WO2022120961A1 - 单晶化抗蒸发的x射线球管阳极靶的制造工艺 - Google Patents

单晶化抗蒸发的x射线球管阳极靶的制造工艺 Download PDF

Info

Publication number
WO2022120961A1
WO2022120961A1 PCT/CN2020/138831 CN2020138831W WO2022120961A1 WO 2022120961 A1 WO2022120961 A1 WO 2022120961A1 CN 2020138831 W CN2020138831 W CN 2020138831W WO 2022120961 A1 WO2022120961 A1 WO 2022120961A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode target
target surface
ray tube
evaporation
crystallization
Prior art date
Application number
PCT/CN2020/138831
Other languages
English (en)
French (fr)
Inventor
朱惠冲
Original Assignee
朱惠冲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱惠冲 filed Critical 朱惠冲
Priority to GB2310150.4A priority Critical patent/GB2617028A/en
Priority to DE112020007828.0T priority patent/DE112020007828T5/de
Publication of WO2022120961A1 publication Critical patent/WO2022120961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/085Target treatment, e.g. ageing, heating

Definitions

  • the invention relates to an X-ray tube production process, in particular to a production process of a single-crystal anti-evaporation X-ray tube anode target.
  • the X-ray tube is the main component of the CT machine for emitting X-rays.
  • the X-ray tube is a vacuum diode that works under high voltage. It consists of two electrodes: a filament for emitting electrons, which acts as a cathode, and a target for receiving electron bombardment, which acts as an anode. Both stages are sealed in a high-vacuum glass or ceramic enclosure.
  • the working surface of the anode target of the X-ray tube that is bombarded by electrons is called the anode target surface.
  • the manufacturing process of the anode target surface is formed by powder metallurgy. - Die-casting, sintering, forging, cutting and forming, the inner grains of the working belt are polycrystalline (more than 10,000 to 20,000 grains per square millimeter).
  • the defect is the anode target of the X-ray tube, because when the ultra-high voltage current is applied to the anode target surface, a large number of particles will be clear at the polycrystalline boundary when the polycrystalline state is impacted by the ultra-high voltage electrons of the anode.
  • Tungsten powder will contaminate the tube wall and X-ray window of the X-ray tube, causing the X-ray to be electronically interfered by the tungsten powder, resulting in poor X-ray clarity, directly affecting the quality of the image, and increasing the difficulty of lesion diagnosis.
  • the life of the X-ray tube is terminated due to the deterioration of the image quality.
  • the present invention provides a manufacturing process of a single-crystal anti-evaporation X-ray tube anode target.
  • the manufacturing process of the anti-evaporation X-ray tube anode target of single crystallization is characterized in that, comprises the following steps:
  • Step 1 Prepare a single crystallization manufacturing equipment and an anode target, the anode target has an anode target surface annularly arranged along its circumferential direction, and the single crystallization manufacturing equipment has a working cavity for single crystallization of the anode target surface;
  • Step 2 the anode target is fixedly placed in the working chamber, the single crystallization manufacturing equipment is started, and the anode target surface is melted, and the melting temperature is 3360-4000 degrees Celsius;
  • Step 3 cooling and condensing the molten anode target surface, so that the anode target surface is in a single crystal state, glass crystal or partial single crystal state.
  • step 2 before the single crystallization manufacturing equipment is started, the first gas supply equipment is used to inject inert gas into the working chamber.
  • step 2 after the anode target surface is melted, the melting depth of the anode target surface is between 0.02-5 mm.
  • step 3 the molten anode target surface is cooled and condensed at a rate of over 1000 degrees Celsius per second.
  • the anode target includes a tungsten alloy layer, a metal molybdenum layer and a graphite layer sequentially arranged from top to bottom, and the anode target surface is arranged on the tungsten alloy layer.
  • the single crystallization equipment includes a rotating device for driving the anode target to rotate, and an irradiation generator for irradiating the molten anode target surface.
  • the working chamber is set on the rotating device, and the rotation of the rotating device.
  • the end is provided with a clamp placed in the working cavity, the irradiation generator has an irradiation output end for irradiating the target surface of the molten anode, the irradiation output end extends into the working cavity and is placed in the clamp.
  • the anode target is fixed on the fixture, and the anode target surface corresponds to the irradiation output end.
