WO2022118922A1 - シリコン単結晶の育成方法 - Google Patents

シリコン単結晶の育成方法 Download PDF

Info

Publication number
WO2022118922A1
WO2022118922A1 PCT/JP2021/044306 JP2021044306W WO2022118922A1 WO 2022118922 A1 WO2022118922 A1 WO 2022118922A1 JP 2021044306 W JP2021044306 W JP 2021044306W WO 2022118922 A1 WO2022118922 A1 WO 2022118922A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
value
critical
profile
Prior art date
Application number
PCT/JP2021/044306
Other languages
English (en)
French (fr)
Inventor
崇志 伊関
康人 鳴嶋
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112021006295.6T priority Critical patent/DE112021006295T5/de
Priority to US18/265,070 priority patent/US20240003044A1/en
Priority to JP2022566980A priority patent/JPWO2022118922A1/ja
Priority to CN202180081277.XA priority patent/CN116670338A/zh
Priority to KR1020237017886A priority patent/KR20230092011A/ko
Publication of WO2022118922A1 publication Critical patent/WO2022118922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for growing a silicon single crystal.
  • CZ method when growing a silicon single crystal using the Czochralski method (hereinafter abbreviated as "CZ method"), red phosphorus (P), arsenic (As), antimony (Sb), etc. are added to the silicon melt.
  • a method for growing a silicon single crystal having a low electric resistance by adding a volatile dopant of the above to a high concentration is known (see, for example, Patent Document 1).
  • compositional supercooling The conditions for the occurrence of compositional supercooling are formulated as in the following mathematical formula (1).
  • compositional supercooling occurs, the region away from the solid-liquid interface is supercooled more than the solid-liquid interface, and the solidification rate is also faster in this region. If slight irregularities are formed on the solid-liquid interface in such a state, the convex portions will grow crystals faster, and the slight irregularities will be amplified and abnormal growth such as Cell growth will occur. When abnormal growth occurs, the single crystal becomes dislocated and a wafer product cannot be obtained.
  • G / V the value obtained by raising the temperature gradient G of the melt under solid-liquid interface and dividing by the speed V
  • V the left side of the equation (1)
  • Patent Document 1 discloses a technique for determining the critical pulling speed so as to slow the pulling speed V in order to suppress dislocation, but if the pulling speed V is lowered too much, a silicon single crystal is disclosed. There was a problem that the electrical resistivity of the was increased.
  • the pulling condition when setting the pulling condition for suppressing the occurrence of abnormal growth, the pulling condition can be set more quickly and without increasing the electrical resistivity (hereinafter, simply referred to as the resistivity) of the silicon single crystal. It is an object of the present invention to provide a method for growing a silicon single crystal that can be set.
  • the CV value which is the product of the dopant concentration C and the pulling speed V, is used as an index for determining the growth condition.
  • the reason (mechanism) for using the CV value as an index for determining the growth conditions will be described.
  • the method for growing a silicon single crystal of the present invention is a method for growing a silicon single crystal by pulling up and growing the silicon single crystal from a dopant-added melt in which a dopant is added to the silicon melt by the Chokralsky method.
  • the critical CV value which is the product of the dopant concentration C and the pulling speed V at the time when abnormal growth occurs in the silicon single crystal, is calculated, and the CV value, which is the product of the dopant concentration C and the pulling speed V at the time point, is the critical CV value. At least one of the dopant concentration C and the pulling speed V is controlled so as to be less than the above, and the silicon single crystal is grown.
  • the pulling speed profile and the crystal axis direction are set so as to be lower than the critical CV value calculation step for calculating the critical CV value and the critical CV value calculated in the critical CV value calculation step. It may have a pull-up condition resetting step, which resets at least one of the resistivity profiles of the above.
  • the critical CV value calculation step After the critical CV value calculation step and before the raising condition resetting step, and does not exceed the critical CV value at the time point. It may have a target CV value profile creation step of creating a target CV value profile using the target CV value.
  • a modified pulling speed profile configured by a pulling speed corresponding to the target CV value profile may be created.
  • a modified resistivity profile composed of the resistivity corresponding to the target CV value profile may be created.
  • the dopant concentration C is the dopant concentration in the silicon single crystal
  • the dopant concentration in the silicon single crystal is the dopant concentration in the silicon single crystal and the resistance of the silicon single crystal. It may be calculated from the resistance value of the silicon single crystal using the relational expression with the rate.
  • the relational expression may be an Irvine curve.
  • the CV value as an index for setting the raising condition, it is possible to set the raising condition more quickly and without increasing the resistivity of the silicon single crystal.
  • the method for growing a silicon single crystal of the present invention is characterized in that the pulling conditions are reset based on the actual results when the abnormal growth occurs in order to suppress the occurrence of the abnormal growth during the pulling of the silicon single crystal. ..
  • the CV value which is the product of the dopant concentration C and the pulling speed V, is used as an index when setting the pulling condition. It is characterized by.
  • the resistivity when the dopant is red phosphorus, the resistivity is 1.3 m ⁇ ⁇ cm or less, when the dopant is arsenic, the resistivity is 2.6 m ⁇ ⁇ cm or less, and when the dopant is antimony, the resistivity.
  • the rate is 20 m ⁇ ⁇ cm or less and the dopant is boron, it is suitable for growing a silicon single crystal having a resistivity of 1.3 m ⁇ ⁇ cm or less and a very low resistance.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a semiconductor crystal manufacturing apparatus 10 to which the method for growing a silicon single crystal according to the embodiment of the present invention is applied.
  • the semiconductor crystal manufacturing apparatus 10 manufactures a silicon single crystal 1 by using the CZ method.
  • the semiconductor crystal manufacturing apparatus 10 includes an apparatus main body 11, a memory 12, and a control unit 13.
  • the apparatus main body 11 includes a chamber 21, a crucible 22, a heater 23, a pulling portion 24, a heat shield 25, a heat insulating material 26, and a crucible driving portion 27.
  • a dopant-added melt MD in which a dopant is added to the silicon melt is charged into the crucible 22.
  • the chamber 21 includes a main chamber 31 and a pull chamber 32 connected to the upper part of the main chamber 31.
  • a gas introduction port 33A for introducing an inert gas such as argon (Ar) gas into the chamber 21 is provided above the pull chamber 32.
  • a gas exhaust port 33B for discharging gas in the chamber 21 by driving a vacuum pump (not shown) is provided in the lower part of the main chamber 31.
  • the inert gas introduced into the chamber 21 from the gas introduction port 33A descends between the growing silicon single crystal 1 and the heat shield 25, and the lower end of the heat shield 25 and the liquid of the dopant-added melt MD. After passing through the gap with the surface, it flows between the heat shield 25 and the inner wall of the crucible 22 and further toward the outside of the crucible 22, then descends the outside of the crucible 22 and is discharged from the gas exhaust port 33B.
  • the crucible 22 is arranged in the main chamber 31 and stores the dopant-added melt MD.
  • the crucible 22 includes a support crucible 41, a quartz crucible 42 housed in the support crucible 41, and a graphite sheet 43 inserted between the support crucible 41 and the quartz crucible 42.
  • the graphite sheet 43 may not be provided.
  • the support crucible 41 is composed of, for example, graphite or carbon fiber reinforced carbon.
  • the support crucible 41 may be subjected to, for example, a silicon carbide (SiC) surface treatment or a pyrolytic carbon coating treatment.
  • the quartz crucible 42 contains silicon dioxide (SiO 2 ) as a main component.
  • the graphite sheet 43 is made of expanded graphite, for example.
  • the heater 23 is arranged on the outside of the crucible 22 at predetermined intervals to heat the dopant-added melt MD in the crucible 22.
  • the pulling section 24 includes a cable 51 to which the seed crystal 2 is attached to one end, and a pulling drive section 52 that raises and lowers and rotates the cable 51.
  • At least the surface of the heat shield 25 is made of carbon material.
  • the heat shield 25 is provided so as to surround the silicon single crystal 1 when the silicon single crystal 1 is manufactured.
