WO2022120447A1 - Método de preparo de um catalisador de deslocamento do gás d'água a alta tempertaura e processo para reduzir o teor de monóxido de carbono - Google Patents

Método de preparo de um catalisador de deslocamento do gás d'água a alta tempertaura e processo para reduzir o teor de monóxido de carbono Download PDF

Info

Publication number
WO2022120447A1
WO2022120447A1 PCT/BR2021/050514 BR2021050514W WO2022120447A1 WO 2022120447 A1 WO2022120447 A1 WO 2022120447A1 BR 2021050514 W BR2021050514 W BR 2021050514W WO 2022120447 A1 WO2022120447 A1 WO 2022120447A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
potassium
alumina
water gas
mol
Prior art date
Application number
PCT/BR2021/050514
Other languages
English (en)
French (fr)
Inventor
Roberto Carlos Pontes Bittencourt
Anilza DE ALMEIDA LYRA CORREA
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to US18/256,538 priority Critical patent/US20240024855A1/en
Priority to GB2307861.1A priority patent/GB2615283A/en
Priority to CN202180083073.XA priority patent/CN116981513A/zh
Publication of WO2022120447A1 publication Critical patent/WO2022120447A1/pt
Priority to DKPA202370256A priority patent/DK202370256A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention deals with methods of preparing a high temperature water gas displacement catalyst, free of chromium and iron or noble metals, in which they are used in the process for converting carbon monoxide (CO) , applied in H 2 production units aiming to maintain the high activity of CO conversion, not having the environmental or operating limitations with low excess of steam in the process.
  • CO carbon monoxide
  • the water gas shift reaction is an integral step of the steam reforming process for the production of hydrogen.
  • the reaction can be represented by equation 1, being exothermic and typically limited by thermodynamic equilibrium.
  • the "water gas shift" reaction is conducted in a first stage, called “High Temperature Shift” (HTS), whose catalyst operates at typical temperatures between 330°C at the inlet and up to 450 °C at the reactor outlet, followed by cooling of the effluent stream and additional reaction in a second stage, called “Low Temperature Shift” (LTS), whose catalyst operates at typical temperatures between 180 °C, in the inlet, up to 240°C at the reactor outlet.
  • LTS Low Temperature Shift
  • the LTS reactor and the subsequent amine CO 2 separation system is replaced by the pressure swing adsorption (PSA) process. Pressure conditions are dictated by the use of hydrogen, typically the process pressure is between 10 to 40 bar.
  • LTS catalysts are made up of copper oxide, zinc oxide and alumina, with typical contents between 40 to 35% m/m; 27 to 44 % w/w with alumina as balance, respectively. They may also contain minor amounts of alkaline promoters, such as cesium (Cs) or potassium (K). LTS catalysts quickly lose activity when exposed to high temperature, which is why they are used in the typical temperature range of 180°C to 240°C, or in their Medium Temperature Shift (MTS) version at temperatures of 180° C to 330°C. The lower temperature of the usage range is normally dictated by the requirement that no vapor condensation occurs in the reactor at the operating pressure of the unit.
  • Cs cesium
  • K potassium
  • the HTS catalyst used industrially in large units here considered the units with production greater than 50,000 Nm 3 /d of hydrogen, consists of iron (Fe), chromium (Cr) and copper (Cu), mostly in the form of oxides before the catalyst comes into operation.
  • the catalyst formulation has the disadvantage of containing chromium in its formulation. Particularly, during the calcination steps for the manufacture of this catalyst, it is inevitable that variable levels of chromium are formed in the oxidation state VI (CrO 3 or Cr 6+ ), a compound that has known carcinogenic effects and damages the environment, being subject to in the world to an increasing stringency of legislation.
  • HTS catalysts Another unfavorable characteristic of the current formulation of HTS catalysts is the presence of iron oxides in their composition, which typically make up 80 to 90% m/m of the catalyst.
  • the iron oxide present in the HTS catalyst is mostly in the form of hematite (Fe 2 O 3 ), in addition to minor contents of other iron hydroxides.
  • the catalyst After being loaded into the reactor, the catalyst is subjected to an activation procedure, which reduces the hematite phase (Fe 2 O 3 ) to the magnetite phase (Fe 3 O 4 ), which in turn constitutes the active phase of the reactor. catalyst. Simultaneously, during the reduction the CuO phases are reduced to metallic copper.
  • the reactions are exemplified below:
  • the Fe 3 O 4 phase is formed, its stability under industrial conditions will depend on the relationship between the oxidizing and reducing components present in the reactor feed, particularly the H 2 O/H 2 and CO 2 /CO ratios .
  • the literature teaches that when the steam content in the process is reduced below a certain value, usually expressed as the steam/carbon ratio in the previous reforming step, the iron oxide phases transform into undesirable iron carbide-type phases.
  • the iron carbide phases in turn, lead to the formation of by-products such as hydrocarbons, alcohols and other compounds, which reduce the hydrogen yield and bring additional difficulties in purifying the hydrogen produced and the condensed steam in the process.
  • the teaching of an HTS catalyst free of iron in its composition is desirable.
  • a solution taught in US6500403 to reduce excess steam in the H 2 production process by steam reforming would be to carry out the water gas shift reaction in a first step, at temperatures between 280°C to 370°C, using an iron-free and copper-based catalyst on a support, thus reducing the CO/CO 2 ratio at the entrance of the second stage, which would be carried out on a conventional Fe/ Cr, at the typical temperature of 350°C to 500°C.
  • This solution adds high additional costs to the steam reforming process, as it includes an additional CO abatement step, or load cooling steps followed by heating, which brings energy losses and/or greater process complexity.
  • Patents US7998897, US81119099 and WO2018/134162A1 teach an HTS catalyst free of Fe and Cr in its formulation.
  • the catalyst is a mixture of zinc aluminate (ZnAl 2 O 4 ) and zinc oxide (ZnO), with a Zn/AI molar ratio between 0.5 to 1.0, in combination with metals alkalines selected from the group consisting of Na, K, Rb, Cs and mixtures thereof, in a content between 0.4 to 8.0% w/w, based on the oxidized material.
  • the invention US7998898 teaches a catalyst with a Zn/Al molar ratio of 0.7, containing 34 to 35% w/w Zn and 7 to 8% Cs.
  • a catalyst with a Zn/Al molar ratio of 0.7 containing 34 to 35% w/w Zn and 7 to 8% Cs.
  • HTS catalyst that is free from chromium (Cr), an element dangerous to health and the environment, free from iron (Fe) so that a reduced excess of steam can be used in the process, with gains in energy efficiency, but which has high activity and stability under the conditions of the steam reforming process, thus allowing the replacement of current HTS catalysts in existing units.