  • the irradiation generator also has an adjustment mechanism that drives the irradiation output to move up and down, and the distance from the irradiation output to the anode target surface can be adjusted by moving the irradiation output up and down.
  • the rotating device includes a frame and a rotating motor arranged on the frame, the rotating end of the rotating motor extends out of the top of the frame and is connected with a clamp, and the top cover of the frame is provided with A protective cover, the inner cavity of the protective cover is combined with the frame to form the working cavity.
  • the protective cover is made of transparent material.
  • the life of the anode target after single crystallization is extended by more than 3 to 5 times;
  • the particle tungsten powder will not be clear when the anode target surface is working, which effectively avoids the electronic interference of X-rays by the tungsten powder, thus making various critical lesions in the Early diagnosis and diagnosis can be made correctly, which greatly reduces medical resources and burdens, reduces human pain and high treatment costs and maintenance costs, and greatly reduces the loss of social resources caused by misdiagnosis.
  • the economic and social benefits are enormous.
  • the present invention changes the anode target surface from a polycrystalline state to a single crystal state, so that the clarity and intensity of the X-rays emitted by the X-ray tube are greatly improved, and the service life of the X-ray tube is effectively extended.
  • the single-crystalized anode target surface has the performance of anti-evaporation, which effectively improves the accuracy of X-rays, ensures the accuracy of the results of CT machine work detection, and is suitable for widespread promotion.
  • Fig. 1 is the working state schematic diagram of this embodiment
  • FIG. 2 is a schematic diagram of the structure of the anode target.
  • the manufacturing process of the single-crystal anti-evaporation X-ray tube anode target includes the following steps:
  • Step 1 Prepare a single crystallization manufacturing equipment and an anode target 1, the anode target 1 has an anode target surface 11 annularly arranged along its circumferential direction, and the width of the anode target surface 11 is between 10 and 12 mm; the single crystallization manufacturing equipment There is a working cavity 2 for single-crystallizing the anode target surface 11; in addition, a central hole 15 is opened in the middle of the anode target 1, and the central hole 15 is used to connect with other components on the X-ray tube.
  • the anode target 1 includes a tungsten alloy layer 12, a metal molybdenum layer 13 and a graphite layer 14 which are arranged in sequence from top to bottom. powdered;
  • Step 2 Fix the anode target 1 in the working chamber 2, and inject an inert gas into the working chamber 2 by using the first gas supply device to avoid oxidation of the anode target 1 during the single crystallization process;
  • the manufacturing equipment is started, and the anode target surface 11 is melted.
  • the melting temperature is 3360-4000 degrees Celsius.
  • the preferred range of the melting temperature is between 3400 and 3800 degrees Celsius, in order to improve the stability of melting, and the most preferred range is 3500 degrees Celsius. degrees Celsius; after the anode target surface 11 is melted, the melting depth of the anode target surface 11 is between 0.02 and 5 mm to ensure the effect of single crystallization. When the melting depth of the anode target surface 11 is 0.2 mm, the maximum effect of single crystallization is good;
  • Step 3 Cool and condense the molten anode target surface 11 at a rate of more than 1000 degrees Celsius per second, so that the grains of more than 10,000 to 20,000 per square millimeter are merged into one grain or less, so that the anode target surface 11 is single crystal, glass crystal or partial single crystal.
  • the anode target surface 11 Due to the anti-evaporation performance of the anode target surface 11 after single crystallization, the anode target surface 11 will not clear the particulate tungsten powder when it is working, which effectively avoids the electronic interference of X-rays by the tungsten powder, thereby causing various critical illnesses.
  • the lesions can be correctly diagnosed and diagnosed in the early stage, which greatly reduces the medical resources, burden, human pain and high treatment and maintenance costs, and greatly reduces the loss of social resources caused by misdiagnosis. Not only economic benefits, but also huge social benefits.
  • the single crystallization equipment includes a rotating device 3 for driving the anode target 1 to rotate, and an irradiation generator 4 for irradiating the molten anode target surface 11
