WO2022120659A1 - 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法 - Google Patents

一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法 Download PDF

Info

Publication number
WO2022120659A1
WO2022120659A1 PCT/CN2020/135018 CN2020135018W WO2022120659A1 WO 2022120659 A1 WO2022120659 A1 WO 2022120659A1 CN 2020135018 W CN2020135018 W CN 2020135018W WO 2022120659 A1 WO2022120659 A1 WO 2022120659A1
Authority
WO
WIPO (PCT)
Prior art keywords
halide salt
doped
preparation
inorganic halide
host
Prior art date
Application number
PCT/CN2020/135018
Other languages
English (en)
French (fr)
Inventor
李佳
白宪伟
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/135018 priority Critical patent/WO2022120659A1/zh
Publication of WO2022120659A1 publication Critical patent/WO2022120659A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the invention relates to a non-ligand-assisted double (multi) emission perovskite doped material, in particular to a general and convenient preparation method.
  • the three-primary color composite light scheme is basically used, that is, the blue light-emitting material/green light-emitting material/red light-emitting material is combined into a composite multi-layer structure to prepare a composite white light LED.
  • the blue light-emitting material/green light-emitting material/red light-emitting material is combined into a composite multi-layer structure to prepare a composite white light LED.
  • the multi-layer luminescent material makes the device thicker, which is not conducive to the heat dissipation of the device, and the short-wavelength luminescence of quantum dots of different colors is absorbed by the long-wavelength quantum dots, which affects the luminous efficiency and color value. Therefore, the development and use of dual-band or multi-band luminescent materials is one of the feasible solutions to solve these problems.
  • Double (multiple) emission material means that the material can appear two or more emission peaks at the same time. If the wavelength of double (multiple) emission is tunable by a certain method, its luminescence will cover a wider tunable area ( or a color gamut), which makes it possible to effectively reduce the number of light-emitting layers of LED devices and improve color quality. This also provides a broad space for the material to be used in related fluorescence-based applications, including applications in visual temperature detection, highly selective ion sensing, time relays, color-converted luminescence, and white LEDs.
  • dual (multi) emitting materials have multiple methods to adjust the trajectory in the CIE color coordinate, which also It will provide more powerful functions and application fields for related equipment based on related materials in the future.
  • the new white LEDs based on quantum dot technology not only have less environmental pollution, low power consumption, but also have a longer service life. And through years of research and innovation, its reliability has also been greatly improved. With the increasing shortage of resources and the increasing awareness of environmental protection, the waste of resources and energy conservation have become the focus of more and more attention in the world. In fact, the use of nanometer-sized quantum dots can also greatly reduce the energy waste caused by severe scattering caused by micrometer-sized phosphors.
  • Perovskites can be further classified into organic-inorganic hybrid perovskites and pure inorganic perovskites, depending on whether A represents an organic molecule or an inorganic cation.
  • A is an organic molecule, it is generally an amine chain, such as methylamine (MA, CH 3 NH 3 + ), etc.
  • A is an inorganic cation, such as Cs +
  • the optical and electrical properties of these perovskites can be tuned by changing the composition and cations through halogen atom substitution, etc.
  • these advantages are more conducive to the transfer of exciton energy to the d level of manganese in the manganese-doped perovskite system, resulting in more efficient manganese luminescence, especially the band gap of CsPbCl 3 is more suitable for exciton energy to the d level of manganese.
  • the energy level transfer is more favorable for the occurrence of the dd transition of Mn.
  • the manganese doping of inorganic perovskite involves heating reaction, and repeating the method of the above literature shows that the obtained Mn: CsPbCl3 nanocrystals have a rapid agglomeration phenomenon, that is, the obtained Nanocrystals will rapidly aggregate and settle in n-hexane or toluene solution in a short period of time, resulting in the phenomenon of solid-liquid separation, which is not conducive to the subsequent application of the material in devices.
  • Won dissolves all the raw materials in a benign solvent to prepare the precursor, and then drops the precursor solution into the constantly stirring poor solvent at a certain speed, using the supersaturation of the solute.
  • the method of obtaining crystalline crystals achieves doping, and the luminescence of the obtained nanocrystals doped with manganese only accounts for 20% of the overall quantum yield, but the paper does not clearly state the fluorescence lifetime of manganese.
  • the quantum dot materials synthesized in solution have many ligands on their surface, they need to be purified many times in the later use process, which will bring certain defects on the surface of the material, thereby reducing the material's performance. Luminous properties. Therefore, solving the problems of aggregation and settlement of the above-mentioned materials and complex process is the key to realize the later application of dual light emitting materials.
  • the purpose of the present invention is to provide a method for preparing a perovskite doped material that effectively solves the above problems.
  • Another object of the present invention is the perovskite doped material prepared based on this method and its application.
  • One aspect of the present invention provides a method for preparing a perovskite doped material, comprising the following steps:
  • the halide salt in the step 2) is the composition of the host inorganic halide salt A, the doped halide salt and the host inorganic halide salt B, or the host inorganic halide salt A and the doped halide salt and organic amine halide salts.
  • the polymer is selected from the group consisting of polyvinylidene fluoride, polyvinyl acetate, polyacrylonitrile, cellulose acetate, polysulfone, aromatic polyamide, polyimide, polycarbonate, at least one of polystyrene, polyisobutylene, polyvinylpyrrolidone, polyethyleneimine, polyvinylcarbazole, acrylic-based polymer, and silane-based polymer;
  • the organic solvent described in step 1) is selected from N,N-dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, N-methyl phosphate at least one of pyrrolidone, toluene, dichloro, chloroform, cyclohexane, hexane and octane.
  • the mass fraction of the polymer in the organic solvent in step 1) is 1%-16.2%, preferably 8.8%.
  • the host inorganic halide salt A is selected from one or a combination of PbCl 2 , PbBr 2 , and PbI 2 .
  • the host inorganic halide salt A is selected from one of PbCl 2 , PbBr 2 , PbI 2 or a combination of PbCl 2 and PbBr 2 , a combination of PbCl 2 and PbI 2 .
  • the host inorganic halide salt B is selected from one or more of CsCl, CsBr, CsI, KCl, KBr, KI, NaCl, NaBr, NaI, BaCl 2 , BaBr 2 , BaI 2 Compositions.
  • the host inorganic halide salt B is selected from one of CsCl, CsBr, CsI, KCl, KBr, KI, NaCl , NaBr, NaI, BaCl2, BaBr2 , BaI2 or CsCl and Composition of CsBr, composition of CsCl and CsI, composition of KCl and KBr, composition of KCl and KI, composition of NaCl and NaBr, composition of NaCl and NaI, composition of BaCl 2 and BaBr 2 , BaCl 2 and the composition of BaI 2 .
  • the doped inorganic halide salt is selected from the group consisting of MnCl 2 , MnBr 2 , MnI 2 , CuCl 2 , CuBr 2 , CuI, MnCl 2 , a mixture of CuCl 2 and CuCl , a mixture of MnBr 2 and CuBr 2 A combination of one or more of the mixture, the mixture of MnI 2 and CuI.
  • the general formula of organic amine halide salt is R 1 -NH 3 X 3 ; wherein, X is at least one of halogen elements Cl, Br and I; R 1 is selected from C1-C6
  • the alkyl group, more preferably the organic amine halide salt, is selected from one or more combinations of CH 3 -NH 3 Cl 3 , CH 3 -NH 3 Br 3 and CH 3 -NH 3 I 3 .
  • the molar ratio of dopant halide salt to host inorganic halide salt A ranges from 0.01 to 4:1; preferably 2:1.
  • the molar amount of organic amine halide salt the sum of the molar amount of host inorganic halide salt A, dopant halide salt is 0.8-5:1, preferably 0.8-1.5:1, more preferably Ground is 0.9:1;
  • the molar amount of the host inorganic halide salt B the sum of the molar amounts of the host inorganic halide salt A and the doping halide salt is 0.8-4:1; preferably 0.8-3:1, more preferably 1-1.5: 1.
  • the chloride ion content is higher than the bromide ion or iodide ion content.
  • the mass ratio of halide salt to polymer is 0.086-0.096:1.