  • Cr chromium
  • Fe iron
  • Patent US7964114B2 refers to the development of a catalyst for use in water gas exchange processes, a method for manufacturing the catalyst and a method for using the catalyst.
  • the catalyst is composed of iron oxide, copper oxide, zinc oxide, alumina and, optionally, potassium oxide.
  • the catalyst demonstrates surprising activity for carbon monoxide conversion under high to moderate temperature reaction conditions.
  • iron oxide in its formulation, which prevents it from working with a low excess of steam in relation to the stoichiometry of the shift reaction, to gain energy efficiency in the process of producing H 2 by steam reforming.
  • the present invention was developed, through the provision of HTS catalysts, free from chromium, iron and noble metals, which have high activity and resistance to thermal deactivation, that is, maintaining activity for long periods, even when exposed to high process temperatures.
  • HTS catalysts free from chromium, iron and noble metals, which have high activity and resistance to thermal deactivation, that is, maintaining activity for long periods, even when exposed to high process temperatures.
  • the reduction of excess steam in the process for converting CO, expressed by the steam/gas or steam/carbon ratio, is only possible by using iron-free HTS catalysts such as those obtained in the present invention.
  • the elimination of chromium from the catalyst formulation, especially in its carcinogenic form of Cr 6+ minimizes risks during catalyst handling, loading and unloading steps.
  • the use of an HTS catalyst tolerant to low steam/gas ratios reduces the risk of occurrences of abnormalities in the process, which could lead to increased pressure drop and/or formation of by-products in the reactor.
  • the reduction of the steam/carbon ratio in the steam reforming process for the production of H 2 contributes to the reduction of CO 2 emissions in the process, since the H 2 production process, together with the FCC process, are the two biggest emitters of CO 2 in refining.
  • the present invention deals with a catalyst for the conversion of CO by the displacement reaction of water gas at high temperature, free of chromium and iron, consisting of alumina promoted by potassium and zinc oxide.
  • the catalyst thus prepared maintains high CO conversion activity, not having the environmental limitations or operating with low excess steam in the process, according to state-of-the-art catalysts.
  • Such a catalyst is used in the process of producing hydrogen or synthesis gas by steam reforming of hydrocarbons, allows the use of low steam/carbon ratios in the process, presenting high activity and stability to thermal deactivation and lower environmental restrictions of production, storage, use and disposal than industrially used catalysts based on iron, chromium and copper oxides.
  • the present invention deals with a catalyst applicable to the water gas displacement step of the steam reforming process for the production of hydrogen.
  • a catalyst consists of a potassium aluminate-type support containing zinc oxide as a promoter.
  • the catalyst has a specific area greater than 60 m 2 /g, a potassium content between 4 and 15% m/m and a zinc oxide content between 10 and 30% m/m, based on the oxidized material, being obtained by the method of preparation, comprising the following steps.
  • Impregnation of an alumina selected from boehmite, gamma or theta-alumina, with an aqueous solution of a potassium salt, preferably potassium hydroxide, carbonate or nitrate, followed by drying and calcination at temperatures between 400°C and 800°C , to obtain a potassium-promoted alumina;
  • a potassium salt preferably potassium hydroxide, carbonate or nitrate
  • a polar solution preferably aqueous, containing a zinc salt, preferably zinc nitrate or carbonate
  • potassium-promoted alumina refers to an alumina containing potassium species on its surface which, depending on the calcination temperature, can present crystalline structures of oxide of aluminum and potassium, such as the K 2 O.AI 2 O 3 form (CAS 12003-62-3).
  • step 1 does not need to be performed, and commercial potassium aluminates can be used, provided they have a specific surface area greater than 15m 2 /g, preferably greater than 40m 2 /g.
  • Aluminas that have greater resistance to loss of specific surface area, in the presence of steam and at temperatures between 250°C and 450°C, can also be used, such as aluminas promoted by lanthanum contents between 1 and 5% m/m.
  • the formatting step can be carried out by commercial machines, obtaining tablets, preferably with typical dimensions of 3 to 6 mm in diameter and height.
  • Other formats can also be used, such as a single cylinder or multiple cylinders connected (trilobe, quadralobe) or raschig rings.
  • an alumina such as gamma or theta-alumina, already pre-formatted, can be used.
  • the support is impregnated simultaneously with a potassium salt, preferably potassium hydroxide or nitrate, and a zinc salt, preferably zinc nitrate or carbonate, in a solution of a polar solvent, preferably water, followed by drying and calcination at temperatures between 400°C to 800°C.
  • a potassium salt preferably potassium hydroxide or nitrate
  • a zinc salt preferably zinc nitrate or carbonate
  • the catalyst thus prepared is active, stable and ready for use, not requiring any additional activation procedure, and can be used in the conversion reaction of CO with water vapor to produce hydrogen, at inlet temperatures reactor between 280°C to 400°C, preferably at temperatures between 300°C to 350°C and reactor outlet temperature between 380°C to 500°C, preferably between 400°C to 450°C.
  • the operating pressure in the reactor can be in the range of 10 to 40 kgf/cm 2 , preferably between 20 to 30 kgf/cm 2 .
  • the steam/dry gas molar ratio at the reactor inlet is preferably in the range of 0.05 to 0.6 mol/mol, more preferably in the range of 0.1 to 0.3 mol/mol.
  • the steam/carbon (mol/mol) ratio at the inlet of the primary steam reforming reactor, which precedes the high temperature water gas displacement reactor (HTS) is preferably in the range of 1 to 5 mol/mol, more preferably in the range of 1.5 to 2.5 mol/mol.
  • the concentration of CO in the dry gas at the inlet of the conversion reactor is typically 5 to 30% v/v, preferably 8 to 20% v/v.
  • a third aspect of the present invention is to provide a process for converting carbon monoxide by contacting said catalyst with a stream of synthesis gas at temperatures between 250°C to 450°C, steam/gas between 0.2 to 1.0 mol/mol and pressures between 10 to 40 atm.
  • HTS high temperature water gas displacement reaction
  • KAIO2 potassium aluminate
  • ZnO zinc oxide
