;断开薄弱处31可以任何角度设置在所述导体3横截面中,采用变截面结构,在过渡区产生应力集中,如预留缝隙,或者利用剪切力;断口采用低强度导体3材料,如锡等;采用机械力压紧及或固定的预制断口等。削弱断口强度措施并不限于上述措施。在断开薄弱处31的两侧的导体3上分别设置有折弯凹口,折弯凹口有助于导体3断开后沿其折弯。也可以不设置折弯凹口。
位于壳体内的导体3可以设置为一字平面状,也可以设置为向下凹的几字形结构。几字形结构可以使导体3与上壳体1、下壳体2间更好地进行配合以及定位。在导体3下方的下壳体2上开设有在导体3断口后供被切断的部分掉落的空间。
在位于壳体内的导体3上并联连接设置有至少一根熔体6。如图1及图2所示,在实施例中,导体3上并联有两根熔体6,分别位于导体3的两侧。熔体6的两端位于断开薄弱处31的两端。通过在导体3的断口两侧并联熔体6,当导体3产生断口时,60-70%左右的大部分故障电流能量通过并联的熔体6,因此,并联熔体6的设置可以大幅减少导体3的断口处的故障电流能量,利于断口绝缘性能快速恢复,数毫秒内即可恢复绝缘性能;但是当故障电流较小而不足以熔断并联熔体6,或者通过并联熔体6的时间不足,并联熔体6不能及时熔断或者不能熔断,则会造成电路无法及时断开的情况,因此,在本公开中,通过使打断装置5依次打断导体3和熔体6,断开电路,确保分断可靠性。正常通流状态为电流主要通过导体3的两端流通,仅有极微弱的电流从并联的熔体6上流过,因此熔体6可视为一个导体。
在熔体6的与打断装置5对应的上下两面分别设置有施力组件。施力组件为一组夹持 在熔体6两面的夹持组件,包括推板61和导引板62,参照图1和图3,推板61和导引板62相连接,将熔体6固定在推板61和导引板62之间,使推板61、导引板62形成一组相对固定的夹持组件。推板61和导引板62通过定位结构(未图示)固定在壳体上,在推板61受到打断装置5驱动时,可克服定位结构的定位,进行位移并断开熔体6。在推板61和导引板62的两侧的壳体中设置有灭弧腔室60,在灭弧腔室60中填充有灭弧介质63,熔体6穿过灭弧腔室60后与导体3连接。在熔体6上设置有熔断薄弱处和通过机械方式断开熔体6的断开薄弱处31,熔断薄弱处和断开薄弱处31的设置相互不影响,即熔体6机械断开后不影响熔体6熔断,熔体6熔断后不影响熔体6机械方式断开。其中,灭弧介质63可以是填充密实的散状颗粒与胶体的结合,也可以是液体,可以根据实际灭弧需求进行选用。通过灭弧介质防止熔体6断口处的电弧扩展。
分断过程中,采用快速切断和熔断器灭弧原理相结合,分断能力基本不受气压和温湿度影响,提高了灭弧能力,因此可分断更大的故障电流,提升分断能力。
熔断薄弱处设置在灭弧介质63中,断开薄弱处31可以设置在灭弧介质63中,也可以设置在灭弧介质63外部且靠近推板61和导引板62的一侧或两侧的熔体6上。当以折弯的方式设置熔体6时,断开薄弱处31可以设置在熔体6的折弯处,有助于熔体6的断开。熔断薄弱处可以是狭径的结构或是在熔体6表面涂布有低温融化金属从而产生冶金效应层等加速熔断速度的结构或材料,或在熔体6上搭接一段低熔点材料。
位于灭弧腔室60中的熔体6部分的结构设置为梯形结构66,如图3所示,与位于推板61和导引板62间的熔体6连接的一侧设置为斜线,断开薄弱处31设置在梯形结构的折弯处。如此,在断开熔体6时,更容易拉断熔体6。
在导引板62的正下方的壳体中开设有供导引板62向下位移的空间,在该空间底部设置有缓冲层。该空间的高度至少大于当熔体6拉断后导引板62的位移距离。
在熔断器生产中,为了组装更方便,将位于熔体6下方的下壳体2部分与下壳体2其他部分分开加工,形成熔体底壳64。在图3中,在熔体底壳64上开设有向上开口的部分灭弧腔室60以及熔体6下方的空间,然后导引板62通过限位结构设置在熔体6下方的空间开口上面,再将熔体6固定设置在熔体底壳64上面,最后放上推板61,使熔体6、推板61、导引板62、及位于熔体6下方的空间、部分灭弧腔室60等部分形成为一体化结构。在下壳体2上分别开设有对应熔体底壳64的部分灭弧腔室60和位于导体3下方的空间。在下壳体2中形成开口向下的安装凹口。安装时,将熔体6及其下方的一体化结构部分整体安装在下壳体2上,使其与下壳体2接触面处形成密封,熔体底壳64的部分灭弧腔室60和下壳体2的部分灭弧腔室60对接,形成完整的密封腔室,再通过螺钉固定即可。通过采用这种结构,可降低加工的难度,缩短组装时间。
熔体6可以设置在导体3正下方一定距离处,也可以设置在导体3边缘两侧的外侧的下方处,不论熔体6的位置如何设置,其满足的条件均是在打断装置5的冲击端冲击断开导体3后,还可以断开熔体6。因此,可根据断开导体3与熔体6所需的间隔时间,确定打断装置5的冲击端结构或导体3与熔体6间的垂直距离。当熔体6位于导体3的边缘两侧的外侧的下方时,打断装置5的冲击端可以设置为独立的三部分:正对导体3断开部位且具有绝缘材料的冲击端51,以及位于具有绝缘材料的冲击端51的两侧的构成为断开熔体6的熔体冲击端52,从而分别断开导体3和熔体6。由于熔体6位于导体3的下方,熔体冲击端52与具有绝缘材料的冲击端51高低设置,依据导体3和熔体6断开间隔时间,确定熔体冲击端52和具有绝缘材料的冲击端51分别距离熔体6和导体3间的距离,导体3和熔体6先后按照间隔时间断开。
其中,实施例的具有绝缘材料的冲击端51与导体3的间距小于熔体冲击端52与熔体6的间距,以保障能够将导体3和熔体6依次打断。可以选择的是,熔体冲击端52位于具有绝缘材料的冲击端51的下方且与具有绝缘材料的冲击端51串联,在打断装置5工作前,具有绝缘材料的冲击端51与导体3的间距小于熔体冲击端52与熔体6的间距。熔体冲击端52位于具有绝缘材料的冲击端51的下方也能够起到同样作用,可以根据产品的空间布设情况进行选择。