  • step 3 the second solution is first made into a film or put into a container and then dried.
  • the second solution is formed into a film by spin coating, casting, screen printing, spray coating, drop coating, casting, or roll coating.
  • the vacuum drying in step 3) is selected from freeze vacuum drying or ordinary vacuum drying, and the conditions of freeze vacuum drying are that the working pressure is 0.001-0.05MPa, and the working temperature range is -70 °C ⁇ 60 °C;
  • the working pressure of ordinary vacuum drying is -0.1MPa, and the working temperature range is 0°C-60°C or 0°C-40°C.
  • the second solution does not contain stabilizers selected from metal oxide nanoparticles and/or free radical scavengers; eg SiO 2 , TiO 2 , Al 2 O 3 , ZnO , at least one of oleic acid (acid group with different chain length), oleylamine, n-octylamine (amino group with different chain length), ascorbic acid and the like.
  • stabilizers selected from metal oxide nanoparticles and/or free radical scavengers; eg SiO 2 , TiO 2 , Al 2 O 3 , ZnO , at least one of oleic acid (acid group with different chain length), oleylamine, n-octylamine (amino group with different chain length), ascorbic acid and the like.
  • the treatment temperature in both steps 1) and 2) is lower than 60°C, preferably 25°C or room temperature.
  • Another aspect of the present invention provides a perovskite-doped material obtained by the above-mentioned preparation method of the present invention.
  • the perovskite doped material is a thin film material.
  • the perovskite-doped material has more than two emission peaks.
  • Another aspect of the present invention provides a perovskite-doped material having a metal ion-doped perovskite dispersed in a polymer; a perovskite
  • the structure of the ore is ABX 3 , in which B and X form a coordinated octahedral structure, B represents metal Pb, X is one or more of Cl, Br, and I, A represents R 1 NH 3 or Cs, R 1 For C1-C6 alkyl.
  • the doped metal ions that achieve double (multiple) emission are transition metal particles such as Mn and Cu, and the doped metal ions occupy the position of Pb in the crystal lattice.
  • the polymer is polyvinylidene fluoride (PVDF); the solvent used is N,N-dimethylformamide (DMF), dimethyl sulfoxide and the like.
  • organic ligands such as oleic acid and oleylamine are not added in the preparation process.
  • Another aspect of the present invention provides the use of the perovskite doped material of the present invention as an optical material.
  • the optical material is a white LED lamp.
  • Another aspect of the present invention provides a white light LED lamp, which has a thin film prepared from the perovskite doped material of the present invention.
  • the preparation method proposed by the invention has the advantages of simple process, high repeatability, convenient industrial production, and no need for the use of ligands.
  • the prepared perovskite-doped double (multi) light emitting material is directly generated in the film, and no aggregation and sedimentation occurs.
  • the influence of unfavorable factors such as water and oxygen is isolated, and the stability is good, so that it has good application value in subsequent use.
  • the preparation method comprises the following steps:
  • the inorganic halide salts described in this step include host Pb inorganic halide salts and doped inorganic halide salts such as manganese (Mn), copper (Cu) and other halide salts. One or two (more) doped inorganic halide salts are doped.
  • the second solution in the above step (2) on a transparent substrate (or mold) by means of casting, blade coating, spin coating, pouring, etc. (the minimum thickness can be controlled to ⁇ m) , and then place the substrate or mold coated with the second solution in a vacuum drying oven, remove the organic solvent, dry and shape, and then the hybrid perovskite/polymer doped double emission material can be obtained.
  • the working air pressure of the freeze-drying box is between 0.001-0.05MPa, and the working temperature can be between -70 and 20°C.
  • the working air pressure of ordinary vacuum drying is -0.1MPa, and the working temperature range is 0°C-60°C.
  • the drying time varies with the film thickness and can be adjusted appropriately.
  • the perovskite doped material proposed in the present invention is a dual-emission or multi-emission material. It has the following advantages:
  • the perovskite doped material of the present invention provides a double-emission or multi-emission material, which solves the problem of preparing multiple layers of fluorescent materials with different luminescent colors when preparing LEDs. Doping with different metals realizes the problem that one material has multiple light-emitting bands, and can reduce the number of light-emitting layers in the LED device.
  • the doping process usually requires heating in the prior art, and the doped nanocrystals will have problems such as agglomeration and sedimentation, which will seriously affect subsequent applications.
  • the method of the present invention can ensure that under the premise of high-efficiency doping, a This kind of preparation method can be basically completed at room temperature without heating, and the material obtained by the preparation method has no agglomeration.
  • the lead content of the material will gradually decrease, thereby gradually reducing the harmful substances of the material.
  • the preparation method of the perovskite dual (poly) optical material according to the present invention does not require the addition of organic ligands such as oleic acid and oleylamine, and no addition of stabilizers.
  • the dual (multi) light emission of the material is achieved by limiting the growth of the material during the process of drying the polymer to form a film, and at the same time inducing the doping ions to enter the crystal lattice by using the tension during the polymer film formation. After the material is prepared, there is no need for purification and other processes, new surface defects will not be introduced, and the better physical properties of the material are retained.
  • the preparation method of the perovskite dual (multi) optical material according to the present invention avoids the problem of aggregation and sedimentation of the material in the solution, directly realizes the dual optical emission of the material in the film, and can be directly used for the preparation of devices, etc. application.
  • the preparation method of the perovskite dual (multi) optical material according to the present invention can not only isolate the adverse effects of oxygen and moisture in the air on the material, but also further reduce the defects of the material after doping, and its luminescence characteristics are significantly improved. Compared with existing reports, its perovskite host has fewer defects and a 100-fold improvement in the fluorescence lifetime of doped manganese ions.
  • the perovskite dual (multi) optical material method of the present invention retains the high strength and excellent toughness of the polymer, and can be used for flexible display and the like.
  • the preparation method of the present invention is simple in process, low in cost, suitable for large-area production, and has good crystallinity of the material, which ensures the excellent performance of the material.
  • Fig. 1 is the fluorescence emission spectrum of the Mn 2+ -doped dual light-emitting thin film material of CH 3 NH 3 PbCl 3 /PVDF prepared in Example 1;
  • Fig. 2 is the transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) of the CH 3 NH 3 PbCl 3 /PVDF Mn 2+ doped dual light-emitting thin film material doped with different proportions of Mn 2+ thin film material prepared in Example 1 ) photos;
  • Figure a is a TEM photo with a Mn/Pb molar ratio of 0.1 (scale bar is 50 nm)
  • Figure b is a TEM photo with a Mn/Pb molar ratio of 0.5 (scale bar is 50 nm)
  • Figure c is Mn/Pb
  • the TEM photos with a molar ratio of 1 the scale bar is 50 nm
  • Figure d is the TEM photos with a Mn/Pb molar ratio of 2 (the scale bar is 200 nm)
  • a1-d1 are the high-scoring TEM photos of the corresponding ratio (HRTEM, Scale bars are all 5 nm)
  • Example 3 shows the fluorescence quantum yields of the CH 3 NH 3 PbCl 3 /PVDF prepared in Example 1 with Mn 2+ doped dual light-emitting thin film materials doped with different ratios of Mn 2+ thin film materials.
  • Fig. 4 is the actual effect diagram of the CH 3 NH 3 PbCl 3 /PVDF Mn 2+ doped dual light-emitting thin film material prepared in Example 1 under UV lamp; wherein, 400% is the Mn/Pb molar ratio of 4, 300% is Mn/Pb molar ratio of 3, 200% is Mn/Pb molar ratio of 2, 100% is Mn/Pb molar ratio of 1, 50% is Mn/Pb molar ratio of 0.5, 10% is Mn/Pb molar ratio The molar ratio is 0.1.
  • Fig. 5 is the actual effect diagram of the Mn 2+ -doped dual light-emitting thin film material of CsPbCl 3 /PVDF prepared in Example 3 under an ultraviolet lamp;
  • Example 6 is a schematic diagram of the structure of the CH 3 NH 3 PbCl 3 /PVDF Mn 2+ doped dual light-emitting thin film material prepared in Example 1 for use in a photoluminescent device and a prepared LED color coordinate diagram;
  • FIG. 7 is a schematic diagram of the preparation method of some embodiments of the present invention.