  • the working chamber 2 is arranged on the rotating device 3
  • the The rotating end of the rotating device 3 is provided with a fixture placed in the working chamber 2
  • the irradiation generator 4 has an irradiation output end 41 for irradiating the molten anode target surface 11, and the irradiation output end 41 extends.
  • the anode target 1 is fixed on the fixture and the anode target surface 11 corresponds to the irradiation output end 41 .
  • the irradiation generator 4 also has an adjustment mechanism that drives the irradiation output 41 to move up and down.
  • the distance between the irradiation output 41 and the anode target surface 11 can be adjusted by moving the irradiation output 41 up and down, so that the irradiation
  • the distance between the output end 41 and the anode target surface 11 is kept at 20 ⁇ 2 mm, most preferably 20 mm, so as to ensure the stability of the molten anode target surface 11 .
  • the irradiation generator 4 is any one of a plasma generator, a laser generator, an electron beam irradiation device, a rhenium heater, an intermediate-frequency heating device, a high-frequency heating device, and an ultra-sonic heating device, and the following table 1 Attached table for the power parameters of each heating device.
  • Power range Plasma generator 30 ⁇ 200KW laser generator ⁇ 30KW Electron beam irradiation equipment 10 ⁇ 180KW Rhenium heater 10 ⁇ 200KW Intermediate frequency heating equipment 15 ⁇ 600KW High frequency heating equipment 3 ⁇ 500KW Ultra Audio Heating Equipment 100 ⁇ 300KW
  • the irradiation generator 4 is a plasma generator, and the plasma generator generates a high temperature on the anode target surface 11 through its output end, so as to melt the anode target surface 11, and the output end of the above-mentioned plasma generator is the radiation generator output 41.
  • the power and spot size range of the irradiation generator 4 can be adjusted according to the size of the target and the cooling rate.
  • the rotating device 3 includes a frame 31 and a rotating motor 32 arranged on the frame 31.
  • the rotating end of the rotating motor 32 protrudes from the top of the frame 31 and is connected with a clamp.
  • the clamp can be a The screw, the top of the rotating end of the rotating motor 32 is provided with a screw hole, and the threaded end of the screw passes through the central hole 15 and is threaded with the screw hole to fix the anode target 1 on the rotating end of the rotating motor 32;
  • it can also be a fixed structure that can be added to the rotating end of the rotating motor 32 to achieve the same purpose.
  • the top of the frame 31 is covered with a protective cover 33 , the inner cavity of the protective cover 33 is combined with the frame 31 to form the working cavity 2 , and the top of the protective cover 33 is provided with irradiation
  • the output end 41 is inserted into the inlet in the working chamber 2 .
  • the protective cover 33 is made of a transparent material, so that the processing status of the anode target 1 inside the protective cover 33 can be seen during processing, which is convenient for the staff to operate and process.
  • the protective cover 33 is a can-shaped container, and the protective cover 33 is made of sapphire glass.
  • the sapphire glass has the advantages of anti-wear, high temperature resistance and high hardness, so as to ensure that the single crystallization equipment can be used in the molten anode.
  • the protective cover 33 will not be damaged by high temperature.
  • the diameter of the protective cover 33 is larger than 30% of the diameter of the anode target 1 , so as to ensure the stable implementation of the irradiation melting work without affecting the protective cover 33 .
  • the first gas supply device is a device capable of outputting inert gas, as long as the purpose of outputting inert gas can be achieved.
  • the cooling gas can be input into the working chamber 2 by using the second gas supply equipment, and the cooling gas is liquid nitrogen.
  • the first gas supply equipment and the second gas supply equipment are both in the prior art.
  • the first air supply device and the second air supply device are not shown in the figure.
  • the protective cover 33 can be provided with a first air inlet hole for inputting inert gas and a second air inlet hole for inputting cooling gas,
  • the first air inlet hole and the second air inlet hole are respectively provided with connectors for connecting the first air supply device and the second air supply device.
  • the inert gas and the cooling gas can also be directly input into the working chamber 2 from the inlet through manual operation. Inside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