进一步的,具有绝缘材料的冲击端51能够运动到与壳体接触的位置,并与壳体形成绝缘墙,使得两侧的导体3在断开后被隔开。实施例中的具有绝缘材料的冲击端51的宽度大于导体3的宽度,以形成该绝缘墙,当然也可以选用能够形成绝缘墙的其他方式。由于熔体6在熔断或者打断的过程中会有瞬间的过电压,在绝缘墙的隔开作用下,形成隔绝的两个腔室,可以避免该过电压通过空气击穿上方的断口,从而防止复燃;在断口两端形成互相独立的两个腔室的过程中,可以将电弧挤入狭缝,利于灭弧。绝缘墙的形成提升了本公开的熔断器的可靠性。
具有绝缘材料的冲击端51和熔体冲击端52的端面可以设置为尖端结构、刀刃状结构、收缩端面结构、斜切刀结构或窄的平面结构等,便于切断导体3及熔体6上的断开薄弱处31形成断口。当熔体6上设置如图3结构的推板61和导引板62类的板状结构的夹持组件时,熔体冲击端52端面设置为平面结构,方便通过推动推板61使熔体6断开。
当熔体6位于导体3的正下方时,打断装置5仅需一个冲击端即可。此种结构,打断装置5冲击端先断开导体3,然后继续位移,通过断开导体3的冲击端来断开熔体6,先后在导体3和熔体6上形成断口。
参照图5和图6,导体3具有转动薄弱处105,打断装置5能够打断导体3,导体3的每一个断开薄弱处31都能够形成一个断口,转动薄弱处105设置于断开薄弱处31的一侧 或两侧以形成单开门或者双开门的推门结构,断开后的导体3能够被打断装置5推开并以转动薄弱处105为轴转动而并不随着打断装置5一起移动,打断装置5运动的部分从导体3转动形成的空隙中通过。在实施例中,转动薄弱处105设置于断开薄弱处31的两侧。当打断装置5向下冲破导体3形成单个断点时,导体3继续被打断装置5推挤,并以转动薄弱处105为拐点转动,如同推开两扇门,并且不会掉落,不会因为掉落而立起并卡住打断装置5。从而确保打断装置5继续向下运动,以保障能够继续将熔体70打断。可以理解的是,实施例提供的是双开门的形式,具有两个转动薄弱处105。也可以考虑只设置一个转动薄弱处105,在推挤时,导体3如同单开门一般被冲破。无论单开门或者双开门,设置转动薄弱处105都可以使得打断装置5的施力更小更均匀,在保持均匀的打断力的情况下就能够冲破导体3,并且还可以使得断点处的电弧随着导体3的断开而沿着断开方向拉伸为U形,有利于灭弧。
进一步的,如图10所示,图10展示的是两个转动薄弱处105设置于导体3的断开薄弱处的两侧,形成双开门的推门结构的实施例。打断装置5断开导体3后,打断装置5的运动部分从导体3转动形成的空隙中通过;在导体3通过电流的情况下,断开的两段导体3之间形成电弧,电弧受到打断装置5的运动部分的作用以及电动力的作用而环绕运动部分的头部,并持续运动和拉长。
在双开门结构的基础上,灭弧结构位于双开门的推门结构的电弧运动路径中或附近,对导体3断开后的两部分之间的电弧进行灭弧。其中,运动部分的头部可以采用绝缘材料以冷却电弧,帮助灭弧;还可以在运动部分的头部涂覆可以产气的绝缘材料,帮助灭弧;还可以在运动部分的头部的运动方向的前方设置金属灭弧栅、绝缘灭弧栅或狭缝,帮助灭弧。
譬如,在图10中,可以如右侧所示,嵌设金属灭弧栅101来将电弧分段并冷却灭弧;也可以如左侧所示,间隔凸出设置绝缘凸起102或者间隔设置绝缘片103以构成绝缘间隙灭弧结构,以使得电弧沿着绝缘壁的表面延伸,拉长电弧的路径,实现狭缝灭弧以及冷却灭弧;还可以在断口下方的壳体2上涂覆能够在电弧作用下产气的涂层,使得电弧向周围空间扩散并被冷却灭弧。这些方式既可以单独实施,也可以结合实施。配合上述双开门结构,导体3在单点断开后能够形成对称的U形电弧H,巨大电弧的电动力作用于导电粒子,使电弧比打断装置5的头部更快运动到前方空间中,运动速度可以超过数千米每秒,迅速拉长电弧,而电弧长度越长,则电弧电阻越大,更快增加电弧电压,电弧更容易熄灭。在U形电弧的运动方向的前方的壳壁上和空间中设置上述灭弧结构,可以提高电弧电压,使电流(I)的分路电流即导体3电流(I1方向电流)更快地转移到熔体106(I2方向电流)上,以更快熔断熔体106;并进一步拉长电弧使电弧冷却,更快建立绝缘电阻效果,以耐 受熔体106熔断时的过电压,防止被击穿。
其中,熔体106的打断,可以如下文所述的采用压块旋转的形式,也可以是图8中的推杆81和导引杆82共同打断的形式,还可以是图9中的旋转打断形式。在图10中,采用了拉断杆104,熔体106穿过拉断杆104,当打断装置5进一步下移并推动拉断杆104下移时,可以将熔体106拉断,断开处能够被周围的灭弧介质63包裹,而拉断杆104与壳体之间保持密封配合,避免灭弧介质63漏出。
在图1的基础上,施力组件包括两组间隔设置在熔体70上的夹持组件74,在两组夹持组件74间形成断开凹口75方便熔体70断开。每组夹持组件74包括设置在熔体70两面上的一对压块71。位于熔体70同一侧的两个压块71相邻一面均为弧形面,如此,两组夹持组件74间才可以形成喇叭状的断开凹口75,方便活塞冲击端进入断开凹口75断开熔体70。压块71两端通过旋转轴73固定在壳体上。灭弧腔室72位于两组夹持组件74的两侧。