  • Figure 8 is a prior art product, the product prepared by heating has the phenomenon of agglomeration and sedimentation in the solvent. ,
  • Fig. 9 is the fluorescence lifetime data of the emission peak corresponding to the double emission of the product of the present invention.
  • Hybrid perovskite CH 3 NH 3 PbCl 3 /PVDF Mn 2+ doped dual emission material and preparation method the preparation method is as follows:
  • the doped inorganic halide salt is MnCl 2
  • the host inorganic halide salt A is PbCl 2
  • the organic amine halide salt is methylammonium chloride (MACl, CH 3 -NH 3 Cl 3 ).
  • step (3) The powder mixture in step (2) is put into the first solution, and the mass ratio is controlled to be no more than 0.096 and continuously stirred for a certain period of time until it is completely dissolved and uniformly dispersed, and the second solution is obtained here.
  • the second solution obtained in the above step (3) is evenly spread on a certain substrate by spin coating, casting and other methods, and the thickness is controlled at the required thickness, and then the second solution is coated with the second solution.
  • the base of the solution is placed in a freeze dryer.
  • the working air pressure of the freeze dryer is between 0.001-0.05MPa, and the working temperature range is between -70°C and 20°C.
  • the drying time can be adjusted appropriately with the thickness of the film. , removing the organic solvent to obtain a Mn 2+ doped dual emission material of CH 3 NH 3 PbCl 3 /PVDF.
  • Hybrid perovskite CH 3 NH 3 PbCl x Br 3-x /PVDF, CH 3 NH 3 PbCl x I 3-x /PVDF Mn 2+ doped dual emission material and preparation method, the preparation method is as follows:
  • step (2) The difference between the experimental method and the embodiment 1 is only in step (2)
  • the doped halide salts are MnCl 2 and MnBr 2
  • the host inorganic halide salts A are PbCl 2 and PbBr 2
  • the organic amine halide salts are methylamine halide salts, MAC1 and MABr.
  • the prepared product is a Mn 2+ doped dual emission material of CH 3 NH 3 PbCl x Br 3-x /PVDF.
  • the doped halide salts are MnCl 2 and MnI 2
  • the host inorganic halide salts A are PbCl 2 and PbI 2
  • the organic amine halide salts are methylamine halide salts MAC1 and MAI.
  • the prepared product is a Mn 2+ doped dual emission material of CH 3 NH 3 PbCl x I 3-x /PVDF.
  • step (2) The difference between the experimental method and the embodiment 1 is only in step (2)
  • the molar ratio of the dopant halide salt to the host inorganic halide salt A was controlled to be 2:1 (the total amount of the dopant halide salt and the host halide salt remained unchanged).
  • the main inorganic halide salt A is PbCl 2
  • the doping halide salt is MnCl 2
  • the main inorganic halide salt B is CsCl.
  • the doped halide salts are MnCl 2 and MnBr 2
  • the host inorganic halide salts A are PbCl 2 and PbBr 2
  • the host inorganic halide salts B are CsCl and CsBr.
  • the prepared product is a Mn 2+ doped dual emission material of CsPbCl x Br 3-x /PVDF.
  • the doped halide salts are MnCl 2 and MnI 2
  • the host inorganic halide salts A are PbCl 2 and PbI 2
  • the host inorganic halide salts B are CsCl and CsI.
  • the prepared product is a Mn 2+ doped dual emission material of CsPbCl x I 3-x /PVDF.
  • the Cu 2+ doped dual emission material of hybrid perovskite CH 3 NH 3 PbCl 3 /PVDF and its preparation method are as follows:
  • the doped inorganic halide salts are metal Cu halide salts CuCl 2 and CuCl, the main inorganic halide salt A is PbCl 2 , and the organic amine halide salt is MAC1.
  • step (4) the prepared sample is placed in a common vacuum drying oven, the working air pressure is -0.1MPa, and the working temperature range is 0°C-60°C.
  • Hybrid perovskite CH 3 NH 3 PbCl x Br 3-x /PVDF, CH 3 NH 3 PbCl x I 3-x /PVDF Cu 2+ doped dual emission material and preparation method, the preparation method is as follows:
  • the experimental method differs from Example 1 only in steps (2) and (4)
  • the doped halide salt is a combination including CuCl 2 , CuCl and CuBr 2 , the host inorganic halide salt A is PbCl 2 and PbBr 2 ; and the organic amine halide salt is methylamine halide salt, MAC1 and MABr.
  • the prepared product is a Cu 2+ doped dual emission material of CH 3 NH 3 PbCl x Br 3-x .
  • the doped halide salt is a combination including CuCl 2 , CuCl, CuI 2 and CuI, the host inorganic halide salt A is PbCl 2 and PbI 2 ; and the organic amine halide salt is methylamine halide salt, MAC1 and MAI.
  • the prepared product is a Cu 2+ doped dual emission material of CH 3 NH 3 PbCl x I 3-x .
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-60°C.
  • the molar ratio of the dopant halide salt to the host inorganic halide salt A was controlled to be 2:1 (the total amount of the dopant halide salt and the host halide salt remained unchanged).
  • the host inorganic halide salt A is PbCl 2
  • the doping halide salt is a combination of CuCl 2 and CuCl
  • the host inorganic halide salt B is CsCl.
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-60°C.
  • the doped halide salts are CuCl 2 , CuCl and CuBr 2
  • the host inorganic halide salts A are PbCl 2 and PbBr 2
  • the host inorganic halide salts B are CsCl and CsBr.
  • the prepared product is a Cu 2+ doped dual emission material of CsPbCl x Br 3-x /PVDF.
  • the doped halide salts are CuCl 2 , CuCl, CuI 2 and CuI
  • the host inorganic halide salts A are PbCl 2 and PbI 2
  • the host inorganic halide salts B are CsCl and CsI.
  • the prepared product is a Cu 2+ doped dual emission material of CsPbCl x I 3-x /PVDF.
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-60°C.
  • Hybrid perovskite CH 3 NH 3 PbCl 3 /PVDF Mn 2+ , Cu 2+ doped double (multi) emitting material and preparation method the preparation method is as follows:
  • the doped inorganic halide salt is a combination of MnCl 2 , CuCl 2 and CuCl, the host inorganic halide salt A is PbCl 2 , and the organic amine halide salt is methylammonium chloride (MACl, CH 3 -NH 3 Cl 3 ) . ).
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-40°C.
  • Hybrid perovskite CH 3 NH 3 PbCl x Br 3-x /PVDF, CH 3 NH 3 PbCl x I 3-x /PVDF Mn 2+ , Cu 2+ doped multi-emission material and preparation method thereof Methods as below:
  • the preparation method differs from Example 1 only in steps (2) and (4)
  • the doped halide salt is a combination of MnCl 2 , MnBr 2 , CuCl 2 , CuCl and CuBr 2
  • the main inorganic halide salt A is PbCl 2 and PbBr 2
  • the organic amine halide salt is methylamine halide salt, MAC1 and MABr.
  • the prepared product is a Mn 2+ doped double (multi) emissive material of CH 3 NH 3 PbCl x Br 3-x /PVDF.
  • the doped halide salt is a combination of MnCl 2 , MnI 2 , CuCl 2 , CuCl, CuI 2 , and CuI
  • the main inorganic halide salt A is PbCl 2 and PbI 2
  • the organic amine halide salt is methylamine halide Salt MACl and MAI.
  • the prepared product is a Mn 2+ , Cu 2+ doped double (multi) emitting material of CH 3 NH 3 PbCl x I 3-x /PVDF.
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-40°C.
  • the preparation method differs from Example 1 only in steps (2) and (4)
  • the molar ratio of the dopant halide salt to the host inorganic halide salt A was controlled to be 2:1 (the total amount of the dopant halide salt and the host halide salt remained unchanged).
  • the host inorganic halide salt A is PbCl 2
  • the doping halide salt is a combination of CuCl 2 and CuCl
  • the host inorganic halide salt B is CsCl.
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-40°C.
  • the preparation method differs from Example 1 only in steps (2) and (4)
  • the doped halide salts are MnCl 2 , MnBr 2 , CuCl 2 , CuCl and CuBr 2
  • the main inorganic halide salts A are PbCl 2 and PbBr 2
  • the main inorganic halide salts B are CsCl and CsBr.
  • the prepared product is CsPbCl x Br 3-x /PVDF Mn 2+ , Cu 2+ doped double (multi) emitting material.
  • the doped halide salts are MnCl 2 , MnI 2 , CuCl 2 , CuCl, CuI 2 , CuI
  • the host inorganic halide salts A are PbCl 2 and PbI 2
  • the host inorganic halide salts B are CsCl and CsI.
  • the prepared product is a Mn 2+ and Cu 2+ doped double (multi) emitting material of CsPbCl x I 3-x /PVDF.
  • the prepared sample is placed in a common vacuum drying oven, the working pressure is -0.1MPa, and the working temperature range is 0°C-40°C.
  • This example is based on the prepared Mn:CH 3 NH 3 PbCl 3 /PVDF doped dual emission material to prepare a composite white LED light-emitting device.
  • the specific steps are as follows:
  • FIG. 6 is a schematic structural diagram of the white light LED device and a color coordinate diagram of the prepared white light LED.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种非配体辅助的钙钛矿掺杂多发射材料,其制备方法包括以下步骤:1)将聚合物溶于有机溶剂中,得到含有聚合物的第一溶液;2)在第一溶液中加入卤化物盐,混合均匀得到第二溶液;3)将第二溶液进行真空干燥得到钙钛矿掺杂材料;其中,所述步骤2)中的卤化物盐为主体无机卤化物盐A、掺杂卤化物盐的组合物和主体无机卤化物盐B,或者为主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐的组合物。制备方法简单,成本低廉,适合大面积生产,而且材料的结晶性较好,纳米颗粒分散性较好,有效实验双带发射。

Description

一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法 技术领域
本发明涉及一种非配体辅助的双(多)发射钙钛矿掺杂材料,尤其是涉及一种具有普适性的简便的制备方法。
背景技术
半导体发光材料作为一种战略性电子材料,在生物成像、显示、激光、固态照明等方面具有重要应用。在目前的固态照明白光LED中基本都是采用三基色复合光的方案,即使用蓝色发光材料/绿色发光材料/红色发光材料组合成复合多层结构制备复合白光LED,这就造成了LED的器件除了要分别在两端镀有电极和空穴、电子传输层外,还需要在内部制备多层具有不同发光颜色的荧光材料。多层发光材料使器件厚度较大,不利于器件的散热以及不同颜色的量子点会发生短波长发光被发长波的量子点吸收的情况,影响发光效率和色值等。因此,开发和使用双发光带或者多发光带发光材料是解决这些问题的可行方案之一。
双(多)发射材料,意味着材料可以同时出现两个或多个发射峰,若通过一定的方法实现双(多)带发射的波长可调,其发光将覆盖一个更宽的可调谐区域(或一个色域),这就为有效降低LED器件的发光层数,改善色质提供了可能。这也为材料在基于荧光为基础的相关应用方面提供了广阔的空间,包括在视觉温度检测、高选择性离子传感、时间继电器、转换颜色发光和白光LED等方面的应用。除此之外,和单发射光材料只能通过调整发射波长在CIE颜色坐标上给出单条曲线轨迹相比,双(多)发射材料有多种方法来调节CIE颜色坐标中的轨迹,这也将为日后基于相关材料的相关设备提供更加强大的功能和应用领域。
和传统Ce 3+和Eu 2+掺杂的荧光剂制备的白光发光二极管(LED)相比,基于量子点技术制备的新型白光LED不仅对环境污染少、功耗低,而且使用寿命更长,并且通过多年的研究和创新,其可靠性也有了很大的提高。在资源日益紧张,环保意识越来越强的今天,资源的浪费和能源的节约成为这个世界越来越受关注的焦点。事实上,利用纳米尺寸的量子点,也可以大大降低微米尺寸的荧光粉带来的严重散射引起的能量浪费。
金属卤化物钙钛矿材料由于优良的光学、电学性能和低成本的制备工艺等特点,近年来也引起了科学技术领域的广泛关注和兴趣,并有望极大地促进了光伏和LED等领域的发展。钙钛矿进一步可分为有机-无机杂化钙钛矿和纯无机钙钛矿,这取决于A代表的是有机分子还是无机阳离子。当A是有机分子时,一般是胺基链,如甲胺(MA,CH 3NH 3 +)等,此时形 成的是有机-无机杂化钙钛矿MAPbX 3(X=Cl,Br,I);当A是无机阳离子时,如Cs +,则形成纯无机钙钛矿CsPbX 3(X=Cl,Br,I)。这些钙钛矿的光学和电学性质可通过卤素原子取代等方式实现成分的改变和阳离子变化来进行调节。
随着钙钛矿的出现,半导体的掺杂研究从传统的Ⅱ-Ⅵ族等硫族化合物中扩展到了纯无机钙钛矿体系(CsPbX 3,X=Cl,Br,I)和有机-无机杂化钙钛矿(MAPbX 3,X=Cl,Br,I)的锰掺杂。与传统的硫化物半导体相比,钙钛矿纳米晶具有更高的吸收系数、更窄的发射峰和更长的激发寿命等优势,同时表面缺陷等造成的能量损失也比传统的量子点小,这些优势在锰掺杂钙钛矿体系中都更有利于激子能量向锰的d能级转移,而产生更高效的锰发光,尤其CsPbCl 3的带隙更适合激子能量向锰的d能级转移,更加有利于Mn的d-d跃迁的发生。
在现有的文献报道中,无机钙钛矿的锰掺杂都涉及到加热反应,并且重复上述文献的方法得知,制得的Mn:CsPbCl 3纳米晶存在快速的团聚现象,即制得的纳米晶在正己烷或者甲苯溶液中会在短时间内快速聚集沉降,出现固液分离的现象,这不利于材料后续在器件方面的应用。在有机-无机杂化钙钛矿中,Won将所有原料溶解于良性溶剂中制得前驱体,然后将前驱体溶液以一定的速度滴加到不断搅拌的不良溶剂中,利用溶质的过饱和度获得结晶晶体的方法实现掺杂,得到的纳米晶中掺杂锰的发光也只占整体量子产率的20%,但是文中并没有明确说出锰的荧光寿命是多少。同时,在溶液中合成的量子点材料,由于其表面有较多的配体,在后期的使用过程中需要多次的提纯,这就会在材料的表面带来一定的缺陷,从而降低材料的发光性能。因此,解决上述材料的聚集沉降、工艺复杂等问题,是实现双光发射材料后期应用的关键所在。
发明内容
为了解决现有报道中的钙钛矿材料在溶液中进行掺杂时存在的问题:(1)掺杂过程需要加热;(2)掺杂后的纳米颗粒容易聚集沉降,不利于后期的应用(图8);(3)材料制备完成后,进行提纯时会给材料的表面带来一定的缺陷,影响材料的性能。
本发明的目的是提供有效解决上述问题的钙钛矿掺杂材料的制备方法。
本发明的再一目的是基于此方法制备的钙钛矿掺杂材料及其应用。
本发明一个方面提供了一种钙钛矿掺杂材料的制备方法,其包括以下步骤:
1)将聚合物溶于有机溶剂中,得到含有聚合物的第一溶液;
2)在第一溶液中加入卤化物盐,混合均匀得到第二溶液;
3)将第二溶液进行真空干燥得到钙钛矿掺杂材料;
其中,所述步骤2)中的卤化物盐为主体无机卤化物盐A、掺杂卤化物盐和主体无机卤化物盐B的组合物,或者为主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐的组合物。
在本发明的一些实施方案中,所述的聚合物选自聚偏氟乙烯、聚醋酸乙烯酯、聚丙烯腈、乙酸纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯、聚异丁烯、聚乙烯吡咯烷酮、聚乙烯亚胺、聚乙烯咔唑、丙烯酸基聚合物,和硅烷类聚合物中的至少一种;
在本发明的一些实施方案中,步骤1)中所述的有机溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、甲苯、二氯、氯仿、环己烷、己烷和辛烷中的至少一种。
在本发明的一些实施方案中,步骤1)中所述聚合物在有机溶剂的中的质量分数为1%-16.2%,优选为8.8%。
在本发明的一些实施方案中,主体无机卤化物盐A选自PbCl 2、PbBr 2、PbI 2中的一种或几种的组合物。
在本发明的一些实施方案中,主体无机卤化物盐A选自PbCl 2、PbBr 2、PbI 2中的一种或PbCl 2和PbBr 2的组合物、PbCl 2和PbI 2的组合物。
在本发明的一些实施方案中,主体无机卤化物盐B选自CsCl、CsBr、CsI、KCl、KBr、KI、NaCl、NaBr、NaI、BaCl 2、BaBr 2、BaI 2中的一种或几种的组合物。
在本发明的一些实施方案中,主体无机卤化物盐B选自CsCl、CsBr、CsI、KCl、KBr、KI、NaCl、NaBr、NaI、BaCl 2、BaBr 2、BaI 2中的一种或CsCl和CsBr的组合物、CsCl和CsI的组合物、KCl和KBr的组合物、KCl和KI的组合物、NaCl和NaBr的组合物、NaCl和NaI的组合物、BaCl 2和BaBr 2的组合物、BaCl 2和BaI 2的组合物。
在本发明的一些实施方案中,掺杂无机卤化物盐选自MnCl 2、MnBr 2、MnI 2、CuCl 2、CuBr 2、CuI、MnCl 2、CuCl 2和CuCl的混合物、MnBr 2和CuBr 2的混合物、MnI 2和CuI的混合物中的一种或几种的组合物。
在本发明的一些实施方案中,有机胺卤盐通式为R 1-NH 3X 3;其中,X为卤族元素Cl、Br和I中的至少一种;R 1选自C1-C6的烷基,更优选有机胺卤盐选自CH 3-NH 3Cl 3、CH 3-NH 3Br 3、CH 3-NH 3I 3中的一种或几种的组合物。
在本发明的一些实施方案中,掺杂卤化物盐和主体无机卤化物盐A的摩尔量比范围为0.01-4:1;优选为2:1。
在本发明的一些实施方案中,有机胺卤盐的摩尔量:主体无机卤化物盐A、掺杂卤化物盐的摩尔量总和为0.8-5:1,优选为0.8-1.5:1,更优选地为0.9:1;
或者主体无机卤化物盐B的摩尔量:主体无机卤化物盐A、掺杂卤化物盐的摩尔量总和为0.8-4:1;优选为0.8-3:1,更优选地为1-1.5:1。
在本发明的一些实施方案中,卤化物盐中包含两种以上的卤化物阴离子时,氯离子的含量高于溴离子或碘离子的含量。
在本发明的一些实施方案中,卤化物盐与聚合物的质量比为0.086-0.096:1。
在本发明的一些实施方案中,步骤3)中,第二溶液先制成薄膜或放入容器后再进行干燥处理。
优选地,第二溶液通过旋涂、流延、丝网印刷、喷涂、滴涂、浇铸、辊涂方式制成薄膜。
在本发明的一些实施方案中,步骤3)中真空干燥选自冷冻真空干燥或普通真空干燥,冷冻真空干燥的条件为工作气压为0.001-0.05MPa,工作温度区间为-70℃~60℃;普通真空干燥的工作气压在-0.1MPa,工作温度区间0℃-60℃或0℃-40℃。
在本发明的一些实施方案中,第二溶液中不包含稳定剂,所述稳定剂选自金属氧化物纳米颗粒和/或自由基捕捉剂;例如SiO 2、TiO 2、Al 2O 3、ZnO、油酸(不同链长酸基)、油胺、正辛胺(不同链长的氨基)、抗坏血酸等的至少一种。
在本发明的一些实施方案中,步骤1)、2)中处理温度均低于60℃,优选25℃或室温。
本发明另一个方面提供了钙钛矿掺杂材料,所述钙钛矿掺杂材料通过本发明上述制备方法获得。
在本发明的一些实施方案中,钙钛矿掺杂材料为薄膜材料。
在本发明的一些实施方案中,钙钛矿掺杂材料具有两个以上的发射峰。
本发明另一个方面提供了钙钛矿掺杂材料,所述钙钛矿掺杂材料具有掺杂金属离子的钙钛矿,所述掺杂金属离子的钙钛矿分散在聚合物中;钙钛矿的结构是ABX 3,其中,B和X构成配位八面体结构,B代表金属Pb,X为Cl,Br,I中的一种或几种,A代表R 1NH 3或Cs,R 1为C1-C6的烷基。
在本发明一些优选的实施例中,实现双(多)发射的掺杂金属离子为Mn、Cu等过度金属粒子,掺杂金属离子占据的是晶格中Pb的位置。所述聚合物为聚偏氟乙烯(PVDF);所使用的溶剂为N,N-二甲基甲酰胺(DMF),二甲基亚砜等。
在本发明的实施例中,制备过程中不添加油酸、油胺等有机配体。
本发明再一个方面提供了本发明所述的钙钛矿掺杂材料作为光学材料中的用途。
在本发明的一些实施方案中,所述的光学材料为白光LED灯。
本发明再一个方面提供了一种白光LED灯,其具有本发明所述钙钛矿掺杂材料制备的薄 膜。
本发明提出的制备方法工艺简单,可重复率高,便于工业生产,无需配体的使用,制备的钙钛矿掺杂双(多)光发射材料直接在薄膜中生成,不会出现聚集沉降的问题,同时隔绝水、氧等不利因素的影响,稳定性较好,使其在后续的使用中具有很好的应用价值。
在本发明一个具体的实施例中,制备方法,包括如下步骤:
(1)将聚合物聚偏氟乙烯(PVDF)溶解于一定量的N,N-二甲基甲酰胺(DMF)中,室温下连续搅拌一定的时间,待聚合物完全溶解后,得到均匀粘稠的无色透明的聚合物溶液。控制聚合物与有机溶剂的质量百分比浓度,使最后得到的聚合物溶液符合每次使用需求的粘稠度,此时获得的胶体状溶液,作为第一溶液。这里所述的聚合物以聚偏氟乙烯(PVDF)为例,将其溶解在N,N-二甲基甲酰胺(DMF)溶液中,实际使用的聚合物和对应的溶剂包括但不仅局限于这一体系。
(2)将所需的各种无机卤化物盐粉末按照一定的比例混合,使得材料制备完成后各体系的物理性能达到每次需求的最佳值,如最佳的发光效率、透明度等。将按照一定比例混合后的粉末混合物投入倒第一溶液中,充分搅拌至粉末完全溶解并混合均匀,得到无色透明的,且具有一定粘稠度的溶液,此溶液作为第二溶液。该步骤中所述的无机卤化物盐包括主体Pb无机卤化物盐和掺杂无机卤化物盐锰(Mn)、铜(Cu)等卤化物盐,在实际的制备中,可根据实际的需求同时掺杂一种或者两(多)种掺杂无机卤化物盐。
(3)将上述步骤(2)中的第二溶液在透明的基底(或模具)上,通过流延、刮涂、旋涂、浇筑等多手段成膜或者固定(厚度最小可控制到μm),然后把涂覆有第二溶液的基底或者模具放置在真空干燥箱中,除去有机溶剂干燥成型,即可得到杂化钙钛矿/聚合物掺杂双发射材料。其中冷冻干燥箱的工作气压在0.001-0.05MPa之间,工作温度可在-70~20℃之间。普通真空干燥的工作气压在-0.1MPa,工作温度区间0℃-60℃。干燥时间随成膜厚度不同,可适当调整。
本发明提出的钙钛矿掺杂材料是一种双发射或多发射材料。其具有以下优点:
1、本发明所述的钙钛矿掺杂材料,提供了一种双发射或多发射材料,其解决了在制备LED时需要制备多层具有不同发光颜色的荧光材料的问题,本发明中由于掺杂了不同的金属,实现了一种材料具有多个发光带的问题,能够降低LED器件中发光层数。
2、掺杂过程现有技术中通常需要加热,而且掺杂后的纳米晶会产生团聚,沉降等问题,严重影响后续的应用,本发明的方法能够保证在高效掺杂的前提下,提供一种无须加热,基本可以在室温下完成的制备方法,且该制备方法获得的材料无团聚情况。
3、本发明所述的钙钛矿双(多)光材料制备方法,随着掺杂比例的提高,材料的含铅量会逐渐减少,以此逐步的降低材料的有害物质。
4、本发明所述的钙钛矿双(多)光材料制备方法,无需油酸、油胺等有机配体的添加,也没有添加稳定剂。通过在聚合物干燥成膜的过程中限制材料的长大,同时利用聚合物成膜时的张力诱导掺杂离子进入晶格,实现材料的双(多)光发射。材料制备完成后,无需提纯等过程,不会引入新的表面缺陷,保留了材料较好的物理特性。
5、本发明所述的钙钛矿双(多)光材料制备方法,避免了材料在溶液中的聚集沉降问题,直接在薄膜中实现了材料的双光发射,可以直接用于器件的制备等应用。
6、本发明所述的钙钛矿双(多)光材料制备方法,除了可以隔绝空气中的氧气、水分对材料的不良影响外,掺杂后的材料缺陷进一步降低,其发光特性有了明显的提高,与现有的报道相比,其钙钛矿主体的缺陷更少,掺杂锰离子荧光寿命提高了100倍。
7、本发明所述的钙钛矿双(多)光材料方法,保留了聚合物的高强度、优良的韧性,可用于柔性显示等方面。
8、本发明的制备方法工艺简单,成本低廉,适合大面积生产,而且材料的结晶性较好,,保证了材料的优异性能。
附图说明
图1是实施例1制备的CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料的荧光发射光谱;
图2是实施例1制备的CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料掺杂不同比例Mn 2+薄膜材料的透射电镜(TEM)和高分辨透射电镜(HRTEM)照片;其中图a为Mn/Pb摩尔比为0.1的投射电镜照片(比例尺为50nm),图b为Mn/Pb摩尔比为0.5的投射电镜照片(比例尺为50nm),图c为Mn/Pb摩尔比为1的投射电镜照片(比例尺为50nm),图d为Mn/Pb摩尔比为2的投射电镜照片(比例尺为200nm),a1-d1为对应比例的高分表投射电镜照片(HRTEM,比例尺均为5nm)
图3是实施例1制备的CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料掺杂不同比例Mn 2+薄膜材料的荧光量子产率。
图4是实施例1制备的CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料在紫外灯下的实物效果图;其中,400%为Mn/Pb摩尔比为4,300%为Mn/Pb摩尔比为3,200%为Mn/Pb摩尔比为2,100%为Mn/Pb摩尔比为1,50%为Mn/Pb摩尔比为0.5,10%为Mn/Pb摩尔比 为0.1。
图5是实施例3制备的CsPbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料在紫外灯下的实物效果图;
图6是实施例1制备的CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双光发射薄膜材料用于光致发光器件结构示意图以及制备的LED色坐标图;
图7是本发明一些实施例制备方法示意图。
图8为现有技术产品,采用加热方式制备得到的产品在溶剂中有团聚和沉降现象。、
图9为本发明产品的双发射对应的发射峰荧光寿命数据。
具体实施方式
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明,但不能理解为对本发明的可实施范围的限定。
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不仅仅限于此。
实施例1
杂化钙钛矿CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双发射材料及制备方法,其制备方法如下:
(1)将聚合物溶解于有机溶剂中,连续搅拌直至完全溶解,得到均匀粘稠的聚合物溶液。控制聚合物与溶剂的质量比,聚合物溶液的质量分数为8.8%,得到第一溶液。所述的有机物为聚偏氟乙烯(PVDF),所述的溶剂为N,N-二甲基甲酰胺(DMF)。
(2)将主体无机卤化物盐A、掺杂无机卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂无机卤化物盐)=0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比分别为4:1、3:1、2:1、1:1、0.5:1、0.1:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
所述的掺杂无机卤化物盐是MnCl 2,主体无机卤化物盐A是PbCl 2,有机胺卤盐是甲基氯化铵(MACl,CH 3-NH 3Cl 3)。
(3)将步骤(2)中的粉末混合物投入到第一溶液中,控制质量比不大于0.096连续搅拌一定时间,直至完全溶解并分散均匀,此处得到的为第二溶液。
(4)将上述步骤(3)中得到的第二溶液通过旋涂、流延等方法,使溶液均匀的铺设在一定的衬底上,并控制在需求的厚度,然后将涂覆有第二溶液的基底置于冷冻干燥机中,冷 冻干燥机的工作气压在在0.001-0.05MPa之间,工作温度区间在-70℃~20℃之间均可,干燥时间随成膜厚度不同可适当调整,除去有机溶剂,得到CH 3NH 3PbCl 3/PVDF的Mn 2+掺杂的双发射材料。
实施例2
杂化钙钛矿CH 3NH 3PbCl xBr 3-x/PVDF、CH 3NH 3PbCl xI 3-x/PVDF的Mn 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1区别仅在于步骤(2)
(2)将主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂卤化物盐)==0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为MnCl 2和MnBr 2,主体无机卤化物盐A为PbCl 2和PbBr 2;且有机胺卤盐为甲胺卤化物盐,MACl和MABr。制备得到的产物为CH 3NH 3PbCl xBr 3-x/PVDF的Mn 2+掺杂的双发射材料。
或者所述掺杂卤化物盐为MnCl 2和MnI 2,主体无机卤化物盐A为PbCl 2和PbI 2;且有机胺卤盐为甲胺卤化物盐MACl和MAI。制备得到的产物为CH 3NH 3PbCl xI 3-x/PVDF的Mn 2+掺杂的双发射材料。
实施例3
无机钙钛矿CsPbCl 3/PVDF的Mn 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1区别仅在于步骤(2)
(2)主体无机卤化物盐A、掺杂无机卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂无机卤化物盐)=1:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
其中,主体无机卤化物盐A为PbCl 2,掺杂卤化物盐为MnCl 2,主体无机卤化物盐B为CsCl。
实施例4
杂化钙钛矿CsPbCl xBr 3-x/PVDF、CsPbCl xI 3-x/PVDF的Mn 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1,区别仅在于步骤(2)
(2)将主体无机卤化物盐A、掺杂卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂卤化物盐)=1:1。控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为MnCl 2和MnBr 2,主体无机卤化物盐A为PbCl 2和PbBr 2;且主体无机卤化物盐B为CsCl和CsBr。制备得到的产物为CsPbCl xBr 3-x/PVDF的Mn 2+掺杂的双发射材料。
或者所述掺杂卤化物盐为MnCl 2和MnI 2,主体无机卤化物盐A为PbCl 2和PbI 2;且主体无机卤化物盐B为CsCl和CsI。制备得到的产物为CsPbCl xI 3-x/PVDF的Mn 2+掺杂的双发射材料。
实施例5
杂化钙钛矿CH 3NH 3PbCl 3/PVDF的Cu 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1,区别仅在于步骤(2)和(4)
(2)将主体无机卤化物盐A、掺杂无机卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂无机卤化物盐)=0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
所述的掺杂无机卤化物盐为金属Cu的卤化物盐CuCl 2和CuCl、主体无机卤化物盐A为PbCl 2,有机胺卤盐为MACl。
步骤(4)中,将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-60℃均可。
实施例6
杂化钙钛矿CH 3NH 3PbCl xBr 3-x/PVDF、CH 3NH 3PbCl xI 3-x/PVDF的Cu 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1区别仅在于步骤(2)和(4)
(2)将主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂卤化物盐)=0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为包括CuCl 2、CuCl、CuBr 2的组合,主体无机卤化物盐A为PbCl 2和PbBr 2;且有机胺卤盐为甲胺卤化物盐,MACl和MABr。制备得到的产物为CH 3NH 3PbCl xBr 3-x的Cu 2+掺杂的双发射材料。
所述掺杂卤化物盐为包括CuCl 2、CuCl、CuI 2、CuI的组合,主体无机卤化物盐A为PbCl 2和PbI 2;且有机胺卤盐为甲胺卤化物盐,MACl和MAI。制备得到的产物为CH 3NH 3PbCl xI 3-x的Cu 2+掺杂的双发射材料。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-60℃均可。
实施例7
无机钙钛矿CsPbCl 3/PVDF的Cu 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1,区别仅在于步骤(2)和(4)
(2)主体无机卤化物盐A、掺杂无机卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂无机卤化物盐)=1:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
其中,主体无机卤化物盐A为PbCl 2、掺杂卤化物盐为CuCl 2和CuCl的组合,主体无机卤化物盐B为CsCl。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-60℃均可。
实施例8
杂化钙钛矿CsPbCl xBr 3-x/PVDF、CsPbCl xI 3-x/PVDF的Cu 2+掺杂的双发射材料及制备方法,其制备方法如下:
实验方法同实施例1,区别仅在于步骤(2)和(4)
(2)将主体无机卤化物盐A、掺杂卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂卤化物盐)=1:1。控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为CuCl 2、CuCl和CuBr 2,主体无机卤化物盐A为PbCl 2和PbBr 2;且主体无机卤化物盐B为CsCl和CsBr。制备得到的产物为CsPbCl xBr 3-x/PVDF的Cu 2+掺杂的双发射材料。
或者所述掺杂卤化物盐为CuCl 2、CuCl、CuI 2和CuI,主体无机卤化物盐A为PbCl 2和PbI 2;且主体无机卤化物盐B为CsCl和CsI。制备得到的产物为CsPbCl xI 3-x/PVDF的Cu 2+掺杂的双发射材料。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-60℃均可。
实施例9
杂化钙钛矿CH 3NH 3PbCl 3/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料及制备方法,其制备方法如下:
实验方法同实施例1,区别仅在于步骤(2)和(4)
(2)将主体无机卤化物盐A、掺杂无机卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂无机卤化物盐)=0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
所述的掺杂无机卤化物盐是MnCl 2、CuCl 2和CuCl的组合,主体无机卤化物盐A是PbCl 2,有机胺卤盐是甲基氯化铵(MACl,CH 3-NH 3Cl 3)。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-40℃均可。
实施例10
杂化钙钛矿CH 3NH 3PbCl xBr 3-x/PVDF、CH 3NH 3PbCl xI 3-x/PVDF的Mn 2+、Cu 2+掺杂的多发射材料及制备方法,其制备方法如下:
制备方法同实施例1区别仅在于步骤(2)和(4)
2)将主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐粉末混合,控制摩尔比为有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂卤化物盐)=0.9:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为MnCl 2、MnBr 2、CuCl 2、CuCl、CuBr 2的组合,主体无机卤化物盐A为PbCl 2和PbBr 2;且有机胺卤盐为甲胺卤化物盐,MACl和MABr。制备得到的产物为CH 3NH 3PbCl xBr 3-x/PVDF的Mn 2+掺杂的双(多)发射材料。
或者所述掺杂卤化物盐为MnCl 2、MnI 2、CuCl 2、CuCl、CuI 2、CuI的组合,主体无机卤化物盐A为PbCl 2和PbI 2;且有机胺卤盐为甲胺卤化物盐MACl和MAI。制备得到的产物为CH 3NH 3PbCl xI 3-x/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-40℃均可。
实施例11
无机钙钛矿CsPbCl 3/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料及制备方法,其制备方法如下:
制备方法同实施例1区别仅在于步骤(2)和(4)
主体无机卤化物盐A、掺杂无机卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂无机卤化物盐)=1:1。在无机卤化物盐部分,控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体卤化物盐的总量保持不变)。
其中,主体无机卤化物盐A为PbCl 2,掺杂卤化物盐为CuCl 2和CuCl的组合,主体无机卤化物盐B为CsCl。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-40℃均可。
实施例12
杂化钙钛矿CsPbCl xBr 3-x/PVDF、CsPbCl xI 3-x/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料及制备方法,其制备方法如下:
制备方法同实施例1区别仅在于步骤(2)和(4)
(2)将主体无机卤化物盐A、掺杂卤化物盐和主体无机卤化物盐B混合,控制摩尔比为主体无机卤化物盐B:(主体无机卤化物盐A和掺杂卤化物盐)=1:1。控制掺杂卤化物盐与主体无机卤化物盐A的摩尔比2:1(掺杂卤化物盐与主体无机卤化物盐A的总量保持不变),其中控制Br -/Cl -和I -/Cl -的摩尔比例不大于1。
所述掺杂卤化物盐为MnCl 2、MnBr 2、CuCl 2、CuCl、CuBr 2,主体无机卤化物盐A为PbCl 2和PbBr 2;且主体无机卤化物盐B为CsCl和CsBr。制备得到的产物为CsPbCl xBr 3-x/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料。
或者所述掺杂卤化物盐为MnCl 2、MnI 2、CuCl 2、CuCl、CuI 2、CuI,主体无机卤化物盐A为PbCl 2和PbI 2;且主体无机卤化物盐B为CsCl和CsI。制备得到的产物为CsPbCl xI 3-x/PVDF的Mn 2+、Cu 2+掺杂的双(多)发射材料。
(4)将制得的样品放置在普通真空干燥箱中,工作气压在-0.1MPa,工作温度区间0℃-40℃均可。
实施例13性能检测
1)检测本发明所制备得到的薄膜材料的荧光发射光谱,实验结果见图1,本发明实施例1制备得到的各产品均具有双发射峰,发射主峰分别在405nm和580nm附近。
2)通过TEM和HRTEM查看实施例1各产品的形态,实验结果见图2,实现结果显示本发明的产品中掺杂后的纳米晶没有产生团聚和沉降等问题,且纳米晶结晶性良好,分散性良好。
3)检测各产品的荧光量子产率,实验结果见图3,图3是在不同有机胺卤盐比例的曲线,分别是有机胺卤盐:无机卤化物盐(主体卤化物盐A和掺杂无机卤化物盐、主体无机卤化盐B)=0.9:1和1.5:1的曲线。两条曲线中的各个点为不同Mn/Pb比例时的量子产率。其中有机胺卤盐:无机卤化物盐(主体无机卤化物盐A和掺杂无机卤化物盐)=0.9:1的曲线各点明显高于1.5:1各点量子产率。其最佳配比位MA/(Pb+Mn)=0.9,Mn/Pb=2时,量子产率最高。
4)在365nm紫外灯下的激发各产品的实物效果,结果参见图4和图5。其中,图4是MA/(Pb+Mn)=0.9时,不同Mn/Pb比例时的样品;图5是Cs/(Pb+Mn)=1,摩尔比Mn/Pb=2时的样品。
5)检测本发明产品不同时间段的荧光强度,结果见图9,实验结果显示本发明的材料缺陷进一步降低,其发光特性有了明显的提高,与现有的报道相比,其钙钛矿主体的缺陷更少(图9a),掺杂锰离子荧光寿命提高了100倍(图9b)。
6)本实施案例以所制备的Mn:CH 3NH 3PbCl 3/PVDF掺杂双发射材料为基础,制备复合白光LED发光器件,具体步骤如下:
将制备好的Mn:CH 3NH 3PbCl 3/PVDF掺杂双发射薄膜材料,铺设到蓝光LED上,即可得到高色域的白光LED器件,制得的白光LED经过测试得到其CIE坐标为(0.361,0.326),处于自然白光的CIE坐标区域。图6为所述白光LED器件的结构示意图及制备的白光LED色坐标图。

Claims (12)

  1. 一种钙钛矿掺杂材料的制备方法,其包括以下步骤:
    1)将聚合物溶于有机溶剂中,得到含有聚合物的第一溶液;
    2)在第一溶液中加入卤化物盐,混合均匀得到第二溶液;
    3)将第二溶液进行真空干燥得到钙钛矿掺杂材料;
    其中,所述步骤2)中的卤化物盐为主体无机卤化物盐A、掺杂卤化物盐和主体无机卤化物盐B的组合物,或者为主体无机卤化物盐A、掺杂卤化物盐和有机胺卤盐的组合物;
    主体无机卤化物盐A选自PbCl 2、PbBr 2、PbI 2中的一种或几种的组合物;
    主体无机卤化物盐B选自CsCl、CsBr、CsI、KCl、KBr、KI、NaCl、NaBr、NaI、BaCl 2、BaBr 2、BaI 2中的一种或几种的组合物;
    掺杂无机卤化物盐选自MnCl 2、MnBr 2、MnI 2、CuCl 2、CuBr 2、CuI、MnCl 2和CuCl的混合物、MnBr 2和CuBr的混合物、MnI 2和CuI的混合物中的一种或几种的组合物。
  2. 根据权利要求1所述的钙钛矿掺杂材料,其中,掺杂卤化物盐和主体无机卤化物盐A的摩尔量比为0.1-4:1;更优选为1-3:1。
  3. 根据权利要求1或2所述的钙钛矿掺杂材料,其中,有机胺卤盐的摩尔量:主体无机卤化物盐A、掺杂卤化物盐的摩尔量总和为0.8-5:1;优选为0.8-1.5:1;或者
    主体无机卤化物盐B的摩尔量:主体无机卤化物盐A、掺杂卤化物盐的摩尔量总和为0.8-4:1;优选为1-1.5:1。
  4. 根据权利要求1所述的制备方法,所述的聚合物选自聚偏氟乙烯、聚醋酸乙烯酯、聚丙烯腈、乙酸纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯、聚异丁烯、聚乙烯吡咯烷酮、聚乙烯亚胺、聚乙烯咔唑、丙烯酸基聚合物,和硅烷类聚合物中的一种或多种。
  5. 根据权利要求1所述的制备方法,步骤1)中所述的有机溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、甲苯、二氯、氯仿、环己烷、己烷和辛烷中的一种或多种。
  6. 根据权利要求1所述的制备方法,所述有机胺卤盐通式为R 1-NH 3X 3;其中,X为卤族元素Cl、Br和I中的至少一种;R 1选自C1-C6的烷基;
    优选地有机胺卤盐选自CH 3-NH 3Cl 3、CH 3-NH 3Br 3、CH 3-NH 3I 3中的一种或几种的组合物。
  7. 根据权利要求1所述的制备方法,步骤3)中,第二溶液先制成薄膜或放入容器后再进行真空干燥成膜;
    优选地,第二溶液通过旋涂、流延、丝网印刷、喷涂、滴涂、浇铸、辊涂的方式制成薄膜。
  8. 根据权利要求1所述的制备方法,步骤3)中真空干燥选自冷冻真空干燥或普通真空干燥,优选地冷冻真空干燥的条件为工作气压为0.001-0.05MPa,工作温度区间为-70℃~60℃;普通真空干燥的工作气压在-0.1MPa,工作温度区间0℃-60℃。
  9. 根据权利要求1所述的制备方法,步骤1)、2)中处理温度均低于60℃,优选25℃或室温。
  10. 一种钙钛矿掺杂材料,所述钙钛矿掺杂材料通过权利要求1-7任一项所述制备方法获得;
    优选地,钙钛矿掺杂材料为薄膜材料。
  11. 根据权利要求8所述的钙钛矿掺杂材料作为光学材料的用途;
    优选地,所述的光学材料为LED灯。
  12. 一种光学材料,其具有权利要求8所述的钙钛矿掺杂材料制备的薄膜。
PCT/CN2020/135018 2020-12-09 2020-12-09 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法 WO2022120659A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135018 WO2022120659A1 (zh) 2020-12-09 2020-12-09 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135018 WO2022120659A1 (zh) 2020-12-09 2020-12-09 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022120659A1 true WO2022120659A1 (zh) 2022-06-16

Family

ID=81972920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135018 WO2022120659A1 (zh) 2020-12-09 2020-12-09 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2022120659A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762315A (zh) * 2014-01-16 2014-04-30 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN104300083A (zh) * 2014-09-29 2015-01-21 中国科学院广州能源研究所 一种制备有机-无机钙钛矿结构杂合物薄膜太阳电池的方法
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
CN104861958A (zh) * 2015-05-14 2015-08-26 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
WO2016072806A2 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
US20170283693A1 (en) * 2016-03-31 2017-10-05 Florida State University Research Foundation, Inc. Luminescent halide perovskites, methods, compositions, and devices
CN108192605A (zh) * 2018-01-22 2018-06-22 汕头大学 一种高光致发光量子产率的锰掺杂二维铅卤钙钛矿材料及其制备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762315A (zh) * 2014-01-16 2014-04-30 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN104300083A (zh) * 2014-09-29 2015-01-21 中国科学院广州能源研究所 一种制备有机-无机钙钛矿结构杂合物薄膜太阳电池的方法
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
WO2016072806A2 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
CN104861958A (zh) * 2015-05-14 2015-08-26 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
US20170283693A1 (en) * 2016-03-31 2017-10-05 Florida State University Research Foundation, Inc. Luminescent halide perovskites, methods, compositions, and devices
CN108192605A (zh) * 2018-01-22 2018-06-22 汕头大学 一种高光致发光量子产率的锰掺杂二维铅卤钙钛矿材料及其制备

Similar Documents

Publication Publication Date Title
Zhao et al. Narrow-band emitters in LED backlights for liquid-crystal displays
Yuan et al. CsPbBr 3: x Eu 3+ perovskite QD borosilicate glass: a new member of the luminescent material family
Zhang et al. Fluorescent nanomaterial-derived white light-emitting diodes: what's going on
US10385265B2 (en) Red phosphor powder, preparation method thereof and luminescent device comprising same
Naresh et al. Synthesis of CsPbX 3 (X= Cl/Br, Br, and Br/I)@ SiO 2/PMMA composite films as color-conversion materials for achieving tunable multi-color and white light emission
Zhu et al. 4‐Bromo‐Butyric Acid‐Assisted In Situ Passivation Strategy for Superstable All‐Inorganic Halide Perovskite CsPbX3 Quantum Dots in Polar Media
JP7286069B2 (ja) 複合発光材料、その製造方法及びその使用
Yan et al. Facile synthesis of Ce3+, Eu3+ co-doped YAG nanophosphor for white light-emitting diodes
WO2023087449A1 (zh) 锰掺杂有机钙钛矿团簇材料及其制备方法
CN111961467A (zh) 一种钙钛矿复合发光材料及其制备方法、产品和应用
CN113072928B (zh) 一种零维锰基金属卤化物超快自组装的制备方法
US7422801B2 (en) Electroluminescent fluorescent substance
Zhang et al. Multidentate ligand passivation enabled enhanced photoluminescence and stability of CsPbBr3 nanocrystals for white light-emitting diodes
Bai et al. In situ preparation of Mn-doped perovskite nanocrystalline films and application to white light emitting devices
Zhao et al. Chromaticity-tunable remote LuYAG: Ce phosphor-in-glass film on regular textured glass substrate for white light emitting diodes
Shen et al. Stable cyan and white light-emitting diodes enabled by branched cations sterically stabilized 2D/3D perovskites
Wang et al. High color rendering index warm white light emitting diodes fabricated from AgInS 2/ZnS quantum dot/PVA flexible hybrid films
Wu et al. Low-temperature preparation of monodispersed Eu-doped CaTiO 3 LED phosphors with controllable morphologies
Ma et al. Synthesis of equal-sized Y2O3: Bi, Eu mono-spheres and their color-tunable photoluminescence and thermal quenching properties
CN114410304A (zh) 一种新型稀土基无铅钙钛矿纳米晶材料及其制备方法与应用
CN114507522A (zh) 稀土掺杂钙钛矿红光发光材料及其制备方法和应用
WO2011033830A1 (ja) 蛍光体
Yuan et al. Eco-friendly all-inorganic CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals in pyrophyllite for bright white light-emitting diodes
WO2022120659A1 (zh) 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法
Chen et al. Luminescent property and application research of red molybdate phosphors for W-LEDs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964599

Country of ref document: EP

Kind code of ref document: A1