  • the heat shield 25 blocks the radiant heat from the dopant-added melt MD in the ⁇ ⁇ 22, the heater 23, and the side wall of the ⁇ ⁇ 22 to the growing silicon single crystal 1, and also blocks the radiant heat from the side wall of the ⁇ ⁇ 22 and is a solid-liquid interface which is a crystal growth interface. In the vicinity of, the heat diffusion to the outside is suppressed, and the temperature gradient in the pulling axial direction of the central portion and the outer peripheral portion of the silicon single crystal 1 is controlled.
  • the heat insulating material 26 has a substantially cylindrical shape and is composed of a carbon member (for example, graphite).
  • the heat insulating material 26 is arranged on the outside of the heater 23 at predetermined intervals.
  • the crucible drive unit 27 includes a support shaft 53 that supports the crucible 22 from below, and rotates and raises and lowers the crucible 22 at a predetermined speed.
  • the memory 12 is necessary for manufacturing the silicon single crystal 1, such as the gas flow rate and furnace pressure of Ar gas in the chamber 21, the electric power supplied to the heater 23, the rotation speed of the crucible 22 and the silicon single crystal 1, and the position of the crucible 22. It remembers various information. Further, the memory 12 stores, for example, a resistivity profile and a pulling speed profile.
  • the control unit 13 controls each unit based on various information stored in the memory 12 and the operation of the operator to manufacture the silicon single crystal 1.
  • the method for growing a silicon single crystal includes a pulling condition setting step S1, a single crystal growing step S2, an abnormal growth determination step S3, a critical CV value calculation step S4, and a target CV value profile. It has a production step S5, a pulling condition resetting step S6, and a modified single crystal growing step S7, and the steps are executed in the above order.
  • the pulling condition setting step S1 includes a resistivity profile creating step S1A and a pulling speed profile creating step S1B.
  • the pulling condition includes at least one of a pulling speed profile which is a planned pulling speed and a resistivity profile which is a planned resistivity in the crystal axis direction.
  • the resistivity distribution in the crystal axis direction changes due to a change in the resistivity inside the furnace or the flow rate of the inert gas flowing into the furnace, the change in the resistivity inside the furnace or the flow rate of the inert gas is included in the change of the resistivity profile.
  • the resistivity profile creation step S1A is a step of creating a resistivity profile based on the target resistance value.
  • FIG. 3 is an example of a resistivity profile created when a silicon single crystal is produced by the method for growing a silicon single crystal according to the present embodiment.
  • the horizontal axis of FIG. 3 is the solidification rate (%), and the vertical axis is the resistivity.
  • the solidification rate is the ratio of the lifted weight of the silicon single crystal to the amount of the silicon raw material put into the crucible.
  • the resistivity profile is created based on the target resistance value in the straight body portion of the silicon single crystal 1.
  • the target resistivity of the straight body portion of the silicon single crystal 1 can be 0.5 m ⁇ ⁇ cm or more and 1.3 m ⁇ ⁇ cm or less when the dopant is red phosphorus.
  • Such a silicon single crystal having a resistivity is called an ultra-low resistivity silicon single crystal.
  • the resistance profile is, for example, the dopant concentration in the dopant-added melt MD at the start of pulling up the silicon single crystal 1, and the dopant concentration in the dopant-added melt MD due to the evaporation of the dopant from the dopant-added melt MD. It can be obtained by calculation prior to the pulling up of the silicon single crystal 1 in consideration of the decrease and the rise in the dopant concentration in the dopant-added melt MD due to the segregation phenomenon accompanying the pulling up of the silicon single crystal 1.
  • the resistance distribution in the longitudinal direction of the silicon single crystal 1 pulled up based on the resistance profile obtained by the above calculation is measured, and the measurement result is fed back to the calculation of the resistance profile to obtain the resistance profile.
  • the calculation accuracy can be improved.
  • the pull-up speed profile creation step S1B is a step of creating a pull-up speed profile based on the resistivity profile created in the resistivity profile creation step S1A.
  • the pulling speed profile contains information on the target pulling speed to be obtained in the straight body of the silicon single crystal 1.
  • FIG. 4 is an example of a pulling speed profile created when a silicon single crystal is produced by the method for growing a silicon single crystal according to the present embodiment.
  • the horizontal axis of FIG. 4 is the solidification rate (%), and the vertical axis is the pulling speed.
  • the pulling speed profile can be created by setting, for example, 8 points of pulling speed with respect to the length of the straight body portion.
  • the pulling speed is set relatively high up to a solidification rate of 40%, and the pulling speed is set to gradually slow down as the straight body length increases (as the solidification rate increases). Has been done.
  • the resistance profile and the pulling speed profile are created, and the manufacturing conditions of the silicon single crystal 1, for example, the oxygen concentration in the silicon single crystal 1, the gas flow rate of Ar gas, the pressure in the furnace, the crucible 22 and silicon. Manufacturing conditions such as the number of rotations of the single crystal 1 and the position of the crucible 22 are set.
  • the control unit 13 stores the set pull-up conditions and the like in the memory 12.
  • the control unit 13 reads out the pulling speed profile and the like from the memory 12, and executes each step based on them.
  • control unit 13 first controls a power supply device (not shown) that supplies electric power to the heater 23, and heats the crucible 22 to melt the silicon raw material and the dopant in the crucible 22. A dopant-added melt MD is produced.
  • control unit 13 introduces Ar gas into the chamber 21 from the gas introduction port 33A at a predetermined flow rate, controls a vacuum pump (not shown), and discharges the gas in the chamber 21 from the gas exhaust port 33B. Thereby, the pressure in the chamber 21 is reduced, and the inside of the chamber 21 is maintained in the inert atmosphere under the reduced pressure.
  • control unit 13 controls the pull-up drive unit 52 and lowers the cable 51 to cause the seed crystal 2 to land on the dopant-added melt MD.
  • control unit 13 controls the crucible drive unit 27, rotates the crucible 22 in a predetermined direction, controls the pull-up drive unit 52, rotates the cable 51 in a predetermined direction, and pulls up the cable 51.
  • the silicon single crystal 1 is grown. Specifically, the silicon single crystal 1 is grown in the order of the neck portion 3, the shoulder portion, the straight body portion, and the tail portion.
  • control unit 13 controls the pull-up drive unit 52 to separate the tail portion of the silicon single crystal 1 from the dopant-added melt MD.
  • control unit 13 controls the pull-up drive unit 52, and while further pulling up the cable 51, cools the silicon single crystal 1 separated from the dopant-added melt MD.
  • the silicon single crystal 1 is taken out from the pull chamber 32.
  • the abnormal growth determination step S3 is a step of determining whether or not Cell growth has occurred in the taken out silicon single crystal 1.
  • a phenomenon occurs in which the silicon melt locally solidifies into a dendritic shape at the growth surface of the silicon single crystal, that is, at the solid-liquid interface where the silicon melt in the pit solidifies and crystallizes. Silicon single crystals are easily polycrystallized. Therefore, whether or not Cell growth has occurred in the silicon single crystal 1 is determined by, for example, by vertically dividing the crystal near the occurrence of dislocation, subjecting the vertically divided surface to selective etching, and then using an optical microscope. It can be judged by observing at the magnification of. At the location where Cell growth occurs, a linear polycrystal region slightly expanding in the growth direction is observed.
  • the process returns to the pulling condition setting step S1 and the production of the silicon single crystal 1 is continued.
  • the pulling condition setting step S1 the resistivity profile or the like may be recreated, or the silicon single crystal 1 may be continuously manufactured with the same profile.
  • the production of the silicon single crystal 1 may be continued without replacing the crucible 22.
  • the CV value (critical CV value), which is the product of the dopant concentration C at the time when Cell growth occurs and the pulling speed V, is calculated, and the critical CV is connected by connecting a plurality of critical CV values with a line.
  • the "time point” here has the literal meaning of "at that time”.
  • the "time point” can be expressed by the solidification rate. For example, when Cell growth occurs at a solidification rate of X%, the calculated critical CV value is the critical CV value at the time of solidification rate of X%.