打断装置5断开导体3后,其冲击端进入两组压块71间的断开凹口75,然后从该断开凹口75处将熔体70断开;同时,压块71的弧形面受到打断装置5挤压,压块71带动位于其间的熔体70沿着旋转轴73转动,使位于压块71两端的熔体70均断开。在熔体70上形成多断口。由图5和图6可知,熔体70两端并联连接在多个断口两侧的导体3上。由于三个断口为同时形成,大部分过电流能量经由并联在三个断口处的熔体70上通过,三个断口由于串联分压,在各个断口处产生的电弧很小,空气灭弧就很容易实现,断口处绝缘性能则会快速恢复。熔体70则在灭弧介质63中熔断的同时被打断装置5机械式断开并形成至少两个断口,通过分压及灭弧介质63的参与,熔体70断口处的电弧也快速灭弧。
为了使压块71在断开后运行的更平顺,位于熔体70相对一侧的压块71表面为突出的弧形面,图7中的压块71的顶面或者底面都呈弧形,如此,两组压块71间形成喇叭状断开凹口75。压块71所在的空腔30腔壁可以是与压块71的弧形面相匹配的弧形面,在熔体70断开后,压块71可沿空腔30的弧形面平稳转动。位于压块71两侧的熔体70置于壳体中的灭弧腔室72中,在灭弧腔室72中填充有灭弧介质63。
上述图3和图5中的夹持组件作为对熔体40施力的施力组件,其可以通过打断装置5驱动夹持组件位移,然后断开熔体40。虽然夹持组件位于灭弧腔室72外部,但是断开薄弱处31可以位于灭弧腔室72外,也可以位于灭弧腔室72内。当断开薄弱处31位于灭弧腔室72内时,当熔体40被拉断时,拉断部位可以脱离灭弧腔室72进入壳体空腔30中。
类似图3和图6的施力组件和熔体也可以位于灭弧腔室60中,由于灭弧腔室60中填充有灭弧介质,因此需要解决夹持组件带动熔体在灭弧介质中位移断开,且灭弧介质不会泄露即可。
参照图8,施力组件和熔体6位于灭弧腔室60中。在图8中,施力组件为夹持在熔体 6上的夹持组件。具体地,在熔体6的两面相对设置有推杆81和导引杆82形成夹持组件。推杆81上端向上穿过灭弧腔室60壁;其上端可以伸出灭弧腔室60壁。也可不伸出。当其不伸出时,活塞的冲击端需进入灭弧腔室60壁中驱动推杆81。
其中,推杆81和导引杆82的周围都有灭弧介质63包覆,并且熔体6也有部分是被灭弧介质63包裹,以确保熔体6被推杆81和导引杆82打断后也能处于灭弧介质63的包裹中,提高灭弧效果。进一步的,本公开的导体3和熔体6为两段式断开结构,导体3是铜排,其截面更大,熔体6的截面更小。大截面的导体3通流能力强,电阻小,温升小,但单独断开分断能力弱、灭弧速度慢。灭弧介质63中的熔体6截面更小,更容易拉断,分断能力较强、灭弧速度快,但载流能力弱。通过两者并联并先后断开,可以兼顾载流和分断能力,提高分断速度。这种设计还能使得熔断器整体的重量变轻、体积变小。
详细的,先断开导体3(主铜排),电流转移到并联的熔体6上,此时主铜排断口介质恢复绝缘能力(断开瞬间会产生电弧,使断口处介质绝缘能力降低,容易被击穿),不易被二次击穿,可提高分断可靠性。
通过两次快速打断实现分断,先打断导电铜排,再打断熔体6,能大大缩短灭弧时间,实现快速保护。
电流经过熔体6的断开过程:
大电流下,熔体6在灭弧介质63中快速熔断,电路断开,熔体6被向下运动的推杆81拉断,进一步增强绝缘能力(大电流下电弧能量低,熔断速度快,熔体6熔断断口大,电弧容易被熄灭)。
中等电流下,熔体6在灭弧介质63中熔断过程中,熔体6被向下运动的推杆81拉断,拉断断口在灭弧介质63(如沙子)中运动,拉断断口和熔断断口共同作用熄灭电弧,绝缘建立。
小电流下,熔体6在灭弧介质63中不熔断,熔体6被向下运动的推杆81拉断,拉断断口在灭弧介质63(如沙子)中运动,从而熄灭电弧,建立绝缘环境(小电流下电弧能量低,熔断速度慢,但灭弧介质63中拉断的电弧容易被熄灭)。
详细的,断开后的两段熔体6分别为阴极和阳极,阴极和阳极之间为电弧路径,阴极和/或阳极仍处于灭弧介质63中,部分或者全部的电弧路径处于灭弧介质63中。更为详细的,当阴极处于灭弧介质63中时,阳极处于推杆81和壳体之间的狭缝中;或者是,当阳极处于灭弧介质63中时,阴极处于推杆81和壳体之间的狭缝中。
进一步的,在推杆81与熔体6之间、导引杆82与熔体6之间无间隙或者具有微小间隙,微小间隙的大小不足以使断开后的两段熔体6之间产生电弧并穿过微小间隙。当采用的是具有微小间隙的结构时,灭弧介质63采用固态灭弧介质,这样推杆81、导引杆82与 熔体6三者间形成阻隔效果较好的墙,避免在电弧压力下出现气流导通,且由于不会有灭弧介质63穿过缝隙,不会影响阻隔效果,也不会影响灭弧介质63的填充密度。这样熔体6在打断前后都不会有较大的空气空间来使电弧击穿,可以提高灭弧效果。
为了方便推杆81和导引杆82移动,通过将推杆81和导引杆82的长度方向设计成与运动方向平行,还可以进一步将接触灭弧介质63的壳体表面设计为光滑表面,这样可以减少推杆81和导引杆82在运动时的摩擦力,减少打断时的振动和噪音。并且由于运动更为顺畅,阻力更小,导体3的断口与打断装置5之间、熔体6的断口与灭弧介质63之间都会有更小的摩擦,可以利于降温,减少摩擦生热。
导引杆82下端向下穿设在灭弧腔室60壁中,导引杆82下端与灭弧腔室60壁间保留有供导引杆82位移的空隙,该空隙使推杆81和导引杆82可以断开熔体6并在熔体6上形成断口。
为了减小导引杆82位移时产生的噪音,在空隙底部可以设置缓冲层。导引杆82下端也可以伸至出灭弧腔室60壁外,对于这种结构,最优选在灭弧腔室60的底部的壳体上设置带有空腔30的壳体,使导引杆82在壳体中运动。在图8中,推杆81和导引杆82与灭弧腔室60间的接触为过盈配合,防止灭弧介质63泄露。也可以在推杆81、导引杆82与灭弧腔室60壁接触面间设置密封件来进行密封。当用密封件对推杆81和导引杆82密封时,分别通过定位结构(未图示)将推杆81和导引杆82固定在壳体上以保持初始位置。定位结构可以是推杆81或导引杆82上的凸块并嵌套在壳体上。熔体6的熔断薄弱处和断开薄弱处31均设置在位于灭弧腔室60中的熔体6上。推杆81和导引杆82可以正对设置,也可以不正对设置,或一个推杆81推动几个导引杆82动作,或多个推杆81带动一个导引杆82运动。仅需满足推杆81能够驱动导引杆82一起位移即可。
