WO2022118728A1 - 原子間力顕微鏡、制御方法、及び、プログラム - Google Patents

原子間力顕微鏡、制御方法、及び、プログラム Download PDF

Info

Publication number
WO2022118728A1
WO2022118728A1 PCT/JP2021/043162 JP2021043162W WO2022118728A1 WO 2022118728 A1 WO2022118728 A1 WO 2022118728A1 JP 2021043162 W JP2021043162 W JP 2021043162W WO 2022118728 A1 WO2022118728 A1 WO 2022118728A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
probe
scanning
cantilever
end side
Prior art date
Application number
PCT/JP2021/043162
Other languages
English (en)
French (fr)
Inventor
敏夫 安藤
真悟 福田
Original Assignee
国立大学法人金沢大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学 filed Critical 国立大学法人金沢大学
Priority to JP2022566874A priority Critical patent/JP7477211B2/ja
Publication of WO2022118728A1 publication Critical patent/WO2022118728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode

Definitions

  • the present invention relates to an atomic force microscope, a control method thereof, and a program.
  • AFM atomic force microscope
  • an object of the present invention is to provide an AFM or the like that can be applied to a wider variety of uses.
  • the atomic force microscope is a long lever, one end side in the longitudinal direction is a fixed end used to support the lever, and the longitudinal direction is used.
  • a cantilever is provided with a cantilever having a lever whose other end side is a free end, and a probe protruding downward from the lever intersecting the longitudinal direction, and a cantilever arranged below the cantilever.
  • a sample holding unit that holds the sample facing the cantilever, a driving unit that drives at least one of the cantilever and the sample holding unit to move the sample relative to the probe, and the driving unit.
  • the virtual surface is set to a predetermined direction in which the projected image extends when the line segment in the longitudinal direction is projected from the cantilever onto the virtual surface intersecting in the direction in which the probe protrudes.
  • the control unit comprises a control unit for scanning the surface of the sample with the probe, and the control unit is used in the first-direction scanning in which the sample moves relative to the other end side from the one end side.
  • the second-direction scanning in which the probe and the probe are brought close to the first distance and scanned in the first mode in which the sample moves relative to each other at the first speed, and the sample moves relative to the other end side toward the one end side.
  • the sample and the probe are moved to a second distance farther than the first distance, and are scanned in a second mode in which the sample and the probe move relative to each other at a second speed faster than the first speed.
  • control method is a long lever, one end side in the longitudinal direction is a fixed end used to support the lever, and the other end side in the longitudinal direction is a free end.
  • a cantilever including a lever and provided with a downward probe that intersects the lever in the longitudinal direction on the free end side, and a sample arranged below the cantilever and facing the cantilever.
  • the surface of the sample is used as the probe in the virtual plane with a predetermined direction as the main scanning direction, which is the direction in which the projected image extends when the cantilever is projected onto the virtual plane intersecting in the direction in which the probe protrudes.
  • a control method for an atomic force microscope having a scanning control unit, wherein the sample and the probe are subjected to a first-direction scanning in which the sample moves relative to the other end side from the one end side.
  • the sample and the probe are moved. It is scanned by a relative movement at a second speed, which is faster than the first speed and away from the second distance, which is farther than the first distance.
  • one embodiment of the present invention can also be realized as a program for causing a computer to execute the control method described above.
  • the present invention provides an atomic force microscope or the like that can be applied to a wider variety of applications.
  • FIG. 1 is a block diagram showing a configuration of an atomic force microscope according to an embodiment.
  • FIG. 2 is a schematic diagram for explaining the scanning direction of the probe of the atomic force microscope according to the embodiment.
  • FIG. 3 is a flowchart showing the operation of the atomic force microscope according to the embodiment.
  • FIG. 4 is a schematic diagram showing the handling of the offset signal of the atomic force microscope according to the embodiment.
  • FIG. 5 is a graph showing an example of measured values of various signals in the atomic force microscope according to the embodiment.
  • FIG. 6 is a diagram illustrating a first-direction scan.
  • FIG. 7 is a diagram illustrating a second-direction scan.
  • FIG. 8 is a diagram showing the concept of speeding up scanning with the atomic force microscope 10 according to the embodiment.
  • FIG. 9 is a first graph showing displacement in the X-axis direction used for scanning with an atomic force microscope in an embodiment.
  • FIG. 10 is a second graph showing displacement in the X-axis direction used for scanning with an atomic force microscope in an embodiment.
  • FIG. 11A is a diagram showing the X-axis drive signal and the displacement of the X-drive unit in scanning in the X-axis direction of the atomic force microscope according to the embodiment.
  • FIG. 11B is a second diagram showing the displacement of the X-axis drive signal and the X-drive unit in scanning in the X-axis direction of the atomic force microscope according to the embodiment.
  • FIG. 12A is a diagram showing the measurement results of actin filaments according to the examples.
  • FIG. 12A is a diagram showing the measurement results of actin filaments according to the examples.
  • FIG. 12B is a diagram showing measurement results of actin filaments according to a comparative example.
  • FIG. 12C is a graph showing the relationship between the imaging rate and the residual rate of actin filaments according to the embodiment.
  • FIG. 13A is a second diagram showing the measurement results of the actin filaments according to the examples.
  • FIG. 13B is a diagram showing measurement results of microtubules according to an embodiment.
  • FIG. 14A is a graph showing an error signal, a feedback control output, and a cantilever deflection signal during the back-and-forth scanning of the sample.
  • FIG. 14B is a graph showing an error signal, a feedback control output, and a cantilever deflection signal during the return scan of the sample.
  • FIG. 15 is a diagram illustrating the difference in the force acting at the scanning position of the cantilever.
  • FIG. 16 is a graph showing displacement in the X-axis direction used for scanning with an atomic force microscope in a modified example of the embodiment.
  • a sharply pointed probe is brought close to the sample to detect the interaction (tunnel current or interaction force, etc.) between the probe and the sample.
  • the distance between the probe and the sample (z position of the probe) is feedback-controlled so as to keep this interaction constant. Further, if the probe (or sample) is scanned in the horizontal direction (xy direction) while maintaining this feedback control, the probe (or sample) moves up and down according to the unevenness of the sample surface. If the trajectory of the vertical movement of the probe is recorded with respect to the horizontal position, an uneven image of the sample surface can be obtained.
  • Atomic force microscope is a type of SPM that detects the interaction force acting between the probe and the sample and keeps the distance between the probe and the sample constant. Control the position.
  • AFM Atomic force microscope
  • a cantilever cantilever equipped with a sharply pointed probe at the tip is used as a force detector. Normally, when the probe is brought close to the sample, an attractive interaction force due to a van der Waals force and an electrostatic force acts first. Then, when the probe is brought closer to the sample, the strong repulsive force due to the chemical interaction force exceeds these forces.
  • the Z position of the probe is feedback-controlled so that the change in the attractive force (or repulsive force) received by the probe is kept constant when the probe is brought close to the sample surface.
  • the AFM measures the interaction force that the cantilever receives from the tip of the probe from the displacement (deflection amount) of the cantilever by detecting the reflected light of the laser that irradiates the back surface of the cantilever with a photodiode.
  • a measurement method is also called an optical lever method.
  • the present invention provides an AFM that can improve the imaging speed of the AFM that has reached a plateau by 2.5 times or more, and a control method thereof.
  • FIG. 1 is a block diagram showing a configuration of an atomic force microscope according to an embodiment.
  • the atomic force microscope 10 is an atomic force microscope for observing a sample 99, and is a cantilever 11 having a probe 12, a displacement measuring unit 13, a feedback control unit 14, a PC (personal computer) 15, and an XY drive control.
  • a unit 16 and a driving unit 17 and a sample holding unit 18 are provided.
  • the vertical direction is the Z-axis and the two orthogonal axes orthogonal to the Z-axis are the X-axis and the Y-axis, and the respective axial directions are the Z-axis direction and X. It may be used in the description as the axial direction and the Y-axis direction.
  • the Z-axis direction may be expressed as a vertical direction along the Z-axis direction, with the Z-axis plus side as the upper side and the Z-axis minus side as the lower side.
  • the XY plane may be simply expressed as a horizontal plane.
  • the cantilever 11 is a cantilever beam provided with a probe 12 at the tip of the lever 21, and functions as a force detector for detecting the interaction force between the sample 99 and the tip of the probe 12.
  • the cantilever 11 is arranged so that the elongated lever 21 extends in the XZ plane with the direction of the double-headed arrow of the alternate long and short dash line as the longitudinal direction.
  • One end on the plus side of the X-axis in the longitudinal direction of the lever 21 is connected to a support portion (not shown) that supports the lever 21 and is a fixed end.
  • the other end on the minus side of the X-axis in the longitudinal direction of the lever 21 is a free end.
  • the probe 12 is connected to the end of the lever 21 on the free end side by adhesion or the like.
  • the displacement measuring unit 13 is a circuit for measuring the displacement of the cantilever 11 due to the interaction force between the sample 99 and the tip of the probe 12, and is for detecting the displacement of the cantilever 11 in the Z-axis direction by the principle described above. It has an LD (Laser Diode) 13a, a PD (Photodiode) 13b, and a preamplifier 13c. That is, the laser emitted from the LD13a is reflected by the back surface of the cantilever 11 on the plus side of the Z axis, becomes reflected light and enters the PD13b, and becomes an electric signal indicating the displacement of the cantilever 11 in the Z axis direction by the PD13b. The electric signal is amplified by the preamplifier 13c and output to the feedback control unit 14.
  • LD Laser Diode
  • PD Photodiode
  • the feedback control unit 14 is a circuit that controls to maintain a constant distance between the sample 99 and the tip of the probe 12 based on the displacement of the cantilever 11 measured by the displacement measurement unit 13, and is sent from the preamplifier 13c.
  • a signal (Z-axis drive signal) for driving the drive unit 17 in the Z-axis direction for maintaining a constant displacement of the cantilever 11 in the Z-axis direction indicated by the electric signal is generated and output to the drive unit 17 and the PC 15. .
  • the PC 15 includes a processor and a memory, and controls the drive unit 17 by executing a predetermined program using the processor and the memory to drive an XY drive signal for scanning the sample 99 in the X-axis and Y-axis directions.
  • the Z-axis drive signal sent from the feedback control unit 14 is received, and a two-dimensional image showing the unevenness of the surface of the sample 99 is generated based on the XY drive signal and the Z-axis drive signal. It is a device to display.
  • the PC 15 also adds an offset signal to the electrical signal input to the feedback control unit 14 at a predetermined timing at which the XY drive signal is output by executing a predetermined program.
  • this offset signal will be described later, when an electric signal to which the offset signal is added is input, the feedback control unit 14 has at least the cantilever 11 and the sample holding unit 18 so as to keep the sample 99 and the probe 12 away. Drive one.
  • This PC 15 is, in other words, an example of a control unit.
  • the XY drive control unit 16 drives the drive unit 17 in the X-axis direction and the Y-axis direction by outputting an X-axis drive signal and a Y-axis drive signal to the drive unit 17 according to the XY drive signal sent from the PC 15. As a result, the sample 99 is scanned in the X-axis direction and the Y-axis direction.
  • the drive unit 17 is a power unit that drives at least one of the cantilever 11 and the sample holding unit 18 to move the sample 99 relative to the probe 12.
  • the driving unit 17 may drive the cantilever 11 or both the cantilever 11 and the sample holding unit 18. May be driven.
  • the drive unit 17 may be realized in any configuration as long as the sample 99 can be relatively moved with respect to the probe 12.
  • the drive unit 17 holds the sample placed on the upper portion according to the Z-axis drive signal sent from the feedback control unit 14, the X-axis drive signal and the Y-axis drive signal sent from the XY drive control unit 16.
  • the unit 18 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the drive unit 17 has an X drive unit 17a, a Y drive unit 17b, and a Z drive unit 17c that move the sample holding unit 18 in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.
  • the drive unit 17 is a scanner including a piezo element or the like that moves the sample 99 in the X-axis direction, the Y-axis direction, and the Z-axis direction relative to the tip of the probe 12.
  • Each of the X drive unit 17a, the Y drive unit 17b, and the Z drive unit 17c includes a piezo element configured to expand and contract independently in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • FIG. 2 is a schematic diagram for explaining the scanning direction of the probe of the atomic force microscope according to the embodiment.
  • FIG. 2 as an example, when the rectangular sample 99 is viewed from the Z-axis direction, the passage trajectory when the upper position of the sample 99 through which the tip of the probe 12 has passed is projected onto the surface of the sample 99 along the paper surface. Is indicated by a thin line and a thin broken line.
  • the number of scanning lines in the main scanning direction is reduced for readability, and the passage locus extending in the X-axis direction and the diagonal direction is shown, but in reality, the main scanning direction is in the X-axis direction. The scan is performed so as to approximately match.
  • the main scanning direction will be described as being coincident with the X-axis direction, but strictly speaking, a minute scan is also performed in the Y-axis direction, and the microscale is oblique to the X-axis direction as shown in FIG. May form a transit locus that extends to. That is, the case where the X-axis direction is the main scanning direction is described as including the case where a passing locus extending in an oblique direction with respect to the X-axis direction is formed by a minute scan in the Y-axis direction.
  • the passage trajectory of scanning the entire region from one end to the other end of the sample 99 in the X-axis direction and the Y-axis direction is shown here.
  • the scan of the probe 12 may form different passage trajectories depending on what is used as the sample 99.
  • the probe 12 may scan the upper surface of the sample holding portion 18 beyond the end of the sample 99.
  • the probe 12 may scan only a part of the region in the sample 99 without reaching the end portion of the sample 99.
  • the probe 12 starts scanning from the end of the sample 99 on the minus side of the X axis and the minus side of the Y axis, and scans toward the plus side of the X axis along the first thin line counting from the minus side of the Y axis. do. Subsequently, the probe 12 scans toward the minus side of the X axis along the first dashed line counting from the minus side of the Y axis. Subsequently, the probe 12 scans toward the plus side of the X axis along the second thin line counting from the minus side of the Y axis. Subsequently, the probe 12 scans toward the minus side of the X axis along the second dashed line counting from the minus side of the Y axis.
  • the probe 12 traces thin lines and broken lines in order from the start position, scans largely in the X-axis direction, and scans little by little in the Y-axis direction.
  • the probe 12 scans the surface of the sample 99 with the X-axis direction as the main scanning direction, and detects the displacement in the Z-axis direction to generate an uneven image corresponding to the scanning surface.
  • the lever 21 of the cantilever 11 is a long member whose longitudinal direction is the direction intersecting the upper main surface of the sample holding portion 18 on which the sample 99 is placed. Normally, in an atomic force microscope, the direction in which the projected image extends when a line segment along the longitudinal direction is projected onto the XY plane which is the scanning plane is set as the main scanning direction.
  • the direction in which the projected image extends when the line segment along the longitudinal direction is projected onto the scanning surface is configured to be the main scanning direction.
  • a line segment along the longitudinal direction such as a one-point chain line extending downward from each end and the other end of the double-headed arrow indicating the longitudinal direction of the lever 21 toward the scanning surface.
  • the probe 12 scans the surface of the sample 99 with the X-axis direction, which is the direction in which the projected image extends, as the main scanning direction.
  • the sample holding portion 18 is a structure that holds the sample 99, and is composed of, for example, a plate-shaped member on which the sample 99 can be placed.
  • the sample holding portion 18 may have any configuration as long as it can hold the surface of the sample 99 on the observed side in a fixed manner, and may be, for example, a clamp for holding a hard sample.
  • the sample holding unit 18 may be configured as a container for holding a liquid such as a physiological buffer solution together with the sample 99.
  • the atomic force microscope 10 is a static mode of a type that detects the interaction force between the probe 12 and the sample 99 from the displacement of the cantilever 11 generated by the interaction force between the probe 12 and the sample 99.
  • AFM it is generated by the interaction force between the probe 12 and the sample 99 when the cantilever 11 is mechanically vibrated at a frequency near its resonance frequency and scanned in the horizontal direction with respect to the sample 99.
  • It may be a dynamic mode AFM that detects the interaction force between the probe 12 and the sample 99 from changes in vibration amplitude, frequency, or phase.
  • the present invention can be applied to any atomic force microscope regardless of the operation configuration, particularly as an atomic force microscope 10 for measuring a sample 99 at high speed.
  • FIG. 3 is a flowchart showing the operation of the atomic force microscope according to the embodiment.
  • the PC 15 outputs an XY drive signal according to the time.
  • the XY drive control unit 16 outputs an X-axis drive signal and a Y-axis drive signal to the X-axis drive unit 17a and the Y-drive unit 17b according to the XY drive signal.
  • the sample 99 moves relative to the probe 12 in the first direction at the first distance and the first speed (that is, scans in the first direction) (step S101).
  • the sample 99 moves relative to the lever 21 from one end side to the other end side.
  • the first-direction scan is a scan corresponding to the thin line shown in FIG.
  • the first distance here is the distance at which the surface of the sample 99 and the tip of the probe 12 are closest to each other. At this time, a repulsive force or the like may be generated between the surface of the sample 99 and the tip of the probe 12, and the cantilever 11 may be separated from each other by a small distance.
  • the first distance is set as the distance at which the above can be formed.
  • the first speed is a speed at which the required measurement can be performed on the sample 99. Specifically, the speed is set to the fastest possible speed within the speed range in which the uneven image can be acquired with the required fineness.
  • the PC 15 continues to output an XY drive signal according to the time.
  • the XY drive control unit 16 outputs an X-axis drive signal and a Y-axis drive signal to the X-axis drive unit 17a and the Y-drive unit 17b according to the XY drive signal.
  • the sample 99 moves relative to the probe 12 in the second direction at a second distance and a second speed (that is, scans in the second direction) (step S102).
  • the sample 99 moves relative to the other end side of the lever 21 toward one end side. That is, the sample 99 moves relative to the X-axis plus side with respect to the probe 12, and the probe 12 moves relative to the X-axis minus side with respect to the sample 99.
  • the second-direction scan is a scan corresponding to the broken line shown in FIG. 2.
  • the second distance here is farther than the first distance, for example, the distance at which the surface of the sample 99 and the tip of the probe 12 do not come into contact with each other. Since the probe 12 scans the surface of the sample 99 in the XY plane, the second distance is set as a sufficiently large distance with respect to the size of the unevenness expected on the surface of the sample 99.
  • the second distance may be set to be at least larger than the first distance. The reason for this will be described later.
  • the second speed is faster than the first speed. The faster the second speed, the better the imaging speed can be, but in consideration of the limit of the drive speed of the drive unit 17 and problems such as vibration described later, the second speed can be obtained by performing a simulation or a preliminary test.
  • the range that can be selected may be determined, and the fastest value within the range may be adopted.
  • FIG. 4 is a schematic diagram showing the handling of the offset signal of the atomic force microscope according to the embodiment.
  • the electric signal A is a signal output from the displacement measuring unit.
  • the electric signal A is used in the difference device on the right side in FIG. 4 to calculate the difference from the set point signal AS .
  • the setpoint signal AS in the embodiment is a preset reference voltage value, and is a cantilever based on the voltage value (hereinafter, also referred to as an error value) of the difference from the electric signal A calculated by the diffifier. It is possible to detect the deviation of the displacement amount of 11 in the Z-axis direction from the target value.
  • the offset signal A OS is a signal whose voltage value changes on the time axis. Specifically, as shown in the graph shown in the balloon portion, the voltage value of the offset signal AOS becomes 0 during the first-direction scanning (corresponding to the 1st in the figure). On the other hand, during the second-direction scanning (corresponding to the 2nd in the figure), the voltage value of the offset signal AOS becomes a negative value.
  • the apparent difference from the set point signal AS becomes large. This is treated as if there were fairly large bumps on the surface of sample 99. Since this apparently large difference is used for feedback control, the sample holding unit 18 is driven to cancel such an error value. As a result, in order to maintain the convex portion of the surface of the sample 99 that does not actually exist at the first distance, the distance between the sample 99 and the probe 12 is set to a second distance by being farther than the first distance. Be maintained. It is also possible to add an offset signal to the Z-axis drive signal for feedback control in the same operation.
  • FIG. 5 shows various voltage values obtained by such an operation.
  • FIG. 5 is a graph showing an example of measured values of various signals in the atomic force microscope according to the embodiment.
  • the upper part of FIG. 5 shows the change of the X-axis drive signal in the time series, and the larger the value, the more the sample 99 moves relative to the X-axis minus side with respect to the probe 12 (that is, it increases with the passage of time). When it is used, it means scanning in the first direction, and when it decreases with the passage of time, it means scanning in the second direction).
  • the middle part of FIG. 5 shows the change of the offset signal in time series. Further, the lower part of FIG. 5 shows the displacement amount of the Z drive unit 17c in the time series.
  • the X-axis drive signal is like an asymmetric triangular wave (hereinafter, also referred to as a sawtooth wave) similar to a sawtooth wave, and has a first-direction scan and a second-direction scan on the time axis. It can be seen that the time required for each of these is different. In particular, the period is shortened in the second-direction scanning in which the voltage value drops, and it can be read that the second-direction scanning is performed at the second speed faster than the first speed in the first-direction scanning. The period of the first-direction scan and the period of the second-direction scan will also be described in detail later.
  • the offset signal shows a sharp drop to correspond to the period of the second direction scan.
  • This offset signal is consistent with the schematic graph in FIG. 4 described above. It can be seen that the Z drive unit 17c is rapidly displaced by adding the offset signal in the second-direction scan. As a result, in the present embodiment, the sample holding portion 18 moves downward and is separated from the cantilever 11, and the sample 99 and the probe 12 become the second distance.
  • the second distance does not have to be a uniform distance on the time axis as long as the distance is equal to or longer than a certain distance at which the sample 99 and the probe 12 do not come into contact with each other.
  • the second distance may be different between the first second-direction scan and the second second-direction scan, or the second distance changes during the first second-direction scan. May be good. Therefore, maintaining the second distance is a concept including at least keeping a certain distance at which the sample 99 and the probe 12 do not come into contact with each other.
  • the PC 15 subsequently determines whether or not the scanning end position in the XY plane at which the scanning ends has been reached (step S103). If it is determined that the PC 15 has not reached the scanning end position (No in step S103), the process returns to step S101, and the first-direction scanning is performed again. On the other hand, when it is determined that the PC 15 has reached the scanning end position (Yes in step S103), the scanning is terminated.
  • the above operation is a description of the process for obtaining one uneven image at a certain point in time. Actually, since it is assumed that the second uneven image is continuously obtained, after the result is Yes in step S103, the scanning start position is returned and scanning is started again from step S101.
  • the scanning end position may be set on the plus side of the X-axis in FIG. 2 (that is, the scanning ends at the end of the first-direction scanning).
  • the same determination process as in step S103 is added between steps S101 and S102.
  • FIG. 6 is a diagram illustrating a first-direction scan.
  • FIG. 7 is a diagram illustrating a second-direction scan.
  • FIG. 6A shows a state of first-direction scanning of a conventional atomic force microscope from the same viewpoint as in FIG. 1.
  • the sample holding portion 18 is driven, and the sample 99 moves relative to the probe 12 toward the minus side of the X-axis.
  • FIG. 7A shows a state of second-direction scanning of a conventional atomic force microscope from the same viewpoint as in FIG. 1.
  • the sample holding portion 18 is driven, and the sample 99 moves relative to the probe 12 toward the plus side of the X-axis.
  • FIG. 6B shows an uneven image obtained only by scanning in the first direction.
  • the unevenness information obtained by the second-direction scanning when obtaining the unevenness image shown in FIG. 6B is used to obtain the unevenness image shown in FIG. 7B, which will be described later.
  • FIG. 7B shows an uneven image obtained only by scanning in the second direction.
  • FIG. 7 (b) it is shown that the closer to white, the larger the convexity.
  • the unevenness information obtained by the first-direction scanning when obtaining the unevenness image shown in FIG. 7B is used to obtain the unevenness image shown in FIG. 6B. That is, here, the information of the unevenness image obtained by one scan is decomposed into the unevenness image obtained by the first-direction scanning ((b) in FIG. 6) and the unevenness image obtained by the second-direction scanning. ing.
  • FIG. 6C shows an error image in which the error value used for feedback control when obtaining the uneven image of FIG. 6B is two-dimensionally mapped.
  • FIG. 6D shows a plot of error values on the two-point chain line in FIG. 6C.
  • FIG. 7C shows an error image in which the error value used for feedback control when obtaining the uneven image of FIG. 7B is two-dimensionally mapped.
  • FIG. 7 (d) shows a plot of error values on the two-point chain line in FIG. 7 (c).
  • the error value was large at the position corresponding to the right end of the convex strip on the paper surface, and reached about ⁇ 0.6 V.
  • the same tendency was observed in all the scanning lines in the main scanning direction in the left-right direction of the paper surface.
  • the direction of the torque acting on the cantilever 11 by the force in the X-axis direction is the direction of the torque acting on the cantilever 11 by the force acting on the probe 12 from the sample 99 in the Z-axis direction. It is the same as (torque (z)).
  • the directions of the torques of both are opposite to each other.
  • the torque acting clockwise in FIGS. 6 (a) and 7 (a) causes the cantilever 11 to bend upward, and conversely, the torque acting counterclockwise causes the cantilever 11 to bend downward.
  • the amplitude of the cantilever 11 is measured as a displacement by the optical lever method, but in this measuring method, the displacement in the Z-axis direction near the tip of the cantilever 11 is not measured, but the angular change caused by the torque is measured. Therefore, the angle change caused by the torque acting clockwise is interpreted as a decrease in the amplitude value, and conversely, the angle change caused by the torque acting counterclockwise is interpreted as an increase in the amplitude value.
  • FIG. 14A is a graph showing an error signal, a feedback control output, and a cantilever deflection signal during the back-and-forth scanning of the sample.
  • FIG. 14A shows the time course of the error signal
  • (b) shows the time change of the feedback control output
  • (c) shows the time change of the deflection signal of the cantilever 11.
  • FIG. 14B is a graph showing an error signal, a feedback control output, and a cantilever deflection signal during the return scanning of the sample.
  • (a) shows the time course of the error signal
  • (b) shows the time change of the feedback control output
  • (c) shows the time change of the deflection signal of the cantilever 11.
  • FIG. 14B shows the time course of the error signal
  • FIG. 14B shows the time course of the error signal
  • (b) shows the time change of the feedback control output
  • (c) shows the time change of the deflection signal of the cantilever 11.
  • FIG. 15 is a diagram illustrating the difference in the force acting at the scanning position of the cantilever.
  • the tip of the probe 12 and the sample 99 are shown in circles, and the direction and magnitude of the force acting at each contact position are shown by the vectors (Fx and Fz) in the figure.
  • FIG. 15 shows the displacement over time when the cantilever 11 rides on the step of the sample 99 from (a) to (c).
  • the alternate long and short dash line in FIG. 15 shows the locus through which the tip of the probe 12 passes.
  • the decrease in the feedback control output shown in FIGS. 14A and 14B means that the sample holding unit 18 is moving in the direction away from the probe 12.
  • FIG. 14B (a) it can be seen that the error signal is large on the positive side at the portion indicated by the downward arrow a1 and the error signal is large on the negative side at the portion indicated by the left arrow a2.
  • the large error at arrow a1 appears in a short time (about 1 to 2 times the vibration cycle of the cantilever 11), whereas the large error at arrow a2 appears for a relatively long time (several times the vibration cycle). ing.
  • the probe 12 contacts the sample 99 for the first time ((a) in FIG.
  • the sample holding portion 18 is driven in a direction approaching the probe 12.
  • the force Fz acting on the probe 12 from the sample 99 in the Z-axis direction increases, but the error signal returns to almost zero (or a slight negative value).
  • the reason why the error signal is almost zero is that both the force Fx in the X-axis direction and the force Fz in the Z-axis direction are large ((b) in FIG. 15), but the torque generated by each action is almost canceled out. Because it is.
  • the feedback control output gradually decreases as shown in FIG. 14B (b) due to an error signal having a slightly negative value. That is, the sample holding portion 18 is slowly moving in a direction away from the probe 12.
  • the reason why the error signal is large on the negative side at the point of arrow a2 is that the positive step of the sample 99 is small, so that the force Fx in the X-axis direction becomes considerably weak and the deflection due to the force Fz in the Z-axis direction is caused. It is considered that it appeared prominently ((c) in FIG. 15). It is considered that a large negative error signal that appears for a relatively long time with arrow a2 appears in the error image of FIG. 7 (c).
  • the time difference between the arrow a1 and the arrow a2 is about 45 ⁇ s, which corresponds to a distance of 5 nm due to the scanning speed of 110 ⁇ m / s in the X-axis direction. At this time, the probe 12 does not reach the apex of the sample 99 due to the influence of the thickness of the tip of the probe 12 ((c) in FIG. 15).
  • FIG. 8 is a diagram showing the concept of speeding up scanning with the atomic force microscope 10 according to the embodiment.
  • the upper part shows a diagram schematically showing scanning with a conventional atomic force microscope
  • the lower part shows a diagram schematically showing scanning with an atomic force microscope 10 in the present embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the scanning position in the X-axis direction (that is, the relative position between the sample 99 and the probe 12).
  • Each schematic diagram is a periodic function-like graph in which the scanning position in the X-axis direction is displaced by reciprocating between the X-axis plus side and the X-axis minus side. It can be seen that in the atomic force microscope 10 in the present embodiment as compared with the conventional atomic force microscope, the period of the decrease region of the value on the vertical axis is short, and the speed is significantly increased as a whole. As described above, in the atomic force microscope 10 according to the embodiment, high-speed scanning is realized by making the displacement in the X-axis direction with respect to time closer to the sawtooth wave from the triangular wave (by making it look like a sawtooth wave). ..
  • the number of times the probe 12 approaches the sample 99 is further reduced, and the probe 12 is scanned in the second direction, which causes great damage to the sample 99, such as pushing the sample 99 downward.
  • the sample 99 is kept out of contact with the sample 99. That is, the scanning in the present embodiment is gentle to the sample 99. Damage is accumulated in the sample 99 by scanning, and the higher the scanning speed, the greater the accumulated damage. Since the accumulated damage can eventually destroy the sample 99 itself, by realizing such gentle scanning, the speed of the first-direction scanning itself is further increased by the amount of damage not accumulated by the second-direction scanning. It is also possible to do.
  • the sawtooth-like function shown in the lower part of FIG. 8 can be said to be an ideal function from the viewpoint of speeding up scanning.
  • this sawtooth wave-like function contains a large amount of high-frequency components at the folding position where the first-direction scan and the second-direction scan are switched, and when used as it is for scanning control, it vibrates depending on the device configuration. May occur.
  • the generation of vibration is suppressed by removing the high frequency component based on this sawtooth wave-like function.
  • This saw-wave-like function is the relative position of the probe 12 and the sample 99 in the X-axis direction, and is the positional relationship of the target at which the first-direction scanning is started (that is, the positional relationship when a high frequency component is allowed).
  • the relative position in is the first reference point
  • the relative position in the positional relationship of the target at which the first direction scanning ends is the second reference point
  • the division ratio which is the ratio of the time required for the first direction scanning to one cycle, is ⁇ .
  • equation (1) when expressed as a Fourier series, it can be transformed as in the equation (2).
  • H (x) in the above equation (3) indicates a Heaviside step function.
  • u 1 (t) in the above formula (3) is as shown in the following formula (4).
  • FIG. 10 is a second graph showing displacement in the X-axis direction used for scanning with an atomic force microscope in an embodiment. As shown in FIG. 10, the deviation of the apex positions of the maximum value and the minimum value seen in FIG. 9A is eliminated.
  • FIG. 11A and 11B show an example of the case where the atomic force microscope 10 is controlled as shown in the graph shown in FIG.
  • FIG. 11A is a diagram showing the X-axis drive signal and the displacement of the X-drive unit in scanning in the X-axis direction of the atomic force microscope according to the embodiment.
  • the X-axis drive signal output for scanning in the X-axis direction is shown in the upper row.
  • the amount of displacement corresponding to the driving amount of the X driving unit 17a is shown in the lower stage.
  • scanning in the X-axis direction is performed at about 10 kHz.
  • good results can be obtained only by the above processing (not shown), but as shown in FIG. 11A, when scanning in the X-axis direction is performed at a frequency as high as 10 kHz.
  • Unnecessary vibration may be generated only by the above processing. It is presumed that the mechanical resonance of the X drive unit was excited. Therefore, in the atomic force microscope in the present embodiment, the function is further adjusted so as to suppress such vibration.
  • the transition (frequency characteristics) when the X drive unit 17a is driven at various frequencies can be expressed as a transfer function.
  • a reverse transfer compensation method is used in which a reverse transfer function is automatically generated for an arbitrary transfer function and the signal to be output is back-calculated in order to obtain the displacement of the original X drive unit 17a. ] Is applied to adjust the X-axis drive signal output.
  • FIG. 11B is a second diagram showing the X-axis drive signal and the displacement of the X-drive unit in scanning in the X-axis direction of the atomic force microscope according to the embodiment.
  • the X-axis drive signal output by applying the “reverse transmission compensation method” for scanning in the X-axis direction is shown in the upper row.
  • the amount of displacement corresponding to the driving amount of the X driving unit 17a when the "reverse transmission compensation method” is applied is shown in the lower part.
  • the drive of the X drive unit 17a approaches the graph of the target vibration, while the X-axis drive signal output for this drive is obtained. Is different from that of FIG. 11A.
  • the atomic force microscope 10 in the present embodiment can measure a sample 99 for a wide range of purposes including biomaterials by applying various ingenuity.
  • a linear function is assumed in the return scan portion of the sawtooth wave-like function, but the waveform of the return scan portion may have various functions. That is, the line connecting the forward scan end point and the forward scan start point does not have to be a straight line.
  • a 1/2 waveform of a cosine wave may be applied to such a section to connect the forward scan end point and the forward scan start point.
  • the scanning waveform in this case is represented by the following equation (7).
  • equation (7) when expressed as a Fourier series, it can be transformed as in the equation (8).
  • FIG. 16 is a graph showing displacement in the X-axis direction used for scanning with an atomic force microscope in a modified example of the embodiment.
  • the graph of the part corresponding to one cycle of the sawtooth wave-like function is shown.
  • a good approximation function close to the sawtooth wave-like function was obtained.
  • a sawtooth wave-like function may be constructed by applying any function that smoothly connects the forward scan end point and the forward scan start point.
  • FIG. 12A is a diagram showing the measurement results of actin filaments according to the examples.
  • FIG. 12B is a diagram showing the measurement results of the actin filament according to the comparative example.
  • FIG. 12C is a graph showing the relationship between the imaging rate and the residual rate of actin filaments according to the embodiment.
  • the measurement is performed using an actin filament as the sample 99.
  • the actin filaments are arranged so as to intersect (along the Y-axis direction) in the main scanning direction, which is more damaged by measurement, because the step in the main scanning line direction becomes steep.
  • FIG. 12A (a) is an actin filament image after 0.00 seconds, (b) is an actin filament image after 3.36 seconds, and (c) is an actin filament image after 6.72 seconds.
  • (D) show actin filament images after 10.08 seconds have passed. Further, in FIG.
  • FIG. 12A As shown in FIG. 12A, according to the measurement results according to the examples, it was shown that the filament structure was well maintained even after 10.08 seconds had elapsed.
  • FIG. 12B according to the measurement results according to the comparative example, the filament structure is largely destroyed in less than 1 second, and most of the structure does not remain after 1.60 seconds. Shown.
  • the ratio of the unbroken actin filaments among the 30 times of the actin filament measurement according to the example was performed multiple times at different imaging speeds, and the results are shown as a plot of circles. There is. Further, in FIG. 12C, the ratio of the number of times the actin filament was measured 30 times according to the comparative example was performed a plurality of times at different imaging speeds, and the results are shown as a triangular plot.
  • FIG. 13A is a second diagram showing the measurement results of the actin filaments according to the examples.
  • FIG. 13A shows the result of measurement by changing only the direction of arrangement of actin filaments so as to be along the X-axis direction with less damage, as in FIG. 12A.
  • (a) is an actin filament image after 0.00 seconds
  • (b) is an actin filament image after 0.03 seconds
  • (c) is an actin filament image after 0.07 seconds
  • (D) show actin filament images after 10.03 seconds have passed.
  • FIG. 13B is a diagram showing the measurement results of the microtubules according to the embodiment.
  • FIG. 13B shows the results of measurement by arranging microtubules along the X-axis direction in the same manner as in FIG. 13A.
  • (a) is a microtubule image after 0.00 seconds
  • (b) is a microtubule image after 0.04 seconds
  • (c) is a microtubule image after 0.08 seconds
  • (D) show microtubule images after 10.00 seconds have passed.
  • the present invention has a DC (contact) mode that does not vibrate the cantilever. It can be applied to any atomic force microscope.
  • the atomic force microscope 10 in the present embodiment is a long lever 21, one end side in the longitudinal direction is a fixed end used to support the lever 21, and the other end in the longitudinal direction.
  • a cantilever 11 including a lever 21 whose side is a free end, and a cantilever 11 provided on the free end side with a probe 12 that intersects the lever 21 in the longitudinal direction and projects downward, and a cantilever 11 that is arranged below the cantilever 11.
  • a sample holding unit 18 that holds the sample 99 so as to face each other, a driving unit 17 that drives at least one of the cantilever 11 and the sample holding unit 18 to move the sample 99 relative to the probe 12, and a driving unit 17.
  • the main scanning direction is the predetermined direction (X-axis direction), which is the direction in which the projected image extends when the line segment in the longitudinal direction is projected from the cantilever 11 onto the virtual surface intersecting in the direction in which the probe 12 protrudes.
  • a control unit (for example, PC15) that causes the probe 12 to scan the surface of the sample 99 in the virtual plane is provided, and the control unit is a first direction in which the sample 99 moves relative to the other end side from one end side.
  • the sample 99 and the probe 12 are brought close to the first distance and scanned in the first mode in which they move relative to each other at the first speed, and the sample 99 moves relative to one end side from the other end side in the second direction.
  • the sample 99 and the probe 12 are moved to a second distance farther than the first distance, and are scanned in a second mode in which the sample 99 and the probe 12 move relative to each other at a second speed faster than the first speed.
  • Such an atomic force microscope 10 suppresses contact between the probe 12 and the sample 99 by separating the probe 12 and the sample 99 at a second distance in the second-direction scanning, which causes relatively large damage to the sample 99, and suppresses the contact between the probe 12 and the sample 99. You can reduce the damage to.
  • the permissible value of the damage given to the sample 99 in the first-way scanning can be expanded by the amount corresponding to the damage not given by the second-direction scanning. That is, in the first-direction scanning, even if the relative movement speed is increased, the damage within the range in which the sample 99 can withstand the measurement can be kept. That is, with this control configuration, the relative movement speed in the first-direction scanning can be increased.
  • the conventional measurement it is possible to measure the sample 99 of a type that cannot be measured due to the large damage.
  • the probe 12 does not come into contact with the sample 99 in the second-direction scanning, it is possible to increase the relative movement speed in the second-direction scanning. That is, since the probe 12 is not in contact with the sample 99, even if the relative moving speed is increased to the device limit of the atomic force microscope 10, the damage given to the sample 99 due to the contact with the probe 12 is eliminated. As described above, by improving the relative moving speed between the sample 99 and the probe 12, it becomes possible to measure the sample 99 at a speed that cannot be captured by the conventional measurement. Further, by reducing the damage given to the sample 99, it becomes possible to measure the sample 99 which cannot be measured because the damage given by the conventional measurement cannot be tolerated. Therefore, an atomic force microscope that can be applied to measurements in a wider variety of applications is realized.
  • control unit acquires an electric signal corresponding to the displacement in the direction intersecting the virtual surface of the probe 12 (Z-axis direction) at the time of scanning in the first direction, and the acquired electric signal and a predetermined electric signal.
  • the distance between the probe 12 and the surface of the sample 99 is maintained at the first distance based on the difference from the reference signal of, and the offset signal is added to the acquired electric signal during the second-direction scanning. Therefore, the distance between the probe 12 and the surface of the sample 99 may be maintained at the second distance by changing the numerical value of the difference from the predetermined reference signal.
  • control unit sets the sample 99 along the trajectory for suppressing the occurrence of vibration at the relative positions of the probe 12 and the sample 99 at the folding position where the first-direction scanning and the second-direction scanning are switched. It may be moved relative to the probe 12.
  • control unit sets the relative position of the probe 12 and the sample 99 in the predetermined direction in the positional relationship of the target at which the first-direction scanning is started as the first reference point, and is on the predetermined direction.
  • the ratio is ⁇
  • the first reference point is sequentially linearly connected, and based on the saw wave-like function with T as the period, the higher-order term larger than the predetermined order when the saw wave-like function is expanded by the Fourier class is regarded as 0.
  • the sample 99 may be moved relative to the probe 12 along the trajectory represented by the calculated approximation function.
  • the high-frequency component contained in the sawtooth wave-like function is removed by regarding the higher-order term larger than the predetermined order when the sawtooth wave-like function is expanded by the Fourier series when the occurrence of vibration is ignored as 0. It is possible to suppress the occurrence of vibration at the relative positions of the probe 12 and the sample 99 at the folded position. Since it is possible to suppress the occurrence of measurement problems due to vibration, an atomic force microscope that can be applied to measurements for a wider variety of purposes is realized.
  • control unit sets the relative position of the probe 12 and the sample 99 in the predetermined direction in the positional relationship of the target at which the first-direction scanning is started as the first reference point, and is on the predetermined direction.
  • the ratio is ⁇
  • the high-frequency component contained in the sawtooth wave-like function is removed by regarding the higher-order term larger than the predetermined order when the sawtooth wave-like function is expanded by the Fourier series when the occurrence of vibration is ignored as 0. It is possible to suppress the occurrence of vibration at the relative positions of the probe 12 and the sample 99 at the folded position. Since it is possible to suppress the occurrence of measurement problems due to vibration, an atomic force microscope that can be applied to measurements for a wider variety of purposes is realized. In particular, in this sawtooth wave-like function, since the deviation in the change amount axis and the time axis in the X-axis direction at the folding position does not occur, a more appropriate probe 12 does not require additional processing such as adjustment of such deviation. Atomic force microscope that can be applied to measurements in a wider variety of applications is realized by a simple system configuration.
  • control unit calculates a function in which a higher-order term larger than a predetermined order when the saw-wave-like function is expanded into a Fourier series is regarded as 0, and the amount of change in the m-th period in the calculated function is the maximum. ((M-1) T + ⁇ T, 2nd reference point), and the point where the amount of change in the m-period in the calculated function is the smallest ((m-1) T, 1st reference point)
  • the sample 99 may be moved relative to the probe 12 along the activation represented by the approximation function calculated by extending the function in the direction of the amount of change and in the direction of the time axis so as to match. ..
  • control method in the present embodiment is a long lever 21, in which one end side in the longitudinal direction is a fixed end used to support the lever 21, and the other end side in the longitudinal direction is a free end.
  • a cantilever 11 provided with a probe 12 that intersects the lever 21 in the longitudinal direction and protrudes downward, and a sample 99 that is arranged below the cantilever 11 and faces the cantilever 11 on the free end side.
  • the driving unit 17 that drives the cantilever 11 and the sample holding unit 18 to move the sample 99 relative to the probe 12, and the driving unit 17, a line segment in the longitudinal direction
  • the surface of the sample 99 is placed in the virtual surface in the virtual surface with the predetermined direction (X-axis direction), which is the direction in which the projected image extends when projected from the cantilever 11 onto the virtual surface intersecting in the direction in which the probe 12 protrudes, as the main scanning direction.
  • X-axis direction is the direction in which the projected image extends when projected from the cantilever 11 onto the virtual surface intersecting in the direction in which the probe 12 protrudes, as the main scanning direction.
  • a method of controlling an atomic force microscope 10 having a control unit (for example, PC15) for scanning a probe 12, in a first-direction scanning in which a sample 99 moves relative to one end side to the other end side.
  • the sample 99 and the probe 12 are moved close to the first distance and scanned by relative movement at the first speed, and the sample 99 and the probe 12 are scanned in the second direction scanning in which the sample 99 moves relative to one end side from the other end side.
  • the needle 12 is moved away from the second distance farther than the first distance, and is scanned by relative movement at the second speed faster than the first speed.
  • program in the present embodiment is a program for causing a computer to execute the control method described above.
  • the effect of the above control method can be realized by using a computer.
  • the atomic force microscope according to the above embodiment may be realized as a dedicated device or may be realized as a plurality of devices.
  • the communication between each component according to the above embodiment is performed by wire or wireless, and the communication method is not particularly limited, and any communication method is adopted.
  • control unit and the like according to the above embodiment are typically realized as an LSI which is an integrated circuit.
  • LSIs may be integrated into one chip, or may be integrated into one chip so as to include a part or all of them.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the division of the functional block in the block diagram is an example, and a plurality of functions can be realized as one functional block, one function can be divided into a plurality of functional blocks, and some functions can be divided into other functional blocks. You may move it. Further, the functions of a plurality of functional blocks having similar functions may be processed by a single hardware or software in parallel or in a time division manner.
  • each step in the flowchart is executed is for exemplifying in order to specifically explain the present invention, and may be an order other than the above. Further, a part of the above steps may be executed simultaneously with other steps (parallel).
  • the present invention can be used for an atomic force microscope for a wider variety of purposes.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

原子間力顕微鏡(10)は、下方に向けて突出する探針(12)が設けられたカンチレバー(11)と、カンチレバー(11)に対向させて試料(99)を保持する試料保持部(18)と、カンチレバー(11)及び試料保持部(18)の少なくとも一方を駆動して試料(99)を探針(12)に対して相対移動させる駆動部(17)と、駆動部(17)を制御することにより、試料(99)の表面を探針(12)に走査させる制御部(例えば、PC(15))と、を備え、制御部は、試料(99)が一端側から他端側に相対移動する第1方向走査において、試料(99)と探針(12)とを第1距離に近接させて第1速度で走査させ、試料(99)が他端側から一端側に相対移動する第2方向走査において、試料(99)と探針(12)とを第1距離よりも遠い第2距離に遠ざけ、かつ、第1速度よりも速い第2速度で走査させる

Description

原子間力顕微鏡、制御方法、及び、プログラム
 本発明は、原子間力顕微鏡、及び、その制御方法、ならびに、プログラムに関する。
 従来、原子間力顕微鏡(以下、AFM(Atomic Force Microscope)ともいう)を用いた原子分解能での試料の計測が行われている。例えば、力検出器や力検出手法を大幅に改良することにより、高分解能の観察が難しいと考えられていた液中環境下における原子分解能でのAFMによる観察が可能となった(例えば、特許文献1参照)。これにより、固液界面現象をAFMで直接可視化することが可能となり、幅広い研究分野の発展に貢献すると考えられている。
特開平8-129017号公報
 しかしながら、従来のAFMには、多様な用途への応用の観点で改善の余地がある。
 そこで、本発明は、より多様な用途に適用可能なAFM等を提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る原子間力顕微鏡は、長尺状のレバーであって、長手方向における一端側が前記レバーの支持に用いられる固定端であり、前記長手方向における他端側が自由端であるレバーを含み、前記自由端側に、前記レバーから前記長手方向に交差する下方に向けて突出する探針が設けられたカンチレバーと、前記カンチレバーの前記下方に配置され、前記カンチレバーに対向させて試料を保持する試料保持部と、前記カンチレバー及び前記試料保持部の少なくとも一方を駆動して前記試料を前記探針に対して相対移動させる駆動部と、前記駆動部を制御することにより、前記長手方向の線分を前記カンチレバーから前記探針が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向を主走査方向として、前記仮想面内において前記試料の表面を前記探針に走査させる制御部と、を備え、前記制御部は、前記試料が前記一端側から前記他端側に向かって相対移動する第1方向走査において、前記試料と前記探針とを第1距離に近接させて第1速度で相対移動する第1モードで走査させ、前記試料が前記他端側から前記一端側に向かって相対移動する第2方向走査において、前記試料と前記探針とを前記第1距離よりも遠い第2距離に遠ざけ、かつ、前記第1速度よりも速い第2速度で相対移動する第2モードで走査させる。
 また、本発明の一形態に係る制御方法は、長尺状のレバーであって、長手方向における一端側が前記レバーの支持に用いられる固定端であり、前記長手方向における他端側が自由端であるレバーを含み、前記自由端側に、前記レバーから前記長手方向に交差する下方に向けて突出する探針が設けられたカンチレバーと、前記カンチレバーの前記下方に配置され、前記カンチレバーに対向させて試料を保持する試料保持部と、前記カンチレバー及び前記試料保持部を駆動して前記試料を前記探針に対して相対移動させる駆動部と、前記駆動部を制御することにより、前記長手方向の線分を前記カンチレバーから前記探針が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向を主走査方向として、前記仮想面内において前記試料の表面を前記探針に走査させる制御部と、を有する原子間力顕微鏡の制御方法であって、前記試料が前記一端側から前記他端側に向かって相対移動する第1方向走査において、前記試料と前記探針とを第1距離に近接させて第1速度での相対移動によって走査させ、前記試料が前記他端側から前記一端側に向かって相対移動する第2方向走査において、前記試料と前記探針とを前記第1距離よりも遠い第2距離に遠ざけ、かつ、前記第1速度よりも速い第2速度での相対移動によって走査させる。
 また、本発明の一形態は、上記に記載の制御方法をコンピュータに実行させるためのプログラムとして実現することもできる。
 本発明により、より多様な用途に適用可能な原子間力顕微鏡等が提供される。
図1は、実施の形態に係る原子間力顕微鏡の構成を示すブロック図である。 図2は、実施の形態に係る原子間力顕微鏡の探針の走査方向を説明するための概略図である。 図3は、実施の形態に係る原子間力顕微鏡の動作を示すフローチャートである。 図4は、実施の形態に係る原子間力顕微鏡のオフセット信号の取り扱いを示す模式図である。 図5は実施の形態に係る原子間力顕微鏡での各種信号の実測値の一例を示すグラフである。 図6は、第1方向走査について説明する図である。 図7は、第2方向走査について説明する図である。 図8は、実施の形態に係る原子間力顕微鏡10での走査の高速化の概念を示す図である。 図9は、実施の形態における原子間力顕微鏡での走査に用いられるX軸方向の変位を示す第1グラフである。 図10は、実施の形態における原子間力顕微鏡での走査に用いられるX軸方向の変位を示す第2グラフである。 図11Aは、実施の形態における原子間力顕微鏡のX軸方向の走査でのX軸駆動信号及びX駆動部の変位を示す第1図である。 図11Bは、実施の形態における原子間力顕微鏡のX軸方向の走査でのX軸駆動信号及びX駆動部の変位を示す第2図である。 図12Aは、実施例に係るアクチンフィラメントの計測結果を示す第1図である。 図12Bは、比較例に係るアクチンフィラメントの計測結果を示す図である。 図12Cは、実施の形態に係るイメージング速度とアクチンフィラメントの残存率との関係を示すグラフである。 図13Aは、実施例に係るアクチンフィラメントの計測結果を示す第2図である。 図13Bは、実施例に係る微小管の計測結果を示す図である。 図14Aは、試料の往き走査時における、エラー信号、フィードバック制御出力、及び、カンチレバーのたわみ信号を示すグラフである。 図14Bは、試料の還り走査時における、エラー信号、フィードバック制御出力、及び、カンチレバーのたわみ信号を示すグラフである。 図15は、カンチレバーの走査位置で働く力の違いを説明する図である。 図16は、実施の形態の変形例における原子間力顕微鏡での走査に用いられるX軸方向の変位を示すグラフである。
 本発明の実施の形態を説明する前に、上記背景技術で説明した従来技術における問題点を詳細に説明し、その後で、本発明に係る原子間力顕微鏡を詳細に説明する。
 [走査型プローブ顕微鏡の原理]
 走査型プローブ顕微鏡(SPM(Scanning Probe Microscope))では、鋭くとがった探針を試料に接近させて、探針と試料との間に働く相互作用(トンネル電流又は相互作用力など)を検出し、この相互作用を一定に保つように探針と試料との間の距離(探針のz位置)をフィードバック制御する。さらに、このフィードバック制御を維持した状態で、探針(または試料)を水平方向(xy方向)に走査すれば、探針(または試料)が試料表面の凹凸に応じて上下する。この探針の上下動の軌跡を水平位置に対して記録すれば試料表面の凹凸像が得られる。
 [原子間力顕微鏡(AFM)]
 原子間力顕微鏡(AFM)は、SPMの一種であり、探針と試料との間に働く相互作用力を検出して、探針と試料との間の距離を一定に保つよう探針のZ位置を制御する。AFMでは、鋭くとがった探針を先端に備えたカンチレバー(片持ち梁)を力検出器として用いる。通常、探針を試料に接近させると、まずはファンデアワールス力と静電気力とに起因する引力的相互作用力が働く。そして、探針を試料にさらに接近させると、化学的相互作用力に起因する強い斥力がこれらの力を上回る。AFMでは、探針を試料表面に近づけた時に、探針が受ける引力(または斥力)の変化を一定に保つように探針のZ位置をフィードバック制御する。この状態で探針を水平方向に走査することで、前述のとおり、試料表面の凹凸像を得る。
 AFMは、カンチレバーの背面に照射したレーザの反射光をフォトダイオードで検出することにより、カンチレバーの変位(たわみ量)から、カンチレバーが探針の先端から受けた相互作用力を計測する。このような計測手法は、光てこ法とも呼ばれる。
 ここで、AFMによる分析の対象として、生体材料を用いる例も多数報告されている。特にこのような生体材料に対するAFMの応用例として、生体材料がその機能を発揮する様子を直接的に観察できる可能性が示されている。一方で、このような生体材料の機能の発揮は、かなり速い変化によって実現されているため、現状のAFMの時間分解能(又はイメージング速度ともいう)では観察が困難である対象も多数存在する。すなわち、AFMを用いて、第1の時点での凹凸像を得たあと、次の凹凸像を得るまでに、対象の生体材料の変化が完了してしまい、時間連続的に変化の瞬間を捉えることが困難である場合がある。
 このように、現状のAFMを生体材料の観察に用いるためには、イメージング速度を改善できることが望まれる。しかしながら、現状のAFMでは、イメージング速度を改善し得るハードウェア的での技術開発は頭打ち状況にある。したがって、現状では2倍程度のイメージング速度の改善も困難な状況となっている。本発明では、このように頭打ち状況にあるAFMのイメージング速度を2.5倍以上に改善することができるAFM及びその制御方法等を提供する。
 (実施の形態)
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 [原子間力顕微鏡の構成]
 図1は、実施の形態に係る原子間力顕微鏡の構成を示すブロック図である。
 原子間力顕微鏡10は、試料99を観察するための原子間力顕微鏡であって、探針12を有するカンチレバー11、変位計測部13、フィードバック制御部14、PC(パーソナルコンピュータ)15、XY駆動制御部16、及び、駆動部17と試料保持部18とを備える。なお、本図の左下に示されるように、鉛直方向をZ軸、Z軸に直交し、互いにも直行する2つの直交軸をX軸及びY軸とし、それぞれの軸方向をZ軸方向、X軸方向及びY軸方向として説明に用いる場合がある。特に、Z軸方向を、Z軸プラス側を上方、Z軸マイナス側を下方とする、Z軸方向に沿う上下方向と表現する場合がある。また、XY平面を単に水平面と表現する場合がある。これらの方向及び面等の表現は、単に説明のために定義されたものであって、鉛直、水平などの言葉から、原子間力顕微鏡10が使用される際の方向や姿勢等を限定する意図ではない。
 カンチレバー11は、レバー21の先端に探針12が設けられた片持ち梁であり、試料99と探針12の先端との相互作用力を検出する力検出器として機能する。本実施の形態では、カンチレバー11は、長尺状のレバー21がXZ平面内における1点鎖線の両矢印の方向を長手方向として延びるように配置されている。レバー21の長手方向における、X軸プラス側の一端は、レバー21を支持する支持部(不図示)に接続されており、固定端となっている。一方で、レバー21の長手方向における、X軸マイナス側の他端は、自由端となっている。この自由端側のレバー21の端部に探針12が接着等によって接続されている。
 変位計測部13は、試料99と探針12の先端との相互作用力によるカンチレバー11の変位を計測する回路であり、上記に説明された原理でカンチレバー11のZ軸方向における変位を検出するためのLD(Laser Diode)13a、PD(Photodiode)13b及びプリアンプ13cを有する。つまり、LD13aから出射されたレーザは、カンチレバー11のZ軸プラス側の背面で反射し、反射光となってPD13bに入射し、PD13bでカンチレバー11のZ軸方向における変位を示す電気信号となり、その電気信号がプリアンプ13cで増幅され、フィードバック制御部14に出力される。
 フィードバック制御部14は、変位計測部13で計測されたカンチレバー11の変位に基づいて試料99と探針12の先端との距離を一定に維持する制御を行う回路であり、プリアンプ13cから送られてきた電気信号が示すカンチレバー11のZ軸方向における変位を一定に維持するための、駆動部17をZ軸方向に駆動する信号(Z軸駆動信号)を生成し、駆動部17及びPC15に出力する。
 PC15は、プロセッサ及びメモリを備え、プロセッサ及びメモリを用いて所定のプログラムを実行することで駆動部17を制御して試料99をX軸及びY軸方向に走査させるためのXY駆動信号をXY駆動制御部16に出力するとともに、フィードバック制御部14から送られてくるZ軸駆動信号を受信し、それらXY駆動信号及びZ軸駆動信号に基づいて試料99の表面の凹凸を示す2次元画像を生成して表示する装置である。
 PC15は、また、所定のプログラムを実行することで、XY駆動信号を出力している所定のタイミングにおいて、フィードバック制御部14に入力される電気信号にオフセット信号の加算を行う。このオフセット信号については後述するが、オフセット信号が加算された電気信号が入力されることで、フィードバック制御部14は、試料99と探針12とを遠ざけるようにカンチレバー11及び試料保持部18の少なくとも一方を駆動する。このPC15は、つまり、制御部の一例である。
 XY駆動制御部16は、PC15から送られてくるXY駆動信号に従って駆動部17にX軸駆動信号及びY軸駆動信号を出力することで駆動部17をX軸方向及びY軸方向に駆動し、これによって、試料99をX軸方向及びY軸方向に走査させる。
 駆動部17は、カンチレバー11及び試料保持部18の少なくとも一方を駆動して試料99を探針12に対して相対移動させる動力部分である。なお、本実施の形態では、駆動部17が試料保持部18のみを駆動する例を説明するが、駆動部17は、カンチレバー11を駆動してもよいし、カンチレバー11及び試料保持部18の両方を駆動してもよい。試料99を探針12に対して相対移動させることが可能な構成であれば、駆動部17はどのような構成で実現されてもよい。
 駆動部17は、フィードバック制御部14から送られてくるZ軸駆動信号、及び、XY駆動制御部16から送られてくるX軸駆動信号及びY軸駆動信号に従って、上部に載置された試料保持部18をX軸方向、Y軸方向及びZ軸方向に移動させる。駆動部17は、試料保持部18をX軸方向、Y軸方向及びZ軸方向にそれぞれ移動させるX駆動部17a、Y駆動部17b及びZ駆動部17cを有する。駆動部17は、探針12の先端に対して試料99を相対的にX軸方向、Y軸方向及びZ軸方向に移動させるピエゾ素子等からなるスキャナである。X駆動部17a、Y駆動部17b及びZ駆動部17cのそれぞれは、このX軸方向、Y軸方向及びZ軸方向に独立的に伸縮するように構成されたピエゾ素子を含む。
 駆動部17は、試料保持部18を駆動することで、図2のように、試料99の表面を探針12が走査する。図2は、実施の形態に係る原子間力顕微鏡の探針の走査方向を説明するための概略図である。図2には、一例として矩形状の試料99をZ軸方向から見たときに、探針12の先端が通過した試料99の上方位置を紙面に沿う試料99の表面に投影した場合の通過軌跡を細線及び細破線で示している。ここでは、判読性のために主走査方向の走査線の数を削減しており、X軸方向と斜め方向に延びる通過軌跡が示されているが、実際には、主走査方向がX軸方向に略一致するように走査がされる。
 以下では、主走査方向をX軸方向と一致するものとして説明するが、厳密には、Y軸方向にも微小な走査がされ、ミクロスケールにおいて図2のようにX軸方向に対して斜め方向に延びる通過軌跡を形成することがある。すなわち、X軸方向を主走査方向とする、とは、Y軸方向への微小な走査によりX軸方向に対して斜め方向に延びる通過軌跡を形成する場合を含めるものとして説明する。
 また、ここでは簡単のため試料99のX軸方向及びY軸方向それぞれの一方の端部から他方の端部まで、すべての領域を走査する通過軌跡を示している。探針12の走査は、試料99として用いるものにより異なる通過軌跡を形成し得る。例えば、探針12は、試料99の端部を超えて試料保持部18の上方側の面を走査する場合がある。また、例えば、探針12は、試料99の端部に到達することなく、試料99内の一部の領域のみを走査する場合がある。
 まず、探針12は、試料99のX軸マイナス側かつY軸マイナス側の端部から走査を開始し、Y軸マイナス側から数えて1つめの細線に沿ってX軸プラス側に向かって走査する。続いて、探針12は、Y軸マイナス側から数えて1つめの細破線に沿ってX軸マイナス側に向かって走査する。続いて、探針12は、Y軸マイナス側から数えて2つめの細線に沿ってX軸プラス側に向かって走査する。続いて、探針12は、Y軸マイナス側から数えて2つめの細破線に沿ってX軸マイナス側に向かって走査する。
 このように、探針12は、開始位置から、順番に細線及び細破線をたどって、X軸方向に大きく走査しながらY軸方向に少しずつ走査していく。本実施の形態では、X軸方向を主走査方向として、探針12が試料99の表面を走査して、Z軸方向の変位を検知することで、走査面に対応する凹凸像を生成する。
 再び図1に戻り、この主走査方向について説明する。カンチレバー11のレバー21は、試料99が載置される試料保持部18の上方の主面と交差する方向を長手方向とする長尺状の部材である。通常、原子間力顕微鏡では、この長手方向に沿う線分を走査面であるXY平面に射影した時の射影像が延びる方向を主走査方向とするように設定される。
 これは、走査において探針12に対して試料99から掛る力がカンチレバー11をひねる方向に作用することを避けるためである。このようなひねりの力に対して、カンチレバー11は、頑強に構成されているため、試料99に対して強い反力を発生し、試料99を破壊してしまう。したがって、試料99の破壊を抑制するために、長手方向に沿う線分を走査面に射影した時の射影像の延びる方向が主走査方向となるように構成される。図1に戻り、本発明においても、レバー21の長手方向を示す1点鎖線の両矢印の一端及び他端それぞれから走査面に向かって下方に延びる1点鎖線のように長手方向に沿う線分を走査面に射影したとき、白抜き両矢印が示すように、射影像が延びる方向であるX軸方向を主走査方向として、探針12が試料99の表面を走査する。
 試料保持部18は、試料99を保持する構造物であり、例えば、試料99を載置可能な板状部材によって構成される。試料保持部18は、試料99の被観測側の表面を固定的に保持できればどのような構成であってもよく、例えば、硬質な試料を挟持するクランプなどであってもよい。また、試料99として生体材料を用いる場合に、試料保持部18は、試料99とともに生理緩衝液などの液体を保持する容器として構成されてもよい。
 なお、原子間力顕微鏡10は、探針12と試料99との間の相互作用力によって生じるカンチレバー11の変位から、探針12と試料99との間の相互作用力を検出するタイプのスタティックモードAFMだけに限られず、カンチレバー11をその共振周波数近傍の周波数で機械的に振動させながら試料99に対して水平方向に走査した際の、探針12と試料99との間の相互作用力によって生じる振動振幅、周波数又は位相の変化から探針12と試料99との間の相互作用力を検出するダイナミックモードAFMであってもよい。その他、本発明は、特に試料99を高速に計測する原子間力顕微鏡10として、動作構成を問わず、あらゆる原子間力顕微鏡に応用可能である。
 [原子間力顕微鏡の動作]
 次に、図3を用いて、本実施の形態に係る原子間力顕微鏡10の動作について説明する。図3は、実施の形態に係る原子間力顕微鏡の動作を示すフローチャートである。
 図3に示すように、原子間力顕微鏡10が動作を開始して、探針12が試料99の走査を始めると、PC15は、時間に応じたXY駆動信号を出力する。XY駆動制御部16がXY駆動信号に応じてX軸駆動信号及びY軸駆動信号をX駆動部17a及びY駆動部17bに出力する。この結果、試料99は、探針12に対して第1距離かつ第1速度で第1方向に相対移動(つまり、第1方向走査)する(ステップS101)。第1方向走査では、試料99がレバー21の一端側から他端側に向かって相対移動する。つまり、試料99は、探針12に対してX軸マイナス側へと相対移動し、探針12は、試料99に対してX軸プラス側へと相対移動する。第1方向走査は、図2に示す細線に対応した走査である。
 ここでの第1距離は、試料99の表面と探針12の先端とが最接近する距離である。このとき、試料99の表面と探針12の先端との間に斥力などが発生して互いに微小な距離だけ離間している場合があるものの、カンチレバー11のZ軸方向における変位が生じて凹凸像を形成可能な距離として第1距離が設定される。また、第1速度は、試料99における必要な計測が可能な速度である。具体的には、凹凸像を必要な精細さで取得できるような速度範囲内で、可能な限り最速な速さに設定される。
 PC15は、引き続き、時間に応じたXY駆動信号を出力する。XY駆動制御部16がXY駆動信号に応じてX軸駆動信号及びY軸駆動信号をX駆動部17a及びY駆動部17bに出力する。この結果、試料99は、探針12に対して第2距離かつ第2速度で第2方向に相対移動(つまり、第2方向走査)する(ステップS102)。第2方向走査では、試料99がレバー21の他端側から一端側に向かって相対移動する。つまり、試料99は、探針12に対してX軸プラス側へと相対移動し、探針12は、試料99に対してX軸マイナス側へと相対移動する。第2方向走査は、図2に示す細破線に対応した走査である。
 ここでの第2距離は、第1距離よりも遠く、例えば、試料99の表面と探針12の先端とが接触しない距離である。XY平面内で探針12が試料99の表面を走査することから、試料99の表面に見込まれる凹凸の大きさに対して十分に大きな距離として第2距離が設定される。なお、第2距離は、少なくとも第1距離よりも大きく設定されればよい。この理由等については後述する。第2速度は、第1速度よりも速い速度である。この第2速度がより速いほどイメージング速度の改善につなげ得るが、駆動部17の駆動速度の限界や、後述する振動などの問題との兼ね合いから、シミュレーション又は予備試験などを行うことで第2速度を選択可能な範囲を決定し、当該範囲内の最速の値を採用すればよい。
 第1方向走査及び第2方向走査を切り替える際の第1距離及び第2距離の切り換えは、PC15から出力されるオフセット信号によって行われる。図4は、実施の形態に係る原子間力顕微鏡のオフセット信号の取り扱いを示す模式図である。図4における電気信号等は、例えば、電圧値の増減によって信号の大きさが変化される。ここで、電気信号Aは、変位計測部から出力された信号である。電気信号Aは、図4における右側の差分器においてセットポイント信号Aとの差分の算出に用いられる。実施の形態におけるセットポイント信号Aは、あらかじめ設定された基準となる電圧値であり差分器で算出された電気信号Aとの差分の電圧値(以下、エラー値ともいう)に基づいて、カンチレバー11のZ軸方向における変位量の目標値からのずれを検知できる。
 このずれに対応するエラー値をフィードバック制御に用いることで、エラー値を打ち消すように試料保持部18が駆動され、試料99と探針12とを第1距離に維持させる。オフセット信号AOSは、時間軸上で電圧値が変化する信号である。具体的には、吹き出し部に示されたグラフのように、第1方向走査の際(図中の1stに対応)には、オフセット信号AOSの電圧値は0となる。一方で、第2方向走査の際(図中の2ndに対応)には、オフセット信号AOSの電圧値は負の値となる。
 この結果、セットポイント信号Aとの見かけ上の差が大きくなる。これは、試料99の表面にかなり大きな凸部が存在しているかのように扱われる。この見かけ上大きな差がフィードバック制御に用いられるので、このようなエラー値をも打ち消すべく試料保持部18が駆動される。結果的に、実際には存在しない試料99の表面の凸部を第1距離に維持しようとするため、試料99と探針12との距離は、第1距離よりも遠ざけられ、第2距離に維持される。なお、同様の動作を、フィードバック制御用のZ軸駆動信号に対してオフセット信号を加算することも可能である。
 このような動作によって得られる各種の電圧値を図5に示す。図5は実施の形態に係る原子間力顕微鏡での各種信号の実測値の一例を示すグラフである。図5の上段は、時系列におけるX軸駆動信号の変化を示し、値が大きいほど試料99が探針12に対してX軸マイナス側に相対移動していること(つまり、時間の経過とともに増大するときは第1方向走査、時間の経過とともに減少するときは第2方向走査)を意味している。図5の中段は、時系列におけるオフセット信号の変化を示している。また、図5の下段は、時系列上のZ駆動部17cの変位量を示している。
 図5に示すように、X軸駆動信号は、のこぎり波に近い非対称な三角波(以下、のこぎり波様ともいう)のようになっており、時間軸上で第1方向走査と第2方向走査とのそれぞれに要する時間が異なることがわかる。特に電圧値が降下する第2方向走査において期間が短くなっており、第1方向走査における第1速度よりも速い第2速度で第2方向走査が行われていることが読み取れる。第1方向走査の期間と第2方向走査の期間とに関しても後述にて詳しく述べる。
 第2方向走査の期間に対応するように、オフセット信号が急峻な低下を示している。このオフセット信号は、先に説明した図4における模式的なグラフと一致している。第2方向走査においてオフセット信号が加算されることで、Z駆動部17cが急激に変位していることがわかる。この結果、本実施の形態においては、試料保持部18が下方に移動してカンチレバー11から引き離され、試料99と探針12とが第2距離になる。なお、第2距離は、試料99と探針12とが接触しない一定距離以上の距離であれば時間軸上で一様な距離でなくてもよい。第1回目の第2方向走査と第2回目の第2方向走査とで、第2距離が異なっていてもよいし、第1回目の第2方向走査の中で、第2距離が変化してもよい。したがって、第2距離に維持されるとは、少なくとも試料99と探針12とが接触しない一定距離を保って離間していることを包含する概念である。
 図3に戻り、続いて、PC15は、XY平面内での走査が終了される走査終了位置に到達したか否かの判定を行う(ステップS103)。PC15が走査終了位置に到達していないと判定した場合(ステップS103でNo)、ステップS101に戻り、再び第1方向走査が行われる。一方で、PC15が走査終了位置に到達したと判定した場合(ステップS103でYes)、走査を終了する。なお、以上の動作は、ある時点での1つの凹凸像を得るための処理の説明である。実際には、続けて2つ目の凹凸像を得ることが想定されるので、ステップS103でYesとなった後に、走査開始位置に戻って、再びステップS101から走査が開始される。また、走査終了位置が図2におけるX軸プラス側に設定される(つまり、第1方向走査を最後に走査が終了する)場合がある。このときは、図3のフローチャートにおいて、ステップS101とステップS102との間にもステップS103と同様の判定処理が加えられる。
 [走査の具体的な制御方法]
 以下では、図6~図11Bを用いて、上記に説明した探針12の試料99上での走査の具体的な制御方法について説明する。図6は、第1方向走査について説明する図である。また、図7は、第2方向走査について説明する図である。図6の(a)は、図1と同様の視点における従来の原子間力顕微鏡の第1方向走査の様子を示している。ここでは、試料保持部18が駆動されており、試料99が探針12に対してX軸マイナス側に向かって相対移動している。図7の(a)は、図1と同様の視点における従来の原子間力顕微鏡の第2方向走査の様子を示している。ここでは、試料保持部18が駆動されており、試料99が探針12に対してX軸プラス側に向かって相対移動している。
 図6の(b)は、第1方向走査のみによって得られた凹凸像が示されている。図6の(b)では、白色に近いほど大きな凸が存在することを示している。なお、図6の(b)に示す凹凸像を得る際に、第2方向走査によって得られた凹凸情報は、後述の図7の(b)に示す凹凸像を得るために用いられている。図7の(b)は、第2方向走査のみによって得られた凹凸像が示されている。図7の(b)では、白色に近いほど大きな凸が存在することを示している。なお、図7の(b)に示す凹凸像を得る際に、第1方向走査によって得られた凹凸情報は、上記の図6の(b)に示す凹凸像を得るために用いられている、すなわち、ここでは、1回のスキャンによって得られる凹凸像の情報を、第1方向走査によって得られる凹凸像(図6の(b))と、第2方向走査によって得られる凹凸像とに分解している。
 図6の(c)は、図6の(b)の凹凸像を得る際にフィードバック制御に用いられるエラー値を2次元状にマッピングしたエラー画像を示している。また、図6の(d)には、図6の(c)における2点鎖線上でのエラー値のプロットを示している。図7の(c)は、図7の(b)の凹凸像を得る際にフィードバック制御に用いられるエラー値を2次元状にマッピングしたエラー画像を示している。また、図7の(d)には、図7の(c)における2点鎖線上でのエラー値のプロットを示している。
 図6の(d)及び図7の(d)を比較すると、図6の(b)及び図7の(b)における白色箇所の凸起条に対していずれの方向から走査が行われたかによって若干の差がみられた。具体的には、図6の(d)では、いずれの箇所でもエラー値はそれほど大きくなく、-0.2Vから0.2V程度の範囲内で全体的に誤差と推定されるエラー値のぶれが生じていた。一方で、図7の(d)では、全体的に-0.2Vから0.2V程度の範囲内での誤差と推定されるエラー値のぶれが確認された。さらに、図7の(d)では、凸起条の紙面右側の端部に対応する位置でエラー値が大きくなっており、約-0.6Vに達していた。また、紙面左右方向の主走査方向における走査線すべてにおいて、同様の傾向がみられた。
 この走査方向に対するエラー値の変化は、図6の(a)及び図7の(a)に示すカンチレバー11にかかるトルクの違いによって引きおこされていると推定される。図6の(a)に示すように、正の段差(試料保持部18の上面から試料99の上面に昇る段差)で試料99から探針12に働く横方向(X軸方向)の力の向きが、第1方向走査(往き走査ともいう)と第2方向走査(還り走査ともいう)との間で逆向きである。従って、往き走査では、X軸方向の力でカンチレバー11に作用するトルクの向き(torque(x))は、試料99から探針12に働くZ軸方向の力でカンチレバー11に作用するトルクの向き(torque(z))と同じである。一方、図7の(a)に示すように、還り走査では、両者のトルクの向きが逆である。図6の(a)及び図7の(a)で時計回りに作用するトルクはカンチレバー11を上向きにたわませ、逆に反時計回りに作用するトルクはカンチレバー11を下向きにたわませる。カンチレバー11の振幅は光てこ法によって変位として計測されるが、この測定法では、カンチレバー11の先端付近のZ軸方向の変位を計測するわけではなく、トルクで生ずる角度変化を測定する。従って、時計回りに作用するトルクで生ずる角度変化は振幅値が減少したものと解釈され、逆に反時計回りに作用するトルクで生ずる角度変化は振幅値が増大したものと解釈される。
 ここで、図14Aは、試料の往き走査時における、エラー信号、フィードバック制御出力、及び、カンチレバーのたわみ信号を示すグラフである。図14Aでは、(a)にエラー信号の経時変化を示し、(b)にフィードバック制御出力の経時変化を示し、(c)にカンチレバー11のたわみ信号の経時変化を示している。また、図14Bは、試料の還り走査時における、エラー信号、フィードバック制御出力、及び、カンチレバーのたわみ信号を示すグラフである。図14Bでは、(a)にエラー信号の経時変化を示し、(b)にフィードバック制御出力の経時変化を示し、(c)にカンチレバー11のたわみ信号の経時変化を示している。また、図15は、カンチレバーの走査位置で働く力の違いを説明する図である。図15では、探針12の先端と、試料99とをそれぞれ円形で示し、接触位置ごとに作用する力の向きと大きさとを図中のベクトル(Fx及びFz)で示している。図15では、(a)から(c)にかけて、カンチレバー11が試料99の段差に乗り上げるときの経時的な変位を示している。なお、図15の一点鎖線は、探針12の先端が通過する軌跡を示している。
 図14A及び図14Bに示すフィードバック制御出力の下降は、試料保持部18が探針12から離れる方向に移動していることを意味する。図14Bの(a)において、下向き矢印a1で示す箇所でエラー信号が正側に大きく、左向き矢印a2で示す箇所でエラー信号が負側に大きくなっていることが分かる。矢印a1での大きなエラーは、短時間(カンチレバー11の振動周期の1~2倍程度)に現れるのに対し、矢印a2での大きなエラーは、比較的長時間(振動周期の数倍)にわたって現れている。矢印a1の箇所で、探針12は試料99に初めて接触し(図15の(a))、カンチレバー11のZ軸方向での振動に伴って試料保持部18から探針12に対するZ軸方向の力(図15の(a)中の紙面上向き矢印)と、試料99から探針12に対するX軸方向の力Fxとが作用する。特に、X軸方向の力Fxが試料99から探針12に働くことで、図14Bの(a)における測定振幅値が大きくなったと理解できる。この直後、図14Bの(b)に示すようにフィードバック制御出力が上方に移動している。
 つまり、試料保持部18が探針12に近づく向きに駆動されている。その結果、試料99から探針12に働くZ軸方向の力Fzが大きくなるが、エラー信号がほぼゼロ(又は若干のマイナス値)に戻る。エラー信号がほぼゼロであるのは、X軸方向の力FxとZ軸方向の力Fzの両者が大きくなっているものの(図15の(b))、それぞれの作用で生じるトルクがほぼ相殺されているためである。この間、若干のマイナス値のエラー信号により、図14Bの(b)に示すようにフィードバック制御出力が緩やかに下降している。つまり、試料保持部18が探針12から遠ざかる向きに緩やかに移動している。
 矢印a2の箇所で、エラー信号が負側に大きくなっているのは、試料99の正の段差が小さくなったため、X軸方向の力Fxがかなり弱くなり、Z軸方向の力Fzによるたわみが顕著に現れたものと考えられる(図15の(c))。矢印a2で比較的長時間にわたって現れる負の大きなエラー信号が図7の(c)のエラー像に現れていると考えられる。矢印a1と矢印a2の時間差は約45μsであるが、X軸方向の走査速度110μm/sにより、5nmの距離分に相当する。このとき、探針12先端の太さの影響のため、探針12は、試料99の頂点には達していない(図15の(c))。
 以上のことから、還り走査時では、試料の正の段差が大きい箇所でX軸方向に働く力とZ軸方向に働く力との合力が大きくなっても、それぞれの力がカンチレバー11に作用するトルクの向きが逆向きであるために相殺され、フィードバック制御は合力を小さくする方向に働かず、探針12-試料99間の接触力を大きくしてしまうものと考えられる。この接触力は、試料99に対するダメージも大きいので回避すべきである。
 この結果から、本実施の形態における原子間力顕微鏡10では、第2方向走査での試料99と探針12との接触を避けて凹凸像の生成に用いないこととし、さらに、第2方向走査を高速化することで、試料99全体としての走査を高速化している。図8は、実施の形態に係る原子間力顕微鏡10での走査の高速化の概念を示す図である。図8では、上段に従来の原子間力顕微鏡での走査を模式化した図を示し、下段に本実施の形態における原子間力顕微鏡10での走査を模式化した図を示している。図8の各図では、横軸に時間を、縦軸に、X軸方向における走査位置(つまり、試料99と探針12との相対位置)を示している。
 いずれの模式図でもX軸方向における走査位置がX軸プラス側とX軸マイナス側とを往復することで変位する周期関数様のグラフとなっている。従来の原子間力顕微鏡に対して本実施の形態における原子間力顕微鏡10では、縦軸の値の減少領域の期間が短く、全体として大幅に高速化されていることがわかる。このように、実施の形態に係る原子間力顕微鏡10では、時間に対するX軸方向における変位を三角波からのこぎり波に近づけることで(のこぎり波様にすることで)、高速な走査を実現している。
 なお、この高速化に併せて、さらに、試料99に探針12が接近する回数を減少させ、また、試料99を下方に押し込むなどの試料99へのダメージが大きい第2方向走査で探針12と試料99を接触させないようにしている。つまり、本実施の形態における走査は試料99に対して優しい走査である。試料99には、走査によってダメージが蓄積されていき、高速な走査であるほど、蓄積されるダメージは大きいものとなる。蓄積されたダメージは、やがて試料99そのものを破壊し得るので、このように優しい走査を実現することで、第2方向走査によって蓄積されなかったダメージの分だけ、第1方向走査自体をさらに高速化することも可能である。
 ここで、図8の下段に示すのこぎり波様の関数は、走査の高速化の観点では理想的な関数であるといえる。しかしながら、こののこぎり波様関数には、第1方向走査と第2方向走査とが切り替わる折り返し位置において、高周波成分が多く含まれており、このまま走査の制御に用いた場合には、装置構成によって振動が生じる可能性がある。
 そこで、本実施の形態では、こののこぎり波様関数に基づいて、高周波成分を除去することで振動の発生を抑制する。
 こののこぎり波様関数は、X軸方向上の探針12及び試料99の相対位置であって、第1方向走査が開始される目標の位置関係(つまり、高周波成分を許容した場合の位置関係)における相対位置を第1基準点とし、第1方向走査が終了する目標の位置関係における相対位置を第2基準点とし、1周期に対する第1方向走査に要する時間の比である分割比をαとしたとき、探針12及び試料99のX軸方向上の相対位置の、第1基準点に対する相対的な時間領域における変化量を、第m周期の(時間,変化量)=((m-1)T,第1基準点)、(時間,変化量)=((m-1)T+αT,第2基準点)、及び、第(m+1)周期の(時間,変化量)=(mT,第1基準点)を順次直線的に結んでなされている。上記ののこぎり波様関数は、次式(1)によって表すことができる。
Figure JPOXMLDOC01-appb-M000001
 また、式(1)をフーリエ級数として表現した場合、式(2)のように変形できる。
Figure JPOXMLDOC01-appb-M000002
 上記式(2)のフーリエ級数のうち、例えば、はじめの9項を残して、第10項以降の高次項を0とみなすことで近似すれば、高周波成分を除去することができる。この結果、得られる周期関数の一部を図9に示す。図9は、実施の形態における原子間力顕微鏡での走査に用いられるX軸方向の変位を示す第1グラフである。なお、図9では、のこぎり波様関数の1周期に対応する部分のグラフが示されている。また、図9の(a)は、α=0.8での結果を、図9の(b)は、α=0.9での結果を、図9の(c)は、α=0.95での結果をそれぞれ示している。図9の(a)及び図9の(b)に示すようにα=0.9までの範囲であれば、のこぎり波様関数に近い良好な近似関数が得られた。一方でα=0.95の結果では、X軸方向における振動が発生していることから適切とはいえない。ただし、フーリエ級数のうち、より高次の項までを含めることでこれは改善され得るが、この場合、原子間力顕微鏡10の装置構成側に高周波成分による振動を抑制する工夫が要求される。
 以下、図9の(a)に示す、フーリエ級数のはじめの9項までを用いて、α=0.8としたときに得られる近似関数を用いて説明を続ける。図9の(a)をより詳細にみると、最大値及び最小値の頂点位置が若干ずれていることがわかる。これを修正するため、本実施の形態における原子間力顕微鏡10では、上記の高周波成分の除去処理の結果得られた関数をさらに変化量軸方向及び時間軸方向に拡張する処理を行っている。
 具体的には、高周波成分の除去処理の結果得られた関数X(t)の昇り勾配領域(0≦t<αT)を以下の式(3)によってX(t)に変換する。
Figure JPOXMLDOC01-appb-M000003
 なお、上記式(3)中のH(x)は、ヘビサイド階段関数を示している。また、上記式(3)中のu(t)は、以下の式(4)の通りである。
Figure JPOXMLDOC01-appb-M000004
 また、高周波成分の除去処理の結果得られた関数X(t)の下り勾配領域(αT≦t<T)を以下の式(5)によってX(t)に変換する。
Figure JPOXMLDOC01-appb-M000005
 なお、上記式(5)中のu(t)は、以下の式(6)の通りである。
Figure JPOXMLDOC01-appb-M000006
 この処理の結果、算出される近似関数では、処理前の関数における第m周期の変化量が最大となる点が((m-1)T+αT,第2基準点)に一致され、処理前の関数における第m周期の変化量が最小となる点を((m-1)T,第1基準点)に一致されている。以上の処理により得られた近似関数を図10に示す。図10は、実施の形態における原子間力顕微鏡での走査に用いられるX軸方向の変位を示す第2グラフである。図10に示すように、図9の(a)にみられた最大値及び最小値の頂点位置のずれが無くなっている。
 図10に示すグラフのようにして、原子間力顕微鏡10を制御した場合の一例を図11A及び図11Bに示す。図11Aは、実施の形態における原子間力顕微鏡のX軸方向の走査でのX軸駆動信号及びX駆動部の変位を示す第1図である。図11Aでは、上段にX軸方向の走査のために出力されたX軸駆動信号が示されている。また、図11Aでは、下段にX駆動部17aの駆動量に相当する変位の量が示されている。
 図11Aに示すように、ここでは、約10kHzでX軸方向の走査が行われている。例えば、1kHz程度のX軸方向の走査であれば、上記の処理のみで良好な結果が得られる(不図示)が、図11Aに示すように、10kHzもの周波数でX軸方向の走査を行う場合、上記の処理のみでは、不要な振動を発生してしまう場合がある。これは、X駆動部の機械的共振が励起されたことが推定される。そこで、本実施の形態における原子間力顕微鏡では、さらに、このような振動も抑制するように、関数の調整を行っている。X駆動部17aの色々な周波数で駆動したときの変移(周波数特性)は、伝達関数として表現することができる。本実施の形態では、任意の伝達関数に対して、逆伝達関数を自動的に生成して、本来のX駆動部17aの変位を得るために、出力すべき信号を逆算する「逆伝達補償法」を適用することで、X軸駆動信号出力の調整を行っている。
 図11Bは、実施の形態における原子間力顕微鏡のX軸方向の走査でのX軸駆動信号及びX駆動部の変位を示す第2図である。図11Bでは、上段にX軸方向の走査のために「逆伝達補償法」を適用して出力されたX軸駆動信号が示されている。また、図11Bでは、下段に、「逆伝達補償法」を適用した場合のX駆動部17aの駆動量に相当する変位の量が示されている。図11Bに示すように、「逆伝達補償法」を適用することで、X駆動部17aの駆動は、目的とする振動のグラフに近づき、一方でこの駆動のために出力されたX軸駆動信号は、図11Aに比べて変化している。
 このようにして、本実施の形態における原子間力顕微鏡10では、種々の工夫を適用して、生体材料などを含む広い用途の試料99を計測可能である。
 [変形例]
 上記の実施の形態では、のこぎり波様関数の還り走査部分において、直線的な関数を想定したが、還り走査部分の波形には、さらに様々な関数の可能性があり得る。すなわち、往き走査終了点と往き走査開始点とをつなぐ線は、直線でなくても構わない。例えば、このような区間に、コサイン波の1/2波形を適用して、往き走査終了点と往き走査開始点とをつないでもよい。この場合の走査波形は、以下の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 また、式(7)をフーリエ級数として表現した場合、式(8)のように変形できる。
Figure JPOXMLDOC01-appb-M000008
 なお、上記式(8)中のA及びBは、それぞれ、以下の式(9)及び式(10)の通りである。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 この結果、得られる周期関数の一部を図16に示す。図16は、実施の形態の変形例における原子間力顕微鏡での走査に用いられるX軸方向の変位を示すグラフである。なお、図16では、のこぎり波様関数の1周期に対応する部分のグラフが示されている。また、図16の(a)は、α=0.8での結果を、図16の(b)は、α=0.87での結果をそれぞれ示している。図16の(a)及び図16の(b)に示すようにα=0.87までの範囲であれば、のこぎり波様関数に近い良好な近似関数が得られた。図中に示すように、コサイン波の1/2波形を適用したのこぎり波様関数を用いれば、頂点位置のシフトが生じず、この補正のための計算を行う必要がない。この他、往き走査終了点と往き走査開始点とを滑らかにつなぐあらゆる関数を適用して、のこぎり波様関数を構成してもよい。
 [実施例]
 以下、上記に構成された原子間力顕微鏡10による計測結果の一例について、図12A~図13Bを用いて説明する。図12Aは、実施例に係るアクチンフィラメントの計測結果を示す第1図である。また、図12Bは、比較例に係るアクチンフィラメントの計測結果を示す図である。また、図12Cは、実施の形態に係るイメージング速度とアクチンフィラメントの残存率との関係を示すグラフである。
 図12A及び図12Bに示す例では、試料99としてアクチンフィラメントを用いて計測を行っている。アクチンフィラメントは、主走査線方向における段差が急激になるために、より計測によるダメージの大きい主走査方向に交差するようにして(Y軸方向に沿って)配置されている。図12Aでは(a)に0.00秒経過時点のアクチンフィラメント像を、(b)に3.36秒経過時点のアクチンフィラメント像を、(c)に6.72秒経過時点のアクチンフィラメント像を、(d)に10.08秒経過時点のアクチンフィラメント像をそれぞれ示している。また、図12Bでは(a)に0.00秒経過時点のアクチンフィラメント像を、(b)に0.64秒経過時点のアクチンフィラメント像を、(c)に0.96秒経過時点のアクチンフィラメント像を、(d)に1.60秒経過時点のアクチンフィラメント像をそれぞれ示している。
 図12Aに示すように、実施例に係る計測結果によれば、10.08秒経過時点においても良好にフィラメント構造を維持していることが示された。一方で、図12Bに示すように、比較例に係る計測結果によれば、1秒足らずの時点において大きくフィラメント構造が破壊され、1.60秒経過時点においては、ほとんどの構造が残らないことが示された。
 また、図12Cでは、実施例に係るアクチンフィラメントの計測を30回行ったうちの破壊されていないアクチンフィラメントの比率を、イメージング速度を変えて複数回施行し、結果を丸印のプロットとして示している。また、図12Cでは、比較例に係るアクチンフィラメントの計測を30回行ったうちの破壊されていない回数の比率を、イメージング速度を変えて複数回施行し、結果を三角のプロットとして示している。
 実施例に係る計測では、アクチンフィラメントの残存率が、高いイメージング速度においても維持されていることがわかった。
 これらの結果から、上記の実施の形態における原子間力顕微鏡10の有用性が示された。
 また、図13Aは、実施例に係るアクチンフィラメントの計測結果を示す第2図である。図13Aでは、上記図12Aと同様に、アクチンフィラメントの配置の方向のみを、よりダメージの少ないX軸方向に沿うように変えて計測を行った結果を示している。図13Aでは(a)に0.00秒経過時点のアクチンフィラメント像を、(b)に0.03秒経過時点のアクチンフィラメント像を、(c)に0.07秒経過時点のアクチンフィラメント像を、(d)に10.03秒経過時点のアクチンフィラメント像をそれぞれ示している。
 図13Aに示す計測例では、アクチンフィラメントを破壊することなく、高速に計測できることが示された。ここでは、アクチンフィラメントの計測を25fpsで行うことができることが示された。
 また、図13Bは、実施例に係る微小管の計測結果を示す図である。図13Bでは、上記図13Aと同様に、微小管をX軸方向に沿うように配置して計測を行った結果を示している。図13Bでは(a)に0.00秒経過時点の微小管像を、(b)に0.04秒経過時点の微小管像を、(c)に0.08秒経過時点の微小管像を、(d)に10.00秒経過時点の微小管像をそれぞれ示している。
 図13Bに示す計測例では、微小管を破壊することなく、高速に計測できることが示された。ここでは、微小管の計測を30fpsで行うことができることが示された。
 第2方向走査における走査時間を短くしたのこぎり波様関数でのX軸方向の走査の採用により従来よりも1.6倍の高速化が実現された。また、さらに、上記の走査により探針12と試料99との接触による試料99への影響を大幅に低減することができ、全体として脆弱な試料に対しては、従来に比べて2.5倍程度の高速化が実現された。原子間力顕微鏡のハードウェア面での高速化が難しい状況にあって、PC15による制御の僅かな改変だけで2.5倍もの高速化が実現できることから、本発明の有用性が確認できる。なお、本発明は、Amplitude Modulation(AM)モード、Frequency Modulation(FM)モード、Phase Modulation(PM)モード、及び、Force-distance(FD)-basedモードに加え、カンチレバーを振動させないDC(コンタクト)モードなど、あらゆる原子間力顕微鏡での適用が可能である。
 [効果など]
 以上説明したように、本実施の形態における原子間力顕微鏡10は、長尺状のレバー21であって、長手方向における一端側がレバー21の支持に用いられる固定端であり、長手方向における他端側が自由端であるレバー21を含み、自由端側に、レバー21から長手方向に交差する下方に向けて突出する探針12が設けられたカンチレバー11と、カンチレバー11の下方に配置され、カンチレバー11に対向させて試料99を保持する試料保持部18と、カンチレバー11及び試料保持部18の少なくとも一方を駆動して試料99を探針12に対して相対移動させる駆動部17と、駆動部17を制御することにより、長手方向の線分をカンチレバー11から探針12が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向(X軸方向)を主走査方向として、仮想面内において試料99の表面を探針12に走査させる制御部(例えば、PC15)と、を備え、制御部は、試料99が一端側から他端側に向かって相対移動する第1方向走査において、試料99と探針12とを第1距離に近接させて第1速度で相対移動する第1モードで走査させ、試料99が他端側から一端側に向かって相対移動する第2方向走査において、試料99と探針12とを第1距離よりも遠い第2距離に遠ざけ、かつ、第1速度よりも速い第2速度で相対移動する第2モードで走査させる。
 このような原子間力顕微鏡10は、比較的試料99へのダメージの大きい第2方向走査において、探針12と試料99とを第2距離に離間させることで、これらの接触を抑制し、試料に対するダメージを縮小することができる。この結果、第2方向走査によって付与されなくなったダメージに相当する分だけ、第1方向走査において、試料99に付与されるダメージの許容値を拡大できる。すなわち、第1方向走査において、相対移動速度を上昇させても、試料99が計測に堪える範囲内のダメージにとどめることが可能となる。つまり、この制御構成によって、第1方向走査での相対移動速度を上昇させることができる。また一方で、従来の計測においては、ダメージが大きいために計測不能であった種別の試料99に対しても計測を行うことが可能となる。
 また、第2方向走査において、試料99に探針12が接触しないため、第2方向走査での相対移動速度も上昇させることが可能となる。すなわち、試料99に探針12が接触していないので、原子間力顕微鏡10の装置限界まで相対移動速度を上昇させても、探針12との接触による試料99に付与されるダメージがなくなる。以上のように、試料99と探針12との相対移動速度の改善によって、従来の計測ではとらえられなかった速度での試料99の計測が可能となる。また、試料99に対して付与されるダメージが縮小されることにより、従来の計測では付与されるダメージに堪えられず計測できなかった試料99の計測が可能となる。よって、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、例えば、制御部は、第1方向走査の際に、探針12の仮想面と交差する方向(Z軸方向)への変位に対応する電気信号を取得し、取得した電気信号と、所定の基準信号との差分に基づいて探針12と試料99の表面との距離を第1距離に維持されせ、第2方向走査の際に、取得された電気信号に対してオフセット信号を加算することで、所定の基準信号との差分の数値を変化させて探針12と試料99の表面との距離を第2距離に維持させてもよい。
 これによれば、第2方向走査の際に、オフセット信号を加算するのみで、より多様な用途の計測に適用可能な原子間力顕微鏡が実現できる。場合により、従来の原子間力顕微鏡に対してハードウェア上の改変を行うことなく、制御系における各出力値を調整するのみで上記の効果を奏し得る原子間力顕微鏡10を実現することができる。よって、原子間力顕微鏡10を容易に構成できる。
 また、例えば、制御部は、第1方向走査と第2方向走査とが切り替わる折り返し位置における、探針12及び試料99の相対位置の振動の発生を抑制するための軌道に沿って、試料99を探針12に対して相対移動させてもよい。
 これによれば、場合によって発生し得る折り返し位置における、探針12及び試料99の相対位置の振動の発生を抑制することができる。振動によって計測に不具合が生じることを抑制できるので、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、例えば、制御部は、所定方向上の探針12及び試料99の相対位置であって、第1方向走査が開始される目標の位置関係における相対位置を第1基準点とし、所定方向上の探針12及び試料99の相対位置であって、第1方向走査が終了する目標の位置関係における相対位置を第2基準点とし、1周期に対する第1方向走査に要する時間の比である分割比をαとしたとき、探針12及び試料99の所定方向上の相対位置の、第1基準点に対する相対的な時間領域における変化量を、第m周期の(時間,変化量)=((m-1)T,第1基準点)、(時間,変化量)=((m-1)T+αT,第2基準点)、及び、第(m+1)周期の(時間,変化量)=(mT,第1基準点)を順次直線的に結ぶ、Tを周期とするのこぎり波様関数に基づいて、のこぎり波様関数をフーリエ級数展開したときの所定の次数より大きい高次項を0とみなすことで算出される近似関数によって表される軌道に沿って、試料99を探針12に対して相対移動させてもよい。
 これによれば、振動の発生を無視した場合ののこぎり波様関数をフーリエ級数展開した場合の所定の次数より大きい高次項を0とみなすことで、のこぎり波様関数に含まれる高周波成分を除去して折り返し位置における、探針12及び試料99の相対位置の振動の発生を抑制することができる。振動によって計測に不具合が生じることを抑制できるので、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、例えば、制御部は、所定方向上の探針12及び試料99の相対位置であって、第1方向走査が開始される目標の位置関係における相対位置を第1基準点とし、所定方向上の探針12及び試料99の相対位置であって、第1方向走査が終了する目標の位置関係における相対位置を第2基準点とし、1周期に対する第1方向走査に要する時間の比である分割比をαとしたとき、探針12及び試料99の所定方向上の相対位置の、第1基準点に対する相対的な時間領域における変化量を、第m周期の(時間,変化量)=((m-1)T,第1基準点)、及び、(時間,変化量)=((m-1)T+αT,第2基準点)を直線的に、第m周期の(時間,変化量)=((m-1)T+αT,第2基準点)、及び、第(m+1)周期の(時間,変化量)=(mT,第1基準点)をコサイン波の1/2波形により順次結ぶ、Tを周期とするのこぎり波様関数に基づいて、のこぎり波様関数をフーリエ級数展開したときの所定の次数より大きい高次項を0とみなすことで算出される近似関数によって表される軌道に沿って、試料99を探針12に対して相対移動させてもよい。
 これによれば、振動の発生を無視した場合ののこぎり波様関数をフーリエ級数展開した場合の所定の次数より大きい高次項を0とみなすことで、のこぎり波様関数に含まれる高周波成分を除去して折り返し位置における、探針12及び試料99の相対位置の振動の発生を抑制することができる。振動によって計測に不具合が生じることを抑制できるので、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。特に、こののこぎり波様関数では、折り返し位置でのX軸方向における変化量軸及び時間軸におけるずれが発生しないため、このようなずれの調整といった追加の処理をせずともより適切な探針12の走査が可能となるので、簡易なシステム構成によって、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、例えば、制御部は、のこぎり波様関数をフーリエ級数展開した場合の所定の次数より大きい高次項を0とみなした関数を算出し、算出された関数における第m周期の変化量が最大となる点を((m-1)T+αT,第2基準点)に一致させ、算出された関数における第m周期の変化量が最小となる点を((m-1)T,第1基準点)に一致させるように、変化量軸方向及び時間軸方向に関数を拡張することで算出される近似関数によって表される起動に沿って、試料99を探針12に対して相対移動させてもよい。
 これによれば、フーリエ級数展開した場合の所定の次数より大きい高次項を0とみなすことで算出された関数において、折り返し位置のX軸方向における変化量軸及び時間軸におけるずれが調整される。よって、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、例えば、所定の次数は、9であり、分割比は、α=0.8であってもよい。
 これによれば、所定の次数として9を、分割比としてα=0.8をそれぞれ用いて、原子間力顕微鏡10を構成できる。振動の発生を抑制しつつ、走査における試料99と探針12との相対移動を高速化できるので、より多様な用途の計測に適用可能な原子間力顕微鏡が実現される。
 また、本実施の形態における制御方法は、長尺状のレバー21であって、長手方向における一端側がレバー21の支持に用いられる固定端であり、長手方向における他端側が自由端であるレバー21を含み、自由端側に、レバー21から長手方向に交差する下方に向けて突出する探針12が設けられたカンチレバー11と、カンチレバー11の下方に配置され、カンチレバー11に対向させて試料99を保持する試料保持部18と、カンチレバー11及び試料保持部18を駆動して試料99を探針12に対して相対移動させる駆動部17と、駆動部17を制御することにより、長手方向の線分をカンチレバー11から探針12が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向(X軸方向)を主走査方向として、仮想面内において試料99の表面を探針12に走査させる制御部(例えば、PC15)、を有する原子間力顕微鏡10の制御方法であって、試料99が一端側から他端側に向かって相対移動する第1方向走査において、試料99と探針12とを第1距離に近接させて第1速度での相対移動によって走査させ、試料99が他端側から一端側に向かって相対移動する第2方向走査において、試料99と探針12とを第1距離よりも遠い第2距離に遠ざけ、かつ、第1速度よりも速い第2速度での相対移動によって走査させる。
 これによれば、上記の原子間力顕微鏡10と同様の効果を奏することができる。
 また、本実施の形態におけるプログラムは、上記に記載の制御方法をコンピュータに実行させるためのプログラムである。
 これによれば、上記の制御方法の効果を、コンピュータを用いて実現できる。
 (その他の実施の形態)
 以上、本発明について、実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
 例えば、上記の実施の形態に係る原子間力顕微鏡は、専用の装置として実現されてもよいし、複数の装置として実現されてもよい。
 また、上記の実施の形態に係る各構成要素間の通信は、有線又は無線で行われ、その通信方式にも特に限定はなく、あらゆる通信方式が採用される。
 また、上記の実施の形態に係る制御部などは典型的には、集積回路であるLSIとして実現される。これらのLSIは、1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化は、LSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又は、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 なお、上記の実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記で用いた数値等は、すべて本発明を具体的に説明するために例示するものであり、本発明の実施の形態は例示された数値に制限されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能を一つの機能ブロックとして実現したり、一つの機能を複数の機能ブロックに分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本発明を具体的に説明するために例示するためであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 その他、上記の実施の形態に対して当業者が思いつく各種変形を施して得られる形態、及び、本発明の趣旨を逸脱しない範囲で上記の実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明は、より多様な用途の原子間力顕微鏡に利用可能である。
  10  原子間力顕微鏡
  11  カンチレバー
  12  探針
  13  変位計測部
  13a  LD
  13b  PD
  13c  プリアンプ
  14  フィードバック制御部
  15  PC
  16  XY駆動制御部
  17  駆動部
  17a  X駆動部
  17b  Y駆動部
  17c  Z駆動部
  18  試料保持部
  21  レバー
  99  試料

Claims (9)

  1.  長尺状のレバーであって、長手方向における一端側が前記レバーの支持に用いられる固定端であり、前記長手方向における他端側が自由端であるレバーを含み、前記自由端側に、前記レバーから前記長手方向に交差する下方に向けて突出する探針が設けられたカンチレバーと、
     前記カンチレバーの前記下方に配置され、前記カンチレバーに対向させて試料を保持する試料保持部と、
     前記カンチレバー及び前記試料保持部の少なくとも一方を駆動して前記試料を前記探針に対して相対移動させる駆動部と、
     前記駆動部を制御することにより、前記長手方向の線分を前記カンチレバーから前記探針が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向を主走査方向として、前記仮想面内において前記試料の表面を前記探針に走査させる制御部と、を備え、
     前記制御部は、
      前記試料が前記一端側から前記他端側に向かって相対移動する第1方向走査において、前記試料と前記探針とを第1距離に近接させて第1速度で相対移動する第1モードで走査させ、
      前記試料が前記他端側から前記一端側に向かって相対移動する第2方向走査において、前記試料と前記探針とを前記第1距離よりも遠い第2距離に遠ざけ、かつ、前記第1速度よりも速い第2速度で相対移動する第2モードで走査させる
     原子間力顕微鏡。
  2.  前記制御部は、
     前記第1方向走査の際に、前記探針の前記仮想面と交差する方向への変位に対応する電気信号を取得し、取得した前記電気信号と、所定の基準信号との差分に基づいて前記探針と前記試料の表面との距離を前記第1距離に維持させ、
     前記第2方向走査の際に、取得された前記電気信号に対してオフセット信号を加算することで、前記所定の基準信号との差分の数値を変化させて前記探針と前記試料の表面との距離を前記第2距離に維持させる
     請求項1に記載の原子間力顕微鏡。
  3.  前記制御部は、前記第1方向走査と前記第2方向走査とが切り替わる折り返し位置における、前記探針及び前記試料の相対位置の振動の発生を抑制するための軌道に沿って、前記試料を前記探針に対して相対移動させる
     請求項1又は2に記載の原子間力顕微鏡。
  4.  前記制御部は、
     前記所定方向上の前記探針及び前記試料の相対位置であって、前記第1方向走査が開始される目標の位置関係における相対位置を第1基準点とし、
     前記所定方向上の前記探針及び前記試料の相対位置であって、前記第1方向走査が終了する目標の位置関係における相対位置を第2基準点とし、
     1周期に対する前記第1方向走査に要する時間の比である分割比をαとしたとき、
     前記探針及び前記試料の前記所定方向上の相対位置の、前記第1基準点に対する相対的な時間領域における変化量を、第m周期の(時間,変化量)=((m-1)T,第1基準点)、(時間,変化量)=((m-1)T+αT,第2基準点)、及び、第(m+1)周期の(時間,変化量)=(mT,第1基準点)を順次直線的に結ぶ、Tを周期とするのこぎり波様関数に基づいて、前記のこぎり波様関数をフーリエ級数展開したときの所定の次数より大きい高次項を0とみなすことで算出される近似関数によって表される前記軌道に沿って、前記試料を前記探針に対して相対移動させる
     請求項3に記載の原子間力顕微鏡。
  5.  前記制御部は、
     前記所定方向上の前記探針及び前記試料の相対位置であって、前記第1方向走査が開始される目標の位置関係における相対位置を第1基準点とし、
     前記所定方向上の前記探針及び前記試料の相対位置であって、前記第1方向走査が終了する目標の位置関係における相対位置を第2基準点とし、
     1周期に対する前記第1方向走査に要する時間の比である分割比をαとしたとき、
     前記探針及び前記試料の前記所定方向上の相対位置の、前記第1基準点に対する相対的な時間領域における変化量を、第m周期の(時間,変化量)=((m-1)T,第1基準点)、及び、(時間,変化量)=((m-1)T+αT,第2基準点)を直線的に、第m周期の(時間,変化量)=((m-1)T+αT,第2基準点)、及び、第(m+1)周期の(時間,変化量)=(mT,第1基準点)をコサイン波の1/2波形により順次結ぶ、Tを周期とするのこぎり波様関数に基づいて、前記のこぎり波様関数をフーリエ級数展開したときの所定の次数より大きい高次項を0とみなすことで算出される近似関数によって表される前記軌道に沿って、前記試料を前記探針に対して相対移動させる
     請求項3に記載の原子間力顕微鏡。
  6.  前記制御部は、
     前記のこぎり波様関数をフーリエ級数展開した場合の所定の次数より大きい高次項を0とみなした関数を算出し、
     算出された前記関数における第m周期の変化量が最大となる点を((m-1)T+αT,第2基準点)に一致させ、
     算出された前記関数における第m周期の変化量が最小となる点を((m-1)T,第1基準点)に一致させるように、変化量軸方向及び時間軸方向に前記関数を拡張することで算出される前記近似関数によって表される前記起動に沿って、前記試料を前記探針に対して相対移動させる
     請求項4又は5に記載の原子間力顕微鏡。
  7.  前記所定の次数は、9であり、
     前記分割比は、α=0.8である
     請求項4~6のいずれか1項に記載の原子間力顕微鏡。
  8.  長尺状のレバーであって、長手方向における一端側が前記レバーの支持に用いられる固定端であり、前記長手方向における他端側が自由端であるレバーを含み、前記自由端側に、前記レバーから前記長手方向に交差する下方に向けて突出する探針が設けられたカンチレバーと、
     前記カンチレバーの前記下方に配置され、前記カンチレバーに対向させて試料を保持する試料保持部と、
     前記カンチレバー及び前記試料保持部を駆動して前記試料を前記探針に対して相対移動させる駆動部と、
     前記駆動部を制御することにより、前記長手方向の線分を前記カンチレバーから前記探針が突出する方向に交差する仮想面に射影した場合に射影像が延びる方向である所定方向を主走査方向として、前記仮想面内において前記試料の表面を前記探針に走査させる制御部と、を有する原子間力顕微鏡の制御方法であって、
      前記試料が前記一端側から前記他端側に向かって相対移動する第1方向走査において、前記試料と前記探針とを第1距離に近接させて第1速度での相対移動によって走査させ、
      前記試料が前記他端側から前記一端側に向かって相対移動する第2方向走査において、前記試料と前記探針とを前記第1距離よりも遠い第2距離に遠ざけ、かつ、前記第1速度よりも速い第2速度での相対移動によって走査させる
     制御方法。
  9.  請求項8に記載の制御方法をコンピュータに実行させるための
     プログラム。
PCT/JP2021/043162 2020-12-01 2021-11-25 原子間力顕微鏡、制御方法、及び、プログラム WO2022118728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566874A JP7477211B2 (ja) 2020-12-01 2021-11-25 原子間力顕微鏡、制御方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199938 2020-12-01
JP2020199938 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022118728A1 true WO2022118728A1 (ja) 2022-06-09

Family

ID=81853527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043162 WO2022118728A1 (ja) 2020-12-01 2021-11-25 原子間力顕微鏡、制御方法、及び、プログラム

Country Status (2)

Country Link
JP (1) JP7477211B2 (ja)
WO (1) WO2022118728A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720134A (ja) * 1993-06-30 1995-01-24 Shimadzu Corp 走査プローブ顕微鏡
JP2009074987A (ja) * 2007-09-21 2009-04-09 Sii Nanotechnology Inc 走査型プローブ顕微鏡及び表面情報測定方法
WO2010087114A1 (ja) * 2009-02-02 2010-08-05 国立大学法人 金沢大学 走査型プローブ顕微鏡
US20110289635A1 (en) * 2010-05-24 2011-11-24 Massachusetts Institute Of Technology Resonance compensation in scanning probe microscopy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720134A (ja) * 1993-06-30 1995-01-24 Shimadzu Corp 走査プローブ顕微鏡
JP2009074987A (ja) * 2007-09-21 2009-04-09 Sii Nanotechnology Inc 走査型プローブ顕微鏡及び表面情報測定方法
WO2010087114A1 (ja) * 2009-02-02 2010-08-05 国立大学法人 金沢大学 走査型プローブ顕微鏡
US20110289635A1 (en) * 2010-05-24 2011-11-24 Massachusetts Institute Of Technology Resonance compensation in scanning probe microscopy

Also Published As

Publication number Publication date
JPWO2022118728A1 (ja) 2022-06-09
JP7477211B2 (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
JP4073847B2 (ja) 走査型プローブ顕微鏡及び走査方法
US8341760B2 (en) Scanning probe microscope
WO2006129561A1 (ja) 走査型プローブ顕微鏡およびカンチレバー駆動装置
JP2009224234A (ja) ステージ及び電子顕微鏡装置
Zuttion et al. High-resolution and high-speed atomic force microscope imaging
US5773824A (en) Method for improving measurement accuracy using active lateral scanning control of a probe
JP4913242B2 (ja) ダイナミックモードafm装置
WO2022118728A1 (ja) 原子間力顕微鏡、制御方法、及び、プログラム
WO2007072621A1 (ja) 走査型プローブ顕微鏡
JP6842754B2 (ja) 走査型プローブ顕微鏡
US10712363B2 (en) Scanning probe microscope
WO2012033131A1 (ja) 走査型プローブ顕微鏡を用いた表面加工装置
JP2007017388A (ja) 走査形プローブ顕微鏡
JPH10267950A (ja) 横励振摩擦力顕微鏡
US9625491B2 (en) Scanning mechanism and scanning probe microscope
JP3588701B2 (ja) 走査型プローブ顕微鏡およびその測定方法
JP7281841B2 (ja) 走査プローブ顕微鏡
JP3548972B2 (ja) 走査型プローブ顕微鏡の探針移動方法および移動機構
JPH1010140A (ja) 走査型プローブ顕微鏡
WO2021044934A1 (ja) 走査型プローブ顕微鏡及び走査型プローブ顕微鏡の駆動制御装置
JP2024036983A (ja) 信号処理装置、駆動制御装置、及び、走査型プローブ顕微鏡
JP7505843B2 (ja) 測定装置により測定対象の表面の特性を測定する方法、この方法が遂行されるための原子顕微鏡及びこの方法が遂行されるために格納媒体に格納されたコンピュータプログラム
JP2013011471A (ja) 間隙測定装置、表面形状測定装置、間隙測定方法および表面形状測定方法
JPH09119938A (ja) 走査型プローブ顕微鏡
JPH09264897A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900482

Country of ref document: EP

Kind code of ref document: A1