  • the time point at which Cell growth occurred means the time point at which the crystal site where Cell growth occurred was a solid-liquid interface where the melt in the pit solidified and crystallized during crystal growth, and was defined as the critical CV value.
  • a plurality of critical CV values are calculated in the length direction of the silicon single crystal 1. The number of critical CV values to be calculated can be appropriately changed according to the length of the straight body portion and the position where Cell growth has occurred. Further, in the critical CV value calculation step S4, the position where Cell growth occurs is also recorded.
  • Dopant concentration C is the dopant concentration in the silicon single crystal.
  • the dopant concentration in the silicon single crystal 1 can be calculated from the resistance value of the silicon single crystal by using the relational expression between the dopant concentration in the silicon single crystal and the resistance of the silicon single crystal. As the above relational expression, an Irvin curve, an ASTM standard F723, or the like can be adopted.
  • the resistivity in the silicon single crystal 1 is measured in an ingot state before the outer circumference of the taken out silicon single crystal 1 is ground and the block is divided.
  • the resistivity in the silicon single crystal 1 may be measured in a block state after the ingot is divided into blocks, or a sample may be cut out and measured.
  • a method for measuring the resistivity for example, a four-probe method can be used.
  • the dopant concentration C can be calculated as 7.4 ⁇ 10 19 atoms / cm 3 .
  • an example of obtaining the dopant concentration C constituting the critical CV value will be described.
  • the dopant concentration C that constitutes the critical CV value first, a sample is cut out from the crystal, the resistance is measured at the location where Cell growth occurs by the 4-probe method, and the impurity concentration in the crystal and the resistance of the crystal are measured. Calculated from the measured resistance using the relational expression.
  • the method for obtaining the dopant concentration C in the silicon single crystal is not limited to this, and for example, if it can be measured directly from the silicon single crystal 1, it may be measured directly. Further, the dopant concentration C is not limited to the dopant concentration in the silicon single crystal 1, and may refer to the dopant concentration in the dopant-added melt MD.
  • the pulling speed V can be calculated from the pulling speed profile.
  • the pulling speed V is not limited to the calculation from the pulling speed profile, and the actually measured pulling speed may be used. In the case of actual measurement, the pulling speed may be a momentary speed or an average value including the time before and after. Therefore, the pulling speed V constituting the critical CV value can be obtained by grasping the pulling speed at the time when Cell growth occurs from the pulling speed profile or the pulling speed data recorded at the time of crystal growth.
  • FIG. 5 is an example of a graph in which CV values are plotted with the horizontal axis as the solidification rate (%) and the vertical axis as the CV value.
  • the critical CV value profile is shown by the solid line.
  • the critical CV value shown by the solid line is the CV value when Cell growth occurs. In the example shown in FIG. 5, it can be seen that the critical CV value gradually decreases from 6.5 ⁇ 10 19 .
  • the target CV value profile creation step S5 creates a target CV value profile using a plurality of target CV values (target CV values) that do not exceed the plurality of critical CV values calculated in the critical CV value calculation step S4. It is a process to do. Specifically, a target CV value profile is planned so that the CV value becomes smaller than the actual value of the critical CV value in which Cell growth occurs.
  • FIG. 5 shows the target CV value profile by a alternate long and short dash line.
  • the target CV value profile can be created so that the target CV value is, for example, a CV value smaller than 90% of the critical CV value in which Cell growth occurs.
  • the target CV value When the target CV value is 90% or more of the critical CV value, the CV value temporarily becomes the critical CV value when the dopant concentration fluctuates near the interface between the crystal and the melt or the crystal growth rate fluctuates. When it reaches, Cell growth of a single crystal may occur and dislocation may occur. On the contrary, when the dopant concentration does not fluctuate near the interface between the crystal and the melt and the crystal growth rate does not fluctuate, the target CV value can be 90% or more of the critical CV value.
  • the target CV value profile is preferably a CV value such that the target CV value constituting the target CV value profile is 50% or more of the critical CV value. If the target CV value is less than 50% of the critical CV value, the productivity is significantly lowered, for example, when the pulling speed V is adjusted, which is not preferable.
  • the target CV value profile is more preferably a CV value such that the target CV value is 80% or more of the critical CV value.
  • the target CV value profile is an example, and may be a target CV value profile composed of a smaller CV value with an emphasis on suppressing the occurrence of Cell growth.
  • the inventors examined a method for predicting the critical point of Cell growth generation in order to suppress the generation of Cell growth when the silicon single crystal 1 was pulled up. Then, as a method for predicting the critical point of the occurrence of Cell growth, a method using the critical CV value at the time of the occurrence of Cell growth as an index was found. That is, considering that the critical CV value is an index for setting the pulling condition for suppressing the occurrence of Cell growth, at least one of the pulling speed profile and the resistivity profile may be reset using a plurality of critical CV values. I thought.
  • a modified pull-up speed profile composed of the pull-up speed V corresponding to the target CV value profile created in the target CV value profile creation step S5 is created.
  • the resistivity profile is the same as the resistivity profile created in the resistivity profile creation step S1A, while the pulling speed V is reduced in order to correspond to the target CV value smaller than the critical CV value. Create a speed profile.
  • the target CV value at a position with a solidification rate of 20% is 5 ⁇ 10 19
  • the dopant concentration C based on the resistivity at that position is 7.4 ⁇ 10.
  • the pulling speed can be calculated as 0.68 mm / min.
  • FIG. 4 shows an example of the modified pull-up speed profile modified based on the target CV value profile by the alternate long and short dash line.
  • the resistivity profile does not necessarily have to be the same as the resistivity profile created in the resistivity profile creation step S1A, and may be modified based on the actual results in order to suppress the occurrence of Cell growth. That is, in the pulling condition resetting step S6, a modified resistivity profile configured by the resistivity corresponding to the target CV value profile may be created. In other words, in this embodiment, the modified pull-up speed profile is created based on the target CV value profile in the pull-up condition resetting step S6, but the present invention is not limited to this, and the target CV is created in the pull-up condition resetting step S6.
  • the resistivity profile may be modified based on the value profile.
  • the dopant concentration C is corrected by modifying the target CV value profile. That is, at least one of the dopant concentration C and the pulling speed V may be controlled so that the CV value is lower than the critical CV value.
  • the silicon single crystal is pulled up by the same method as in the single crystal growing step S2.
  • the temperature gradient G of the melt under the solid-liquid interface needs to be referred to more quickly than the conventional method. Raising conditions can be set.
  • the raising condition can be set without increasing the resistivity of the silicon single crystal 1.
  • the dopant concentration C constituting the CV value can be calculated from the resistance value of the silicon single crystal 1 and the Irvine curve, it is possible to calculate the pulling speed V more accurately from the CV value, and the pulling speed V may be lowered too much. do not have. As a result, it is possible to suppress an increase in the resistivity of the silicon single crystal due to the pulling speed V being lowered too much.
  • the resistivity profile and the like are created in correspondence with the solidification rate of the silicon single crystal, but the present invention is not limited to this.
  • it may correspond to the position in the longitudinal direction of the silicon single crystal, or the start position of the straight body portion may be set to 0% and the end position of the straight body portion may be set to 100%.
  • the product of the electrical resistivity and the pulling speed may be used instead of the CV value which is the product of the dopant concentration C and the pulling speed V. Included in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