由于熔体6的断开是通过推杆81与导引杆82实现,导体3断开后不会与熔体6之间有接触,打断装置5打断导体3后就完成了第一阶段运动,在抵持推杆81并推动推杆81时,则为第二阶段运动,两阶段运动不会产生干涉,并且不会有掉落的导体3碰触熔体6,可以避免熔体6断开时的电弧通过掉落的导体3影响周围的结构或者击穿周围空气,从而提高灭弧效果。
图8中,施力组件在打断装置5的驱动下进行直线运动,也可以改变夹持组件结构,使之进行旋转运动,使熔体6断开。
参照图9,施力组件为旋转组件,以旋转位移方式断开熔体94的一种简单结构示意图。旋转组件包括在灭弧腔室92中设置的旋转构件90,旋转构件90通过旋转轴固定在壳体91上。旋转构件90一部分伸出至灭弧腔室92中并作为触发构件,旋转构件90与灭弧腔室92壁间为密封接触。密封接触为密封件密封或过盈配合。位于灭弧腔室92外部的旋转构 件90上设置有旋转柄93(即上述的触发构件)。旋转柄被设置为满足打断装置5的冲击端可以挤压旋转柄驱动旋转构件90转动的结构。在位于灭弧腔室92中的旋转构件90上设置固定熔体94的夹持凹槽或供熔体94穿过的夹持孔等结构,夹持凹槽的开设方向、夹持孔的开设方向垂直于旋转轴的轴向,即实现旋转构件90抵持或者夹持熔体94,将熔体94固定设置在旋转构件90上,且旋转构件90转动时,可以断开熔体94并形成断口。断开后的熔体94分别为阴极和阳极,阴极和阳极之间为电弧路径,阴极和/或阳极仍处于灭弧介质63中,部分或者全部的电弧路径处于灭弧介质63中。
当阴极处于灭弧介质63中时,阳极处于旋转构件90和壳体之间的狭缝中;或者是,当阳极处于灭弧介质63中时,阴极处于旋转构件90和壳体之间的狭缝中。
上述的熔体94可以通过熔体94两端直接与导体3连接,熔体94也可以通过连接导线与导体3连接。上述各图例中,打断装置5为活塞结构。
以图1结构、激励装置4为气体发生装置、打断装置5为活塞为例进行工作原理及灭弧原理说明。
工作原理:
首先,气体发生装置接收来自外部的激励信号并点火,激励信号一般为电信号。气体发生装置点火时,通过化学反应释放高压气体,并通过高压气体驱动活塞运动,活塞在高压气体作用下克服限位结构限位,向导体3方向位移,从断开薄弱处31断开导体3并在导体3上形成断口;此时,熔体6还未断开;由于导体3断口处的电阻远大于熔体6电阻,大部分电流通过熔体6,在导体3断口处仅有小部分电流产生电弧,因此,导体3处的断口不会造成烧蚀,导体3处的灭弧介质63,比如空气,则会很快恢复绝缘性能。当大部分电流从熔体6上流过时,由于熔体6的熔断薄弱处的电阻较大,温度会快速升高,熔体6开始熔断;在熔体6熔断的同时,活塞继续向下运动,将熔体6断开,在熔体6上形成断口,直到活塞停止运动,动作结束,电路断开。在熔体6断开时,由于过电流至少通过导体3断口泄放30%能量,因此,电流在熔体6处不会产生较大的电弧。当过电流较小时,不会使熔体6熔断,熔体6也会被机械式打断,确保了熔断器断开。
灭弧原理:
在需要零电流分断的情况,或在低倍数故障电流下熔体6不足以熔断的情况下,通过活塞依次打断导体3和熔体6,使熔断器断开,由于故障电流较小,导体3断口和熔体6断口处形成的电弧也较小,很容易灭弧。
在中倍数故障电流下,当在导体3形成断口后,大部分故障电流通过熔体6,由于故障电流较大,在熔体6的熔断薄弱处开始熔断的同时,熔体6也被活塞断开。活塞断开而形成的熔体6上的断口处的电弧由于活塞的继续位移而被拉长挤压,当电弧被拉长挤压时, 灭弧则变得容易,直至电弧熄灭;位于灭弧介质63中的熔体6的熔断处的断口所产生的电弧则在灭弧介质63中灭弧。
在大倍数故障电流下,导体3断开后,大部分故障电流完全转移至熔体6上,导体3上的断口处产生的电弧则很小,再加之活塞运动将该处的电弧拉长挤压,使导体3断口处电弧很容易熄灭;由于故障电流很大,熔体6熔断薄弱处产生大量热量并迅速熔断,灭弧介质63参与灭弧,电弧很快熄灭,然后活塞继续向下运动,将熔体6打断,形成物理断口,确保熔断器彻底断开。
通过两次快速打断形成可靠的物理断口,分断后绝缘性能优良。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开的熔断器的优点:电流通过串联在保护系统回路上的导电板两端流通,不会对熔体造成不良影响,且由于导电板截面大、电阻小,故发热小,功耗低,而耐电流冲击性好;分断过程中,采用快速切断和熔断器灭弧原理相结合,分断能力基本不受气压和温湿度影响,提高了灭弧能力,因此可分断更大的故障电流,提升分断能力;通过两次快速打断实现分断,先打断导电铜排,再打断熔体,能大大缩短灭弧时间,实现快速保护;通过两次快速打断形成可靠的物理断口,分断后绝缘性能优良;外壳体密封设计,无透气孔,可防止外物污染断口,可也防止高温电弧喷出壳体损坏周围的器件,提高防护等级。

Claims (20)

  1. 一种依次断开导体和熔体的激励熔断器,包括壳体及壳体中的空腔;其特征在于,在所述壳体及所述空腔中穿设有至少一根导体,所述导体两端可与外部电路连接;在所述导体上并联设置有至少一根熔体;在所述导体一侧的空腔中安装有激励装置和打断装置;所述激励装置可接收外部激励信号动作,驱动所述打断装置依次在所述导体和所述熔体上分别形成至少一个断口;所述导体上至少一个断口与所述熔体并联。