  • This comparative example illustrates the preparation of a catalyst, according to the state of the art, of high temperature water gas displacement (HTS) of the zinc aluminate type promoted by alkali metals.
  • HTS high temperature water gas displacement
  • an aqueous solution containing 311 grams of demineralized water (H 2 O), 415 grams of aluminum nitrate (AI(NO 3 ) 3.9H 2 O , brand VETEC, PA) was prepared by dissolving and stirring at room temperature. at a nominal Zn/Al ratio of 0.5 mol/mol.
  • the solution was made up with demineralized water to 830 ml and showed a pH of 1.04.
  • an ammonium hydroxide solution (NH 4 OH, 28% w/w, VETEC) was added at room temperature, in 30 minutes and with stirring at 300 rpm, until the pH of the stirred mixture was between 8.0 to 8.5. The mixture was stirred for 1 hour and then filtered and washed with demineralized water. The precipitated material was then dried at 110°C for 12 h and then calcined in static air at 750°C for 3 h.
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • HTS high temperature water gas displacement
  • Ten grams of the material produced in EXAMPLE 1 was impregnated by the pore volume technique with 6.1 ml of an aqueous solution containing 0.145 grams of potassium hydroxide (VETEC). The material was dried at 100°C for 1 hour and then calcined at 500°C for 2 hours in order to obtain a promoted zinc aluminate catalyst with 1% w/w potassium.
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • the preparation was identical to that used in EXAMPLE 2, varying the sodium hydroxide content potassium in order to have a nominal potassium content of 2 % m/m.
  • the product showed by the N2 adsorption technique a specific surface area of 60.0 m 2 /g, pore volume of 0.24 cm 3 /g and average pore diameter of 143 A.
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • the preparation was identical to that used in EXAMPLE 2, varying the potassium hydroxide content in order to have a nominal potassium content of 8% m/m.
  • the product showed by the N2 adsorption technique a specific surface area of 42 m 2 /g, pore volume of 0.19 cm 3 /g and average pore diameter of 181 A.
  • EXAMPLE 6 EXAMPLE 6:
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • the preparation was identical to that used in EXAMPLE 2, changing the potassium source to potassium carbonate (K 2 CO 3 ) in order to have a nominal potassium content of 4% m/m.
  • the product showed by the N2 adsorption technique a specific surface area of 39 m 2 /g, pore volume of 0.18 cm 3 /g and average pore diameter of 188 A.
  • EXAMPLE 7 EXAMPLE 7:
  • This comparative example illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals and in accordance with the state of the art.
  • the material was prepared in a similar way as in EXAMPLE 1, except that the proportions of the reagents were altered in order to have a Zn/Al ratio of 0.70 mol/mol.
  • the characterizations of the material showed a) by the technique of adsorption of N2 a specific surface area of 22 m 2 /g, pore volume of 0.12 cm 3 /g and average pore diameter of 235; b) by the quantitative technique of X-ray Fluorescence (FRX) a composition containing 25% w/w of Al and 40% w/w of Zn, with the oxygen balance and by the technique of X-ray diffraction (XRD) the standard characteristic of zinc aluminate, as shown in Figure 1.
  • FRX X-ray Fluorescence
  • XRD X-ray diffraction
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • HTS high temperature water gas displacement
  • Ten grams of the material produced in EXAMPLE 7 was impregnated by the pore volume technique with 4.0 ml of an aqueous solution containing 0.598 grams of potassium hydroxide (VETEC). The material was dried at 100°C for 1 hour and then calcined at 500°C for 2 hours in order to obtain a zinc aluminate-type catalyst promoted with 4% w/w potassium.
  • the product presented by the N2 adsorption technique a specific surface area of 16.7 m 2 /g, pore volume of 0.10 cm 3 /g and average pore diameter of 173 A.
  • This comparative example in accordance with the state of the art illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the zinc aluminate type promoted by alkali metals.
  • the preparation was identical to that used in EXAMPLE 8, varying the sodium hydroxide content potassium in order to have a nominal potassium content of 8 % m/m.
  • the product showed by the N2 adsorption technique a specific surface area of 17.5 m 2 /g, pore volume of 0.08 cm 3 /g and average pore diameter of 176 A.
  • This example illustrates the preparation of a high temperature water gas displacement (HTS) catalyst of the alumina type promoted with potassium and zinc oxide, in accordance with the present invention.
  • HTS high temperature water gas displacement
  • a commercial alumina hydroxide (boehmite, CATAPAL, SASOL) was impregnated by the wet spot method with a 70 ml of aqueous solution containing 11.5 grams of potassium hydroxide (VETEC).
  • VETEC potassium hydroxide
  • the following material was dried at 100°C for 12h and calcined in static air at 600°C for 2 hours to obtain a SUPPORT of the potassium-promoted alumina type, as shown in Figure 2.
  • the material showed a specific surface area of 111 m 2 /g and pore volume of 0.27 cm 3 /g by the nitrogen adsorption technique (BET).
  • This example describes the measurement of catalytic activity of the catalysts obtained according to EXAMPLES 1 TO 12.
  • the shift reaction was carried out in a fixed bed reactor, at atmospheric pressure.
  • the sample was initially heated in argon flow to 100°C and then to 350°C, at a rate of 5°C/min in a flow of 5% H 2 in argon saturated with water vapor at 73°C.
  • the gas mixture was replaced by a mixture containing 10% CO, 10% COz, 2% methane in H 2 balance, keeping the saturator temperature with water at 73°C, corresponding to a steam/gas ratio of 0.55 mol/mol.
  • the reaction was carried out at temperatures from 350°C to 450°C with the reactor effluent being analyzed by gas chromatography. Catalyst activity was expressed as CO conversion (% v/v).
  • Table 1 Activity in the water gas displacement reaction (XCO) of HTS catalysts prepared according to the state of the art and according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A presente invenção trata de um catalisador para conversão de CO pela reação de deslocamento do gás d'água a alta temperatura, isento de cromo e de ferro, constituído de alumina promovida por potássio e por óxido de zinco. O catalisador assim preparado mantém elevada atividade de conversão do CO, não tendo as limitações ambientais ou de operação com baixo excesso de vapor no processo, que existem para os catalisadores em acordo com o estado da arte. Tal catalisador é utilizado no processo de produção de hidrogênio ou de gás de síntese pela reforma a vapor de hidrocarbonetos, permitem a utilização de baixas relações vapor/carbono no processo, apresentando alta atividade e estabilidade a desativação térmica e menores restrições ambientais de produção, estocagem, uso e disposição, do que os catalisadores utilizados industrialmente à base de óxidos de ferro, cromo e cobre.