单晶化抗蒸发的X射线球管阳极靶(1)的制造工艺,包括以下步骤:步骤1、准备单晶化制造设备和阳极靶(1),所述阳极靶(1)具有沿其周向环形设置的阳极靶面(11),单晶化制造设备上具有用于对阳极靶面(11)进行单晶化的工作腔(2);步骤2、将阳极靶(1)固定放置在工作腔(2)内,单晶化制造设备启动,对阳极靶面(11)进行熔融,熔融温度为3360~4000摄氏度;步骤3、对熔融后的阳极靶面(11)进行冷却冷凝,使阳极靶面(11)呈单晶态、玻璃晶或局部类单晶状。该工艺将阳极靶面(11)由多晶态变为单晶态,使X射线球管射出的X射线的清晰度和强度大幅度提高,并有效延伸了X射线球管的使用寿命,而且单晶化后的阳极靶面(11)具有抗蒸发的性能,有效提高X射线的精准度,保证CT机工作检测的结果准确率,适合广泛地推广。

Description

单晶化抗蒸发的X射线球管阳极靶的制造工艺 技术领域
本发明涉及X射线管生产工艺,具体涉及单晶化抗蒸发的X射线球管阳极靶的制造工艺。
背景技术
X射线管(X射线球管)使CT机上用于发出X射线的主要元件,X射线管(X射线球管)是工作在高电压下的真空二极管。包含有两个电极:一个是用于发射电子的灯丝,作为阴极,另一个是用于接受电子轰击的靶材,作为阳极,两级均被密封在高真空的玻璃或陶瓷外壳内。
在现有技术中,X射线球管的阳极靶工作时接受电子轰击的工作面称之为阳极靶面,阳极靶面的制造工艺都是通过粉末冶金成形,高纯钨粉,钨铼合金粉-压铸、烧结、锻制、切削成形而成,其工作带内部晶粒呈多晶态(每平方毫米含有的晶粒10000~20000颗以上)。
然而在X射线球管工作过程中,其缺陷是X射线管的阳极靶,因为加超高压电流冲击阳极靶面时,由于多晶态受到阳极超高压电子冲击时多晶界会晰出大量微粒钨粉,会污染X射线球管的管壁与X射线窗口,造成X射线受钨微粉产生电子干扰,导致X射线清晰度差,直接影响影像的质量,增加病灶诊断难度,随着每次工作时阳极靶的不断持续蒸发,X射线管寿命随之因影像质量下降而终止。
发明内容
为了克服现有技术的不足,本发明提供单晶化抗蒸发的X射线球管阳极靶的制造工艺。
本发明解决其技术问题所采用的技术方案是:
单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于,包括以下步骤:
步骤1、准备单晶化制造设备和阳极靶,所述阳极靶具有沿其周向环形设置的阳极靶面,单晶化制造设备上具有用于对阳极靶面进行单晶化的工作腔;
步骤2、将阳极靶固定放置在工作腔内,单晶化制造设备启动,对阳极靶面进行熔融,熔融温度为3360~4000摄氏度;
步骤3、对熔融后的阳极靶面进行冷却冷凝,使阳极靶面呈单晶态、玻璃晶或局部类单晶状。
在本发明中,在步骤2中,单晶化制造设备启动前,先利用第一供气设备向工作腔内注入惰性气体。
在本发明中,在步骤2中,阳极靶面熔融后,阳极靶面熔融的深度在0.02~5mm之间。
在本发明中,在步骤3中,熔融后的阳极靶面以每秒1000摄氏度以上的速率进行冷却冷凝。
在本发明中,所述阳极靶包括由上至下依次设置的钨合金层、金属钼层和石墨层,阳极靶面设置在钨合金层上。
在本发明中,所述单晶化设备包括带动阳极靶旋转的旋转装置、用于辐照熔融阳极靶面的辐照发生机,所述工作腔设于旋转装置上,所述旋转装置的转动端上设有置于工作腔内的夹具,所述辐照发生机具有用于辐照熔融阳极靶面的辐照输出端,所述辐照输出端伸入到工作腔中且置于夹具的上空,阳极靶固定在夹具上且阳极靶面对应辐照输出端。