  2. 根据权利要求1所述的依次断开导体和熔体的激励熔断器,其特征在于,在所述壳体上设置有封闭的填充有灭弧介质的灭弧腔室;所述熔体部分或全部位于所述灭弧介质中。
  3. 根据权利要求1或2所述的依次断开导体和熔体的激励熔断器,其特征在于,在位于所述壳体内的所述熔体上设置有至少一组施力组件,所述施力组件在所述打断装置驱动下断开熔体并形成断口。
  4. 根据权利要求3所述的依次断开导体和熔体的激励熔断器,其特征在于,所述施力组件设置在位于所述灭弧介质外部的熔体上;所述施力组件包括至少一组夹持在所述熔体上的夹持组件;所述打断装置断开所述导体后可驱动所述夹持组件以直线或旋转位移方式断开所述熔体形成断口;当以旋转方式断开所述熔体时,所述夹持组件的两端通过旋转轴固定在所述壳体上。
  5. 根据权利要求1-4中任一项所述的依次断开导体和熔体的激励熔断器,其特征在于,在所述熔体上设置有至少一组所述夹持组件,在所述夹持组件间形成断开凹口;所述打断装置断开所述导体后冲击所述断开凹口断开所述熔体。
  6. 根据权利要求1-4中任一项所述的依次断开导体和熔体的激励熔断器,其特征在于,所述导体具有转动薄弱处,所述打断装置能够打断所述导体,所述导体的每一个所述断开薄弱处都能够形成一个断口,所述转动薄弱处设置于所述断开薄弱处的一侧或两侧以形成单开门或者双开门的推门结构,断开后的所述导体能够被所述打断装置推开并以所述转动薄弱处为轴转动而并不随着所述打断装置一起移动,所述打断装置运动的部分从所述导体转动形成的空隙中通过。
  7. 根据权利要求6所述的依次断开导体和熔体的激励熔断器,其特征在于,所述导体的转动薄弱处设置于所述导体的断开薄弱处的两侧,形成所述双开门的推门结构,所述打断装置断开所述导体后,所述打断装置的运动部分从所述导体转动形成的空隙中通过;在所述导体通过电流的情况下,断开的两段所述导体之间形成电弧,所述电弧受到所述打断装置的运动部分的作用以及电动力的作用而环绕运动部分的头部,并持续运动和拉长。
  8. 根据权利要求6或7所述的依次断开导体和熔体的激励熔断器,其特征在于,所述 壳体内设置有灭弧结构,所述灭弧结构位于所述双开门的推门结构的电弧运动路径中或附近,对所述导体断开后的两部分之间的电弧进行灭弧。
  9. 根据权利要求4所述的依次断开导体和熔体的激励熔断器,其特征在于,所述打断装置包括具有绝缘材料的冲击端,所述具有绝缘材料的冲击端能够在断开所述导体后与所述壳体形成绝缘墙,所述绝缘墙能够隔开两侧的断开后的所述导体。
  10. 根据权利要求9所述的依次断开导体和熔体的激励熔断器,其特征在于,所述打断装置包括熔体冲击端,所述熔体冲击端位于所述具有绝缘材料的冲击端的两侧,所述打断装置工作前,所述具有绝缘材料的冲击端与所述导体的间距小于所述熔体冲击端与所述熔体的间距;
    或者是,所述熔体冲击端位于所述具有绝缘材料的冲击端的下方且与所述具有绝缘材料的冲击端串联,所述打断装置工作前,所述具有绝缘材料的冲击端与所述导体的间距小于所述熔体冲击端与所述熔体的间距。
  11. 根据权利要求3所述的依次断开导体和熔体的激励熔断器,其特征在于,所述施力组件包括至少一根推杆和至少一根导引杆,所述推杆和所述导引杆周围填充有所述灭弧介质,所述熔体位于所述推杆和所述导引杆之间;所述推杆一端穿过并伸出所述灭弧腔室;所述导引杆一端可位移进入所述灭弧腔室中的预留位移空间或伸出所述灭弧腔室;所述推杆和所述导引杆与所述灭弧腔室壁间设置防止所述灭弧介质泄露的阻挡结构;当所述打断装置断开所述导体后,其驱动所述推杆及所述导引杆以直线方式位移断开所述熔体,断开后的两段所述熔体分别为阴极和阳极,所述阴极和所述阳极之间为电弧路径,所述阴极和/或所述阳极仍处于所述灭弧介质中,部分或者全部的电弧路径处于所述灭弧介质中。
  12. 根据权利要求11所述的依次断开导体和熔体的激励熔断器,其特征在于,当所述阴极处于所述灭弧介质中时,所述阳极处于所述推杆和所述壳体之间的狭缝中;或者是,当所述阳极处于所述灭弧介质中时,所述阴极处于所述推杆和所述壳体之间的狭缝中。
  13. 根据权利要求11或12所述的依次断开导体和熔体的激励熔断器,其特征在于,所述推杆与所述熔体之间、所述导引杆与所述熔体之间无间隙或具有微小间隙,所述微小间隙的大小不足以使在断开后的两段所述熔体之间产生的电弧通过。
  14. 根据权利要求3所述的依次断开导体和熔体的激励熔断器,其特征在于,所述施力组件包括旋转设置在所述灭弧腔室中的旋转构件和位于所述灭弧腔室外的触发构件;所述旋转构件抵持或者夹持所述熔体;所述旋转构件与所述灭弧腔室间设置防止灭弧介质泄露的阻挡结构;当所述打断装置断开所述导体后,所述打断装置可驱动所述触发构件,以驱使所述旋转构件转动,以旋转位移方式断开所述熔体;
    断开后的所述熔体分别为阴极和阳极,所述阴极和所述阳极之间为电弧路径,所述阴 极和/或所述阳极仍处于所述灭弧介质中,部分或者全部的电弧路径处于所述灭弧介质中。
  15. 根据权利要求14所述的依次断开导体和熔体的激励熔断器,其特征在于,当所述阴极处于所述灭弧介质中时,所述阳极处于所述旋转构件和所述壳体之间的狭缝中;或者是,当所述阳极处于所述灭弧介质中时,所述阴极处于所述旋转构件和所述壳体之间的狭缝中。
  16. 根据权利要求1-15中任一所述的依次断开导体和熔体的激励熔断器,其特征在于,所述激励装置为可接收外部激励信号而动作的气体发生装置、气缸、液压缸;当激励装置为气体发生装置时,所述打断装置与所述壳体的侧壁间密封接触或留有小于0.1mm的间隙。
  17. 根据权利要求1-15中任一所述的依次断开导体和熔体的激励熔断器,其特征在于在所述导体及或所述熔体上设置有降低导体机械强度的便于打断装置打断的断开薄弱处。