Description

MÉTODO DE PREPARO DE UM CATALISADOR DE DESLOCAMENTO DO GÁS D’ÁGUA A ALTA TEMPERTAURA E PROCESSO PARA REDUZIR O TEOR DE MONÓXIDO DE CARBONO
Campo da Invenção
[001] A presente invenção trata de métodos de preparo de um catalisador de deslocamento do gás d’água a alta temperatura, isento de cromo e de ferro ou metais nobres, nos quais são utilizados no processo para conversão de monóxido de carbono (CO), aplicado em unidades de produção de H2 visando manter a elevada atividade de conversão do CO, não tendo as limitações ambientais ou de operação com baixo excesso de vapor no processo.
Descrição do Estado da Técnica
[002] A reação de deslocamento do gás d’água (“water gas shiftt") é uma etapa integrante do processo de reforma a vapor para a produção de hidrogênio. A reação pode ser representada pela equação 1, sendo exotérmica e tipicamente, limitada pelo equilíbrio termodinâmico.
CO + H2O = CO2 + H2 (eq.1)
[003] A reação produz H2 e, simultaneamente, reduz o nível de CO que é contam inante para os catalisadores utilizados nos processos de síntese de amônia, de hidrotratamento e para uso em células a combustível, os quais fazem uso de hidrogênio de elevada pureza. Nos processos de geração de gás de síntese, a reação de “water gas shift" é utilizada para ajustar a proporção desejada de CO e H2. A reação de “water gas shift” também faz parte de outros processos de produção de H2, como a oxidação parcial e a reforma autotérmica.
[004] No processo de reforma a vapor, a reação de “water gas shift” é conduzida num primeiro estágio, denominado de “High Temperature Shift” (HTS), cujo catalisador opera em temperaturas típicas entre 330°C na entrada e até 450°C na saída do reator, seguido de resfriamento da corrente efluente e reação adicional em um segundo estágio, denominado de “Low Temperature Shift” (LTS), cujo catalisador opera em temperaturas típicas entre 180°C, na entrada, até 240°C na saída do reator. Em uma variação da configuração do processo, o reator de LTS e o sistema posterior de separação do CO2 por aminas, é substituído pelo processo de “pressure swing adsorption” (PSA). As condições de pressão são ditadas pela utilização do hidrogênio, tipicamente a pressão do processo se situa entre 10 a 40 bar.
[005] Os catalisadores comerciais de LTS são constituídos de óxido de cobre, oxido de zinco e alumina, com teores típicos entre 40 a 35 % m/m; 27 a 44 % m/m com alumina como balanço, respectivamente. Podem ainda conter teores minoritários de promotores alcalinos, como o césio (Cs) ou o potássio (K). Os catalisadores de LTS perdem atividade rapidamente quando expostos a alta temperatura, razão pela qual são utilizados na faixa de temperatura típica de 180°C a 240°C, ou na sua versão de “Medium Temperature Shift” (MTS) em temperaturas de 180°C até 330°C. A temperatura inferior da faixa de utilização é normalmente ditada pelo requisito de não ocorrer condensação do vapor no reator na pressão de operação da unidade.
[006] O catalisador de HTS utilizado industrialmente em unidades de grande porte, aqui consideradas as unidades com produção superior a 50.000 Nm3/d de hidrogênio, é constituído de ferro (Fe), cromo (Cr) e cobre (Cu), majoritariamente na forma de óxidos antes do catalisador entrar em operação. Apesar de largamente utilizada, a formulação de catalisador apresenta a desvantagem de conter cromo em sua formulação. Particularmente, durante as etapas de calcinação para fabricação deste catalisador é inevitável que se forme teores variáveis de cromo no estado de oxidação VI (CrO3 ou Cr6+), composto este que possui conhecidos efeitos carcinogênicos e de danos ao meio ambiente, sendo sujeito no mundo a um crescente rigor da legislação. Como exemplo, pode ser citado as regras regidas de exposição no local de trabalho a Cr6+ pela OSHA (US Occupation Health and Safety Organization). A presença de Cr6+ traz impactos negativos no processo de fabricação, manuseio, transporte, carregamento, descarregamento e disposição do material. Assim sendo é desejável o ensinamento de um catalisador de HTS isento de cromo em sua formulação.
[007] A literatura relata diversos estudos para substituição do cromo na formulação do catalisador de HTS com composição a base de ferro, cromo e cobre. Em revisão da literatura é relatado estudos de substituição do cromo por diversos elementos, como óxidos de cério, silício, titânio, magnésio, zircônio e alumínio, sendo particularmente o alumínio o elemento mais estudado, conforme referência de PAL, D.B. et al. “Performance of water gas shift reaction catalysts: A review”, Renewable and Sustainable Energy Reviews, v. 93, p. 549-565, 2018. No entanto, na prática industrial ainda não pode ser encontrado um substituto eficiente ao cromo, que possui a propriedade desejada de reduzir a perda de área superficial das fases de oxido de ferro presentes no catalisador nas temperaturas usuais do processo e consequentemente reduz a taxa de desativação do material.
[008] Outra característica desfavorável da formulação atual dos catalisadores de HTS é a presença de óxidos de ferro em sua composição e que compõe, tipicamente 80 a 90 % m/m do catalisador. O óxido de ferro presente no catalisador de HTS está majoritariamente na forma de hematita (Fe2O3), além de teores minoritários de outros hidróxidos de ferro. Após ser carregado no reator, o catalisador é submetido a um procedimento de ativação, que reduz a fase de hematita (Fe2O3) a fase de magnetita (Fe3O4), que por sua vez, se constitui na fase ativa do catalisador. Simultaneamente, durante a redução as fases de CuO são reduzidas a cobre metálico. As reações são exemplificadas a seguir:
3 Fe2O3 + H2 = 2 Fe3O4 + H2O (eq.2) CuO + H2 = Cu + H2O
[009] O procedimento de ativação tem de ser cuidadosamente realizado, de forma a que não ocorra a redução excessiva das fases de oxido de ferro, que poderia então formar as fases indesejáveis de FeO ou mesmo de Fe metálico, levando a diversos problemas como redução da atividade, desintegração do catalisador com aumento da perda de carga no reator e formação de subprodutos pela reação de “Fischer-Tropsch” ou pela reação de metanação. Assim, seria desejável do ponto de vista industrial, um catalisador de HTS que não necessitasse do procedimento de redução ou mesmo pudesse ser aquecido com um gás contendo elevados teores de H2, mas isento de umidade.
[0010] Uma vez formada a fase de Fe3O4, a sua estabilidade em condições industriais irá depender da relação entre os componentes oxidantes e redutores presentes na alimentação do reator, particularmente as relações H2O/H2 e CO2/CO. A literatura ensina que quando o teor de vapor no processo é reduzido abaixo de um determinado valor, usualmente expresso como a relação vapor/carbono na etapa anterior de reforma, as fases de óxido de ferro se transformam em fases indesejáveis do tipo carbeto de ferro. As fases de carbeto de ferro, por sua vez, levam a formação de subprodutos como hidrocarbonetos, álcoois e outros compostos, que reduzem o rendimento em hidrogênio e trazem dificuldades adicionais de purificação do hidrogênio produzido e do vapor condensado no processo. Assim é desejável o ensinamento de um catalisador de HTS isento de ferro em sua composição.