在本发明中,辐照发生机还具有带动辐照输出端上下移动的调整机构,辐照输出端离阳极靶面的距离可通过上下移动辐照输出端方式进行调整。
在本发明中,所述旋转装置包括机架、设于机架上的旋转电机,所述旋转电机的转动端伸出机架的顶部并连接有夹具,所述机架的顶部上盖设有防护罩,所述防护罩内腔与机架组合形成所述工作腔。
在本发明中,所述防护罩由透明材质制成。
本发明的有益效果:
1.由于阳极靶面由多晶态变为单晶态,因此,X射线球管射出的X射线的清晰度大幅度提高;
2.由于微晶粒合并后,上万个合成一片的电子层,呈活泼状态,加强了X射线的强度;
3.阳极靶单晶化后的寿命延长了3~5倍以上;
4.由于单晶化后的阳极靶面具有抗蒸发的性能,因此阳极靶面工作时不会晰出微粒钨粉,有效避免了X射线受钨微粉产生电子干扰,从而使各种危重病灶在早期得以正确判断、确诊、大幅度减少了医疗资源、负担、减少人类的病痛及高额的治疗费用及养护费,大幅度减少各类人才免于由误诊产生的社会资源损失,此举不但有经济效益,社会效益十分巨大。
综上所述,本发明将阳极靶面由多晶态变为单晶态,使X射线球管射出的X射线的清晰度和强度大幅度提高,并有效延伸了X射线球管的使用寿命,而且单晶化后的阳极靶面具有抗蒸发的性能,有效提高X射线的精准度,保证CT机工作检测的结果准确率,适合广泛地推广。
附图说明
下面结合附图和实施方式对本发明进一步说明:
图1为本实施例的工作状态示意图;
图2为阳极靶的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
参照图1~2,单晶化抗蒸发的X射线球管阳极靶的制造工艺,包括以下步骤:
步骤1、准备单晶化制造设备和阳极靶1,所述阳极靶1具有沿其周向环形设置的阳极靶面11,阳极靶面11的宽度在10~12mm之间;单晶化制造设备上具有用于对阳极靶面11进行单晶化的工作腔2;另外,阳极靶1的中部开有中心孔15,该中心孔15用于与X射线球管上的其他部件连接,所述阳极靶1包括由上至下依次设置的钨合金层12、金属钼层13和石墨层14,阳极靶面11设置在钨合金层12上,钨合金层12由高纯钨粉或钨铼合金粉制成;
步骤2、将阳极靶1固定放置在工作腔2内,并利用第一供气设备向工作腔2内注入惰性气体,以避免阳极靶1在进行单晶化的过程中出现氧化;单晶化制造设备启动,对阳极靶面11进行熔融,熔融温度为3360~4000摄氏度,在本实施例中,熔融温度的优选范围为3400~3800摄氏度之间,以提高熔融的稳定性,最优选为3500摄氏度;阳极靶面11熔融后,阳极靶面11熔融的深度在0.02~5mm之间,以保证单晶化的效果,当阳极靶面11熔融的深度为0.2mm时,单晶化效果的最佳;
步骤3、对熔融后的阳极靶面11以每秒1000摄氏度以上的速率下冷却冷凝,从而将每平方毫米中的10000~20000以上的颗晶粒合并成一颗晶粒以下,以使阳极靶面11呈单晶态、玻璃晶或局部类单晶状。
从而在阳极靶1工作时接受阴极超高压电子冲击时,无微钨粉随X射线晰出,达到以下效果:
1.由于阳极靶面11由多晶态变为单晶态,因此,X射线球管射出的X射线的清晰度大幅度提高;
2.由于微晶粒合并后,上万个合成一片的电子层,呈活泼状态,加强了X射线的强度;
3.阳极靶1单晶化后的寿命延长了3~5倍以上;
4.由于单晶化后的阳极靶面11具有抗蒸发的性能,因此阳极靶面11工作时不会晰出微粒钨粉,有效避免了X射线受钨微粉产生电子干扰,从而使各种危重病灶在早期得以正确判断、确诊、大幅度减少了医疗资源、负担、减少人类的病痛及高额的治疗费用及养护费,大幅度减少各类人才免于由误诊产生的社会资源损失,此举不但有经济效益,社会效益十分巨大。
优选的,所述单晶化设备包括带动阳极靶1旋转的旋转装置3、用于辐照熔融阳极靶 面11的辐照发生机4,所述工作腔2设于旋转装置3上,所述旋转装置3的转动端上设有置于工作腔2内的夹具,所述辐照发生机4具有用于辐照熔融阳极靶面11的辐照输出端41,所述辐照输出端41伸入到工作腔2中且置于夹具的上空,阳极靶1固定在夹具上且阳极靶面11对应辐照输出端41。另外,辐照发生机4还具有带动辐照输出端41上下移动的调整机构,辐照输出端41离阳极靶面11的距离可通过上下移动辐照输出端41方式进行调整,以使辐照输出端41离阳极靶面11的距离保持在20±2mm,最优选为20mm,从而保证熔融阳极靶面11的稳定性。
在上述结构中,辐照发生机4为等离子发生机、激光发生机、电子束辐照设备、铼加热器和中频加热设备、高频加热设备、超音频加热设备的任意一种,下表1为各个加热设备的功率参数附表。
表1:
设备名称 功率范围
等离子发生机 30~200KW
激光发生机 ≤30KW
电子束辐照设备 10~180KW
铼加热器 10~200KW
中频加热设备 15~600KW
高频加热设备 3~500KW
超音频加热设备 100~300KW
在本实施例中,辐照发生机4为等离子发生机,等离子发生机通过其输出端使阳极靶面11上产生高温,从而使阳极靶面11熔融,上述等离子发生机的输出端为辐照输出端41。另外,在进行辐照加热时,可以根据靶材的大小和冷却速率,调整辐照发生机4工作时的功率和光斑大小范围。
优选的,所述旋转装置3包括机架31、设于机架31上的旋转电机32,所述旋转电机32的转动端伸出机架31的顶部并连接有夹具,所述夹具可以是一螺钉,旋转电机32的转动端的顶部上设有螺孔,螺钉的螺纹端穿过中心孔15与螺孔螺纹连接以将阳极靶1固定在旋转电机32的转动端上;当然,不限于上述结构,还可以是加设在旋转电机32的转动端上可实现相同目的的固定结构即可。进一步的,所述机架31的顶部上盖设有防护罩33,所述防护罩33内腔与机架31组合形成所述工作腔2,所述防护罩33的顶部上设有供辐照输出端41插入工作腔2内的入口。
优选的,所述防护罩33由透明材质制成,由此在加工时可以看到防护罩33内部的阳极靶1的加工状况,方便工作人员操作加工。在本实施例中,所述防护罩33为罐状容器,所述防护罩33由蓝宝石玻璃制成,蓝宝石玻璃具有抗磨损、耐高温、硬度高等优点,从而 可以保证单晶化设备在熔融阳极靶面11时,防护罩33不会因高温而损坏。另外,所述防护罩33的直径大于阳极靶1直径的30%,以保证辐照熔融工作的稳定实施,且不会影响到防护罩33。
在上述步骤2中,第一供气设备为可输出惰性气体的装置,只需可实现输出惰性气体的目的即可。另外,在本步骤3中,可以利用第二供气设备向工作腔2输入降温气体,降温气体为液氮,第一供气设备和第二供气设备均为现有技术,可参照现有用于供气的装置,第一供气设备和第二供气设备无图示。第一供气设备和第二供气设备向工作腔2输入气体时,可在所述防护罩33上设有供输入惰性气体的第一进气孔、输入降温气体的第二进气孔,第一进气孔和第二进气孔分别设有用于第一供气设备和第二供气设备连接的连接头,当然惰性气体和降温气体也可通过人为操作,直接从入口输入工作腔2内。
以上所述仅为本发明的优选实施方式,只要以基本相同手段实现本发明目的的技术方案都属于本发明的保护范围之内。

Claims (9)

  1. 单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于,包括以下步骤:
    步骤1、准备单晶化制造设备和阳极靶(1),所述阳极靶(1)具有沿其周向环形设置的阳极靶面(11),单晶化制造设备上具有用于对阳极靶面(11)进行单晶化的工作腔(2);
    步骤2、将阳极靶(1)固定放置在工作腔(2)内,单晶化制造设备启动,对阳极靶面(11)进行熔融,熔融温度为3360~4000摄氏度;
    步骤3、对熔融后的阳极靶面(11)进行冷却冷凝,使阳极靶面(11)呈单晶态、玻璃晶或局部类单晶状。
  2. 根据权利要求1所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:在步骤2中,单晶化制造设备启动前,先利用第一供气设备向工作腔(2)内注入惰性气体。
  3. 根据权利要求1所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:在步骤2中,阳极靶面(11)熔融后,阳极靶面(11)熔融的深度在0.02~5mm之间。
  4. 根据权利要求1所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:在步骤3中,熔融后的阳极靶面(11)以每秒1000摄氏度以上的速率进行冷却冷凝。
  5. 根据权利要求1所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:所述阳极靶(1)包括由上至下依次设置的钨合金层(12)、金属钼层(13)和石墨层(14),阳极靶面(11)设置在钨合金层(12)上。
  6. 根据权利要求1所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:所述单晶化设备包括带动阳极靶(1)旋转的旋转装置(3)、用于辐照熔融阳极靶面(11)的辐照发生机(4),所述工作腔(2)设于旋转装置(3)上,所述旋转装置(3)的转动端上设有置于工作腔(2)内的夹具,所述辐照发生机(4)具有用于辐照熔融阳极靶面(11)的辐照输出端(41),所述辐照输出端(41)伸入到工作腔(2)中且置于夹具的上空,阳极靶(1)固定在夹具上且阳极靶面(11)对应辐照输出端(41)。
  7. 根据权利要求6所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:辐照发生机(4)还具有带动辐照输出端(41)上下移动的调整机构,辐照输出端(41)离阳极靶面(11)的距离可通过上下移动辐照输出端(41)方式进行调整。
  8. 根据权利要求7所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:所述旋转装置(3)包括机架(31)、设于机架(31)上的旋转电机(32),所述旋转电机(32)的转动端伸出机架(31)的顶部并连接有夹具,所述机架(31)的顶部上盖设有防护罩(33),所述防护罩(33)内腔与机架(31)组合形成所述工作腔(2)。
  9. 根据权利要求8所述的单晶化抗蒸发的X射线球管阳极靶的制造工艺,其特征在于:所 述防护罩(33)由透明材质制成。
PCT/CN2020/138831 2020-12-08 2020-12-24 单晶化抗蒸发的x射线球管阳极靶的制造工艺 WO2022120961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2310150.4A GB2617028A (en) 2020-12-08 2020-12-24 Fabrication process for single-crystallization anti-evaporation X-ray tube anode target
DE112020007828.0T DE112020007828T5 (de) 2020-12-08 2020-12-24 Verfahren zur Herstellung eines einkristallisierten, verdampfungsbeständigen Röntgenröhrenanodentargets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011443854.9A CN112563092B (zh) 2020-12-08 2020-12-08 单晶化抗蒸发的x射线球管阳极靶的制造工艺
CN202011443854.9 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022120961A1 true WO2022120961A1 (zh) 2022-06-16

Family

ID=75060921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138831 WO2022120961A1 (zh) 2020-12-08 2020-12-24 单晶化抗蒸发的x射线球管阳极靶的制造工艺

Country Status (4)

Country Link
CN (1) CN112563092B (zh)
DE (1) DE112020007828T5 (zh)
GB (1) GB2617028A (zh)
WO (1) WO2022120961A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168792C1 (ru) * 1999-12-08 2001-06-10 Отделение Научно-технический центр "Источники тока" Научно-исследовательского института Научно-производственного объединения "Луч" Анод рентгеновской трубки
CN104701118A (zh) * 2013-12-06 2015-06-10 佳能株式会社 透射型靶和设有透射型靶的x射线发生管
CN107068524A (zh) * 2009-12-17 2017-08-18 通用电气公司 用于x射线生成的设备及其制作方法
CN108907630A (zh) * 2018-08-14 2018-11-30 合肥工业大学 一种CT机X射线管用W/Mo/石墨复合阳极靶材的制造方法
CN109243948A (zh) * 2018-09-30 2019-01-18 汕头高新区聚德医疗科技有限公司 一种高稳定性ct球管
CN110303141A (zh) * 2019-07-10 2019-10-08 株洲未铼新材料科技有限公司 一种x射线管用单晶铜固定阳极靶材及其制备方法
CN110621986A (zh) * 2017-03-22 2019-12-27 斯格瑞公司 执行x射线光谱分析的方法和x射线吸收光谱仪系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400824A (en) * 1980-02-12 1983-08-23 Tokyo Shibaura Denki Kabushiki Kaisha X-Ray tube with single crystalline copper target member
US7194066B2 (en) * 2004-04-08 2007-03-20 General Electric Company Apparatus and method for light weight high performance target
CN208796945U (zh) * 2018-09-30 2019-04-26 汕头高新区聚德医疗科技有限公司 一种ct球管的阳极靶盘

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168792C1 (ru) * 1999-12-08 2001-06-10 Отделение Научно-технический центр "Источники тока" Научно-исследовательского института Научно-производственного объединения "Луч" Анод рентгеновской трубки
CN107068524A (zh) * 2009-12-17 2017-08-18 通用电气公司 用于x射线生成的设备及其制作方法
CN104701118A (zh) * 2013-12-06 2015-06-10 佳能株式会社 透射型靶和设有透射型靶的x射线发生管
CN110621986A (zh) * 2017-03-22 2019-12-27 斯格瑞公司 执行x射线光谱分析的方法和x射线吸收光谱仪系统
CN108907630A (zh) * 2018-08-14 2018-11-30 合肥工业大学 一种CT机X射线管用W/Mo/石墨复合阳极靶材的制造方法
CN109243948A (zh) * 2018-09-30 2019-01-18 汕头高新区聚德医疗科技有限公司 一种高稳定性ct球管
CN110303141A (zh) * 2019-07-10 2019-10-08 株洲未铼新材料科技有限公司 一种x射线管用单晶铜固定阳极靶材及其制备方法

Also Published As

Publication number Publication date
CN112563092B (zh) 2022-09-23
GB2617028A (en) 2023-09-27
DE112020007828T5 (de) 2023-09-28
GB202310150D0 (en) 2023-08-16
CN112563092A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US9484178B2 (en) Target and X-ray generating tube including the same, X-ray generating apparatus, X-ray imaging system
CN101494150B (zh) 一种冷阴极聚焦型x射线管
US10229808B2 (en) Transmission-type target for X-ray generating source, and X-ray generator and radiography system including transmission-type target
KR101757309B1 (ko) 전자방출 물질 및 이의 제조방법
WO2022120961A1 (zh) 单晶化抗蒸发的x射线球管阳极靶的制造工艺
US8808812B2 (en) Oriented carbon nanotube manufacturing method
EP0034768B1 (en) Method for manufacturing an anode of an x-ray tube
US20140362977A1 (en) Field assisted sintering of x-ray tube components
US3778654A (en) Molybdenum alloy target for mammographic usage in x-ray tubes
Dai et al. Cs2Te photocathode fabrication system at Peking University
JPWO2020105644A1 (ja) 放電ランプ用カソード部品および放電ランプ
JP6153314B2 (ja) X線透過型ターゲット及びその製造方法
US11701727B2 (en) Brazing apparatus and method for anode target plate
US10651002B2 (en) X-ray tube
US3037142A (en) X-ray generator tubes
Taubin et al. Cathodes for medical purpose X-ray tubes
KR20170003083A (ko) 전계 방출 엑스선 소스 장치의 제조 방법
Ooki et al. X-ray source with cold emitter fabricated using ZnO conductive whiskers
Hong et al. Fabrication of miniature carbon nanotube electron beam module for x-ray tube application
JP3345439B2 (ja) X線管回転陽極の製造方法
JP2714004B2 (ja) X線管の回転陽極ターゲット及びその製造方法
Taylor On a new type of rotating anode X-ray tube
Semyonov et al. Thin carbon films: II. Structure and properties
CN113363125B (zh) X射线球管旋转阳极靶盘的电磁感应加热除气方法及其装置
JP3905050B2 (ja) X線管ターゲット及びそのx線管ターゲットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310150

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201224

WWE Wipo information: entry into national phase

Ref document number: 112020007828

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964890

Country of ref document: EP

Kind code of ref document: A1