  18. 根据权利要求1-15中任一所述的依次断开导体和熔体的激励熔断器,其特征在于所述打断装置设置有至少一个冲击端,所述冲击端设置为收缩状端面结构、尖状结构、斜切刀线结构或两端尖中间凹结构。
  19. 根据权利要求11或14所述的依次断开导体和熔体的激励熔断器,其特征在于,所述阻挡结构为施力组件与灭弧腔室壁间设置的密封件;或施力组件与灭弧腔室壁间过盈配合;或当灭弧介质为固体颗粒状时,施力组件与灭弧腔室壁间的间隙小于灭弧介质颗粒粒径。
  20. 一种配电单元、或储能设备、或新能源汽车,应用包括至少一个权利要求1-19中任一项所述的依次断开导体和熔体的激励熔断器。
PCT/CN2021/113103 2020-12-11 2021-08-17 一种依次断开导体和熔体的激励熔断器 WO2022121363A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/622,159 US11990304B2 (en) 2020-12-11 2021-08-17 Excitation fuse with a conductor and a fusant being sequentially broken
EP21786074.1A EP4040466A4 (en) 2020-12-11 2021-08-17 EXCITATION FUSE FOR SEQUENTIAL DISCONNECTION OF A CONDUCTOR AND A MELTED GROUND
KR1020227008292A KR20220084016A (ko) 2020-12-11 2021-08-17 도체와 가용체를 순차적으로 파단하는 여기 퓨즈
JP2021570382A JP7394877B2 (ja) 2020-12-11 2021-08-17 導体及び可溶体を順に破断させる誘起ヒューズ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011458690.7A CN112447461A (zh) 2020-12-11 2020-12-11 一种依次断开导体和熔体的激励熔断器
CN202011458690.7 2020-12-11
CN202110702549.5A CN113205984B (zh) 2020-12-11 2021-06-24 一种依次断开导体和熔体的激励熔断器
CN202110702549.5 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022121363A1 true WO2022121363A1 (zh) 2022-06-16

Family

ID=74740182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113103 WO2022121363A1 (zh) 2020-12-11 2021-08-17 一种依次断开导体和熔体的激励熔断器

Country Status (6)

Country Link
US (1) US11990304B2 (zh)
EP (1) EP4040466A4 (zh)
JP (1) JP7394877B2 (zh)
KR (1) KR20220084016A (zh)
CN (2) CN112447461A (zh)
WO (1) WO2022121363A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334541A (zh) * 2023-12-01 2024-01-02 杭州高特电子设备股份有限公司 一种主动断开熔断器及断开方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447461A (zh) 2020-12-11 2021-03-05 西安中熔电气股份有限公司 一种依次断开导体和熔体的激励熔断器
CN113223905B (zh) * 2020-12-11 2024-01-19 西安中熔电气股份有限公司 一种熔断兼机械力断开熔体式熔断器
CN113258541A (zh) * 2021-06-28 2021-08-13 西安中熔电气股份有限公司 一种控制电路由常开切换常闭的激励保护装置
CN113258540A (zh) * 2021-06-28 2021-08-13 西安中熔电气股份有限公司 一种控制电路断开及使储能元器件释能的电路控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042753A (ja) * 2005-08-01 2007-02-15 Otowa Denki Kogyo Kk バリスタ装置および製造方法
CN110494946A (zh) * 2017-02-01 2019-11-22 德恩塞两合公司 用于低压应用的可触发式的熔断保险装置
CN110854000A (zh) * 2019-12-16 2020-02-28 西安中熔电气股份有限公司 一种集成灭弧熔体的激励熔断器
CN112447461A (zh) * 2020-12-11 2021-03-05 西安中熔电气股份有限公司 一种依次断开导体和熔体的激励熔断器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931874A (en) * 1953-10-08 1960-04-05 Audley B Leaman Explosive switch