[0011] Uma solução ensinada na US6500403 para reduzir o excesso de vapor no processo de produção do H2 pela reforma a vapor, seria realizar a reação de deslocamento do gás d’água (“water gas shift”) numa primeira etapa, em temperaturas entre 280°C a 370°C, utilizando um catalisador isento de ferro e à base de cobre sobre um suporte, desta forma reduzindo a relação CO/CO2 na entrada da segunda etapa, que seria realizada sobre um catalisador convencional do tipo Fe/Cr, na temperatura típica de 350°C a 500°C. Esta solução, no entanto, acrescenta custos adicionais elevados ao processo de reforma a vapor, por incluir uma etapa adicional de abatimento do CO, ou etapas de resfriamento de carga seguida de aquecimento, o que traz perdas energéticas e/ou maior complexidade do processo. [0012] Uma solução que se mostra mais prática para evitar a formação das fases de carbeto de ferro no catalisador de HTS é ensinada na US4861745. Esta patente descreve a adição de óxido de cobre a formulação do catalisador de HTS, constituído de óxidos de ferro e cromo. Em acordo com este ensinamento, os catalisadores comerciais de HTS utilizados em unidades de produção de H2 em larga escala, são constituídos de óxidos de ferro, cromo e cobre. No entanto, esta solução só pode ser utilizada até um valor mínimo de relação vapor/carbono em tomo de 2,8 mol/mol. Assim, o vapor é ainda utilizado em largo excesso em relação a estequiometria da reação de shift (eq.3), o que traz o efeito indesejável de um elevado dispêndio energético no processo, além de maior emissão de CO2 devido a queima de combustível para prover a energia necessária para aquecimento do vapor em excesso.
CH4+ H2O = 3H2 + CO (eq.3) CxHy + XH2O = (y+2x)/2H2 + xCO
[0013] Uma outra solução ensinada na literatura para produzir um catalisador de HTS isento de ferro em sua formulação é o uso de metais nobres. RATNASAMY, C.; Wagner, J. P. “Water gas shift catalysis”, Catalysis Reviews, V. 51 , p. 325-440, 2009 revisa a literatura e ensina o uso de platina (Pt) depositada em diversos óxidos, como óxidos de zircônio, vanádio, alumina e cério. Estes catalisadores são por vezes utilizados em sistemas de células a combustível, no entanto, tem utilidade limitada em unidades de grande porte para produção de H2, devido ao elevado custo e a reduzida disponibilidade dos metais nobres. Outro fator negativo é que estes catalisadores são muito mais sensíveis a presença de venenos na alimentação do reator, como cloretos ou enxofre, do que os catalisadores tradicionais de HTS à base de óxidos de ferro, cromo e cobre.
[0014] Os documentos US7998897, US81119099 e WO2018/134162A1 ensinam um catalisador de HTS isento de Fe e Cr em sua formulação. O catalisador é uma mistura de aluminato de zinco (ZnAl2O4) e óxido de zinco (ZnO), com relação molar Zn/AI entre 0,5 a 1 ,0, em combinação com metais alcalinos selecionados do grupo consistindo de Na, K, Rb, Cs e misturas destes, num teor entre 0,4 a 8,0 % m/m, baseado no material oxidado. Em particular, a invenção US7998898 ensina um catalisador com relação molar Zn/Al de 0,7, contendo 34 a 35 % m/m de Zn e 7 a 8% de Cs. No entanto, persistem dúvidas sobre a atividade e estabilidade deste tipo de material.
[0015] Portanto se faz desejável prover um catalisador de HTS que seja isento de cromo (Cr), elemento perigoso à saúde e ao meio ambiente, isento de ferro (Fe) para que se possa utilizar um reduzido excesso de vapor no processo, com ganhos de eficiência energética, mas que possua alta atividade e estabilidade nas condições do processo de reforma a vapor, permitindo assim substituição dos atuais catalisadores de HTS em unidades existentes.
[0016] A patente US7964114B2 se refere ao desenvolvimento de um catalisador para uso em processos de troca de gás de água, um método para fabricar o catalisador e um método para usar o catalisador. O catalisador é composto de óxido de ferro, óxido de cobre, óxido de zinco, alumina e, opcionalmente, óxido de potássio. Além disso, o catalisador demonstra uma atividade surpreendente para a conversão de monóxido de carbono, em condições de reação de temperatura alta a moderada. No entanto, utiliza em sua formulação óxido de ferro, que impede de trabalhar com baixo excesso de vapor em relação à estequiometria da reação de shift, para ganho de eficiência energética no processo de produção de H2 pela reforma a vapor.
[0017] Deste modo, nenhum documento do estado da técnica revela um catalisador de deslocamento do gás d’água a alta temperatura utilizado em processo para conversão de monóxido de carbono tal como aquele da presente invenção.
[0018] Com o intuito de solucionar tais problemas desenvolveu-se a presente invenção, através do provimento de catalisadores de HTS, isentos de cromo, de ferro e de metais nobres, que possuem elevada atividade e resistência à desativação térmica, ou seja, mantendo sua atividade por longos períodos, mesmo quando expostos a temperaturas elevadas do processo. [0019] A redução do excesso de vapor no processo para conversão de CO, expresso pela relação vapor/gás ou vapor/carbono, só é possível pelo uso de catalisadores de HTS isentos de ferro como os obtidos na presente invenção. Ademais, a eliminação de cromo da formulação do catalisador, especialmente em sua forma de Cr6+ que é carcinogênico, minimiza riscos durante etapas de manuseio, carregamento e descarregamento do catalisador.
[0020] Além de que o uso de um catalisador de HTS tolerante a baixas relações vapor/gás reduz os riscos de ocorrências de anormalidades no processo, que poderiam levar ao aumento de perda de carga e/ou formação de subprodutos no reator. Assim, a redução da relação vapor/carbono no processo de reforma a vapor para a produção de H2 contribui para a redução das emissões de CO2 no processo, visto que o processo de produção de H2, juntamente com o processo de FCC, são os dois maiores emissores de CO2 do refino.
Descrição Resumida da Invenção
[0021] A presente invenção trata de um catalisador para conversão de CO pela reação de deslocamento do gás d’água a alta temperatura, isento de cromo e de ferro, constituído de alumina promovida por potássio e por óxido de zinco. O catalisador assim preparado mantém elevada atividade de conversão do CO, não tendo as limitações ambientais ou de operação com baixo excesso de vapor no processo, conforme os catalisadores do estado da arte.
[0022] Tal catalisador é utilizado no processo de produção de hidrogênio ou de gás de síntese pela reforma a vapor de hidrocarbonetos, permite a utilização de baixas relações vapor/carbono no processo, apresentando alta atividade e estabilidade a desativação térmica e menores restrições ambientais de produção, estocagem, uso e disposição, do que os catalisadores utilizados industrialmente à base de óxidos de ferro, cromo e cobre.
Breve Descrição dos Desenhos
[0023] A presente invenção será descrita com mais detalhes a seguir, com referência às figuras em anexo que, de uma forma esquemática e não limitativa do escopo inventivo, representam exemplos de realização da mesma. Nos desenhos, têm-se:
- A Figura 1 ilustrando um gráfico de difração de raios X (DRX) dos sólidos obtidos em acordo com os Exemplos 1 e 9;
- A Figura 2 ilustrando um gráfico de difração de raios X (DRX) dos sólidos obtidos em acordo com os Exemplos 10, 11 e 12, conforme a presente invenção.
Descrição Detalhada da Invenção
[0024] A presente invenção trata de um catalisador aplicável à etapa de deslocamento do gás d’água do processo de reforma a vapor para a produção de hidrogênio. Tal catalisador é constituído de um suporte do tipo aluminato de potássio contendo óxido de zinco como promotor. O catalisador apresenta uma área específica superior a 60 m2/g, um teor de potássio, entre 4 a 15% m/m e um teor de óxido de zinco entre 10 a 30% m/m, com base no material oxidado, sendo obtido pelo método de preparo, compreendendo as seguintes etapas.
1. Impregnação de uma alumina, selecionada dentre boemita, gama ou teta-alumina com uma solução aquosa de um sal de potássio, preferencialmente hidróxido, carbonato ou nitrato de potássio, seguido de secagem e calcinação em temperaturas entre 400°C e 800°C, para se obter uma alumina promovida com potássio;
2. Impregnação do suporte do tipo alumina promovida com potássio com uma solução polar, preferencialmente aquosa, contendo um sal de zinco, preferencialmente nitrato ou carbonato de zinco, seguido de secagem, formatação em pastilhas e calcinação em temperaturas entre 300°C a 500°C, preferencialmente entre 350°C e 450°C.
[0025] O termo alumina promovida com potássio, como utilizado na presente invenção, se refere a uma alumina contendo espécies de potássio em sua superfície podendo, em função da temperatura de calcinação, apresentar pela técnica de difração de raios X estruturas cristalinas de óxido de alumínio e potássio, tal como a forma K2O.AI2O3 (CAS 12003-62-3). [0026] Alternativamente, a etapa 1 não precisa ser realizada, podendo-se utilizar aluminatos de potássio comerciais, desde que possuam área superficial específica superior a 15m2/g, preferencialmente superior a 40m2/g. Podem ser ainda utilizadas aluminas que possuam maior resistência à perda de área superficial específica, na presença de vapor e em temperaturas entre 250°C e 450°C, tais como as aluminas promovidas por teores de lantânio entre 1 a 5% m/m.
[0027] A etapa de formatação pode ser conduzida por máquinas comerciais obtendo-se pastilhas, preferencialmente com dimensões típicas de 3 a 6 mm de diâmetro e de altura. Outros formatos também podem ser utilizados, tais como de um único cilindro ou múltiplos cilindros conectados (trilobe, quadralobe) ou de anéis de raschig. Alternativamente, na etapa 1 pode ser utilizada uma alumina, como a gama ou a teta-alumina, já pré-formatada.
[0028] Numa forma alternativa, o suporte é impregnado simultaneamente com um sal de potássio, preferencialmente hidróxido ou nitrato de potássio, e um sal de zinco, preferencialmente nitrato ou carbonato de zinco, em solução de um solvente polar, preferencialmente água, seguido de secagem e calcinação em temperaturas entre 400°C a 800°C.
[0029] O catalisador assim preparado encontra-se ativo, estável e pronto para uso, não necessitando de nenhum procedimento adicional de ativação, podendo ser utilizado na reação de conversão do CO com vapor d 'agua para produção de hidrogênio, em temperaturas de entrada do reator entre 280°C a 400°C, preferencialmente em temperaturas entre 300°C a 350°C e de saída do reator entre 380°C a 500°C, preferencialmente entre 400°C a 450°C. A pressão de operação no reator pode ser na faixa de 10 a 40 kgf/cm2, preferencialmente entre 20 a 30 kgf/cm2. A relação molar vapor/gás seco na entrada do reator é preferivelmente na faixa de 0,05 a 0,6 mol/mol, mais preferivelmente na faixa de 0,1 a 0,3 mol/mol. De maneira equivalente, a relação vapor/carbono (mol/mol) na entrada do reator de reforma a vapor primário, que antecede o reator de deslocamento do gás d’água a alta temperatura (HTS) é preferivelmente na faixa de 1 a 5 mol/mol, mais preferivelmente na faixa de 1 ,5 a 2,5 mol/mol. A concentração de CO no gás seco na entrada do reator de conversão é, tipicamente, de 5 a 30 % v/v, preferencialmente de 8 a 20 % v/v.
[0030] Um segundo aspecto da presente invenção é prover um catalisador de HTS que possa ser utilizado com baixo excesso de vapor, equivalente a uma baixa relação vapor/gás na entrada do reator de HTS ou uma baixa relação vapor/carbono na entrada do reator de reforma a vapor, sem formação de subprodutos ou aumento da perda de carga por ocorrência de transformações de fases do material.
[0031] Em um terceiro aspecto da presente invenção é prover um processo de conversão do monóxido de carbono por colocar em contato com o referido catalisador com uma corrente de gás de síntese em temperaturas entre 250°C a 450°C, vapor/gás entre 0,2 a 1 ,0 mol/mol e pressões entre 10 a 40 atm.
[0032] Em acordo com o primeiro aspecto da invenção é ensinado um catalisador para uso na reação do deslocamento do gás d’água a alta temperatura (HTS) consistindo de alum inato de potássio (KAIO2) promovido por óxido de zinco (ZnO).
EXEMPLOS:
[0033] Os exemplos apresentados a seguir têm por objetivo ilustrar algumas formas de concretização do invento, assim como comprovar a viabilidade prática de sua aplicação, não constituindo qualquer forma de limitação da invenção.
EXEMPLO 1 :
[0034] Este exemplo comparativo ilustra o preparo de um catalisador, em acordo com o estado da arte, de deslocamento do gás d’água a alta temperatura (HTS) do tipo alum inato de zinco promovido por metais alcalinos. Incialmente preparou-se por dissolução e agitação a temperatura ambiente, uma solução aquosa contendo 311 gramas de água desmineralizada (H2O), 415 gramas de nitrato de alumínio (AI(NO3)3.9H2O, marca VETEC, PA) numa relação nominal Zn/AI de 0,5 mol/mol. [0035] A seguir a solução foi avolumada com água desmineralizada para 830 ml e apresentou pH de 1,04. Sobre esta solução, adicionou-se a temperatura ambiente, em 30 minutos e com agitação de 300 rpm, uma solução de hidróxido de amônio (NH4OH, 28% p/p, VETEC) até que o pH da mistura em agitação ficou entre 8,0 a 8,5. A mistura foi mantida em agitação por 1 hora e a seguir filtrada e lavada com água desmineralizada. O material precipitado foi então seco a 110°C por 12h e a seguir calcinado ao ar estático na temperatura de 750°C por 3 horas.
[0036] As caracterizações do material mostraram pela técnica de adsorção de N2 (método Brunauer-Emmett-Teller - BET) uma área especifica de 65 m2/g, volume de poros de 0,23 cm3/g e diâmetro médio do poro de 144 A; e pela técnica de difração de raios X (DRX, radiação Cu-K, 40 kV, 40 mA) o padrão característico de alum inato de zinco (JCPDS Card No 05-0669), conforme mostrado na Figura 1.
EXEMPLO 2:
[0037] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo alum inato de zinco promovido por metais alcalinos. Dez gramas do material produzido no EXEMPLO 1 foram impregnados pela técnica de volume de poros com 6,1 ml de uma solução aquosa contendo 0,145 gramas de hidróxido de potássio (VETEC). O material foi seco a 100°C por 1 hora e a seguir calcinado a 500°C por 2 horas de forma a obter um catalisador do tipo alum inato de zinco promovido com 1 % m/m de potássio. O produto apresentou pela técnica de adsorção de N2 uma área específica de 60,7 m2/g, volume de poros de 0,24 cm3/g e diâmetro médio dos poros de 144,6 A.
EXEMPLO 3:
[0038] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d'água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. O preparo foi idêntico ao utilizado no EXEMPLO 2, variando-se o teor de hidróxido de potássio de forma a se ter um teor nominal de 2 % m/m de potássio. 0 produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 60,0 m2/g, volume de poros de 0,24 cm3/g e diâmetro médio dos poros de 143 A.
EXEMPLO 4:
[0039] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. O preparo foi idêntico ao utilizado no EXEMPLO 2, variando-se o teor de hidróxido de potássio de forma a se ter um teor nominal de 4 % m/m de potássio. O produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 52 m2/g, volume de poros de 0,22 cm3/g e diâmetro médio dos poros de 151 A. EXEMPLO 5:
[0040] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. O preparo foi idêntico ao utilizado no EXEMPLO 2, variando-se o teor de hidróxido de potássio de forma a se ter um teor nominal de 8 % m/m de potássio. O produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 42 m2/g, volume de poros de 0,19 cm3/g e diâmetro médio dos poros de 181 A. EXEMPLO 6:
[0041] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. O preparo foi idêntico ao utilizado no EXEMPLO 2, alterando-se a fonte de potássio para carbonato de potássio (K2CO3) de forma a se ter um teor nominal de 4 % m/m de potássio. O produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 39 m2/g, volume de poros de 0,18 cm3/g e diâmetro médio dos poros de 188 A. EXEMPLO 7:
[0042] Este exemplo comparativo ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos e em acordo com o estado da arte. O material foi preparado de maneira similar a do EXEMPLO 1 , exceto que se alterou as proporções dos reagentes de forma a se ter uma relação Zn/AI de 0,70 mol/mol.
[0043] As caracterizações do material mostraram a) pela técnica de adsorção de N2 uma área superficial específica de 22 m2/g, volume de poros de 0,12 cm3/g e diâmetro médio do poro de 235; b) pela técnica sem quantitativa de Fluorescência de raios X (FRX) uma composição contendo 25 % m/m de Al e 40 % m/m de Zn, sendo o balanço oxigênio e pela técnica de difração de raios X (DRX) o padrão característico de aluminato de zinco, conforme mostrado na Figura 1.
EXEMPLO 8:
[0044] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. Dez gramas do material produzido no EXEMPLO 7 foram impregnados pela técnica de volume de poros com 4,0 ml de uma solução aquosa contendo 0,598 gramas de hidróxido de potássio (VETEC). O material foi seco a 100°C por 1 hora e a seguir calcinado a 500°C por 2 horas de forma a obter um catalisador do tipo aluminato de zinco promovido com 4 % m/m de potássio. O produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 16,7 m2/g, volume de poros de 0,10 cm3/g e diâmetro médio dos poros de 173 A.
EXEMPLO 9:
[0045] Este exemplo comparativo em acordo com o estado da arte ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo aluminato de zinco promovido por metais alcalinos. O preparo foi identifico ao utilizado no EXEMPLO 8, variando-se o teor de hidróxido de potássio de forma a se ter um teor nominal de 8 % m/m de potássio. 0 produto apresentou pela técnica de adsorção de N2 uma área superficial específica de 17,5 m2/g, volume de poros de 0,08 cm3/g e diâmetro médio dos poros de 176 A.
EXEMPLO 10:
[0046] Este exemplo ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo alumina promovida com potássio e óxido de zinco, em acordo com a presente invenção. Cem gramas de um hidróxido de alumina comercial (boemita, CATAPAL, SASOL) foram impregnadas pelo método do ponto úmido com uma 70 ml de solução aquosa contendo 11,5 gramas de hidróxido de potássio (VETEC). O material a seguir foi seco a 100°C por 12h e calcinado ao ar estático na temperatura de 600°C por 2 horas para obter um SUPORTE do tipo alumina promovida com potássio, conforme ilustrado na Figura 2. O material apresentou área superficial específica de 111 m2/g e volume de poros de 0,27 cm3/g pela técnica de adsorção do nitrogênio (BET).
[0047] Quinze gramas do suporte assim obtido foram impregnados pela técnica do ponto úmido com 9,3 ml de solução aquosa contendo 6,09 gramas de nitrato de zinco (Zn(NO3)2.6H2O, Merck) e a seguir seco a 100°C por 12h e calcinados ao ar estático na temperatura de 400°C por 2 horas, para se obter um material contendo um teor nominal de 8,0 m/m Zn (a análise semiquantitativa pela técnica de fluorescência de raios X apresentou um teor de 7,1 % m/m), uma área superficial específica de 89,5 m2/g e um volume de poros de 0,21 cm3/g e sem ser observado a presença significativa de aluminato de zinco cristalino pela técnica de difração de raios X , conforme ilustrado na Figura 2.
EXEMPLO 11:
[0048] Este exemplo em acordo com a presente invenção ilustra o preparo de um catalisador de deslocamento do gás d’água a alta temperatura (HTS) do tipo alumina promovida com potássio e óxido de zinco. Quinze gramas do suporte obtido no EXEMPLO 10 foram impregnados pela técnica do ponto úmido com 9,3 ml de solução aquosa contendo 9,80 gramas de nitrato de zinco (Zn(NO3)2.6H2O, Merck) e a seguir seco a 100°C por 12h e calcinados ao ar estático na temperatura de 400°C por 2 horas, para obter um catalisador contendo um teor nominal de 12,1 %m/m de Zn (a análise semiquantitativa pela técnica de fluorescência de raios X apresentou um teor de 10% m/m), uma área superficial específica de 86,1 m2/g e um volume de poros de 0,19 cm3/g e sem ser observado a presença significativa de óxido de zinco cristalino pela técnica de difração ode raios X , conforme ilustrado na Figura 2.
EXEMPLO 12:
[0049] Este exemplo em acordo com a presente invenção ilustra o preparo de um catalisador de deslocamento do gás d'água a alta temperatura (HTS) do tipo alumina promovida com potássio e óxido de zinco. Quinze gramas do catalisador obtido no EXEMPLO 10 foram impregnados pela técnica do ponto úmido com 9,3 ml de solução aquosa contendo 6,09 gramas de nitrato de zinco (Zn(NO3)2.6H2O, Merck) e a seguir seco a 100°C por 12h e calcinados ao ar estático na temperatura de 400°C por 2 horas, para obter um catalisador contendo um teor nominal de 16,1% m/m de Zn, uma área superficial específica de 81,1 m2/g e um volume de poros de 0,19 cm3/g e sem ser observado a presença significativa de óxido de zinco cristalino pela técnica de difração de raios X, conforme ilustrado na Figura 2.
EXEMPLO 13:
[0050] Este exemplo descreve a medida de atividade catalítica dos catalisadores obtidos em acordo com os EXEMPLOS 1 A 12. A reação de shift foi realizada em reator de leito fixo, a pressão atmosférica. A amostra foi inicialmente aquecida em fluxo de argônio até 100°C e a seguir até 350°C, com taxa de 5°C/min em fluxo de 5 % de H2 em argônio saturado com vapor de água a 73°C. Após este pré-tratamento, a mistura gasosa foi substituída para uma mistura contendo 10 % de CO, 10 % de COz, 2 % de metano em balanço de H2, mantendo-se a temperatura do saturador com água a 73°C, correspondendo a uma razão vapor/gás de 0,55 mol/mol. A reação foi conduzida em temperaturas de 350°C a 450°C com o efluente do reator sendo analisado por cromatografia gasosa. A atividade dos catalisadores foi expressa como conversão do CO (% v/v).
[0051] Os resultados são apresentados na Tabela 1 e permitem concluir que os catalisadores da presente invenção possuem área superficial e atividade, mensurada pela conversão do CO na reação de deslocamento do gás d’água superior aos preparados em acordo com o estado da arte. Este desempenho superior é desejável na indústria por permitir o uso de menores volumes de catalisadores e/ou temperaturas de operação mais baixas, ambas as opções com ganhos econômicos no processo.
Tabela 1: Atividade na reação de deslocamento do gás d’água (XCO) dos catalisadores de HTS preparados em acordo com o estado da arte e em acordo com a presente invenção.
Figure imgf000018_0001
[0052] Deve ser notado que, apesar de a presente invenção ter sido descrita com relação aos desenhos em anexo, esta poderá sofrer modificações e adaptações pelos técnicos versados no assunto, dependendo da situação específica, mas desde que dentro do escopo inventivo aqui definido.

Claims

Reivindicações
1- MÉTODO DE PREPARO DE CATALISADOR DE DESLOCAMENTO DO GÁS D’ÁGUA A ALTA TEMPERATURA, caracterizado por compreender as seguintes etapas: a) Impregnar um suporte de alumina com uma solução de solvente polar e um sal solúvel de potássio; b) Secar o suporte para a remoção do solvente e calcinar o suporte em temperaturas entre 400°C e 800°C para obter uma alumina promovida com potássio; c) Impregnar a alumina promovida com potássio com uma solução polar contendo um sal solúvel de zinco; d) Secar e calcinar o material em temperatura entre 300°C e 500°C, em que o referido catalisador apresenta uma área específica maior que 60 m2/g, um teor de potássio na faixa de 4 a 15% m/m e teor de óxido de zinco entre 10 a 30% m/m e uma relação Zn/AI menor que 0,4 mol/mol, baseado no peso do catalisador oxidado.
2- MÉTODO, de acordo com a reivindicação 1, caracterizado por altemativamente, o suporte de alumina ser impregnado simultaneamente com um sal de potássio e um sal de zinco em solução de um solvente polar, seguido de secagem e calcinação em temperaturas entre 400°C a 800°C.
3- MÉTODO, de acordo com a reivindicação 1, caracterizado pela calcinação da etapa (d) ocorrer em temperatura entre 350°C e 450°C.
4- MÉTODO, de acordo com a reivindicação 1, caracterizado pela alumina ser selecionada dentre boemita, gama, teta-alumina ou alumina promovida com lantânio.
5- MÉTODO, de acordo com a reivindicação 1, caracterizado pelo sal de potássio ser selecionado dentre hidróxido, nitrato ou carbonato.
6- MÉTODO, de acordo com a reivindicação 1, caracterizado pelo sal de zinco ser nitrato ou carbonato.
7- MÉTODO, de acordo com a reivindicação 1, caracterizado pelo solvente polar ser água. 8- PROCESSO PARA REDUZIR O TEOR DE MONÓXIDO DE CARBONO, pela reação de deslocamento do gás d’água consistindo em por em contato o catalisador conforme obtido na reivindicação 1 , com uma corrente de gás de síntese caracterizado pelo gás de síntese conter entre 5 a 30% de CO, uma relação vapor/gás seco entre 0,05 a 0,6 mol/mol e uma temperatura de entrada no reator entre 280°C a 400°C e pressão entre 10 a 40 kgf/cm2.
PCT/BR2021/050514 2020-12-09 2021-11-23 Método de preparo de um catalisador de deslocamento do gás d'água a alta tempertaura e processo para reduzir o teor de monóxido de carbono WO2022120447A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/256,538 US20240024855A1 (en) 2020-12-09 2021-11-23 Methods for preparing a catalytic converter by displacement of water gas at high temperature and method for reducing carbon monoxide content
GB2307861.1A GB2615283A (en) 2020-12-09 2021-11-23 Method for preparing a catalytic converter by displacement of water gas at high temperature and method for reducing carbon monoxide content
CN202180083073.XA CN116981513A (zh) 2020-12-09 2021-11-23 通过高温水煤气变换制备催化剂的方法和降低一氧化碳含量的方法
DKPA202370256A DK202370256A1 (en) 2020-12-09 2023-05-26 Method for preparing a catalytic converter by displacement of water gas at high temperature and method for reducing carbon monoxide content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102020025161-9 2020-12-09
BR102020025161-9A BR102020025161A2 (pt) 2020-12-09 2020-12-09 Método de preparo de um catalisador de deslocamento do gás dágua a alta tempertaura e processo para reduzir o teor de monóxido de carbono

Publications (1)

Publication Number Publication Date
WO2022120447A1 true WO2022120447A1 (pt) 2022-06-16

Family

ID=81972758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050514 WO2022120447A1 (pt) 2020-12-09 2021-11-23 Método de preparo de um catalisador de deslocamento do gás d'água a alta tempertaura e processo para reduzir o teor de monóxido de carbono

Country Status (6)

Country Link
US (1) US20240024855A1 (pt)
CN (1) CN116981513A (pt)
BR (1) BR102020025161A2 (pt)
DK (1) DK202370256A1 (pt)
GB (1) GB2615283A (pt)
WO (1) WO2022120447A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861745A (en) * 1988-08-03 1989-08-29 United Catalyst Inc. High temperature shift catalyst and process for its manufacture
EP2141118A1 (en) * 2008-07-03 2010-01-06 Haldor Topsoe A/S Chromium-free water gas shift catalyst
WO2010000387A1 (en) * 2008-07-03 2010-01-07 Haldor Topsøe A/S Process for operating hts reactor
US7964114B2 (en) * 2007-12-17 2011-06-21 Sud-Chemie Inc. Iron-based water gas shift catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861745A (en) * 1988-08-03 1989-08-29 United Catalyst Inc. High temperature shift catalyst and process for its manufacture
US7964114B2 (en) * 2007-12-17 2011-06-21 Sud-Chemie Inc. Iron-based water gas shift catalyst
EP2141118A1 (en) * 2008-07-03 2010-01-06 Haldor Topsoe A/S Chromium-free water gas shift catalyst
WO2010000387A1 (en) * 2008-07-03 2010-01-07 Haldor Topsøe A/S Process for operating hts reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANG-WOO PARK ET AL.: "Development of ZnO/Al2O3 catalyst for reverse-water- gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process", APPLIED CATALYSIS A: GENERAL, vol. 211, 7 March 2001 (2001-03-07), pages 81 - 90, XP004272700, DOI: 10.1016/S0926-860X(00)00840-1 *

Also Published As

Publication number Publication date
CN116981513A (zh) 2023-10-31
US20240024855A1 (en) 2024-01-25
GB2615283A (en) 2023-08-02
BR102020025161A2 (pt) 2022-06-21
DK202370256A1 (en) 2023-06-15
GB202307861D0 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
RU2491119C2 (ru) Катализатор конверсии водяного газа низкой температуры
EP0327177B1 (en) A catalyst-on-carrier for the non-selective oxidation of organic compounds, a process for the non-selective oxidation of, in particular, organic compounds
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
CA2629078C (en) Process conditions for pt-re bimetallic water gas shift catalysts
US20030230029A1 (en) Suppression of methanation activity of platinum group metal water-gas shift catalysts
JP2000084410A (ja) オ―トサ―マルリフォ―ミング触媒および水素または合成ガスの製造方法
EP0021736A2 (en) Catalytic process involving carbon monoxide and hydrogen
US4185967A (en) Process for the production of methane-containing gases and catalyst used in process
Larimi et al. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts
DK202370589A1 (en) Method for preparing water gas shift catalysts, catalysts and process for reducing carbon monoxide content
JP2000104078A (ja) 炭素ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
CA2359940A1 (en) Catalyst carrier carrying nickel ruthenium and lanthanum
WO2022120447A1 (pt) Método de preparo de um catalisador de deslocamento do gás d'água a alta tempertaura e processo para reduzir o teor de monóxido de carbono
KR102186058B1 (ko) 산화마그네슘-알루미나 복합 지지체를 이용한 알코올의 이산화탄소 개질 반응용 촉매 및 이를 이용한 합성가스의 제조방법
US11679381B2 (en) Methods for preparing high temperature water gas shifting catalyst, catalyst and process for reducing carbon monoxide
JP3813646B2 (ja) 水蒸気改質触媒の製造方法および水素製造方法
JP4226685B2 (ja) 水素の製造方法
JP2001276620A (ja) 炭化水素改質用触媒
JP2000103604A (ja) 炭化水素の改質用触媒の調製方法及びその触媒担体形成用酸化マグネシウム成形体
JP2007516825A (ja) 改質触媒
GB2623444A (en) Method for preparing water-gas shift catalysts, catalysts, and method for reducing carbon monoxide content
AU2004255562B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
BR102021015712A2 (pt) Método de preparo do catalisador de deslocamento do gás d'água, catalisador, uso e processo para reduzir o teor de monóxido de carbono
JP2004000848A (ja) 水素ガス中に含まれる一酸化炭素を炭酸ガスとして除去するための触媒及び方法
ZA200105594B (en) Catalyst carrier carrying nickel ruthenium and lanthanum.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202307861

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211123

WWE Wipo information: entry into national phase

Ref document number: PA202370256

Country of ref document: DK

WWE Wipo information: entry into national phase

Ref document number: 18256538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083073.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901727

Country of ref document: EP

Kind code of ref document: A1