シリコン融液にドーパントが添加されたドーパント添加融液から、チョクラルスキー法によりシリコン単結晶を引き上げて成長させるシリコン単結晶の育成方法であって、シリコン単結晶に異常成長が発生した時点のドーパント濃度Cと引き上げ速度Vの積である臨界CV値を算出し、ドーパント濃度Cと引き上げ速度Vの積であるCV値が臨界CV値を下回るように、ドーパント濃度Cと引き上げ速度Vの少なくとも一方を制御してシリコン単結晶を育成するシリコン単結晶の育成方法を提供する。

Description

シリコン単結晶の育成方法
 本発明は、シリコン単結晶の育成方法に関する。
 従来、チョクラルスキー法(Czochralski method、以下「CZ法」と略す。)を用いてシリコン単結晶を育成する際、シリコン融液に赤リン(P)、ヒ素(As)、アンチモン(Sb)などの揮発性のドーパントを高濃度に添加することにより、低い電気抵抗率のシリコン単結晶を育成する方法が知られている(例えば、特許文献1参照。)。
 しかし、このような方法でシリコン単結晶を製造する場合、ドーパントを大量にシリコン融液内に投入することにより、シリコン融液の凝固点と、シリコン融液にドーパントが添加されたドーパント添加融液の凝固点との差である凝固点降下度が非常に大きくなり、組成的過冷却(constitutional undercooling)が生ずることがある。
 組成的過冷却の発生条件は、以下の数式(1)のように定式化されている。
Figure JPOXMLDOC01-appb-M000001
G:固液界面化下の融液の温度勾配(K/mm)V:引き上げ速度(mm/分)m:凝固点降下度(K・cm/atoms)C:ドーパント濃度D:拡散係数(cm/秒)k:偏析係数
 すなわち、数式(1)において、右辺の値が左辺の値以上になると、組成的過冷却が発生する。
 組成的過冷却が生じると、固液界面よりも固液界面から離れた領域の方がより過冷されていることになり、凝固速度もこの領域の方が速い。そのような状態で固液界面にわずかの凹凸ができた場合、凸の部分の方が速く結晶成長することになり、わずかな凹凸が増幅されてCell成長などの異常成長が発生してしまう。異常成長が発生すると、単結晶が有転位化してウェーハ製品を得ることが出来なくなる。
 従来、Cell成長の発生を抑制するために、数式(1)の左辺であるG/V(固液界面化下の融液の温度勾配Gを引き上げ速度Vで除した値)を算出することによって、Cell成長発生の臨界点を議論している。すなわち、Cell成長が発生した場合、G/Vを大きくする対策を行っている。具体的には、異常成長の発生を抑制するために、固液界面化下の融液の温度勾配Gを算出するとともに、引き上げ速度Vを小さくする引き上げ条件を再設定していた。
特開2012-1408号公報
 しかしながら、固液界面化下の融液の温度勾配Gの算出には固液界面形状の実測データが必要であり、改善条件の検討に時間を要する。
 また、特許文献1には、有転位化を抑制するために、引き上げ速度Vを遅くするように、臨界引き上げ速度を決定する技術が開示されているが、引き上げ速度Vを下げ過ぎるとシリコン単結晶の電気抵抗率が上昇してしまうという課題があった。
 本発明は、異常成長の発生を抑制する引き上げ条件を設定する際に、より迅速に、かつ、シリコン単結晶の電気抵抗率(以下、単に抵抗率と称す)を上昇させることなく、引き上げ条件を設定することができるシリコン単結晶の育成方法を提供することを目的とする。
 本発明では、異常成長の発生を抑制する引き上げ条件を設定する際に、ドーパント濃度Cと引き上げ速度Vの積であるCV値を成長条件を決定する際の指標とした。当該CV値を成長条件を決定する際の指標とした理由(メカニズム)について説明する。
 上述したように、組成的過冷却の発生条件式は、数式(1)のように定式化されている。数式(1)の両辺に引き上げ速度Vを乗ずることによって、以下の数式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 数式(2)の右辺のドーパント濃度Cと引き上げ速度V以外の項(m,D,k)は定数であるため、組成的過冷却の発生が引き上げ速度Vとドーパント濃度Cの積(CV値)のみで検討することが可能となる。
 従来は、数式(1)の左辺であるG/Vを算出することによって、Cell成長発生の臨界点について検討されていた。固液界面化下の融液の温度勾配であるGの算出には固液界面形状の実測データが必要であったが、CV値を指標とすることによって、より迅速かつ簡便に定量的なCell成長発生臨界点の議論が可能となる。
 本発明のシリコン単結晶の育成方法は、シリコン融液にドーパントが添加されたドーパント添加融液から、チョクラルスキー法によりシリコン単結晶を引き上げて成長させるシリコン単結晶の育成方法であって、前記シリコン単結晶に異常成長が発生した時点のドーパント濃度Cと引き上げ速度Vの積である臨界CV値を算出し、前記時点におけるドーパント濃度Cと引き上げ速度Vの積であるCV値が前記臨界CV値を下回るように、ドーパント濃度Cと引き上げ速度Vの少なくとも一方を制御してシリコン単結晶を育成する。
 上記シリコン単結晶の育成方法において、前記臨界CV値を算出する臨界CV値算出工程と、前記臨界CV値算出工程にて算出された前記臨界CV値を下回るように、引き上げ速度プロファイルと結晶軸方向の抵抗率プロファイルの少なくとも一方を再設定する引き上げ条件再設定工程と、を有してよい。
 上記シリコン単結晶の育成方法において、前記臨界CV値算出工程の後、かつ、前記引き上げ条件再設定工程の前に、前記臨界CV値算出工程にて算出され、前記時点において臨界CV値を超えない目標CV値を用いて、目標CV値プロファイルを作成する目標CV値プロファイル作成工程を有してよい。
 上記シリコン単結晶の育成方法において、前記引き上げ条件再設定工程では、前記目標CV値プロファイルに対応する引き上げ速度により構成された修正引き上げ速度プロファイルを作成してよい。
 上記シリコン単結晶の育成方法において、前記引き上げ条件再設定工程では、前記目標CV値プロファイルに対応する抵抗率により構成された修正抵抗率プロファイルを作成してよい。
 上記シリコン単結晶の育成方法において、前記ドーパント濃度Cは前記シリコン単結晶中のドーパント濃度であり、前記シリコン単結晶中のドーパント濃度は、前記シリコン単結晶中のドーパント濃度と前記シリコン単結晶の抵抗率との関係式を用いて前記シリコン単結晶の抵抗値から算出されてよい。
 前記関係式は、アービンカーブであってよい。
 本発明によれば、CV値を引き上げ条件を設定する際の指標とすることによって、より迅速に、かつ、シリコン単結晶の抵抗率を上昇させることなく、引き上げ条件を設定することができる。
本発明の実施形態の半導体結晶製造装置の構成の一例を示す概念図である。 本発明の実施形態のシリコン単結晶の育成方法を説明するフローチャートである。 本発明の実施形態に係るシリコン単結晶の育成方法によりシリコン単結晶を製造する際に作成される抵抗率プロファイルの一例である。 本発明の実施形態に係るシリコン単結晶の育成方法によりシリコン単結晶を製造する際に作成される引き上げ速度プロファイルの一例である。 CV値をプロットしたグラフの一例である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 本発明のシリコン単結晶の育成方法は、シリコン単結晶の引き上げ中における異常成長の発生を抑制するべく、異常成長が発生した際の実績に基づいて、引き上げ条件を再設定することを特徴としている。
 具体的には、上記数式(1)のドーパント濃度Cと引き上げ速度Vのパラメータに着目し、ドーパント濃度Cと引き上げ速度Vの積であるCV値を、引き上げ条件を設定する際の指標にすることを特徴としている。
 また、本発明は、ドーパントが赤リンである場合は、抵抗率1.3mΩ・cm以下、ドーパントがヒ素である場合は、抵抗率2.6mΩ・cm以下、ドーパントがアンチモンである場合は、抵抗率20mΩ・cm以下、ドーパントがボロンである場合は、抵抗率1.3mΩ・cm以下の、非常に低抵抗のシリコン単結晶育成に好適である。
〔単結晶育成装置〕
 図1は、本発明の実施形態に係るシリコン単結晶の育成方法を適用した半導体結晶製造装置10の構成の一例を示す概念図である。半導体結晶製造装置10は、CZ法を用いてシリコン単結晶1を製造する。
 半導体結晶製造装置10は、装置本体11と、メモリ12と、制御部13とを備えている。装置本体11は、チャンバ21と、坩堝22と、ヒータ23と、引き上げ部24と、熱遮蔽体25と、断熱材26と、坩堝駆動部27と、とを備えている。坩堝22には、シリコン融液にドーパントが添加されたドーパント添加融液MDが投入される。
 チャンバ21は、メインチャンバ31と、このメインチャンバ31の上部に接続されたプルチャンバ32とを備えている。プルチャンバ32の上部には、アルゴン(Ar)ガスなどの不活性ガスをチャンバ21内に導入するガス導入口33Aが設けられている。メインチャンバ31の下部には、図示しない真空ポンプの駆動により、チャンバ21内の気体を排出するガス排気口33Bが設けられている。
 ガス導入口33Aからチャンバ21内に導入された不活性ガスは、育成中のシリコン単結晶1と熱遮蔽体25との間を下降し、熱遮蔽体25の下端とドーパント添加融液MDの液面との隙間を経た後、熱遮蔽体25と坩堝22の内壁との間、さらに坩堝22の外側に向けて流れ、その後に坩堝22の外側を下降し、ガス排気口33Bから排出される。
 坩堝22は、メインチャンバ31内に配置され、ドーパント添加融液MDを貯留する。坩堝22は、支持坩堝41と、支持坩堝41に収容された石英坩堝42と、支持坩堝41と石英坩堝42との間に挿入された黒鉛シート43とを備えている。なお、黒鉛シート43は設けなくても良い。
 支持坩堝41は、例えば、黒鉛又は炭素繊維強化型炭素から構成されている。支持坩堝41は、例えば、炭化シリコン(SiC)化表面処理又は熱分解炭素被覆処理が施されていても良い。石英坩堝42は、二酸化シリコン(SiO)を主成分とする。黒鉛シート43は、例えば、膨張黒鉛から構成されている。
 ヒータ23は、坩堝22の外側に所定間隔を隔てて配置され、坩堝22内のドーパント添加融液MDを加熱する。引き上げ部24は、一端に種結晶2が取り付けられるケーブル51と、このケーブル51を昇降及び回転させる引き上げ駆動部52とを備えている。
 熱遮蔽体25は、少なくとも表面がカーボン材で構成されている。熱遮蔽体25は、シリコン単結晶1を製造する際にシリコン単結晶1を囲むように設けられる。熱遮蔽体25は、育成中のシリコン単結晶1に対して、坩堝22内のドーパント添加融液MDやヒータ23、坩堝22の側壁からの輻射熱を遮断するとともに、結晶成長界面である固液界面の近傍に対しては、外部への熱拡散を抑制し、シリコン単結晶1の中心部及び外周部の引き上げ軸方向の温度勾配を制御する役割を担う。
 断熱材26は、ほぼ円筒状を呈し、カーボン部材(例えば、グラファイト)から構成されている。断熱材26は、ヒータ23の外側に所定間隔を隔てて配置されている。坩堝駆動部27は、坩堝22を下方から支持する支持軸53を備え、坩堝22を所定の速度で回転及び昇降させる。
 メモリ12は、チャンバ21内のArガスのガス流量や炉内圧、ヒータ23に供給する電力、坩堝22やシリコン単結晶1の回転数、坩堝22の位置など、シリコン単結晶1の製造に必要な各種情報を記憶している。また、メモリ12は、例えば、抵抗率プロファイル、引き上げ速度プロファイルを記憶する。
 制御部13は、メモリ12に記憶された各種情報や、作業者の操作に基づいて、各部を制御してシリコン単結晶1を製造する。
〔シリコン単結晶の育成方法〕
 次に、本発明の実施形態のシリコン単結晶の育成方法の一例について、図2に示すフローチャートを参照して説明する。本実施形態では、製品直径が200mmであるシリコン単結晶1を製造する場合について例示するが、製品直径はこれに限ることはない。
 また、添加する揮発性のドーパントとしては、例えば、赤リン(P)、ヒ素(As)およびアンチモン(Sb)が挙げられるが、これに限ることはない。
 図2のフローチャートに示すように、シリコン単結晶の育成方法は、引き上げ条件設定工程S1と、単結晶育成工程S2と、異常成長判定工程S3と、臨界CV値算出工程S4と、目標CV値プロファイル作成工程S5と、引き上げ条件再設定工程S6と、修正単結晶育成工程S7と、を有し、上記順番で工程を実行する。
 引き上げ条件設定工程S1は、抵抗率プロファイル作成工程S1Aと、引き上げ速度プロファイル作成工程S1Bと、を有する。引き上げ条件は、引き上げ速度の計画値である引き上げ速度プロファイルと、結晶軸方向の抵抗率の計画値である抵抗率プロファイルのうち、少なくとも一方を含む。
 また、炉内圧、あるいは炉内に流す不活性ガス流量の変更によって結晶軸方向の抵抗率分布が変化する場合は、炉内圧あるいは不活性ガス流量の変更は抵抗率プロファイルの変更に含まれる。
 抵抗率プロファイル作成工程S1Aは、狙い抵抗値に基づいて抵抗率プロファイルを作成する工程である。
 図3は、本実施形態に係るシリコン単結晶の育成方法によりシリコン単結晶を製造する際に作成される抵抗率プロファイルの一例である。図3の横軸は固化率(%)であり、縦軸は抵抗率である。固化率とは、坩堝へ投入されたシリコン原料の量に対するシリコン単結晶の引き上げ重量の割合をいう。
 抵抗率プロファイルは、シリコン単結晶1の直胴部における狙いの抵抗値に基づいて作成される。シリコン単結晶1の直胴部における狙いの抵抗率は、ドーパントを赤リンとした場合、0.5mΩ・cm以上1.3mΩ・cm以下とすることができる。このような、抵抗率のシリコン単結晶を超低抵抗率シリコン単結晶と呼ぶ。
 抵抗率プロファイルは、例えば、シリコン単結晶1の引き上げを開始する際のドーパント添加融液MD内のドーパント濃度、ドーパント添加融液MDからドーパントが蒸発することによるドーパント添加融液MD内のドーパント濃度の低下、シリコン単結晶1の引き上げ進行に伴う偏析現象によるドーパント添加融液MD内のドーパント濃度の上昇を考慮して、シリコン単結晶1の引き上げに先立って、計算により求めることができる。
 また、前記計算によって求められた抵抗率プロファイルに基づいて引き上げられたシリコン単結晶1の長手方向の抵抗率分布を測定し、その測定結果を抵抗率プロファイルの計算にフィードバックさせて、抵抗率プロファイルの計算精度を向上させることができる。
 引き上げ速度プロファイル作成工程S1Bは、抵抗率プロファイル作成工程S1Aで作成された抵抗率プロファイルに基づいて引き上げ速度プロファイルを作成する工程である。
 引き上げ速度プロファイルは、シリコン単結晶1の直胴部において得られるべき目標引上げ速度の情報を含む。図4は、本実施形態に係るシリコン単結晶の育成方法によりシリコン単結晶を製造する際に作成される引き上げ速度プロファイルの一例である。図4の横軸は固化率(%)であり、縦軸は引き上げ速度である。
 引き上げ速度プロファイルは、直胴部の長さに対して、例えば、8点の引き上げ速度を設定して作成することができる。図4に示す例では、固化率40%までは、引き上げ速度を比較的速く設定し、直胴部が長くなるにしたがって(固化率が大きくなるにしたがって)引き上げ速度が徐々に遅くなるように設定されている。
 引き上げ条件設定工程S1では、抵抗率プロファイル、引き上げ速度プロファイルの作成とともに、シリコン単結晶1の製造条件、例えば、シリコン単結晶1内の酸素濃度、Arガスのガス流量、炉内圧、坩堝22やシリコン単結晶1の回転数、坩堝22の位置などの製造条件を設定する。
 制御部13は、設定した引き上げ条件などをメモリ12に記憶する。制御部13は、メモリ12から、引き上げ速度プロファイルなどを読み出し、それらに基づいて各工程を実行する。
 単結晶育成工程S2では、制御部13は、まず、ヒータ23に電力を供給する図示しない電源装置を制御し、坩堝22を加熱することにより、当該坩堝22内のシリコン原料及びドーパントを融解させ、ドーパント添加融液MDを生成する。
 次に、制御部13は、ガス導入口33Aからチャンバ21内にArガスを所定の流量で導入するとともに、図示しない真空ポンプを制御し、ガス排気口33Bからチャンバ21内の気体を排出することにより、チャンバ21内の圧力を減圧して、チャンバ21内を減圧下の不活性雰囲気に維持する。
 次に、制御部13は、引き上げ駆動部52を制御し、ケーブル51を下降させることにより、種結晶2をドーパント添加融液MDに着液させる。
 次に、制御部13は、坩堝駆動部27を制御し、坩堝22を所定の方向に回転させるとともに、引き上げ駆動部52を制御し、ケーブル51を所定の方向に回転させつつ、ケーブル51を引き上げることにより、シリコン単結晶1を育成する。具体的には、ネック部3、肩部、直胴部、テール部の順で、シリコン単結晶1を育成する。
 次に、制御部13は、引き上げ駆動部52を制御し、シリコン単結晶1のテール部をドーパント添加融液MDから切り離す。次いで、制御部13は、引き上げ駆動部52を制御し、ケーブル51をさらに引き上げつつ、ドーパント添加融液MDから切り離されたシリコン単結晶1を冷却する。
 次に、冷却されたシリコン単結晶1がプルチャンバ32に収容されたことを確認した後、プルチャンバ32からシリコン単結晶1を取り出す。
 異常成長判定工程S3は、取り出されたシリコン単結晶1にCell成長が発生しているか否かを判定する工程である。Cell成長が生じた箇所では、シリコン単結晶の成長面、すなわち坩堝内のシリコン融液が凝固して結晶化する固液界面において局所的にシリコン融液が樹状に凝固する現象が生じて、シリコン単結晶が容易に多結晶化する。
 従って、シリコン単結晶1にCell成長が発生しているか否かは、例えば、有転位化発生付近の結晶を縦割りして、縦割りした面に選択エッチングを施した後、光学顕微鏡により50倍の倍率で観察することによって判定することができる。Cell成長が生じた箇所では、略成長方向にやや拡がる線状の多結晶領域が観察される。
 Cell成長が発生していない場合(No)、引き上げ条件設定工程S1に戻って、シリコン単結晶1の製造を続行する。この際、引き上げ条件設定工程S1において、抵抗率プロファイルなどを作成し直してもよいし、同じプロファイルで引き続きシリコン単結晶1を製造し続けてもよい。また、坩堝22は交換することが好ましいが、坩堝22を交換することなくシリコン単結晶1の製造を続行してもよい。
 Cell成長が発生した場合(Yes)、以下に説明する臨界CV値算出工程S4を実行する。
 臨界CV値算出工程S4は、Cell成長が発生した時点のドーパント濃度Cと引き上げ速度Vの積であるCV値(臨界CV値)を算出し、複数の臨界CV値を線で結ぶことにより臨界CV値プロファイルを作成する工程である。なお、ここで言う「時点」とは、「その時」という文字通りの意味である。また、「時点」を固化率で表すこともできる。例えば、固化率X%でCell成長が発生した場合、算出される臨界CV値は固化率X%時点における臨界CV値である。
 ここで、Cell成長が発生した時点とは、Cell成長が発生した結晶部位が、結晶育成時に坩堝内融液が凝固して結晶化する固液界面であった時点を意味し、臨界CV値とは、Cell成長が発生した結晶部位が、結晶育成時に坩堝内融液が凝固して結晶化する固液界面であった時点におけるドーパント濃度Cおよび引き上げ速度Vの積である。
 臨界CV値は、シリコン単結晶1の長さ方向で複数算出する。算出する臨界CV値の数は、直胴部の長さやCell成長が発生した位置に応じて適宜変更することができる。また、臨界CV値算出工程S4では、Cell成長が発生した位置についても記録を行う。
 ドーパント濃度Cはシリコン単結晶中のドーパント濃度である。シリコン単結晶1中のドーパント濃度は、シリコン単結晶中のドーパント濃度とシリコン単結晶の抵抗率との関係式を用いてシリコン単結晶の抵抗値から算出することができる。上記関係式としては、アービンカーブ(Irvin curve)や、ASTM規格のF723などを採用することができる。
 シリコン単結晶1中の抵抗率は、取り出されたシリコン単結晶1の外周研削を実施し、ブロック分断を行う前に、インゴットの状態で測定する。あるいは、シリコン単結晶1中の抵抗率は、インゴットのブロック分断を行った後にブロックの状態で測定しても良いし、サンプルを切り出して測定しても良い。抵抗率の測定方法としては、例えば、4探針法を用いることができる。
 例えば、ドーパントが赤リンであり、抵抗率が1mΩ・cmである場合、ドーパント濃度Cは7.4×1019atoms/cmと算出することができる。
 具体的に、臨界CV値を構成するドーパント濃度Cを求める一例を説明する。臨界CV値を構成するドーパント濃度Cを求めるには、先ず結晶からサンプルを切り出してCell成長が発生した箇所を4探針法で抵抗率測定し、結晶中の不純物濃度と結晶の抵抗率との関係式を用いて、測定された抵抗率から算出する。
 シリコン単結晶中のドーパント濃度Cの取得方法はこれに限ることはなく、例えば、直接的にシリコン単結晶1から測定できれば、直接的に測定してもよい。また、ドーパント濃度Cは、シリコン単結晶1中のドーパント濃度に限らず、ドーパント添加融液MD中のドーパント濃度を参照してもよい。
 引き上げ速度Vは、引き上げ速度プロファイルから算出することができる。
 引き上げ速度Vは、引き上げ速度プロファイルからの算出に限ることはなく、実測した引き上げ速度を用いてもよい。実測する場合、引き上げ速度は、瞬間的な速度であってもよいし、前後の時間も含めた平均値であってもよい。従って、臨界CV値を構成する引き上げ速度Vについては、引き上げ速度プロファイルあるいは結晶の育成時に記録された引上げ速度のデータからCell成長が発生した時点の引き上げ速度を把握することにより求めることができる。
 図5は、横軸を固化率(%)、縦軸をCV値として、CV値をプロットしたグラフの一例である。臨界CV値プロファイルは実線で示す。実線で示された臨界CV値は、Cell成長が発生した際のCV値である。
 図5に示される例では、臨界CV値は、6.5×1019から徐々に減少していることがわかる。
 目標CV値プロファイル作成工程S5は、臨界CV値算出工程S4にて算出された複数の臨界CV値を超えない複数の目標CV値(目標とするCV値)を用いて、目標CV値プロファイルを作成する工程である。具体的には、Cell成長が発生した臨界CV値の実績に対して、CV値がより小さくなるような目標CV値プロファイルを計画する。図5に一点鎖線で目標CV値プロファイルを示す。
 より具体的には、目標CV値プロファイルは、例えば、目標CV値がCell成長が発生した臨界CV値の90%よりも小さくなるようなCV値となるように作成することができる。
 目標CV値を臨界CV値の90%以上とすると、結晶と融液との界面付近におけるドーパント濃度の変動や、結晶成長速度の変動があった場合に、一時的にCV値が臨界CV値に達して単結晶のCell成長が生じて有転位化が生じる恐れがある。逆に、結晶と融液との界面付近におけるドーパント濃度の変動がなく結晶成長速度の変動もない場合は、目標CV値を臨界CV値の90%以上とすることができる。
 目標CV値プロファイルは、目標CV値プロファイルを構成する目標CV値を、臨界CV値の50%以上となるようなCV値とすることが好ましい。目標CV値が臨界CV値の50%を下回ると、例えば引き上げ速度Vを調整した場合に生産性が著しく低くなり、好ましくない。目標CV値プロファイルは、目標CV値を、臨界CV値の80%以上となるようなCV値とすることがより好ましい。
 例えば、Cell成長が発生した位置が固化率57%であり、当該位置におけるCV値が6×1019であった場合、当該位置のCV値が5.4×1019以下となるように、目標CV値プロファイルを検討する。なお、図5に示す例では、固化率57%以降は、参照すべきCV値が記録されていないが、作業者は、固化率57%までの傾向に基づいて目標CV値を設定すればよい。
 上記した目標CV値プロファイルは一例であり、Cell成長の発生の抑制を重視して、更に小さなCV値からなる目標CV値プロファイルとしてもよい。
 発明者らは、シリコン単結晶1の引き上げの際に、Cell成長の発生を抑制するために、Cell成長発生の臨界点を予測する方法について検討した。そして、Cell成長発生の臨界点を予測する手法として、Cell成長が発生した際の臨界CV値を指標とする方法を見出した。すなわち、臨界CV値が、Cell成長の発生を抑制する引き上げ条件を設定する際の指標になると考え、複数の臨界CV値を用いて引き上げ速度プロファイルと抵抗率プロファイルの少なくとも一方を再設定すればよいと考えた。
 具体的には、Cell成長が発生した際の臨界CV値よりも高くならないようなCV値(目標CV値)を検討し、この目標CV値を満たすような引き上げ条件を設定することによって、Cell成長の発生を抑制することができると考えた。本発明のシリコン単結晶の育成方法において、臨界CV値を引き上げ条件を決定する際の指標とした理由は、上述した通りである。
 引き上げ条件再設定工程S6では、目標CV値プロファイル作成工程S5で作成された目標CV値プロファイルに対応する引き上げ速度Vにより構成された、修正引き上げ速度プロファイルを作成する。具体的には、抵抗率プロファイルは抵抗率プロファイル作成工程S1Aで作成した抵抗率プロファイルと同様にする一方で、臨界CV値より小さい目標CV値に対応させるために、引き上げ速度Vを小さくした修正引き上げ速度プロファイルを作成する。
 例えば、固化率20%の位置における目標CV値が5×1019であり、当該位置における抵抗率(抵抗率プロファイルを参照することにより得られる抵抗率)に基づくドーパント濃度Cが7.4×1019atoms/cmであった場合、引き上げ速度は0.68mm/分と算出することができる。図4に一点鎖線で目標CV値プロファイルに基づいて修正された修正引き上げ速度プロファイルの一例を示す。
 なお、抵抗率プロファイルは、必ずしも抵抗率プロファイル作成工程S1Aで作成した抵抗率プロファイルと同じにする必要はなく、Cell成長の発生を抑制すべく、発生した実績に基いて修正を行ってもよい。すなわち、引き上げ条件再設定工程S6では、目標CV値プロファイルに対応する抵抗率により構成された修正抵抗率プロファイルを作成してもよい。
 換言すれば、この実施形態では、引き上げ条件再設定工程S6にて、目標CV値プロファイルに基づいて修正引き上げ速度プロファイルを作成したが、これに限らず、引き上げ条件再設定工程S6にて、目標CV値プロファイルに基づいて抵抗率プロファイルを修正してもよい。ドーパント濃度Cと電気抵抗率とは1対1の関係であるので、目標CV値プロファイルを修正することによりドーパント濃度Cが修正される。
 すなわち、CV値が臨界CV値を下回るように、ドーパント濃度Cと引き上げ速度Vの少なくとも一方を制御すればよい。
 修正単結晶育成工程S7では、単結晶育成工程S2と同様の方法で、シリコン単結晶の引き上げを行う。
 上記実施形態によれば、CV値を引き上げ条件を設定する際の指標とすることによって、固液界面下の融液の温度勾配Gを参照する必要がある従来の方法と比較してより迅速に引き上げ条件を設定することができる。
 また、目標CV値を算出し、当該目標CV値を満たすような引き上げ条件を設定することによって、シリコン単結晶1の抵抗率を上昇させることなく、引き上げ条件を設定することができる。
 また、CV値を構成するドーパント濃度Cはシリコン単結晶1の抵抗値およびアービンカーブなどにより算出できるため、CV値からより正確な引き上げ速度Vの算出が可能となり、引き上げ速度Vを下げ過ぎることがない。これにより、引き上げ速度Vが下がりすぎることによる、シリコン単結晶の抵抗率の上昇を抑制することができる。
 なお、上記実施形態では、抵抗率プロファイルなどをシリコン単結晶の固化率に対応させて作成したが、これに限ることはない。例えば、シリコン単結晶の長手方向の位置に対応させたり、直胴部の開始位置を0%、直胴部の終端位置を100%として対応させたりしてよい。
 また、ドーパント濃度Cと電気抵抗率とは1対1の関係であるので、ドーパント濃度Cと引き上げ速度Vの積であるCV値の代わりに、電気抵抗率と引き上げ速度の積を用いた場合も本発明に含まれる。
 1…シリコン単結晶、10…半導体結晶製造装置、11…装置本体、12…メモリ、13…制御部、21…チャンバ、22…坩堝、23…ヒータ、24…引き上げ部、25…熱遮蔽体、26…断熱材、27…坩堝駆動部、33A…ガス導入口、33B…ガス排気口、C…ドーパント濃度、V…引き上げ速度、MDドーパント添加融液、S1…引き上げ条件設定工程、S2…単結晶育成工程、S3…異常成長判定工程、S4…臨界CV値算出工程、S5…目標CV値プロファイル作成工程、S6…引き上げ条件再設定工程、S7…修正単結晶育成工程。

Claims (6)

  1.  シリコン融液にドーパントが添加されたドーパント添加融液から、チョクラルスキー法によりシリコン単結晶を引き上げて成長させるシリコン単結晶の育成方法であって、
     前記シリコン単結晶に異常成長が発生した時点のドーパント濃度Cと引き上げ速度Vの積である臨界CV値を算出し、前記時点におけるドーパント濃度Cと引き上げ速度Vの積であるCV値が前記臨界CV値を下回るように、ドーパント濃度Cと引き上げ速度Vの少なくとも一方を制御してシリコン単結晶を育成するシリコン単結晶の育成方法。
  2.  前記臨界CV値を算出する臨界CV値算出工程と、
     前記臨界CV値算出工程にて算出された前記臨界CV値を下回るように、引き上げ速度プロファイルと結晶軸方向の抵抗率プロファイルの少なくとも一方を再設定する引き上げ条件再設定工程と、を有する請求項1に記載のシリコン単結晶の育成方法。
  3.  前記臨界CV値算出工程の後、かつ、前記引き上げ条件再設定工程の前に、前記臨界CV値算出工程にて算出され、前記時点において臨界CV値を超えない目標CV値を用いて、目標CV値プロファイルを作成する目標CV値プロファイル作成工程を有する請求項2に記載のシリコン単結晶の育成方法。
  4.  前記引き上げ条件再設定工程では、前記目標CV値プロファイルに対応する引き上げ速度により構成された修正引き上げ速度プロファイルを作成する請求項3に記載のシリコン単結晶の育成方法。
  5.  前記引き上げ条件再設定工程では、前記目標CV値プロファイルに対応する抵抗率により構成された修正抵抗率プロファイルを作成する請求項3または請求項4に記載のシリコン単結晶の育成方法。
  6.  前記ドーパント濃度Cは前記シリコン単結晶中のドーパント濃度であり、前記シリコン単結晶中のドーパント濃度は、前記シリコン単結晶中のドーパント濃度と前記シリコン単結晶の抵抗率との関係式を用いて前記シリコン単結晶の抵抗値から算出される請求項1から請求項5のいずれか一項に記載のシリコン単結晶の育成方法。
PCT/JP2021/044306 2020-12-04 2021-12-02 シリコン単結晶の育成方法 WO2022118922A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021006295.6T DE112021006295T5 (de) 2020-12-04 2021-12-02 Verfahren zur züchtung von siliziumeinkristallen
US18/265,070 US20240003044A1 (en) 2020-12-04 2021-12-02 Silicon single crystal growing method
JP2022566980A JPWO2022118922A1 (ja) 2020-12-04 2021-12-02
CN202180081277.XA CN116670338A (zh) 2020-12-04 2021-12-02 单晶硅的培育方法
KR1020237017886A KR20230092011A (ko) 2020-12-04 2021-12-02 실리콘 단결정의 육성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201978 2020-12-04
JP2020201978 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118922A1 true WO2022118922A1 (ja) 2022-06-09

Family

ID=81853328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044306 WO2022118922A1 (ja) 2020-12-04 2021-12-02 シリコン単結晶の育成方法

Country Status (6)

Country Link
US (1) US20240003044A1 (ja)
JP (1) JPWO2022118922A1 (ja)
KR (1) KR20230092011A (ja)
CN (1) CN116670338A (ja)
DE (1) DE112021006295T5 (ja)
WO (1) WO2022118922A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297167A (ja) * 2007-05-31 2008-12-11 Sumco Techxiv株式会社 シリコン単結晶の製造方法及びシリコン単結晶基板
JP2012001408A (ja) * 2010-06-18 2012-01-05 Sumco Corp シリコン単結晶の育成方法
JP2018008832A (ja) * 2016-07-11 2018-01-18 株式会社Sumco シリコンウェーハの評価方法及び製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297167A (ja) * 2007-05-31 2008-12-11 Sumco Techxiv株式会社 シリコン単結晶の製造方法及びシリコン単結晶基板
JP2012001408A (ja) * 2010-06-18 2012-01-05 Sumco Corp シリコン単結晶の育成方法
JP2018008832A (ja) * 2016-07-11 2018-01-18 株式会社Sumco シリコンウェーハの評価方法及び製造方法

Also Published As

Publication number Publication date
US20240003044A1 (en) 2024-01-04
DE112021006295T5 (de) 2023-09-21
CN116670338A (zh) 2023-08-29
KR20230092011A (ko) 2023-06-23
JPWO2022118922A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
KR102461073B1 (ko) 실리콘 단결정의 육성 방법
KR102312204B1 (ko) 저항률 제어방법 및 n형 실리콘 단결정
EP2705178B1 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
KR100555050B1 (ko) 고휘발성 이물질로 도핑한 실리콘 단결정의 제조방법
US8524002B2 (en) Silicon wafer and method for producing the same
JP4380537B2 (ja) シリコン単結晶を製造する方法
US8764900B2 (en) Apparatus and method for producing single crystals
US8840721B2 (en) Method of manufacturing silicon single crystal
JP5170061B2 (ja) 抵抗率計算プログラム及び単結晶の製造方法
TWI568897B (zh) Cultivation method of silicon single crystal
WO2022118922A1 (ja) シリコン単結晶の育成方法
JP4151474B2 (ja) 単結晶の製造方法及び単結晶
KR101029141B1 (ko) P(인)도프 실리콘 단결정의 제조방법 및 p도프 n형실리콘 단결정 웨이퍼
JP6263999B2 (ja) シリコン単結晶の育成方法
KR100665683B1 (ko) 실리콘 단결정 제조방법
TWI751028B (zh) 單晶矽的製造方法
JP7452314B2 (ja) Fz用シリコン原料結晶の製造方法及びfz用シリコン原料結晶の製造システム
JP7052645B2 (ja) 単結晶育成方法
JP6759147B2 (ja) シリコン単結晶の製造方法
KR101597207B1 (ko) 실리콘 단결정 잉곳, 그 잉곳을 제조하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566980

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237017886

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180081277.X

Country of ref document: CN

Ref document number: 18265070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021006295

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900672

Country of ref document: EP

Kind code of ref document: A1