US3958206A (en) * 1975-06-12 1976-05-18 General Electric Company Chemically augmented electrical fuse
US4417519A (en) * 1981-06-04 1983-11-29 Mcdonnell Douglas Corporation Explosive switch
DE19503809B4 (de) * 1995-02-06 2005-01-20 Bayerische Motoren Werke Ag Sicherungsvorrichtung für eine Stromleitung in Fahrzeugen
DE19817133A1 (de) * 1998-04-19 1999-10-28 Lell Peter Powerswitch
US7498923B2 (en) * 2004-09-08 2009-03-03 Iversen Arthur H Fast acting, low cost, high power transfer switch
JP2009043575A (ja) * 2007-08-09 2009-02-26 Mitsubishi Electric Corp 温度ヒューズ
FR2953324B1 (fr) * 2009-11-27 2012-06-08 Snpe Materiaux Energetiques Interrupteur electrique a tiroir coulissant formant coupe-circuit ou commutateur
FR2992770B1 (fr) * 2012-06-29 2014-08-01 Herakles Interrupteur electrique formant coupe-circuit a actionnement rapide
JP5817685B2 (ja) * 2012-08-31 2015-11-18 豊田合成株式会社 導通遮断装置
DE102014117280A1 (de) 2014-11-25 2016-05-25 Pilz Gmbh & Co. Kg Sicherheitsschaltgerät zum Ein- und sicheren Ausschalten eines elektrischen Verbrauchers
DE102015107579B3 (de) * 2015-05-13 2016-08-04 Lisa Dräxlmaier GmbH Sicherung mit Explosionskammer
US10978267B2 (en) * 2016-06-20 2021-04-13 Eaton Intelligent Power Limited High voltage power fuse including fatigue resistant fuse element and methods of making the same
DE102016122424B4 (de) * 2016-11-22 2023-06-07 Auto-Kabel Management Gmbh Trennvorrichtung mit Lichtbogenunterbrechung
FR3071659B1 (fr) 2017-09-26 2019-10-11 Arianegroup Sas Dispositif de coupure pyrotechnique
DE102017125208B4 (de) 2017-10-27 2021-08-12 Auto-Kabel Management Gmbh Elektrisches Sicherungselement sowie Verfahren zum Betreiben eines elektrischen Sicherungselementes
CN208738069U (zh) 2018-08-07 2019-04-12 西安中熔电气股份有限公司 一种外部驱动的快速电流切断装置
CN208938906U (zh) * 2018-09-05 2019-06-04 西安中熔电气股份有限公司 一种激励电路控制保护器
WO2020071218A1 (ja) 2018-10-01 2020-04-09 パナソニックIpマネジメント株式会社 遮断装置及び遮断システム
CN109192635B (zh) * 2018-10-19 2024-02-13 Aem科技(苏州)股份有限公司 一种熔断器及其生产方法
WO2020204154A1 (ja) 2019-04-05 2020-10-08 パナソニックIpマネジメント株式会社 遮断装置
CN210575811U (zh) * 2019-08-14 2020-05-19 西安中熔电气股份有限公司 一种可阶段性消弧的高分断快速响应的熔断器装置
CN111341627A (zh) * 2020-04-07 2020-06-26 西安中熔电气股份有限公司 一种集成机械力断开灭弧熔体的激励熔断器
GB2593941A (en) * 2020-04-08 2021-10-13 Eaton Intelligent Power Ltd Disconnect device with integrated fuse
US20230141970A1 (en) * 2021-11-11 2023-05-11 Eaton Intelligent Power Limited High voltage direct current circuit protection system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042753A (ja) * 2005-08-01 2007-02-15 Otowa Denki Kogyo Kk バリスタ装置および製造方法
CN110494946A (zh) * 2017-02-01 2019-11-22 德恩塞两合公司 用于低压应用的可触发式的熔断保险装置
CN110854000A (zh) * 2019-12-16 2020-02-28 西安中熔电气股份有限公司 一种集成灭弧熔体的激励熔断器
CN112447461A (zh) * 2020-12-11 2021-03-05 西安中熔电气股份有限公司 一种依次断开导体和熔体的激励熔断器
CN113205984A (zh) * 2020-12-11 2021-08-03 西安中熔电气股份有限公司 一种依次断开导体和熔体的激励熔断器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040466A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334541A (zh) * 2023-12-01 2024-01-02 杭州高特电子设备股份有限公司 一种主动断开熔断器及断开方法
CN117334541B (zh) * 2023-12-01 2024-03-19 杭州高特电子设备股份有限公司 一种主动断开熔断器及断开方法

Also Published As

Publication number Publication date
EP4040466A1 (en) 2022-08-10
JP7394877B2 (ja) 2023-12-08
US11990304B2 (en) 2024-05-21
CN113205984A (zh) 2021-08-03
KR20220084016A (ko) 2022-06-21
CN112447461A (zh) 2021-03-05
CN113205984B (zh) 2024-03-08
US20230154713A1 (en) 2023-05-18
EP4040466A4 (en) 2022-08-10
JP2023509254A (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2022121363A1 (zh) 一种依次断开导体和熔体的激励熔断器
WO2022121232A1 (zh) 一种机械打断及熔断组合多断口激励熔断器
WO2022121205A1 (zh) 一种分步断开的双断口激励熔断器
US20230352252A1 (en) Fuse and Circuit System
US20220189723A1 (en) Mechanical Breaking and Fusing Combined Multi-Fracture Excitation Fuse
WO2022121230A1 (zh) 一种分组断开的多断口激励熔断器
CN213601830U (zh) 一种分步断开的双断口激励熔断器及应用其的配电单元、储能设备或新能源汽车
WO2022121231A1 (zh) 一种采用旋转结构的多断口激励熔断器
CN211980553U (zh) 一种集成机械力断开灭弧熔体的激励熔断器
CN213601831U (zh) 依次断开导体和熔体的激励熔断器及应用其的配电单元、储能设备或新能源汽车
CN213601829U (zh) 一种分组断开的多断口激励熔断器及应用其的配电单元、储能设备或新能源汽车
CN115036160B (zh) 一种瞬时开断器及其复合灭弧方法
JP7352658B2 (ja) 溶断及び機械力切断で可溶体を破断させるヒューズ
CN216054559U (zh) 熔断器以及车辆
CN214411110U (zh) 一种熔断兼机械力断开熔体式熔断器
CN213816046U (zh) 一种机械打断及熔断组合多断口激励熔断器
CN219658656U (zh) 一种延时切断熔体的激励熔断器
CN114078673A (zh) 一种可控全电流范围高速分断的激励熔断器模组及其分断方法
CN216793597U (zh) 一种并联熔体的激励保护装置
CN217768244U (zh) 断路器
CN219181174U (zh) 一种同时具备定时限保护与反时限保护的保护装置及激励保护装置
CN216928463U (zh) 一种带激励保护的断路器
CN218568773U (zh) 一种电路保护装置用的熔体及熔体拉断装置
CN114927387A (zh) 断路器
CN114823241A (zh) 一种带激励保护的断路器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021786074

Country of ref document: EP

Effective date: 20211019

ENP Entry into the national phase

Ref document number: 2021570382

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE