WO2022118629A1 - 高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法 - Google Patents

高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法 Download PDF

Info

Publication number
WO2022118629A1
WO2022118629A1 PCT/JP2021/041558 JP2021041558W WO2022118629A1 WO 2022118629 A1 WO2022118629 A1 WO 2022118629A1 JP 2021041558 W JP2021041558 W JP 2021041558W WO 2022118629 A1 WO2022118629 A1 WO 2022118629A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer
support
resin layer
polyimide
Prior art date
Application number
PCT/JP2021/041558
Other languages
English (en)
French (fr)
Inventor
桂也 ▲徳▼田
郷司 前田
直樹 渡辺
哲雄 奥山
伝一朗 水口
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022536482A priority Critical patent/JPWO2022118629A1/ja
Publication of WO2022118629A1 publication Critical patent/WO2022118629A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a method for producing a polymer using a solution containing a polymer precursor such as polyamic acid, a method for producing a polymer film using the solution, and a method for producing a laminate.
  • the present invention also relates to a method for manufacturing a flexible substrate using the method for manufacturing the laminated body.
  • Polyimide film is used as a base film for flexible printed wiring boards (hereinafter, also referred to as FPC) because of its heat resistance and insulating properties.
  • a polyimide film is a thermal imidization method in which a green film obtained by applying an organic solvent solution of a polyamic acid as a precursor to a support and volatilizing the solvent to some extent is heat-treated, or an organic polyamic acid. It is often produced by one of the chemical imidization methods in which a green film is similarly produced and heat-treated after the imidization accelerator is added to the solvent solution.
  • the chemical imidization method is preferably used because the production rate can be easily improved by promoting the imidization reaction and a tougher film having a higher molecular weight can be obtained. In some cases.
  • the above gel defects are improved by keeping the temperatures of the polyamic acid solution and the imidization accelerator at a low temperature to suppress rapid imidization, and increasing the rotation speed of the stirring mixer that mixes both to improve the stirring efficiency. It is possible to do. However, since increasing the stirring rotation speed also leads to an increase in the heat generated by stirring, there is naturally a limit to the increase in the rotation speed.
  • FPD flat panel displays
  • LCD liquid crystal displays
  • PDP plasma display panels
  • OLED organic EL displays
  • electronic paper mainly from inorganic materials such as glass substrates.
  • An electronic element formed on a substrate (inorganic substrate) is used.
  • the inorganic substrate is rigid and lacks flexibility, there is a problem that it is difficult to be flexible.
  • the chemical imidization method can be preferably used as in the case of the polyimide film, but gel defects are likely to occur. There is a problem. If this gel defect is present in the resin layer, it not only has a poor appearance, but also becomes a starting point of fracture when stress is applied to the resin layer, causes surface irregularities, and is also obtained as a defect in the display manufacturing process.
  • Patent Document 1 only removes the gel-like substance with a filter, and does not fundamentally suppress the generation thereof. Therefore, when a large amount of gel-like substance is generated, the filter is clogged, which makes long-term continuous production of the film difficult.
  • an object of the present invention is to provide a method for producing a polymer film, which can suppress the deterioration of physical properties and appearance due to gel defects, and also reduce the problems of coloring of the polymer film and increase in peel strength.
  • Another object of the present invention is to provide a method for producing a polymer, which can be used in such a method for producing a polymer film.
  • Patent Document 1 the problem of difficulty in long-term continuous production in the invention of Patent Document 1 is not limited to the case of manufacturing a polyimide film, but also occurs in the case of manufacturing a laminate having a resin layer containing polyimide on a support. Is.
  • the surface on the support side is difficult to be heated because heating is performed by the oven with one side blocked by the support, and the heat is heated on the air interface side and the support side of the polyimide.
  • the state of is different. Due to this, it was found that the laminate was warped together with the support in the post-process accompanied by high temperature heating (for example, 150 to 500 ° C.). Such a tendency was observed not only in the case of the thermal imidization method but also in the case of the chemical imidization method.
  • the support for example, an inorganic substrate such as glass
  • the support is used as a base for the carrier, so that the surface of the highly heat-resistant resin layer is covered.
  • the polyimide resin layers having different heating states on the front and back there is also a problem that the polyimide resin layer with an electronic element after peeling from the support warps. Further, when peeling the highly heat-resistant resin layer from the support, it may be necessary to peel it off by a laser depending on the peeling strength. It was also found that warpage is likely to occur.
  • another object of the present invention is a method for manufacturing a laminated body capable of reducing warpage as a laminated body and warpage of a resin layer after peeling while suppressing gel defects, and a method for manufacturing a flexible substrate using the same. Is to provide. Another object of the present invention is to provide a method for producing a polymer that can be used in a method for producing such a polymer film. Another object of the present invention is to provide a method for producing a polymer, which can be used in a method for producing such a laminate.
  • the present inventors have unexpectedly made it possible to pre-exist a reaction accelerator for promoting a chemical reaction of a polymer precursor on the surface of the support.
  • the reaction accelerator can be suitably diffused to obtain a sufficient reaction promoting effect, whereby gel defects can be sufficiently suppressed and the peel strength from the support can be reduced, and the present invention has been completed. ..
  • the present inventors have found that gel defects can be sufficiently suppressed and warpage of the laminated body and warpage of the resin layer after peeling can be reduced by the same means as described above, and the present invention has been completed. rice field.
  • the present invention includes the following contents.
  • a method for producing a polymer which comprises a step of applying a solution containing a polymer precursor onto a support and a step of chemically reacting the polymer precursor.
  • a method for producing a polymer wherein a reaction accelerator for accelerating a chemical reaction of the polymer precursor is previously present on the surface of the support.
  • a method for producing a polymer film which comprises a step of forming a polymer film on the support by the method for producing a polymer according to [1].
  • the polymer film is a polyimide resin film, and the amount of the reaction accelerator present per unit area is 5 to 150 mg / m 2 per 1 ⁇ m of the thickness of the polyimide resin film.
  • [2] [4] The method for producing a polymer film according to any one of the above.
  • a method for producing a laminate which comprises a step of obtaining a laminate having a resin layer containing a polymer on the support by the polymer producing method according to [1].
  • the resin layer contains a polyimide resin, and the amount of the reaction accelerator present per unit area is 5 to 150 mg / m 2 per 1 ⁇ m of the thickness of the resin layer [9] to [11].
  • the method for producing a laminate according to any one.
  • the present invention it is possible to provide a method for producing a polymer film, which can reduce the problems of coloring of the polymer film and increase of peel strength while suppressing deterioration of physical properties and appearance due to gel defects.
  • a method for producing a polymer film which can reduce the problems of coloring of the polymer film and increase of peel strength while suppressing deterioration of physical properties and appearance due to gel defects.
  • YI yellow index
  • a method for manufacturing a laminated body capable of reducing warpage as a laminated body and warpage of a resin layer after peeling while suppressing gel defects and a method for manufacturing a flexible substrate using the same. be able to.
  • the film-forming direction of the film may be referred to as a mechanical axis direction, a longitudinal direction, a longitudinal direction, and an MD direction, and the directions orthogonal to the film-forming direction and the thickness direction are the width direction, the lateral direction, and the like.
  • the TD direction sometimes referred to as the TD direction.
  • various physical properties and the like described in the present specification are specifically measured by the method described in the examples.
  • the method for producing a polymer according to an embodiment of the present invention comprises a step of applying a solution containing a polymer precursor onto a support and a step of chemically reacting the polymer precursor.
  • the method is characterized in that a reaction accelerator for promoting a chemical reaction of the polymer precursor is previously present on the surface of the support.
  • This polymer production method has two aspects, one aspect is used for the polymer film manufacturing method and the other one side is used for the laminate manufacturing method. It is a thing.
  • the method for producing a polymer film according to an embodiment of the present invention is a method for producing a polymer film, which comprises a step of forming a polymer film on the support by the above-mentioned method for producing a polymer. .. Further, the method for producing a laminate according to an embodiment of the present invention includes a step of obtaining a laminate having a resin layer containing a polymer on the support by the above-mentioned method for producing a polymer. It is a manufacturing method.
  • the method for producing a polymer film according to an embodiment of the present invention includes a step of applying a solution containing a polymer precursor onto a support and a step of chemically reacting the polymer precursor. At that time, a reaction accelerator for accelerating the chemical reaction of the polymer precursor is pre-existing on the surface of the support.
  • the cause of the effect of having the reaction accelerator present on the surface of the support in advance is unknown, but it is presumed as follows. That is, in the examples, since the gel defects are reduced as compared with the case where the reaction accelerator is added to the solution, the reaction accelerator is locally present on the surface of the support. It is considered that the gelation could be suppressed. It has also been shown that by reducing gel defects, deterioration of physical properties and appearance due to gel defects can be suppressed. Furthermore, since the same or better mechanical properties are obtained as compared with the case of thermal imidization, the concentration gradient when the reaction accelerator diffuses into the solution containing the polymer precursor and the temperature gradient due to heating are different. It is considered that the chemical reaction was promoted evenly with a good balance.
  • the peel strength between the support and the polymer precursor film does not increase, but rather decreases, as compared with the case where the reaction accelerator is added to the solution, which is a particularly unexpected effect. Yes, it is considered to be the result of the above balance. Therefore, it is presumed that the same action and effect will occur not only with the polyimide film used in the examples but also with the polymer film described below.
  • the present invention includes a step of heating the applied solution to obtain a self-supporting polymer precursor film and a step of peeling the polymer precursor film from the support.
  • the polymer precursor can be easily peeled off from the support as compared with the peeling after the chemical reaction, the degree of freedom of treatment in the post-process is increased, and the polymer precursor is uniformly peeled from the front and back in the heating step which is the post-process. The effect of being able to heat is obtained.
  • the polymer constituting the resin layer is not particularly limited as long as it is obtained by chemically reacting a polymer precursor in the presence of a reaction accelerator, but may be polyimide, polyamideimide, polyetherimide, or aromatic. Examples thereof include heat-resistant resins such as polyamide and reaction-curable resins such as epoxy resins. Of these, polyamideimide, polyimide, and polyetherimide, which form an imide bond by an imidization reaction, are preferable. In the present invention, the polymers having such an imide bond are collectively referred to as "polyimide-based resin".
  • the heat-resistant resin preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 400 ° C. or higher.
  • the glass transition temperature is preferably 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher.
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • the "polymer precursor” refers to a state before the chemical reaction is completed for the polymer constituting the polymer film to be a product, for example, the chemical structure, the cross-linking reaction or the molecular weight increase is completed. Includes those that are not in the state.
  • a polyimide film or a polyamideimide film is generally prepared by applying a polyamic acid solution obtained by reacting a diamine with a trivalent or tetravalent carboxylic substance in a solvent to a support and drying the support, for example, 1
  • a polyamic acid film containing a solvent of up to 50% by mass is formed, and a polyamic acid film containing a solvent of 1 to 50% by mass is further treated at a high temperature on a support or in a state of being peeled off from the support to cause an imidization reaction. It can be obtained by. Therefore, polyamic acid corresponds to a polymer precursor.
  • the polyamide film is a polyamide film containing, for example, 1 to 50% by mass of a solvent, which is obtained by applying a polyamide solution obtained by reacting diamines and dicarboxylic acids in a solvent to a support and drying the support. Further, it is obtained by subjecting a polyamide film containing a solvent of 1 to 50% by mass to a high temperature treatment on the support or in a state of being peeled off from the support to increase the molecular weight. Therefore, the polyamide whose molecular weight has not been completely increased corresponds to the polymer precursor.
  • an epoxy resin or the like is applied to a support together with a curing agent or the like and dried to form a B-stage film, and the film is heated at a high temperature on the support or in a state of being peeled off from the support. It is obtained by treating and subjecting it to a cross-linking reaction. Therefore, an epoxy resin or the like whose cross-linking reaction (or curing reaction) is not completed corresponds to a polymer precursor.
  • reaction accelerators such as imidization accelerator, dehydrating agent, catalyst, co-catalyst, curing agent, and curing accelerator, well-known ones are used according to each reaction system. can do.
  • a polyimide film is a green film (hereinafter referred to as "precursor film") in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support and dried.
  • a polyimide acid film it is also referred to as a "polyimide acid film”
  • an imidization accelerator that promotes the imidization reaction is added to the polyamic acid solution, so that the imidization reaction is carried out by heat treatment at a lower temperature.
  • the imidization accelerator instead of adding the imidization accelerator to the polyamic acid solution, it is pre-existing on the surface of the support.
  • the green film is a polyamic acid film containing a solvent and having self-supporting properties.
  • the solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate.
  • a polyamic acid solution to form a film, since the range of material selection is wide, it is easy to study in order to find a material preferable for easy peeling, but it is important to control the imidization reaction.
  • a film-forming film that does not involve an imidization reaction has an advantage that it is easy to form a film, so that it can be appropriately used.
  • the heating temperature is preferably 70 to 130 ° C, more preferably 80 to 125 ° C.
  • the temperature is at least the above lower limit value, the solvent can be efficiently removed, and when it is at least the above upper limit value, it becomes easy to prevent the peel strength between the support and the polymer precursor film from increasing too much.
  • the polyimide-based resin film in the present invention is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamide-imide film, and more preferably a polyimide film.
  • the polyimide film is obtained by the above-mentioned method, but as another method, a polyimide solution obtained by a dehydration ring-closing reaction between diamines and tetracarboxylic acids in a solvent is applied to a support, dried, and then dried.
  • a polyimide film containing 1 to 50% by mass of a solvent can be used, and a polyimide film containing 1 to 50% by mass of a solvent can be treated at a high temperature and dried on a support or in a state of being peeled off from the support. can get.
  • the polyimide whose molecular weight has not been completely increased corresponds to the polymer precursor.
  • the diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferable.
  • the aromatic diamines are not particularly limited, and examples thereof include oxydianiline (bis (4-aminophenyl) ether, para-phenylenediamine (1,4-phenylenediamine), etc. Even if only one type of diamine is used. You may use two or more of them together.
  • tetracarboxylic acids constituting the polyamic acid examples include aromatic tetracarboxylic acids (including its acid anhydride), aliphatic tetracarboxylic acids (including its acid anhydride) and alicyclic tetracarboxylic acids usually used for polyimide synthesis. Acids (including its acid anhydride) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good. Only one type of tetracarboxylic acid may be used, or two or more types may be used in combination.
  • tritetracarboxylic acids instead of or part of the tetracarboxylic acids in order to introduce an amide bond into a part of the main chain of the polyimide resin.
  • dicarboxylic acids as a part of the tetracarboxylic acids in order to copolymerize the polyamide component.
  • the tetracarboxylic acid is not particularly limited, and examples thereof include pyrrolimetic acid dianhydride and 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride.
  • a transparent polyimide film is preferably used, and this will be described in more detail.
  • the transparency of the transparent polyimide is preferably one having a total light transmittance of 75% or more. It is more preferably 80% or more, further preferably 85% or more, further preferably 87% or more, and particularly preferably 88% or more.
  • the upper limit of the total light transmittance is not particularly limited, but is preferably 98% or less, and more preferably 97% or less for use as a flexible electronic device.
  • dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal.
  • Acid dianhydride is preferred.
  • only one kind of aromatic tetracarboxylic acid may be used, or two or more kinds may be used in combination.
  • the copolymerization amount of the aromatic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when heat resistance is important.
  • the above is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and 100% by mass may be used.
  • alicyclic tetracarboxylic acids examples include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanth
  • a double-decker type silsesquioxane derivative containing an acid anhydride group represented by the structure of the following formula (1) can also be mentioned.
  • dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic acid are preferable.
  • 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. It should be noted that these may be used alone or in combination of two or more.
  • the copolymerization amount of the alicyclic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when transparency is important. % Or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, and 100% by mass may be used.
  • tricarboxylic acids examples include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid.
  • An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite. Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned.
  • monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. It should be noted that these may be used alone or in combination of two or more.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid.
  • Hydrogen additives oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid acidates thereof.
  • esterified product or the like can be mentioned.
  • aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable. It should be noted that only one type of dicarboxylic acid may be used, or two or more types may be used in combination.
  • the diamines or isocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and fats usually used for polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis. Cyclic diamines, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. As the diamines and isocyanates, only one kind may be used, or two or more kinds may be used in combination.
  • aromatic diamines examples include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'- Bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,
  • a part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, the carbon number 1 may be substituted.
  • a part or all of the hydrogen atom of the alkyl group or the alkoxyl group of ⁇ 3 may be substituted with a halogen atom.
  • aromatic diamines having the benzoxazole structure are not particularly limited, and are, for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo.
  • 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4-amino-N- (4-aminophenyl) benzamide, 4,4'-diaminodiphenyl sulfone, 3,3 '-Diaminobenzophenone is preferred.
  • only one kind of aromatic diamine may be used, or two or more kinds may be used in combination.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • Cyclohexane 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable.
  • only one kind of alicyclic diamines may be used, or two or more kinds may be used in combination.
  • diisocyanates examples include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, di
  • diphenylmethane-4,4'-diisocyanate, toluene-2,4-diisocyanate, tolylen-2,6-diisocyanate, 3,3'- Didimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexanediisocyanate are preferable. It should be noted that only one type of diisocyanate may be used, or two or more types may be used in combination.
  • the solution containing the polyamic acid preferably contains the solvent used during the synthesis from the viewpoint of avoiding the complexity of the manufacturing process.
  • the preferable solvent for synthesizing the polyamic acid any solvent that dissolves the polyamic acid can be used, but an amide-based solvent, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N- Methyl-2-pyrrolidone and the like, and N, N-dimethylformamide and N, N-dimethylacetamide may be particularly preferably used.
  • concentration of the polyamic acid solution at the time of synthesis the lower the concentration, the larger the amount of the solvent contained in the polyamic acid solution, and the better the mixability with the imidization accelerator, which is preferable. However, if the concentration is too low, it becomes difficult to produce a thick film.
  • concentration of the polyamic acid solution is preferably 5 to 30% by mass, more preferably 10 to 20% by mass.
  • a lubricant (particle) having a particle size of about 5 to 1000 nm is added / contained in the polymer film in an amount of about 0.03 to 3% by mass. It is preferable to impart fine irregularities to the surface of the polymer film to ensure slipperiness. Therefore, it is possible to contain the lubricant (particles) in the solution containing the polymer precursor, and examples of the preferred lubricant include inorganic fine particles.
  • the inorganic fine particles include finely divided silicon dioxide (silica) powder, inorganic oxide powder such as aluminum oxide powder, and finely divided inorganic salt powder such as calcium carbonate powder and calcium phosphate powder. Since the coarse particles of these inorganic fine particles may cause defects in the next step and subsequent steps, it is preferable that these inorganic fine particles are uniformly dispersed.
  • silicon dioxide silicon dioxide
  • inorganic oxide powder such as aluminum oxide powder
  • finely divided inorganic salt powder such as calcium carbonate powder and calcium phosphate powder. Since the coarse particles of these inorganic fine particles may cause defects in the next step and subsequent steps, it is preferable that these inorganic fine particles are uniformly dispersed.
  • the polymer precursor solution can contain a known additive used for a polyimide resin film as long as the effect of the present invention is not impaired. It is also possible to include a part of the imidization accelerator to be used in the polymer precursor solution, and in order to obtain the effect of the present invention, it is preferable that the ratio of such an imidization accelerator is small. It is preferable to apply 70% by mass or more of the conversion accelerator to the support. It is more preferably 90% by mass or more, and most preferably 100% by mass.
  • a tertiary amine as the imidization accelerator that is pre-existing in the support.
  • a heterocyclic tertiary amine is more preferable.
  • Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the imidization accelerator is present on the surface of the support to which the polymer precursor solution is applied in advance.
  • the imidization accelerator can be present on the surface of the support in advance by coating, transfer, laminating, crimping, adhesion, or the like, but the coating method is preferable.
  • the method of applying the imidization accelerator to the support is not particularly limited, and it is possible to apply the solution directly to the support or by applying it to another transfer material and then transferring it to the support. be.
  • a spray coating method, a wire coating method, a bar coating method, a spray coating method, a gas phase vapor deposition method and the like are preferable from the viewpoint of uniformly applying the imidization accelerator to the surface of the support.
  • the imidization accelerator is a solid, it is preferable to dissolve it in a solvent and apply it by the above method. It may be completely dried after coating, but it is also possible to apply the polymer precursor solution in a state containing a certain amount of solvent.
  • the solvent used at the time of coating is not particularly limited as long as it dissolves the imidization accelerator, but since the polyamic acid solution is coated in a later step, it is the same as the solvent of the polyamic acid solution from the viewpoint of compatibility. Is preferable.
  • the imidization accelerator is a liquid, it can be applied as it is, but from the viewpoint of diffusibility into a polyamic acid solution, which is easy to apply uniformly, it is dissolved in a solvent and the above method is used. It is preferable to perform coating.
  • the preferred range of the amount of the imidization accelerator (reaction accelerator) to be present on the surface of the support in advance is the obtained polyimide resin. Since the amount varies depending on the thickness of the film, there is a preferable range as the amount per 1 ⁇ m of the thickness of the polyimide resin film. That is, the abundance of the imidization accelerator is preferably 5 to 150 mg / m 2 and more preferably 7 to 100 mg / m 2 per 1 ⁇ m of the thickness of the polyimide resin film.
  • the abundance of the imidization accelerator is 5 mg / m 2 or more per 1 ⁇ m of the thickness of the polyimide resin film, the imidization reaction by the imidization accelerator can be sufficiently easily obtained, which is preferable. Further, when it is 150 mg / m 2 or less, the proportion of the imidization accelerator that does not participate in the reaction tends to decrease, which is preferable in terms of cost.
  • the coating thickness of the coating solution is preferably 10 to 500 ⁇ m, more preferably 30 to 250 ⁇ m.
  • the concentration of the coating solution is preferably 0.01% by mass or more and 10% by mass or less.
  • the imidization accelerator on the support dissolves and diffuses in the solvent contained in the polyamic acid solution.
  • the heating temperature required for imidization is lowered by the addition of the imidization accelerator, so that discoloration (increase in yellowness) of the polyimide can be suppressed.
  • the material of the support in the present invention is not particularly limited as long as it does not chemically react with the imidization accelerator, but for example, an inorganic support such as a metal or a polymer support such as polyethylene terephthalate is suitable.
  • an inorganic support such as a metal or a polymer support such as polyethylene terephthalate is suitable.
  • a polymer support is used, at least the imidization accelerator-coated surface of the support may be coated with an easy-release coat, a hydrophilic coat, or the like.
  • the shape of the support is not particularly limited. It may be a long support such as a polymer film, a shorter sheet-like support, or a molded body having a three-dimensional structure.
  • the surface roughness Ra of the imidization accelerator-coated surface of the support is preferably 10 nm or less, more preferably 7 nm or less, and further preferably 5 nm or less.
  • a polyimide film having a smooth surface can be obtained by using a support having a surface roughness of 10 nm or less.
  • the peel strength between the support and the polymer precursor film is preferably 0.001 N / cm or more and 0.9 N / cm or less, and more preferably 0.01 N / cm or more and 0.5 N / cm or less. preferable.
  • the peel strength is 0.001 N / cm or more, sufficient transportability can be ensured in the transport step until the polymer precursor film is peeled off.
  • the peel strength is 0.9 N / cm or less, breakage of the film or the support is less likely to occur when the polymer precursor film is peeled off.
  • Step of chemically reacting polymer precursor conditions according to the type of the polymer film are applied.
  • a polyimide resin film it is as follows.
  • the heat treatment for the imidization reaction can be carried out at a constant temperature, but it is possible to carry out the heat treatment while raising the temperature continuously or stepwise to avoid sudden shrinkage of the film and to break or abruptly. It is preferable from the viewpoint of suppressing deterioration of surface smoothness due to solvent volatilization.
  • the minimum temperature is preferably 150 to 190 ° C, and the maximum temperature is preferably 280 to 450 ° C.
  • the minimum temperature is more preferably 180 to 190 ° C, and the maximum temperature is more preferably 290 to 450 ° C.
  • the temperature is constant, 200 to 370 ° C is preferable, and 210 to 350 ° C is more preferable.
  • the total heat treatment time is preferably 5 to 60 minutes, more preferably 10 to 50 minutes.
  • the heat treatment can be performed without fixing the end portion of the film, it is preferable to perform the heat treatment by fixing the end portion of the film from the viewpoint of uniform film thickness, ensuring flatness, and suppressing slack. ..
  • a tenter such as a pin tenter, various frames, etc. can be used to fix the end. Further, as described later, it is also possible to stretch the film by using a tenter or the like, and to perform heat fixation or heat relaxation after stretching.
  • the obtained polyimide resin film it is possible to cut off the part with poor flatness with a slitter. Further, in the case of a long body, it is also possible to wind it into a roll shape to form a roll in which a polyimide resin film is wound, or to form a single-wafer body obtained by cutting the roll.
  • the polymer film according to the embodiment of the present invention may have a single-layer structure or a multi-layer (laminated) structure having two or more layers.
  • the physical properties of the polymer film tensile modulus, melting point, glass transition temperature, yellowness index, total light transmittance, haze, CTE, etc. refer to the values of the entire polymer film. ..
  • yellowness index (hereinafter, also referred to as "yellow index” or “YI”) is preferably 10 or less, more preferably 7 or less, still more preferably. It is 5 or less, and even more preferably 3 or less.
  • the lower limit of the yellowness index of the transparent polymer film is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0. 3 or more.
  • the light transmittance of the transparent polymer film in the present invention at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, further preferably 75% or more, still more preferably 80% or more.
  • the upper limit of the light transmittance of the transparent polymer film at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97 for use as a flexible electronic device. % Or less.
  • the haze of the transparent polymer film in the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, and even more preferably 0.3 or less.
  • the lower limit is not particularly limited, but industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
  • the average coefficient of linear expansion (CTE) between 30 ° C and 250 ° C of the polymer film is preferably 50 ppm / K or less. It is more preferably 45 ppm / K or less, still more preferably 40 ppm / K or less, still more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, it is preferably -5 ppm / K or more, more preferably -3 ppm / K or more, and further preferably 1 ppm / K or more.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the polymer film and the inorganic substrate are peeled off or peeled off even when subjected to a heat application process. It is possible to avoid warping together with the support.
  • CTE is a factor that represents reversible expansion and contraction with respect to temperature.
  • the CTE of the polymer film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the polymer film.
  • the polyimide film showing the above-mentioned coefficient of linear expansion (CTE) can also be realized by stretching in the film forming process of the polyimide film.
  • a polyimide solution is applied to a support for producing a polyimide film, dried to form a polyimide film containing 1 to 50% by mass of a solvent, and further peeled off on or from the support for producing a polyimide film.
  • 1.5 to 4.0 times in the MD direction and 1.4 to 3.0 times in the TD direction It can be realized by stretching to.
  • thermoplastic polymer film is used as a support for producing a polyimide film, and the thermoplastic polymer film and the polyimide film are stretched at the same time, and then the stretched polyimide film is peeled off from the thermoplastic polymer film.
  • the thickness of the polymer film in the present invention is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, further preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 90 ⁇ m or less for use as a flexible electronic device. If it is too thin, it will be difficult to produce and transport the film, and if it is too thick, it will be difficult to transport the film.
  • the tensile elastic modulus of the polymer film is preferably 1 GPa or more, more preferably 2 GPa or more, and further preferably 3 GPa or more.
  • the upper limit of the tensile elastic modulus is not particularly limited, but is about 15 GPa.
  • the tensile elastic modulus is 15 GPa or less, the polymer film can be used as a flexible film.
  • the tensile elastic modulus is 4 GPa or more, excessive elongation is unlikely to occur during handling.
  • the method for measuring the tensile elastic modulus of the polymer film is as described in Examples.
  • the thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, further preferably 7% or less, and particularly preferably 4% or less. When the thickness spot exceeds 20%, it tends to be difficult to apply to a narrow part.
  • the thickness unevenness of the polymer film can be obtained, for example, by randomly extracting about 10 positions from the film to be measured with a contact-type film thickness meter and measuring the film thickness based on the following formula. ..
  • Film thickness spots (%) 100 x (maximum film thickness-minimum film thickness) ⁇ average film thickness
  • the number of gel defects per fixed area of the polymer film is preferably 0 to 3.0 pieces / 1000 m 2 , more preferably 0 to 2.0 pieces / 1000 m 2 , and further preferably 0 to 1.5 pieces / 1000 m 2 . preferable.
  • the number of gel defects per fixed area is 3.0 / 1000 m 2 , or less, deterioration of physical properties and appearance due to gel defects can be more effectively suppressed.
  • the polymer film is preferably obtained in the form of being wound as a long polymer film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and has a roll-like height wound around a winding core.
  • the one in the form of a molecular film is more preferable.
  • a step of applying a solution containing a polymer precursor onto a support and a resin layer containing the polymer by chemically reacting the polymer precursor are obtained. It includes a step of obtaining a laminate to be held on a support. At that time, a reaction accelerator for accelerating the chemical reaction of the polymer precursor is pre-existing on the surface of the support.
  • the cause of the effect of having the reaction accelerator present on the surface of the support in advance is unknown, but it is presumed as follows. That is, in the examples, since the gel defects are reduced as compared with the case where the reaction accelerator is added to the solution, the reaction accelerator is locally present on the surface of the support. It is considered that the gelation could be suppressed. In addition, one side of the solution containing the applied polymer precursor is blocked by the support, and the heat is applied differently on the support side and the air interface side, so that the chemical reaction proceeds easily on both sides. However, since the imidization accelerator is applied to the support, the degree of reaction is balanced between the support side and the air interface side where heat is difficult to transfer, and the obtained laminate and the resin layer are warped after heating. It is thought that it can be effectively reduced. Therefore, it is presumed that the same action and effect will occur not only in the polyimide resin layer used in the examples but also in the resin layers as described below.
  • the polymer constituting the resin layer is not particularly limited as long as it is obtained by chemically reacting a polymer precursor in the presence of a reaction accelerator, but may be polyimide, polyamideimide, polyetherimide, or aromatic. Examples thereof include heat-resistant resins such as polyamide and reaction-curable resins such as epoxy resins. Of these, polyamideimide, polyimide, and polyetherimide, which form an imide bond by an imidization reaction, are preferable. In the present invention, the polymers having such an imide bond are collectively referred to as "polyimide-based resin".
  • the heat-resistant resin preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 400 ° C. or higher.
  • the glass transition temperature is preferably 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher.
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • the "polymer precursor” refers to a state before the chemical reaction is completed for the polymer constituting the resin layer, for example, a state in which the chemical structure, the cross-linking reaction or the molecular weight increase is not completed. Things are included.
  • a polyimide resin layer or a polyamideimide resin layer is generally prepared by applying a polyamic acid solution obtained by reacting a diamine with a trivalent or tetravalent carboxylic substance in a solvent to a support and drying the support.
  • a polyamic acid precursor layer containing 1 to 50% by mass of a solvent is formed, and a polyamic acid precursor layer containing 1 to 50% by mass of a solvent is further treated at a high temperature on a support to cause an imidization reaction. Obtained at. Therefore, polyamic acid corresponds to a polymer precursor.
  • the polyamide resin layer is a polyamide resin layer containing, for example, 1 to 50% by mass of a solvent, which is obtained by applying a polyamide solution obtained by reacting diamines and dicarboxylic acids in a solvent to a support and drying the support. (Precursor layer), and further, the polyamide resin layer (precursor layer) containing 1 to 50% by mass of the solvent is treated at a high temperature on the support or in a state of being peeled off from the support to increase the molecular weight. Obtained at. Therefore, the polyamide whose molecular weight has not been completely increased corresponds to the polymer precursor.
  • the resin layer of the reaction-curable resin is formed by applying an epoxy resin or the like to a support together with a curing agent and drying to form a B-stage resin layer (precursor layer), and further on the support or the support. It is obtained by subjecting the resin layer (precursor layer) to a high temperature treatment in a state of being peeled off from the surface and causing a crosslinking reaction. Therefore, an epoxy resin or the like whose cross-linking reaction (or curing reaction) is not completed corresponds to a polymer precursor.
  • reaction accelerators such as imidization accelerator, dehydrating agent, catalyst, co-catalyst, curing agent, and curing accelerator, well-known ones are used according to each reaction system. can do.
  • the resin layer of polyimide is formed by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support to form a dried precursor layer, and further on the support. It is obtained by subjecting the precursor layer to a high-temperature heat treatment to carry out a dehydration ring-closing reaction (imidization reaction) (thermal imidization method).
  • a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent
  • a support to form a dried precursor layer, and further on the support. It is obtained by subjecting the precursor layer to a high-temperature heat treatment to carry out a dehydration ring-closing reaction (imidization reaction) (thermal imidization method).
  • an imidization accelerator that promotes the imidization reaction is added to the polyamic acid solution, so that the imidization reaction is carried out by heat treatment at a lower temperature.
  • the imidization accelerator instead of adding the imidization accelerator to the polyamic acid solution, it is pre-existing on the surface of the support.
  • the precursor layer is a resin layer of a polyamic acid containing a solvent and having self-supporting properties.
  • the solvent content of the precursor layer is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. It is more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate.
  • a polyamic acid solution to form a precursor layer, since the range of material selection is wide, it is easy to study in order to find a material preferable for easy peeling, but it is important to control the imidization reaction.
  • the film-forming without the imidization reaction has an advantage that the film-forming is easy, so that it can be used properly.
  • the heating temperature is preferably 70 to 130 ° C, more preferably 80 to 125 ° C.
  • the temperature is at least the above lower limit value, the solvent can be efficiently removed, and when the temperature is at least the above upper limit value, it becomes easy to avoid the problem due to the rapid shrinkage of the precursor layer.
  • the polyimide-based resin in the present invention is a polymer having an imide bond in the main chain, preferably polyimide or polyamide-imide, and more preferably polyimide.
  • the polyimide resin layer is obtained by the above-mentioned method, but as another method, a polyimide solution obtained by a dehydration ring-closing reaction between diamines and tetracarboxylic acids in a solvent is applied to a support and dried.
  • a polyimide resin layer precursor layer
  • a polyimide resin layer containing 1 to 50% by mass of a solvent and a polyimide resin layer containing 1 to 50% by mass of a solvent on a support or in a state of being peeled off from the support. It can also be obtained by high temperature treatment and drying.
  • the polyimide whose molecular weight has not been completely increased corresponds to the polymer precursor.
  • the diamines constituting the polyamic acid even when the resin layer is formed in the "method for producing a laminate", the one described in the "method for producing a polymer film” can be applied as it is.
  • the tetracarboxylic acids constituting the polyamic acid even when the resin layer is formed in the "method for producing a laminate", the one described in the "method for producing a polymer film” can be applied as it is.
  • the transparent polyimide resin layer is preferably used, and this will be described in more detail.
  • the transparency of the transparent polyimide is preferably one having a total light transmittance of 75% or more. It is more preferably 80% or more, further preferably 85% or more, further preferably 87% or more, and particularly preferably 88% or more.
  • the upper limit of the total light transmittance is not particularly limited, but is preferably 98% or less, and more preferably 97% or less for use as a flexible electronic device.
  • the solution containing the polyamic acid the solution described in the "method for producing a polymer film" can be applied as it is even when the resin layer is formed in the "method for producing a laminate". That is, the description of the solvent, the concentration of the polyamic acid solution, the lubricant (particles) and other additives can be applied as they are.
  • the ratio of such an imidization accelerator is small. It is preferable to apply 70% by mass or more of the conversion accelerator to the support. It is more preferably 90% by mass or more, and most preferably 100% by mass.
  • a tertiary amine as the imidization accelerator pre-existing in the support.
  • a heterocyclic tertiary amine is more preferable.
  • Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the imidization accelerator is present on the surface of the support to which the polymer precursor solution is applied in advance.
  • the imidization accelerator can be present on the surface of the support in advance by coating, transfer, laminating, crimping, adhesion, or the like, but the coating method is preferable.
  • the method of applying the imidization accelerator to the support is not particularly limited, and it is possible to apply the solution directly to the support or by applying it to another transfer material and then transferring it to the support. be.
  • a spray coating method, a wire coating method, a bar coating method, a spray coating method, a gas phase vapor deposition method and the like are preferable from the viewpoint of uniformly applying the imidization accelerator to the surface of the support.
  • the imidization accelerator is a solid, it is preferable to dissolve it in a solvent and apply it by the above method. It may be completely dried after coating, but it is also possible to apply the polymer precursor solution in a state containing a certain amount of solvent.
  • the solvent used at the time of coating is not particularly limited as long as it dissolves the imidization accelerator, but since the polyamic acid solution is coated in a later step, it is the same as the solvent of the polyamic acid solution from the viewpoint of compatibility. Is preferable.
  • the imidization accelerator is a liquid, it can be applied as it is, but from the viewpoint of diffusibility into a polyamic acid solution, which is easy to apply uniformly, it is dissolved in a solvent and the above method is used. It is preferable to perform coating.
  • the preferred range of the amount of the imidization accelerator (reaction accelerator) to be present on the surface of the support in advance is the obtained polyimide-based resin. Since it changes according to the thickness of the resin layer of the polyimide resin, there is a preferable range as the abundance amount per 1 ⁇ m of the thickness of the resin layer of the polyimide-based resin. That is, the abundance of the imidization accelerator is preferably 5 to 150 mg / m 2 and more preferably 7 to 100 mg / m 2 per 1 ⁇ m of the thickness of the resin layer of the polyimide resin.
  • the abundance of the imidization accelerator is 5 mg / m 2 or more per 1 ⁇ m of the thickness of the resin layer of the polyimide resin, the imidization reaction by the imidization accelerator can be sufficiently easily obtained, which is preferable. Further, when it is 150 mg / m 2 or less, the proportion of the imidization accelerator that does not participate in the reaction tends to decrease, which is preferable in terms of cost.
  • the coating thickness of the coating solution is preferably 10 to 500 ⁇ m, more preferably 30 to 250 ⁇ m.
  • the concentration of the coating solution is preferably 0.01% by mass or more and 10% by mass or less.
  • the imidization accelerator on the support dissolves and diffuses in the solvent contained in the polyamic acid solution.
  • the heating temperature required for imidization is lowered by the addition of the imidization accelerator, so that discoloration (increase in yellowness) of the polyimide can be suppressed.
  • the support is not particularly limited as long as it has chemical strength and mechanical strength that can withstand the thermal history and atmosphere in the manufacturing process for forming the resin layer and the functional layer, and is not particularly limited to inorganic materials and metals. , Heat resistant organic resin layer and the like. Specifically, a metal foil such as glass, a resin film, or a copper foil is exemplified, but a glass substrate is preferably used.
  • the glass substrate for example, a glass substrate generally used in the manufacture of a flexible substrate can be used.
  • the supporting base material of the functional layer is a resin layer. That is, the glass substrate referred to here is for splitting the pedestal when forming the functional layer on the resin layer, and guarantees the handleability and dimensional stability of the resin layer in the manufacturing process of the flexible substrate. However, it is not finally removed to form a flexible substrate.
  • the support in order to prevent the resin layer from peeling off during the treatment step, the support may be subjected to, for example, a functional group having an affinity for polyimide or a surface treatment for increasing the surface roughness.
  • a glass substrate is preferably used as the support.
  • the glass substrate include soda lime glass, non-alkali glass, phosphoric acid-based glass, and quartz.
  • the coefficient of thermal expansion of the support is 10 ppm / ° C. or less, preferably 5 ppm / ° C.
  • non-alkali glass is more preferably used as the glass substrate.
  • the surface of the support is chemically surface-treated by introducing a functional group having an affinity for polyimide such as -OH, -NH, and -Si into the surface of the glass for the purpose of improving the adhesiveness.
  • a functional group having an affinity for polyimide such as -OH, -NH, and -Si
  • physical surface treatment may be applied so as to form an uneven surface on the glass surface by etching with a chemical solution.
  • the support transmits laser light. Therefore, those having a high transmittance of the wavelength of the laser light to be used are preferable. Specifically, it is preferable that the transmittance of the wavelength of the laser light used is 30% or more. Specifically, in the present invention, it is preferable to use a support having a light transmittance of 30% or more at a wavelength of 308 nm output by an excimer laser. However, as the type of laser that can be used in the present invention, a laser other than the excimer laser can also be used.
  • the surface roughness Ra of the imidization accelerator-coated surface of the support is preferably 10 nm or less, more preferably 7 nm or less, and further preferably 5 nm or less.
  • a flexible substrate having a smooth surface of the resin layer peeled from the support can be obtained by using a support having a surface roughness of 10 nm or less. Can be done.
  • Step of chemically reacting polymer precursor In the step of chemically reacting a polymer precursor to obtain a laminate having a resin layer containing a polymer on the support, conditions according to the type of the resin layer are applied.
  • a polyimide resin resin For example, a polyimide resin resin.
  • layers it is as follows.
  • the heat treatment for the imidization reaction can be carried out at a constant temperature, but it is possible to carry out the heat treatment while raising the temperature continuously or stepwise to avoid abrupt shrinkage of the resin layer and to break or abruptly. It is preferable from the viewpoint of suppressing deterioration of surface smoothness due to volatilization of the solvent.
  • the minimum temperature is preferably 150 to 190 ° C, and the maximum temperature is preferably 280 to 450 ° C.
  • the minimum temperature is more preferably 180 to 190 ° C, and the maximum temperature is more preferably 290 to 450 ° C.
  • the temperature is constant, 200 to 370 ° C is preferable, and 210 to 350 ° C is more preferable. It is also possible to continuously raise the temperature from the drying temperature of the applied solution.
  • the total time of the heat treatment after drying is preferably 5 to 100 minutes, more preferably 10 to 50 minutes.
  • the resin layer according to the embodiment of the present invention may have a single-layer structure or a multi-layer (laminated) structure having two or more layers.
  • the physical characteristics of the resin layer warp after heating, tensile elastic modulus, melting point, glass transition temperature, yellowness index, total light transmittance, haze, CTE, etc. are the values of the entire resin layer. Point to.
  • the amount of warpage of the laminated body of the resin layer and the support when heated at 300 ° C. for 1 hour is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the warp of the laminated body is 300 ⁇ m or less, there is a tendency that problems due to the warp are less likely to occur in a subsequent step involving high-temperature heating, for example, a step of forming a functional layer.
  • the lower limit is not particularly specified, but 0 ⁇ m is the most preferable, and it is substantially 50 ⁇ m.
  • the amount of warpage of the resin layer peeled off from the laminate heated at 300 ° C. for 1 hour, or the amount of warpage of the resin layer peeled off from the unheated laminate by laser is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less. be.
  • the amount of warpage of the resin layer peeled from the support is 1000 ⁇ m or less, problems due to warpage are less likely to occur when handling the peeled resin layer, and for example, cracking of the functional layer is less likely to occur.
  • the lower limit is not particularly specified, but 0 ⁇ m is the most preferable, and it is substantially 50 ⁇ m.
  • the resin layer is a transparent high heat resistant resin layer
  • its yellowness index (hereinafter, also referred to as “yellow index” or “YI”) is preferably 10 or less, more preferably 7 or less, and further preferably. It is 5 or less, and even more preferably 3 or less.
  • the lower limit of the yellowness index of the transparent resin layer is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 for use as a flexible electronic device. That is all.
  • the light transmittance of the transparent high heat resistant resin layer in the present invention at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, further preferably 75% or more, still more preferably 80% or more.
  • the upper limit of the light transmittance of the transparent resin layer at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97% for use as a flexible electronic device. It is as follows.
  • the haze of the transparent high heat resistant resin layer in the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, and even more preferably 0.3 or less.
  • the lower limit is not particularly limited, but industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
  • the average coefficient of linear expansion (CTE) between 30 ° C and 250 ° C of the resin layer is preferably 50 ppm / K or less. It is more preferably 45 ppm / K or less, still more preferably 40 ppm / K or less, still more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, it is preferably -5 ppm / K or more, more preferably -3 ppm / K or more, and further preferably 1 ppm / K or more.
  • CTE is a factor that represents reversible expansion and contraction with respect to temperature.
  • the CTE of the resin layer refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the resin layer.
  • the thickness of the resin layer in the present invention is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, further preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the resin layer is not particularly limited, but is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 90 ⁇ m or less for use as a flexible electronic device.
  • the thickness of the resin layer is 5 ⁇ m or more, it becomes easy to produce a stable and uniform resin layer, and when the thickness of the resin layer is 200 ⁇ m or less, it is easy to completely remove the solvent while maintaining the physical characteristics. , Flexibility as a flexible substrate is also easily exhibited.
  • the tensile elastic modulus of the resin layer is preferably 1 GPa or more, more preferably 2 GPa or more, and further preferably 3 GPa or more.
  • the upper limit of the tensile elastic modulus is not particularly limited, but is about 15 GPa.
  • the resin layer can be used as a flexible resin layer.
  • the tensile elastic modulus is 4 GPa or more, excessive elongation is unlikely to occur during handling.
  • the number of gel defects per fixed area of the resin layer is preferably 0 to 10 pieces / m 2 , more preferably 0 to 8 pieces / m 2 , and even more preferably 0 to 5 pieces / m 2 .
  • the number of gel defects per fixed area is 20 / m 2 or less, deterioration of physical properties and appearance due to gel defects can be more effectively suppressed.
  • the method for manufacturing a flexible substrate according to an embodiment of the present invention includes a functional layer forming step for forming a functional layer on the resin layer of the laminated body obtained by the above-mentioned method for manufacturing a laminated body, and the resin.
  • the functional layer constitutes a liquid crystal display device, an organic EL display device, a display device such as an electronic paper or a touch panel, a lighting device, a detection device, a layer constituting the component thereof, or various functional material layers. Specifically, it means one or a combination of one or more of an electrode layer, a light emitting layer, a gas barrier layer, an adhesive layer, an adhesive layer, a thin film transistor, a wiring layer, a transparent conductive layer, and the like. ..
  • the resin layer provided with the functional layer may be used in, for example, an organic EL lighting device, a conductive resin layer on which ITO or the like is laminated, a gas barrier resin layer for preventing the penetration of moisture, oxygen, etc., components of a flexible circuit board, etc. It is used as a flexible substrate, which is a functional material having various functions.
  • a resin layer provided with a functional layer is called a flexible substrate, which is an element for an electronic device or a member for an electronic device having flexibility to the extent that it can be bent manually.
  • the form in which the flexible substrate is mounted on an electronic device may be a bending application in which the curvature changes at the time of use, a fixed curved surface in which the curvature does not change, or a flat surface.
  • mechanical peeling or laser light can be used for peeling the resin layer from the support.
  • the peel strength is above a certain level, it is preferable to use laser light.
  • the laser examples include various gas lasers and solid-state lasers (semiconductor lasers), and an excima laser, an Nd-YAG laser, an Ar laser, a CO 2 laser, a He-Ne laser and the like can be used. These lasers are UV region laser (410 nm or less), green, visible light region vs. laser (500 to 700 nm), near infrared region large laser (700 to 2000 nm), and infrared region vs. laser (400 to 2000 nm), depending on the wavelength. It can be roughly divided into 2000 nm and above).
  • a laser beam having a wavelength region of 410 nm or less is used as a UV laser, and more specifically, a laser beam having any wavelength in the wavelength region of 300 nm to 410 nm is irradiated from the other surface of the support.
  • the third harmonic (355 nm) of the Nd-YAG laser having a wavelength of 360 nm or less can be mentioned, and more preferably, the Xe-Cl excimer laser (308 nm) having a wavelength of 310 nm or less can be mentioned.
  • the laser irradiation in the present invention preferably irradiates the entire back surface of the support on the side opposite to the surface on which the resin layer is formed.
  • the laser nozzle may be fixed and the stage may be irradiated while moving in the XY direction, or the laser nozzle may be irradiated while moving in the XY direction.
  • the nozzle shape of the laser can be arbitrarily selected, and for example, there are a point laser and a line laser. In the present invention, irradiation with a line laser having an irradiation width as wide as possible is preferable.
  • the laser irradiation in the present invention irradiates with a pulse while moving the nozzle.
  • the laser intensity is distributed within the irradiation range, and generally the intensity of the central portion is high and the intensity of the peripheral portion is low. Therefore, when irradiating with a laser, the laser intensity is as uniform as possible, or the laser irradiation area is partially overlapped and irradiated. It is preferable that the overlap is small because the irradiation speed is high.
  • a plurality of laser beams are applied from the other surface of the support so that the overlapping widths of the laser beams overlap at a length of 50% or less of the beam size width length, preferably 30% or less. It is better to irradiate once.
  • the irradiation energy of the laser beam that hits the other surface of the support is preferably 10 mJ or more and 500 mJ or less, preferably 80 mJ or more and 300 mJ or less.
  • the irradiation energy of the laser beam that hits the other surface of the support is the sum of the energy considering the energy density (mJ / cm 2 ) and the overlap of the beams.
  • ⁇ Tensile test> The polyimide film was cut into strips of 100 mm ⁇ 10 mm in the flow direction (MD direction) and the width direction (TD direction), respectively, and used as test pieces.
  • MD direction flow direction
  • TD direction width direction
  • tensile tester manufactured by Shimadzu, Autograph, model name AG-5000A
  • the tensile elastic modulus, elongation, and fracture are obtained in each of the MD and TD directions under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm.
  • the intensity was measured and the average value in the MD direction and the TD direction was obtained.
  • Tables 1A to 1B The results are shown in Tables 1A to 1B.
  • the resin layer with the support was illuminated with an incandescent lamp, and defects were confirmed through the polarizing plate. Among the confirmed defects, defects that appeared dark (dark defects) were excluded because they were derived from foreign substances such as iron powder, and defects that looked bright (bright defects) were confirmed in detail, and the number of gel defects was counted. The number of gel defects was counted for 10 resin layers prepared under each condition, and the number of gel defects per 1 m 2 was determined.
  • ⁇ Peeling strength between polyamic acid film and support> A self-supporting laminate of the polyamic acid film and the support, that is, the laminate before gripping the pin tenter and immediately before the peeling step was sampled. If the polyamic acid film is peeled off from the support as it is, the polyamic acid film will stretch and it will not be possible to measure the peeling strength accurately.
  • a laminate of tape / polyamic acid film / support was cut out according to the above. The support side was fixed to the stage with double-sided tape, and the polyamic acid film together with the tape was grasped with a chuck to measure the 90 ° peel strength between the support and the polyamic acid film. The measurement conditions for the 90 ° peel strength are as follows.
  • the polyamic acid film is peeled off at a 90 ° angle with respect to the fixed support. Measure 5 times and use the average value as the measured value.
  • Measuring device JSV-H1000 manufactured by Japan Measurement System Measurement temperature; room temperature (25 ° C) Peeling speed; 100 mm / min Atmosphere; Atmosphere measurement sample width; 1.2 cm ⁇ Observation of color unevenness>
  • a colored type polyimide film cut out a sample 10 cm square from the left and right edges and center of the entire width of the film, place it on white woodfree paper, and visually observe it under a fluorescent lamp to check for color unevenness. rice field. The same work was carried out at four positions separated by at least 2 m in the MD direction, and evaluated according to the following criteria.
  • Color unevenness is not observed in all 12 places of 3 ⁇ 4.
  • Color unevenness is observed in 1 or 2 of the 12 locations.
  • X Color unevenness is observed at 3 or more of the 12 locations.
  • ⁇ Yellow Index (YI)> For the transparent polyimide film, measure the tristimulus value XYZ value of the film according to ASTM D1925 using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, and calculate the yellowness index (YI) by the following formula. Calculated. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • the warp ( ⁇ m) of the laminated body means the degree of deformation in the thickness direction with respect to the plane direction of the laminated body before and after the following predetermined heat treatment, and specifically, as shown in FIG. 1, 100 mm.
  • the test piece 12 of ⁇ 100 mm is placed on the platen 11 at room temperature so that the test piece is concave, and the average value of the distances (h1rt, h2rt, h3rt, h4rt: unit mm) from the planes of the four corners is used as the basis.
  • the test piece After heat-treating at 300 ° C. for 1 hour, the test piece was allowed to stand on a flat surface so as to have a concave shape, and the distances from the flat surface at the four corners (h1, h2, h3, h4: unit mm). ) was taken as the warp amount (mm), and the difference from the original warp amount was taken as the warp amount when heated at 300 ° C. for 1 hour.
  • the measured value shall be the average value of 10 points.
  • the resin layer was peeled off from the support using a laser, and the amount of warpage was measured in the same manner.
  • Laser peeling was performed by irradiating a laser beam with a wavelength of 308 nm (pulse width 50 ns, beam size 14 mm ⁇ 1.2 mm) and a moving speed of 6 mm / s from the glass side with an industrial excimer laser, IPEX-840 manufactured by Light Machinery. ..
  • the overlapping width of the laser beam was set to 2 mm so that the energy distribution was uniform over the entire surface of the laminated body on the glass side, and the back surface of the glass substrate was irradiated with the laser beam multiple times over 5 round trips. ..
  • TFMB // PMDA / AASQ1 molar ratio 1.00 // 0.98 / 0.02
  • Example 1-1 (Preparation of polyimide film F1)> A DMAc solution (concentration 10% by mass) of isoquinoline (melting point 26 ° C.) is applied on a non-slip surface (non-treated surface) of polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) with a gap of 100 ⁇ m using a wire coater. Then, it was passed through a furnace at 90 ° C. for 3 minutes to obtain a liquid coating film enriched with isoquinoline. The coating amount (presence amount) of isoquinoline was 7.36 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide film.
  • the polyamic acid solution 1-1 obtained in Synthesis Example 1-1 was applied onto it using a comma coater so that the final film thickness (thickness of the polyimide film) was 15 ⁇ m. This was dried at 110 ° C. for 10 minutes.
  • a polyamic acid film that has obtained self-support after drying is peeled off from the A4100 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins so that the film does not break.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 400 ° C for 5 minutes to proceed with the imidization reaction. I let you. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F1 having a width of 450 mm.
  • Example 1-2 (Preparation of polyimide film F2)>
  • a DMAc solution concentration: 10% by mass
  • pyridine melting point -41.6 ° C.
  • the polyamic acid solution 1-2 was used instead of the polyamic acid solution 1-1.
  • the coating amount (presence amount) of pyridine was 98.2 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide film.
  • Example 1-3 Preparation of polyimide film F3> A DMAc solution of isoquinoline (concentration 10% by mass) was applied on a non-slip surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) with a gap of 100 ⁇ m using a wire coater, and then a furnace at 90 ° C. was applied to 3 It was passed over a minute to obtain a liquid coating film enriched with isoquinoline. The coating amount (presence amount) of isoquinoline was 7.36 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide film.
  • the polyamic acid solution 1-3 obtained in Synthesis Example 1-3 was applied onto it using a comma coater so that the final film thickness was 15 ⁇ m. This was dried at 110 ° C. for 10 minutes.
  • a polyamic acid film that has obtained self-support after drying is peeled off from the A4100 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins so that the film does not break.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 230 ° C for 3 minutes, and 280 ° C for 5 minutes to proceed with the imidization reaction. I let you. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F3 having a width of 450 mm.
  • Example 1-4 (Preparation of polyimide film F4)> Same as Example 1-3 except that the DMAc solution of pyridine (concentration: 10% by mass) was used instead of the isoquinoline solution and the polyimide solution 1-4 was used instead of the polyamic acid solution 1-3. A polyimide film F4 was obtained. The coating amount (presence amount) of pyridine was 98.2 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide film.
  • a polyamic acid film that has obtained self-support after drying is peeled off from the A4100 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins so that the film does not break.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 400 ° C for 5 minutes to proceed with the imidization reaction. I let you.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F5 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 230 ° C for 3 minutes, and 280 ° C for 5 minutes to proceed with the imidization reaction. I let you. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F6 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 400 ° C for 5 minutes to proceed with the imidization reaction. I let you. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F8 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 230 ° C for 3 minutes, and 280 ° C for 5 minutes to proceed with the imidization reaction. I let you. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F8 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported at 180 ° C for 3 minutes, 230 ° C for 3 minutes, and 280 ° C for 5 minutes.
  • the imidization reaction was allowed to proceed by heating at 330 ° C. for 5 minutes. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F10 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, 400 ° C for 5 minutes, and 480 ° C for 5 minutes. , The imidization reaction was allowed to proceed. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F11 having a width of 450 mm.
  • Example 1-5 (Preparation of polyimide film F12)>
  • the polyamic acid solution 1-5 was used instead of the polyamic acid solution 1-3
  • the drying temperature of the polyamic acid solution was set to 90 ° C. for 15 minutes
  • the temperature condition during pintenter transfer was set to 180 ° C.
  • a polyimide film F12 was obtained in the same manner as in Example 1-3 except that the mixture was heated at 230 ° C. for 3 minutes and at 300 ° C. for 3 minutes.
  • Example 1-6 (Preparation of polyimide film F13)>
  • the polyamic acid solution 1-6 was used instead of the polyamic acid solution 1-3
  • the drying temperature of the polyamic acid solution was set to 90 ° C. for 15 minutes
  • the temperature condition during pintenter transfer was set to 180 ° C.
  • a polyimide film F13 was obtained in the same manner as in Example 1-3 except that the mixture was heated at 250 ° C. for 3 minutes and 320 ° C. for 3 minutes.
  • Example 1-7 (Preparation of polyimide film F14)>
  • the polyamic acid solution 1-7 was used instead of the polyamic acid solution 1-3
  • the drying temperature of the polyamic acid solution was set to 90 ° C. for 15 minutes
  • the temperature condition during pintenter transfer was set to 180 ° C.
  • a polyimide film F14 was obtained in the same manner as in Example 1-3 except that the mixture was heated at 250 ° C. for 3 minutes and 330 ° C. for 3 minutes.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 230 ° C for 3 minutes, 280 ° C for 5 minutes, and 350 ° C for 5 minutes. , The imidization reaction was allowed to proceed. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F15 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 230 ° C for 3 minutes, 300 ° C for 5 minutes, and 370 ° C for 5 minutes. , The imidization reaction was allowed to proceed. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F16 having a width of 450 mm.
  • the pin sheet spacing is adjusted so that unnecessary slack does not occur, and the film is transported, and heated at 180 ° C for 3 minutes, 250 ° C for 3 minutes, 320 ° C for 5 minutes, and 400 ° C for 5 minutes. , The imidization reaction was allowed to proceed. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film F17 having a width of 450 mm.
  • Comparative Example 1-1 in which a reaction accelerator was mixed and used, the tensile modulus and elongation due to the increase in gel defects , And a decrease in breaking strength and an increase in color unevenness were observed, and the peel strength was also increased. Further, in Comparative Examples 1-5 and 1-7 in which the thermal imidization method was adopted, gel defects were less likely to occur, but the peel strength was significantly increased.
  • Comparative Example 1-3 in which the same polyamic acid solution as in Example 1-2 was used and thermal imidization was performed at a relatively low temperature, the imidization reaction was insufficient, and the tensile elastic modulus, elongation, and fracture occurred. A decrease in intensity and an increase in color unevenness were observed.
  • Comparative Example 1-4 in which thermal imidization was performed at a relatively low temperature, the imidization reaction was insufficient, and the tensile elastic modulus, elongation, and so on.
  • Comparative Example 1-6 which was subjected to thermal imidization at a relatively high temperature, a decrease in breaking strength was observed, and although the tensile modulus, elongation, and breaking strength were similar to those in Example 1-3, yellow. The increase in index (YI) and the increase in peel strength were remarkable.
  • Comparative Example 1-2 in which the same polyamic acid solution as in Example 1-4 was used and a reaction accelerator was mixed and used, a decrease in tensile modulus, elongation, and breaking strength was observed due to an increase in gel defects. , The peel strength was also increased.
  • ⁇ Synthesis Example 2-4 (Preparation of Polyamic Acid Solution 2-4)> A dispersion consisting of 8.9334 parts by mass of TFMB, 70 parts by mass of DMAc and colloidal silica as a lubricant dispersed in dimethylacetamide after replacing the inside of the reaction vessel equipped with a nitrogen inlet tube, a reflux tube and a stirring rod with nitrogen.
  • Nissan Chemical Industry's "Snowtex (registered trademark) DMAC-ST-ZL”) and silica (lubricant) are added so that the total amount of polymer solids in the polyamic acid solution is 0.4% by mass and completely dissolved.
  • the obtained polyamic acid solution 2-4 was transparent, had a solid content (Nv) of 15% by mass, and had a reduced viscosity of 4.4 dl / g.
  • Example 2-1 Preparation of laminate F1 of polyimide resin layer and glass> A DMAc solution (concentration: 10% by mass) of isoquinoline (melting point 26 ° C.) is applied on a square non-alkali glass (Eagle 2000, manufactured by Corning Inc.) with a thickness of 0.7 mm and 150 mm on both sides with a gap of 100 ⁇ m using a wire coater. Then, the mixture was heated in a furnace at 90 ° C. for 3 minutes to obtain a liquid coating film enriched with isoquinoline. The coating amount (presence amount) of isoquinoline was 7.36 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide resin layer.
  • a polyamic acid solution 2-1 was poured over it with a bar coater so that the drying thickness became 15 ⁇ m, and dried in a hot air oven at 90 ° C. for 1 hour. Then, the temperature was gradually raised to 400 ° C. at 5 ° C./min and further heated for 10 minutes for imidization to obtain a laminate F1 of a polyimide resin layer having a thickness of about 15 ⁇ m and glass.
  • Example 2-2 (Preparation of laminate F2 of polyimide resin layer and glass)>
  • a DMAc solution concentration 10% by mass
  • pyridine melting point -41.6 ° C.
  • a polyamic acid solution 2-2 was used instead of the polyamic acid solution 2-1.
  • a laminate F2 of a polyimide resin layer and a glass was obtained in the same manner as in Example 2-1 except that the final heat treatment temperature was 450 ° C.
  • the coating amount (presence amount) of pyridine was 98.2 mg / m 2 per 1 ⁇ m of the thickness of the obtained polyimide resin layer.
  • Example 2-3 (Preparation of laminate F3 of polyimide resin layer and glass)>
  • the polyimide resin layer and glass were used in the same manner as in Example 2-1 except that the polyamic acid solution 2-3 was used instead of the polyamic acid solution 2-1 and the final heat treatment temperature was set to 300 ° C. F3 was obtained.
  • Example 2-4 Preparation of laminate F4 of polyimide resin layer and glass>
  • a DMAc solution concentration 10% by mass
  • pyridine melting point -41.6 ° C.
  • a polyamic acid solution 2-4 was used instead of the polyamic acid solution 2-1.
  • a laminate F4 of a polyimide resin layer and a glass was obtained in the same manner as in Example 2-1 except that the final heat treatment temperature was set to 360 ° C.
  • Comparative Example 2-2 (Preparation of Laminated F6 of Polyimide Resin Layer and Glass)>
  • Comparative Example 2-1 except that pyridine was used in a mass ratio of 10% by mass instead of isoquinoline, polyamic acid solution 2-4 was used instead of polyamic acid solution 2-1 and the final heat treatment temperature was set to 360 ° C. Obtained a laminate F6 of a polyimide resin layer and glass in the same manner as in Comparative Example 2-1.
  • ⁇ Comparative Example 2-3 (Preparation of laminated body F7 of polyimide resin layer and glass)>
  • a polyamic acid solution 2-3 was poured with a bar coater to a dry thickness of 15 ⁇ m and placed in a hot air oven. It was dried at 90 ° C. for 1 hour. Then, the temperature was gradually raised to 300 ° C. at 5 ° C./min and further heated for 10 minutes for imidization to obtain a laminate F7 of a polyimide resin layer having a thickness of about 15 ⁇ m and glass.
  • Comparative Example 2-3 Preparation of Laminated F8 of Polyimide Resin Layer and Glass
  • the polyimide resin layer and the glass were used in the same manner as in Comparative Example 2-3 except that the polyamic acid solution 2-1 was used instead of the polyamic acid solution 2-3 and the final heat treatment temperature was set to 400 ° C. F8 was obtained.
  • Example 2-5 (Preparation of laminate F9 of polyimide resin layer and glass)>
  • the polyimide resin layer and glass were used in the same manner as in Example 2-1 except that the polyamic acid solution 2-5 was used instead of the polyamic acid solution 2-1 and the final heat treatment temperature was set to 330 ° C. F9 was obtained.
  • Comparative Example 2-5 (Preparation of laminated body F10 of polyimide resin layer and glass)>
  • the polyimide resin layer and the glass were used in the same manner as in Comparative Example 2-3 except that the polyamic acid solution 2-5 was used instead of the polyamic acid solution 2-3 and the final heat treatment temperature was set to 400 ° C. F10 was obtained.
  • Comparative Example 2-1 in which a reaction accelerator was mixed and used, an increase in gel defects was observed, and the laminate was formed. The warp of the resin layer and the warp of the resin layer after peeling were increased. Further, in Comparative Example 2-4 in which the thermal imidization method was adopted, although gel defects were less likely to occur, the warp as a laminated body and the warp of the resin layer after peeling were more remarkable.
  • Comparative Example 2-2 in which the same polyamic acid solution as in Example 2-4 was used and a reaction accelerator was mixed and used, an increase in gel defects was observed, warpage as a laminate, and a resin layer after peeling were observed. Warpage was increasing.
  • Comparative Example 2-3 in which the same polyamic acid solution as in Example 2-3 was used for thermal imidization, gel defects were less likely to occur, but the warp as a laminated body and the warp of the resin layer after peeling were performed. Was more prominent.
  • Comparative Example 2-5 using the same polyamic acid solution as in Example 2-5 although gel defects were less likely to occur, the warp as a laminated body and the warp of the resin layer after peeling were more remarkable.
  • the present invention it is possible to provide a method for producing a polymer film, which can reduce the problems of coloring and increase of peeling strength of a polymer film while suppressing deterioration of physical properties and appearance due to gel defects. It will be highly available.
  • the present invention it is possible to provide a method for manufacturing a laminated body capable of suppressing warpage as a laminated body and warping of a resin layer after peeling while suppressing gel defects, and a method for manufacturing a flexible substrate using the same. Because it can be used, it has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ゲル欠陥による物性や外観の劣化を抑制しつつ、高分子フィルムの着色や剥離強度の増大の問題も低減できる高分子フィルムの製造方法を提供する。また、ゲル欠陥を抑制しつつ、積層体としての反り、及び剥離後の樹脂層の反りを低減できる積層体の製造方法、並びにこれを利用したフレキシブル基板の製造方法を提供する。本発明の高分子の生成方法は、高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させる工程と、を含み、前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておくことを特徴とする。本発明は、これを用いる高分子フィルムの製造方法、及び積層体の製造方法、並びに、当該積層体の製造方法を利用したフレキシブル基板の製造方法に関する。

Description

高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法
 本発明は、ポリアミド酸等の高分子前駆体を含む溶液を用いる高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法に関する。また、本発明は、当該積層体の製造方法を利用したフレキシブル基板の製造方法に関する。
 ポリイミドフィルムは、その耐熱性、絶縁性から、フレキシブルプリント配線板(以下、FPCともいう)の基材フィルムとして使用されている。ポリイミドフィルムは一般的に、前駆体であるポリアミド酸の有機溶剤溶液を支持体上に塗布して、ある程度溶媒を揮発させて得られたグリーンフィルムを熱処理する熱イミド化法、またはポリアミド酸の有機溶剤溶液にイミド化促進剤を添加した後、同様にグリーンフィルムを作製、熱処理する化学イミド化法のいずれかの方法で作製されることが多い。
 この二つの方法のうち、イミド化反応が促進されることによって、生産速度の向上が容易であるという点や、より高分子量で強靭なフィルムが得られる点から、化学イミド化法が好ましく用いられる場合がある。
 しかし、化学イミド化法は、イミド化促進剤を添加しているため、局所的にイミド化が先に進行してしまったポリイミドの微細な粒(以下、「ゲル状物」、それによる欠陥を「ゲル欠陥」という)が発生し易い。このゲル欠陥がフィルムに存在すると、見た目の品位が悪いだけでなく、フィルムに応力がかかった際に破壊の起点になったり、表面の凹凸を引き起こし、FPCとしての欠陥にもなり得る。
 上記ゲル欠陥については、ポリアミド酸溶液ならびにイミド化促進剤の温度を低温に保って急激なイミド化を抑制し、両者を混合する撹拌ミキサーの回転数を上げて撹拌効率を向上させることにより、改善することが可能である。しかし、撹拌回転数を上げることは、撹拌により発生する熱を増大させることにも繋がるため、回転数上昇には自ずと限界がある。
 これに対し、ポリアミド酸溶液とイミド化促進剤を混合した溶液をフィルター濾過することにより、フィルム中のゲル欠陥を減らすという試みもなされている(特許文献1参照)。
 ところで、従来、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機ELディスプレイ(OLED)等のフラットパネルディスプレイ(FPD)および電子ペーパー等の電子デバイスの分野では、主としてガラス基板等の無機材料からなる基板(無機基板)上に電子素子を形成したものが用いられている。しかしながら、無機基板は剛直であり、しなやかさに欠けるため、フレキシブルになりにくいという問題がある。
 そこで、フレキシブル性を有しかつ耐熱性を有するポリイミド等の有機高分子材料を基板として用いる方法が提案されている。すなわち、フレキシブル性を有する高耐熱樹脂層を、キャリアとして使用する無機基板上に積層し、この高耐熱樹脂層を電子素子形成のための基板または配線基板として利用する技術が実用化されている。ここで、例えば、無機基板として光透過性に優れたガラス基板を用いると、電子素子を形成する際および配線基板作成の際の検査工程が容易となる上、既存のガラス基板上に電子素子を形成するフレキシブルデバイス生産用の設備がそのまま転用できるという利点を有する。
 そして、ポリイミド樹脂層を無機基板等の支持体上に有する積層体を製造する場合にも、ポリイミドフィルムの場合と同様に、化学イミド化法を好ましく用いることができるが、ゲル欠陥が発生し易いという問題がある。このゲル欠陥が樹脂層に存在すると、見た目の品位が悪いだけでなく、樹脂層に応力がかかった際に破壊の起点になったり、表面の凹凸を引き起こし、ディスプレイ作製工程の欠陥にも得る。
特開2002-348388号公報
 しかしながら、特許文献1の発明は、ゲル状物をフィルターで除去しているだけであり、その発生を根本的に抑制しているものではない。そのため、ゲル状物が大量に発生するとフィルターが目詰まりを起こし、フィルムの長期連続生産が困難となる。
 なお、熱イミド化法を採用することによって、ゲル欠陥を抑制することが可能であるが、より高温でのイミド化反応が必要となるため、着色の問題が生じ易く、また、支持体から高分子前駆体フィルムを剥離する際の剥離強度が増大して、剥離が困難になる傾向がある。
 そこで、本発明の目的は、ゲル欠陥による物性や外観の劣化を抑制しつつ、高分子フィルムの着色や剥離強度の増大の問題も低減できる高分子フィルムの製造方法を提供することにある。また、本発明は、このような高分子フィルムの製造方法に用いることができる、高分子の生成方法を提供することを目的とする。
 一方、特許文献1の発明における、長期連続生産の困難性の問題は、ポリイミドフィルムを製造する場合に限られず、ポリイミドを含む樹脂層を支持体上に有する積層体を製造する場合にも生じる問題である。
 また、ポリアミド酸溶液を支持体上で加熱する際、片側が支持体によって遮断された状態でオーブンによる加熱を行うため、支持体側の面が加熱されにくく、ポリイミドの空気界面側と支持体側で加熱の状態が異なる。これが原因となって、高温加熱(例えば150~500℃)を伴う後工程において、積層体が支持体ごと反ってしまうことが判明した。このような傾向は、熱イミド化法の場合だけでなく、化学イミド化法の場合でもみられた。
 さらに、このような高耐熱樹脂層からなるフレキシブル基板層が積層された支持体においては、支持体(たとえばガラスなどの無機基板)をキャリア用の基盤として利用するので、高耐熱樹脂層の表面に電子素子を形成後、最後に高耐熱樹脂層を支持体から剥離して分離する必要がある。しかし、表裏の加熱状態が異なるポリイミド樹脂層では、支持体から剥離後の電子素子付きポリイミド樹脂層が反ってしまうという問題もあった。また、高耐熱樹脂層を支持体から剥離する際に、剥離強度によっては、レーザーによる剥離が必要となる場合があり、このようなレーザー照射時の昇温より、剥離後の高耐熱樹脂層に反りが生じ易いことも判明した。
 そこで、本発明の別の目的は、ゲル欠陥を抑制しつつ、積層体としての反り、及び剥離後の樹脂層の反りを低減できる積層体の製造方法、並びにこれを利用したフレキシブル基板の製造方法を提供することにある。また、このような高分子フィルムの製造方法に用いることができる高分子の生成方法を提供することを目的とする。また、本発明は、このような積層体の製造方法に用いることができる、高分子の生成方法を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意研究した結果、高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておくことで、予想に反して、反応促進剤が好適に拡散して十分な反応促進効果が得られ、これによりゲル欠陥を十分抑制できると共に、支持体からの剥離強度も低減できることを見出し、本発明を完成するに至った。
 また、本発明者らは、上記と同様の手段により、ゲル欠陥を十分抑制できると共に、積層体としての反り、及び剥離後の樹脂層の反りを低減できることを見出し、本発明を完成するに至った。
 即ち、本発明には以下の内容が含まれる。
 [1] 高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させる工程と、を含む高分子の生成方法であって、
 前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておく、高分子の生成方法。
 [2] [1]に記載の高分子の生成方法により、前記支持体上に高分子フィルムを形成する工程を含む、高分子フィルムの製造方法。
 [3] 塗布された前記溶液を加熱して自己支持性のある高分子前駆体フィルムを得る工程と、前記支持体から前記高分子前駆体フィルムを剥離する工程と、を含む[2]に記載の高分子フィルムの製造方法。
 [4] 前記支持体と前記高分子前駆体フィルムの剥離強度が0.001N/cm以上0.9N/cm以下である、[3]に記載の高分子フィルムの製造方法。
 [5] 前記高分子フィルムはポリイミド系樹脂フィルムであり、前記反応促進剤が単位面積当たりに存在する量は、ポリイミド系樹脂フィルムの厚み1μm当たり、5~150mg/mである、[2]~[4]いずれかに記載の高分子フィルムの製造方法。
 [6] 前記高分子フィルムがポリイミドフィルムであり、前記高分子前駆体の溶液がポリアミド酸溶液である、[2]~[5]いずれかに記載の高分子フィルムの製造方法。
 [7] 前記反応促進剤がイミド化促進剤である、[5]又は[6]に記載の高分子フィルムの製造方法。
 [8] 前記高分子フィルムが透明ポリイミドフィルムである、[2]~[7]いずれかに記載の高分子フィルムの製造方法。
 [9] [1]に記載の高分子の生成方法により、高分子を含む樹脂層を前記支持体上に有する積層体を得る工程を含む、積層体の製造方法。
 [10] 前記化学反応が加熱下で行なわれると共に、得られた前記積層体の300℃で1時間加熱時の反り量が300μm以下である、[9]に記載の積層体の製造方法。
 [11] 前記積層体は、前記支持体から剥離した前記樹脂層の反り量が1000μm以下である、[9]又は[10]に記載の積層体の製造方法。
 [12] 前記樹脂層はポリイミド系樹脂を含み、前記反応促進剤が単位面積当たりに存在する量は、前記樹脂層の厚み1μm当たり、5~150mg/mである[9]~[11]いずれかに記載の積層体の製造方法。
 [13] 前記高分子がポリイミドであり、前記高分子前駆体の溶液がポリアミド酸溶液である、[9]~[12]いずれかに記載の積層体の製造方法。
 [14] 前記反応促進剤がイミド化促進剤である、[12]又は[13]に記載の積層体の製造方法。
 [15] [9]~[14]いずれかに記載の製造方法で得られた前記積層体の前記樹脂層に、機能層を形成する機能層形成工程と、
 前記樹脂層を前記支持体から剥離して前記樹脂層上に前記機能層を有するフレキシブル基板を得る分離工程と、
を含む、フレキシブル基板の製造方法。
 本発明によると、ゲル欠陥による物性や外観の劣化を抑制しつつ、高分子フィルムの着色や剥離強度の増大の問題も低減できる高分子フィルムの製造方法を提供することができる。特に、実施例として示す例では、ゲル欠陥による引張弾性率、伸度、及び破断強度の低下と、色ムラとを抑制でき、更に、イエローインデックス(YI)の増大や支持体の剥離強度の増大を抑制できる。
 また、本発明によると、ゲル欠陥を抑制しつつ、積層体としての反り、及び剥離後の樹脂層の反りを低減できる積層体の製造方法、並びにこれを利用したフレキシブル基板の製造方法を提供することができる。
実施例等において、樹脂層と支持体の積層体の反りの測定方法を説明するための模式的図であり、(a)は平面図、(b)は(a)における(b)-(b)矢視の断面図である。
 以下、本発明を詳細に説明する。なお、説明の便宜上、フィルムの製膜方向を、機械軸方向、縦方向、長手方向、MD方向と称することがあり、製膜方向と厚み方向とに直交する方向を、幅方向、横方向、TD方向と称することがある。また、本明細書中に記載された各種の物性等は、具体的には実施例に記載された方法で測定されるものである。
 [高分子の生成方法]
 本発明の一実施形態である高分子の生成方法は、高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させる工程と、を含む高分子の生成方法であって、前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておくことを特徴とする。
 この高分子の生成方法は、二つの側面を有しており、一つの側面は、高分子フィルムの製造方法に利用するものであり、他の一つの側面は、積層体の製造方法に利用するものである。
 つまり、本発明の一実施形態である高分子フィルムの製造方法は、上記の高分子の生成方法により、前記支持体上に高分子フィルムを形成する工程を含む、高分子フィルムの製造方法である。また、本発明の一実施形態である積層体の製造方法は、上記の高分子の生成方法により、高分子を含む樹脂層を前記支持体上に有する積層体を得る工程を含む、積層体の製造方法である。
 以下、本発明の一実施形態である高分子フィルムの製造方法と積層体の製造方法とについて、順に説明する。
 [高分子フィルムの製造方法]
 本発明の一実施形態である高分子フィルムの製造方法は、高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させる工程と、を含むものである。その際、前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておくことを特徴とする。
 反応促進剤を支持体の表面にあらかじめ存在させておくことよる効果の原因については、詳細が不明であるが、一応下記のように推測される。つまり、実施例において、反応促進剤を溶液に添加する場合と比較して、ゲル欠陥が減少していることから、反応促進剤を支持体の表面にあらかじめ存在させておくことで、局所的にゲル化が生じるのを抑制することができたと考えられる。また、ゲル欠陥を減少させることで、ゲル欠陥による物性や外観の劣化を抑制できることが示されている。更に、熱イミド化の場合と比較して、同等以上の機械特性が得られていることから、高分子前駆体を含む溶液中に反応促進剤が拡散する際の濃度勾配と加熱による温度勾配がうまくバランスして、化学反応が偏りなく促進されたと考えられる。そして、実施例において、反応促進剤を溶液に添加する場合と比較して、支持体と高分子前駆体フィルムの剥離強度が上昇せず、むしろ低下していることは、特に予想外の効果であり、上記バランスの結果であると考えられる。従って、実施例で使用したポリイミドフィルムに限らず、以下で述べるような高分子フィルムについても、同様の作用効果が生じることが推認される。
 また、本発明では、塗布された前記溶液を加熱して自己支持性のある高分子前駆体フィルムを得る工程と、前記支持体から前記高分子前駆体フィルムを剥離する工程と、を含むことが好ましい。その場合、高分子前駆体の化学反応後に剥離するのに比べて、支持体からの剥離が容易になり、後工程における処理の自由度が高まると共に、後工程である加熱工程において表裏から均一に加熱可能であるという効果が得られる。
 なお、本発明では、支持体から高分子前駆体フィルムを剥離する工程に代えて、高分子前駆体を化学反応させる工程を経て得られる高分子フィルムを支持体から剥離することも可能である。
 <高分子フィルム>
 樹脂層を構成する高分子としては、反応促進剤の存在下で高分子前駆体を化学反応して得られるものであれば特に限定されないが、ポリイミド、ポリアミドイミド、ポリエーテルイミド、芳香族系のポリアミド等の耐熱性樹脂、エポキシ樹脂等の反応硬化性樹脂が挙げられる。なかでも、イミド化反応によりイミド結合を形成するポリアミドイミド、ポリイミド、ポリエーテルイミドが好ましい。本発明では、このようなイミド結合を有する高分子を総称して、「ポリイミド系樹脂」という。
 高分子フィルムが耐熱性樹脂フィルムである場合、耐熱性樹脂としては、好ましくは融点が250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上のフィルムである。また、ガラス転移温度が200℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上の高分子によって作られているフィルムである。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を超える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断しても良い。
 <高分子前駆体>
 本発明において、「高分子前駆体」とは、製品となる高分子フィルムを構成する高分子について、化学反応が完結する前の状態を指し、例えば化学構造、架橋反応又は高分子量化が完結していない状態のものが含まれる。
 例えば、ポリイミドフィルムやポリアミドイミドフィルムは、一般的に、溶媒中でジアミンと3価又は4価のカルボン類とを反応させて得られるポリアミド酸溶液を、支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリアミド酸フィルムとなし、さらに支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミド酸フィルムを高温処理してイミド化反応させることで得られる。このため、ポリアミド酸が高分子前駆体に相当する。
 また、一般的に、ポリアミドフィルムは、溶媒中でジアミン類とジカルボン酸類とを反応させて得られるポリアミド溶液を支持体に塗布、乾燥して例えば1~50質量%の溶媒を含むポリアミドフィルムとなし、さらに支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミドフィルムを高温処理して高分子量化させることで得られる。このため高分子量化が完結していないポリアミドが高分子前駆体に相当する。
 また、反応硬化性樹脂フィルムは、エポキシ樹脂等を硬化剤等と共に支持体に塗布、乾燥してBステージのフィルムとなし、さらに支持体上で、若しくは該支持体から剥がした状態でフィルムを高温処理して架橋反応させることで得られる。このため架橋反応(又は硬化反応)が完結していないエポキシ樹脂等が高分子前駆体に相当する。
 これらの反応系に使用される溶媒、並びに反応促進剤であるイミド化促進剤、脱水剤、触媒、助触媒、硬化剤、硬化促進剤等は、各反応系に応じて、周知のものを使用することができる。
 以下、ポリアミド酸を高分子前駆体とするポリイミド系樹脂フィルムを製造する場合の例について、詳細に説明する。
 <ポリイミド系樹脂フィルム>
 一般に、ポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、支持体に塗布、乾燥してグリーンフィルム(以下では「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)とし、さらに支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応(イミド化反応)を行わせることによって得られる(熱イミド化法)。
 一般的な化学イミド化法では、イミド化反応を促進するイミド化促進剤をポリアミド酸溶液に添加しておくことで、より低い温度で熱処理して、イミド化反応を行なっている。本発明では、イミド化促進剤をポリアミド酸溶液に添加する代わりに、支持体の表面にあらかじめ存在させておく。
 ここで、グリーンフィルムとは、溶媒を含有し、自己支持性を有するポリアミド酸のフィルムである。グリーンフィルムの溶媒含有量は、自己支持性を有していれば特に限定されないが、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、よりさらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、80質量%以下であることが好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下であり、特に好ましくは50質量%以下である。
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液を塗布してフィルムを作る方法では、材料選択の幅が広いため、易剥離に好ましい材料を見つけるためには検討しやすい反面、イミド化反応の制御が重要となる。これに対して、イミド化反応を伴わないフィルム製膜では、製膜がしやすい利点があるため、適宜使い分けることができる。
 塗布されたポリアミド酸溶液を加熱して自己支持性のある高分子前駆体フィルムを得る場合、加熱温度としては、70~130℃が好ましく、80~125℃がより好ましい。上記下限値以上の温度であると、効率良く溶媒を除去することができ、上記上限値以下であると、支持体と高分子前駆体フィルムの剥離強度が上昇し過ぎるのを防止し易くなる。
 本発明におけるポリイミド系樹脂フィルムは、主鎖にイミド結合を有する高分子のフィルムであり、好ましくはポリイミドフィルム、ポリアミドイミドフィルムであり、より好ましくはポリイミドフィルムである。
 一般的に、ポリイミドフィルムは、前述の方法で得られるが、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液を支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらに支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。この場合、高分子量化が完結していないポリイミドが高分子前駆体に相当する。
 ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましい。
 芳香族ジアミン類としては特に限定はなく、例えばオキシジアニリン(ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン(1,4-フェニレンジアミン)等が挙げられる。ジアミン類は、一種のみ用いてもよいし二種以上を併用してもよい。
 ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は一種のみを用いてもよいし、二種以上を併用してもよい。
 また、ポリイミド系樹脂の主鎖の一部にアミド結合を導入するために、テトラカルボン酸類の代わりに又は一部にトリテトラカルボン酸類を使用することも可能である。また、ポリアミド成分を共重合するために、テトラカルボン酸類の一部にジカルボン酸類を使用することも可能である。
 テトラカルボン酸としては、特に限定はなく、例えばピロリメット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
 <透明ポリイミドフィルム>
 ポリイミド系樹脂フィルムの中でも、透明ポリイミドフィルムが好ましく使用されるため、これについて更に詳細に説明する。透明ポリイミドの透明性としては、全光線透過率が75%以上のものであることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。
 本発明における無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は一種のみを用いてもよいし、二種以上を併用してもよい。
 芳香族テトラカルボン酸類の共重合量は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。また、下記の式(1)の構造で表される酸無水物基含有のダブルデッカー型シルセスキオキサン誘導体なども挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは一種のみを用いてもよいし、二種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000001
 脂環式テトラカルボン酸類の共重合量は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは一種のみ用いてもよいし二種以上を併用してもよい。
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は一種のみ用いてもよいし二種以上を併用してもよい。
 本発明における無色透明性の高いポリイミドを得るためのジアミン類或いはイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミン類が好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びイソシアネート類は、一種のみを用いてもよいし二種以上を併用してもよい。
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン、9,10-ビス(4-アミノフェニル)アデニン、2,4-ビス(4-アミノフェニル)シクロブタン-1,3-ジカルボン酸ジメチル、下記の式(2)の構造で表されるアミノ基含有のダブルデッカー型シルセスキオキサン誘導体等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。
Figure JPOXMLDOC01-appb-C000002
 また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は一種のみ用いてもよいし二種以上を併用してもよい。
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は一種のみ用いてもよいし二種以上を併用してもよい。
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’ -ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は一種のみ用いてもよいし二種以上を併用してもよい。
 <ポリアミド酸を含む溶液>
 ポリアミド酸を含む溶液には、製造工程の煩雑さを避ける観点から、合成時に使用した溶媒が含有されることが好ましい。ポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N-ジメチルフォルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどであり、N,N-ジメチルフォルムアミド、N,N-ジメチルアセトアミドが特に好ましく用い得る。合成時のポリアミド酸溶液の濃度については、濃度が低い方がポリアミド酸溶液に含まれる溶媒量が多くなり、イミド化促進剤との混合性が向上するため好ましい。しかし、濃度が低すぎると、厚めのフィルムを作製することが困難となる。ポリアミド酸溶液の濃度は、5~30質量%が好ましく、10~20質量%がより好ましい。
 高分子フィルムには、ハンドリング性および生産性を確保する為、高分子フィルム中に粒子径が5~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。このため、高分子前駆体を含む溶液に、滑材(粒子)を含有させることも可能であり、好ましい滑材としては、無機微粒子が挙げられる。
 無機微粒子としては、微粒子状の二酸化ケイ素(シリカ)粉末、酸化アルミニウム粉末等の無機酸化物粉末、及び微粒子状の炭酸カルシウム粉末、リン酸カルシウム粉末等の無機塩粉末を挙げることができる。これらの無機微粒子の粗大な粒が次工程以降での欠陥の原因となる可能性があるため、これらの無機微粒子は、均一に分散されることが好ましい。
 なお、高分子前駆体溶液には、本発明の効果を損なわない範囲において、ポリイミド系樹脂フィルムに使用される公知の添加剤を含有させることができる。なお、使用するイミド化促進剤の一部を高分子前駆体溶液に含有させることも可能であり、本発明の効果を得る上では、このようなイミド化促進剤の比率が少ないほど好ましく、イミド化促進剤のうち70質量%以上を支持体に塗布することが好ましい。より好ましくは90質量%以上であり、最も好ましくは100質量%である。
 <イミド化促進剤>
 本発明において、支持体にあらかじめ存在させておくイミド化促進剤としては、3級アミンを用いることが好ましい。3級アミンとしては複素環式の3級アミンが更に好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリンなどを挙げることができる。
 本発明において、イミド化促進剤は予め高分子前駆体溶液を塗布する支持体表面に存在させておく。具体的には、塗布、転写、積層、圧着、付着などにより、イミド化促進剤を支持体の表面にあらかじめ存在させることができるが、塗布による方法が好ましい。イミド化促進剤の支持体への塗布方法は特に限定されず、溶液を支持体に直接塗布する場合の他、別の転写材に塗布した後に支持体に転写させる方法で塗布することも可能である。本発明では、支持体表面に均一にイミド化促進剤を塗布する観点から、スプレーコート法、ワイヤーコート法、バーコート法、スプレーコート法、気相蒸着法などが好ましい。
 イミド化促進剤が固体の場合は溶媒に溶解させ、上記の方法により塗工を行うことが好ましい。塗工後に完全乾燥させてもよいが、一定量の溶媒を含む状態で高分子前駆体溶液を塗布することも可能である。
 塗工時に使用する溶媒としては、イミド化促進剤が溶解するものであれば特に限定されないが、後の工程でポリアミド酸溶液を塗工するため、相溶性の点からポリアミド酸溶液の溶媒と同じであることが好ましい。
 また、イミド化促進剤が液体の場合は、そのまま塗工することも可能であるが、均一に塗布し易い、ポリアミド酸溶液内への拡散性の観点から、溶媒に溶解させ、上記の方法により塗工を行うことが好ましい。
 イミド化促進剤(反応促進剤)を、支持体の表面にあらかじめ存在させておく際の量(単位面積当たりに存在する量、以下「存在量」という)の好ましい範囲は、得られるポリイミド系樹脂フィルムの厚みに応じて変化するため、ポリイミド系樹脂フィルムの厚み1μm当たりの量として、好ましい範囲が存在する。つまり、イミド化促進剤の存在量は、ポリイミド系樹脂フィルムの厚み1μm当たり、5~150mg/mが好ましく、7~100mg/mがより好ましい。イミド化促進剤の存在量がポリイミド系樹脂フィルムの厚み1μm当たり、5mg/m以上であると、イミド化促進剤によるイミド化反応が十分に得られ易いため好ましい。また、150mg/m以下であると、反応に関与しないイミド化促進剤の割合が少なくなる傾向があるため、コスト的に好ましい。
 このような存在量は、例えば塗布厚み、塗工溶液の濃度、これらの組合せ等により調整することができるが、塗工溶液の濃度で調整することが塗布厚みを独立して制御できるため好ましい。塗工溶液の塗布厚みとしては、10~500μmが好ましく、30~250μmがより好ましい。このような塗布厚みの場合、塗工溶液の濃度は0.01質量%以上10質量%以下であることが好ましい。イミド化促進剤の塗工後、ポリアミド酸溶液を塗工する前に加熱などにより溶媒量を適宜減らしても良い。
 イミド化促進剤溶液が塗布された支持体上にポリアミド酸溶液を塗工するとことで、支持体上のイミド化促進剤はポリアミド酸溶液が含む溶媒中に溶解、拡散する。
 本発明において、ポリイミドが透明ポリイミドである場合にはイミド化促進剤の添加によりイミド化に必要な加熱温度が低くなるため、ポリイミドの変色(黄色度の増大)を抑制することができる。
 <支持体>
 本発明における支持体の材質は、イミド化促進剤と化学的に反応しないものであれば特に限定されないが、例えば金属などの無機支持体、ポリエチレンテレフタレートなどの高分子支持体などが適している。高分子支持体を用いる場合は、少なくとも支持体のイミド化促進剤塗布面に易剥離コート、親水化コートなどのコーティングが施されていても良い。
 本発明において、支持体の形状は特に問わない。高分子フィルムなどの長尺の支持体や、より短尺のシート状の支持体、あるいは立体構造を有する成形体などであっても良い。
 本発明において支持体のイミド化促進剤塗布面の表面粗さRaは10nm以下であることが好ましく、さらに7nm以下であることが好ましく、さらに5nm以下であることが好ましい。本発明の製造方法では、支持体表面の凹凸がポリイミド表面に転写するため、表面粗さ10nm以下の支持体を用いることで、表面の平滑なポリイミドフィルムを得ることができる。
 本発明では、支持体から高分子前駆体フィルムを剥離してから、イミド化反応を行なうことが好ましい。このとき、支持体と高分子前駆体フィルムの剥離強度が0.001N/cm以上0.9N/cm以下であることが好ましく、0.01N/cm以上0.5N/cm以下であることがより好ましい。剥離強度が0.001N/cm以上であると、高分子前駆体フィルムを剥離するまでの搬送工程において十分な搬送性を確保することができる。また、剥離強度が0.9N/cm以下であると、高分子前駆体フィルムを剥離する際に、フィルムや支持体の破断等が生じにくくなる。
 <高分子前駆体を化学反応させる工程>
 高分子前駆体を化学反応させる工程では、高分子フィルムの種類に応じた条件が適用されるが、例えば、ポリイミド系樹脂フィルムの場合、以下のようになる。
 イミド化反応のための熱処理としては、一定温度で行なうことも可能であるが、連続的又は段階的に温度を上昇させながら行なうことが、急激なフィルムの収縮を回避して、破断、急激な溶媒揮発による表面平滑性の悪化などを抑制する観点から好ましい。
 温度を上昇させながら熱処理を行なう場合、最低温度としては150~190℃が好ましく、最高温度としては280~450℃が好ましい。また最低温度としては180~190℃がより好ましく、最高温度としては290~450℃がより好ましい。一定温度で行なう場合、200~370℃が好ましく、210~350℃がより好ましい。
 熱処理のトータルの時間としては、5~60分が好ましく、10~50分がより好ましい。
 熱処理は、フィルムの端部を固定せずに行なうことも可能であるが、膜厚の均一化、平面性の確保、たるみの抑制の観点から、フィルムの端部を固定して行なうことが好ましい。
 端部の固定にはピンテンター等のテンター、各種のフレームなどを使用することができる。また、後述のように、テンター等を用いて、フィルムを延伸したり、延伸後に熱固定や熱緩和を行なうことも可能である。
 得られたポリイミド系樹脂フィルムは、平面性が悪い部分をスリッターにて切り落とすことも可能である。また、長尺体の場合にはロール状に巻き上げて、ポリイミド系樹脂フィルムが巻回されたロールとしたり、これを裁断した枚葉体とすることも可能である。
 <高分子フィルムの特性>
 本発明の一実施形態である高分子フィルムは単層構成であっても構わないし、2層以上の複層(積層)構成であっても構わない。高分子フィルムが単層構造の場合は、高分子フィルムの物性(引張弾性率、融点、ガラス転移温度、黄色度指数、全光線透過率、ヘイズ、CTE等)は高分子フィルム全体の値を指す。
 前記高分子フィルムが、透明高分子フィルムである場合、その黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記透明高分子フィルムの黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。
 本発明における透明高分子フィルムの波長400nmにおける光線透過率は70%以上が好ましく、より好ましくは72%以上であり、さらに好ましくは75%以上であり、より一層好ましくは80%以上である。前記透明高分子フィルムの波長400nmの光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには99%以下であることが好ましく、より好ましくは98%以下であり、さらに好ましくは97%以下である。
 本発明における透明高分子フィルムのヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。下限は特に限定されないが、工業的には、0.01以上であれば問題なく、0.05以上であっても差し支えない。
 高分子フィルムの30℃から250℃の間の平均の線膨張係数(CTE)は、50ppm/K以下であることが好ましい。より好ましくは45ppm/K以下であり、さらに好ましくは40ppm/K以下であり、よりさらに好ましくは30ppm/K以下であり、特に好ましくは20ppm/K以下である。また-5ppm/K以上であることが好ましく、より好ましくは-3ppm/K以上であり、さらに好ましくは1ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記高分子フィルムのCTEとは、高分子フィルムの流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。
 なお、上記の線膨張係数(CTE)を示すポリイミドフィルムは、ポリイミドフィルムの成膜過程において、延伸を行うことでも実現することができる。かかる延伸操作は、ポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、もしくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させる過程において、MD方向に1.5倍から4.0倍に、TD方向に1.4倍から3.0倍に延伸することによって実現できる。この際にポリイミドフィルム作製用支持体に未延伸の熱可塑性高分子フィルムを用い、熱可塑性高分子フィルムとポリイミドフィルムを同時に延伸した後に熱可塑性高分子フィルムから延伸後のポリイミドフィルムを剥離することにより、特にMD方向の延伸時にポリイミドフィルムに入る傷を防止することができ、より高品位なポリイミドフィルムを得ることができる。
 本発明における高分子フィルムの厚さは5μm以上が好ましく、より好ましくは8μm以上であり、さらに好ましくは15μm以上であり、より一層好ましくは20μm以上である。前記高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには200μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。薄すぎるとフィルム作製、搬送が困難であり、厚すぎるとロール搬送などが困難となってくる。
 前記高分子フィルムの引張弾性率は、1GPa以上であることが好ましく、より好ましくは2GPa以上であり、さらに好ましくは3GPa以上である。引張弾性率の上限は特に制限されないが、15GPa程度である。前記引張弾性率が、15GPa以下であると、前記高分子フィルムをフレキシブルなフィルムとして使用できる。前記引張弾性率が4GPa以上であると、ハンドリング中に過度な伸びが生じにくい。前記高分子フィルムの引張弾性率の測定方法は、実施例に記載の方法による。
 前記高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下であり、さらに好ましくは7%以下であり、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、高分子フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
 前記高分子フィルムの一定面積当たりのゲル欠陥個数は、0~3.0個/1000mが好ましく、0~2.0個/1000mがより好ましく、0~1.5個/1000mが更に好ましい。一定面積当たりのゲル欠陥個数が3.0個/1000m以下であると、ゲル欠陥による物性や外観の劣化をより効果的に抑制することができるようになる。
 前記高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。前記高分子フィルムがロール状に巻かれていると、ロール状に巻かれた高分子フィルムという形態での輸送が容易となる。
 [積層体の製造方法]
 本発明の一実施形態である積層体の製造方法は、高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させて高分子を含む樹脂層を前記支持体上に有する積層体を得る工程と、を含むものである。その際、前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておくことを特徴とする。
 反応促進剤を支持体の表面にあらかじめ存在させておくことよる効果の原因については、詳細が不明であるが、一応下記のように推測される。つまり、実施例において、反応促進剤を溶液に添加する場合と比較して、ゲル欠陥が減少していることから、反応促進剤を支持体の表面にあらかじめ存在させておくことで、局所的にゲル化が生じるのを抑制することができたと考えられる。また、塗布された高分子前駆体を含む溶液の片面が支持体によって遮断されており、支持体側と空気界面側で熱のかかり方が異なるため、両側で化学反応の進み方が相違し易くなるものの、支持体にイミド化促進剤が塗工されていることにより、熱の伝わりにくい支持体側と空気界面側で反応の度合いがバランスされて、得られる積層体と樹脂層の加熱後の反りを効果的に低減できると考えられる。従って、実施例で使用したポリイミド樹脂層に限らず、以下で述べるような樹脂層についても、同様の作用効果が生じることが推認される。
 <樹脂層>
 樹脂層を構成する高分子としては、反応促進剤の存在下で高分子前駆体を化学反応して得られるものであれば特に限定されないが、ポリイミド、ポリアミドイミド、ポリエーテルイミド、芳香族系のポリアミド等の耐熱性樹脂、エポキシ樹脂等の反応硬化性樹脂が挙げられる。なかでも、イミド化反応によりイミド結合を形成するポリアミドイミド、ポリイミド、ポリエーテルイミドが好ましい。本発明では、このようなイミド結合を有する高分子を総称して、「ポリイミド系樹脂」という。
 樹脂層に含まれる高分子が耐熱性樹脂である場合、耐熱性樹脂としては、好ましくは融点が250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上である。また、ガラス転移温度が200℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上の高分子である。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を超える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断しても良い。
 <高分子前駆体>
 本発明において、「高分子前駆体」とは、樹脂層を構成する高分子について、化学反応が完結する前の状態を指し、例えば化学構造、架橋反応又は高分子量化が完結していない状態のものが含まれる。
 例えば、ポリイミド樹脂層やポリアミドイミド樹脂層は、一般的に、溶媒中でジアミンと3価又は4価のカルボン類とを反応させて得られるポリアミド酸溶液を、支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリアミド酸の前駆体層となし、さらに支持体上で、1~50質量%の溶媒を含むポリアミド酸の前駆体層を高温処理してイミド化反応させることで得られる。このため、ポリアミド酸が高分子前駆体に相当する。
 また、一般的に、ポリアミド樹脂層は、溶媒中でジアミン類とジカルボン酸類とを反応させて得られるポリアミド溶液を支持体に塗布、乾燥して例えば1~50質量%の溶媒を含むポリアミド樹脂層(前駆体層)となし、さらに支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミド樹脂層(前駆体層)を高温処理して高分子量化させることで得られる。このため高分子量化が完結していないポリアミドが高分子前駆体に相当する。
 また、反応硬化性樹脂の樹脂層は、エポキシ樹脂等を硬化剤等と共に支持体に塗布、乾燥してBステージの樹脂層(前駆体層)となし、さらに支持体上で、若しくは該支持体から剥がした状態で樹脂層(前駆体層)を高温処理して架橋反応させることで得られる。このため架橋反応(又は硬化反応)が完結していないエポキシ樹脂等が高分子前駆体に相当する。
 これらの反応系に使用される溶媒、並びに反応促進剤であるイミド化促進剤、脱水剤、触媒、助触媒、硬化剤、硬化促進剤等は、各反応系に応じて、周知のものを使用することができる。
 以下、ポリアミド酸を高分子前駆体とするポリイミド系樹脂の樹脂層を形成する場合の例について、詳細に説明する。
 <ポリイミド系樹脂の樹脂層>
 一般に、ポリイミドの樹脂層は、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、支持体に塗布、乾燥した前駆体層とし、さらに支持体上で前駆体層を高温熱処理して脱水閉環反応(イミド化反応)を行わせることによって得られる(熱イミド化法)。
 一般的な化学イミド化法では、イミド化反応を促進するイミド化促進剤をポリアミド酸溶液に添加しておくことで、より低い温度で熱処理して、イミド化反応を行なっている。本発明では、イミド化促進剤をポリアミド酸溶液に添加する代わりに、支持体の表面にあらかじめ存在させておく。
 本発明でも、反応促進剤を存在させた支持体に、高分子前駆体を含む溶液を塗布、乾燥して前駆体層を予め形成しておき、前駆体層に含まれる高分子前駆体を化学反応させて積層体を得ることが好ましい。ここで、前駆体層は、溶媒を含有し、自己支持性を有するポリアミド酸の樹脂層である。前駆体層の溶媒含有量は、自己支持性を有していれば特に限定されないが、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、よりさらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、80質量%以下であることが好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下であり、特に好ましくは50質量%以下である。
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液を塗布して前駆体層を形成する方法では、材料選択の幅が広いため、易剥離に好ましい材料を見つけるためには検討しやすい反面、イミド化反応の制御が重要となる。これに対して、イミド化反応を伴わない製膜では、製膜がしやすい利点があるため、適宜使い分けることができる。
 塗布されたポリアミド酸溶液を加熱して自己支持性のある前駆体層を得る場合、加熱温度としては、70~130℃が好ましく、80~125℃がより好ましい。上記下限値以上の温度であると、効率良く溶媒を除去することができ、上記上限値以下であると、前駆体層の急激な収縮による問題を回避し易くなる。
 本発明におけるポリイミド系樹脂は、主鎖にイミド結合を有する高分子であり、好ましくはポリイミド、ポリアミドイミドであり、より好ましくはポリイミドである。
 一般的に、ポリイミド樹脂層は、前述の方法で得られるが、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液を支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミド樹脂層(前駆体層)となし、さらに支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミド樹脂層を高温処理して乾燥させることでも得られる。この場合、高分子量化が完結していないポリイミドが高分子前駆体に相当する。
 ポリアミド酸を構成するジアミン類については、「積層体の製造方法」において樹脂層を形成する場合でも、「高分子フィルムの製造方法」について記載したものがそのまま適用できる。
 ポリアミド酸を構成するテトラカルボン酸類についても、「積層体の製造方法」において樹脂層を形成する場合でも、「高分子フィルムの製造方法」について記載したものがそのまま適用できる。
 <透明ポリイミド樹脂層>
 ポリイミド系樹脂の樹脂層の中でも、透明ポリイミド樹脂層が好ましく使用されるため、これについて更に詳細に説明する。透明ポリイミドの透明性としては、全光線透過率が75%以上のものであることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。
 無色透明性の高いポリイミドを得るための、ジアミン類、テトラカルボン酸類等の化合物については、「積層体の製造方法」において樹脂層を形成する場合にも、「高分子フィルムの製造方法」について記載したものがそのまま適用できる。
 <ポリアミド酸を含む溶液>
 ポリアミド酸を含む溶液については、「積層体の製造方法」において樹脂層を形成する場合にも、「高分子フィルムの製造方法」について記載したものがそのまま適用できる。つまり、溶媒、ポリアミド酸溶液の濃度、滑材(粒子)その他の添加剤の記載がそのまま適用できる。
 なお、使用するイミド化促進剤の一部を高分子前駆体溶液に含有させることも可能であり、本発明の効果を得る上では、このようなイミド化促進剤の比率が少ないほど好ましく、イミド化促進剤のうち70質量%以上を支持体に塗布することが好ましい。より好ましくは90質量%以上であり、最も好ましくは100質量%である。
 <イミド化促進剤>
 本発明において、支持体にあらかじめ存在させるイミド化促進剤としては、3級アミンを用いることが好ましい。3級アミンとしては複素環式の3級アミンが更に好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリンなどを挙げることができる。
 本発明において、イミド化促進剤は予め高分子前駆体溶液を塗布する支持体表面に存在させておく。具体的には、塗布、転写、積層、圧着、付着などにより、イミド化促進剤を支持体の表面にあらかじめ存在させることができるが、塗布による方法が好ましい。イミド化促進剤の支持体への塗布方法は特に限定されず、溶液を支持体に直接塗布する場合の他、別の転写材に塗布した後に支持体に転写させる方法で塗布することも可能である。本発明では、支持体表面に均一にイミド化促進剤を塗布する観点から、スプレーコート法、ワイヤーコート法、バーコート法、スプレーコート法、気相蒸着法などが好ましい。
 イミド化促進剤が固体の場合は溶媒に溶解させ、上記の方法により塗工を行うことが好ましい。塗工後に完全乾燥させてもよいが、一定量の溶媒を含む状態で高分子前駆体溶液を塗布することも可能である。
 塗工時に使用する溶媒としては、イミド化促進剤が溶解するものであれば特に限定されないが、後の工程でポリアミド酸溶液を塗工するため、相溶性の点からポリアミド酸溶液の溶媒と同じであることが好ましい。
 また、イミド化促進剤が液体の場合は、そのまま塗工することも可能であるが、均一に塗布し易い、ポリアミド酸溶液内への拡散性の観点から、溶媒に溶解させ、上記の方法により塗工を行うことが好ましい。
 イミド化促進剤(反応促進剤)を、支持体の表面にあらかじめ存在させておく際の量(単位面積当たりに存在する量、以下「存在量」という)の好ましい範囲は、得られるポリイミド系樹脂の樹脂層の厚みに応じて変化するため、ポリイミド系樹脂の樹脂層の厚み1μm当たりの存在量として、好ましい範囲が存在する。つまり、イミド化促進剤の存在量は、ポリイミド系樹脂の樹脂層の厚み1μm当たり、5~150mg/mが好ましく、7~100mg/mがより好ましい。イミド化促進剤の存在量がポリイミド系樹脂の樹脂層の厚み1μm当たり、5mg/m以上であると、イミド化促進剤によるイミド化反応が十分に得られ易いため好ましい。また、150mg/m以下であると、反応に関与しないイミド化促進剤の割合が少なくなる傾向があるため、コスト的に好ましい。
 このような存在量は、例えば塗布厚み、塗工溶液の濃度、これらの組合せ等により調整することができるが、塗工溶液の濃度で調整することが塗布厚みを独立して制御できるため好ましい。塗工溶液の塗布厚みとしては、10~500μmが好ましく、30~250μmがより好ましい。このような塗布厚みの場合、塗工溶液の濃度は0.01質量%以上10質量%以下であることが好ましい。イミド化促進剤の塗工後、ポリアミド酸溶液を塗工する前に加熱などにより溶媒量を適宜減らしても良い。
 イミド化促進剤溶液が塗布された支持体上にポリアミド酸溶液を塗工するとことで、支持体上のイミド化促進剤はポリアミド酸溶液が含む溶媒中に溶解、拡散する。
 ポリイミド系樹脂の樹脂層を形成する場合、支持体に予めイミド化促進剤を塗工しておき、その上にポリアミド酸溶液を塗工、加熱することが。その際、樹脂層の片面が支持体によって遮断されているため、イミド化促進剤がない場合はポリアミド酸溶液の支持体側と空気界面側で熱のかかり方が異なり、得られるポリイミド樹脂層の反りの原因となる。しかし、支持体にイミド化促進剤が塗工されていることによって、熱の伝わりにくい支持体側と空気界面側で反応の度合いがバランスされ、得られるポリイミド樹脂層が加熱後に反りを生じ難くなる。
 本発明において、ポリイミドが透明ポリイミドである場合にはイミド化促進剤の添加によりイミド化に必要な加熱温度が低くなるため、ポリイミドの変色(黄色度の増大)を抑制することができる。
 <支持体>
 支持体については、樹脂層や機能層を形成する製造過程での熱履歴や雰囲気等に耐え得るような化学的強度や機械的強度を備えたものであれば特に制限されず、無機材料や金属、耐熱有機樹脂層等が挙げられる。具体的には、ガラスや樹脂フィルム、銅箔等の金属箔が例示されるが、好適には、ガラス基板を用いるのがよい。
 ガラス基板は、例えば、フレキシブル基板の製造において一般的に使用されるものを利用することができる。但し、本発明で製造するフレキシブル基板では、機能層の支持基材は樹脂層である。つまり、ここで言うガラス基板は、樹脂層上に機能層を形成する際に台座の投割をするものであって、フレキシブル基板の製造過程で樹脂層の取り扱い性や寸法安定性等を担保することはあっても、最終的には除去されてフレキシブル基板を構成するものではない。なお、支持体は処理工程中の樹脂層の剥離を防ぐために、例えば、ポリイミドと親和性のある官能基の付与、または表面粗度を高くする表面処理などを行なってもよい。
 上記のとおり、支持体としてはガラス基板が好ましく用いられる。ガラス基板としては、例えば、ソーダライムガラス、無アルカリガラス、リン酸系ガラス、石英などが挙げられる。ここで、樹脂溶液を硬化させるための加熱処理時に支持体が膨張すると均一な樹脂層が得られない場合も考えられることから、支持体の熱膨張係数は10ppm/℃以下、好ましくは5ppm/℃以下であるのがよく、このような観点からガラス基板としては無アルカリガラスがより好ましく用いられる。なお、支持体の表面は接着性を向上させる等の目的で、例えば-OH、-NH、-Siなどのポリイミドと親和性のある官能基をガラスの表面に導入するような化学的な表面処理、又は、薬液によるエッチングでガラス表面に凹凸面を形成するような物理的な表面処理が施されていてもよい。
 前記支持体はレーザー光が透過することが好ましい。そのため使用するレーザー光の波長の透過率が高いものが好ましい。詳しくは、使用するレーザー光の波長の透過率が30%以上であることが好ましい。具体的に、本発明ではエキシマレーザーが出力する308nmの波長での光透過率が30%以上の支持体を用いることが好ましい。ただし、本発明で使用できるレーザーの種類はエキシマレーザー以外のレーザーも使用することができる。
 本発明において支持体のイミド化促進剤塗布面の表面粗さRaは10nm以下であることが好ましく、さらに7nm以下であることが好ましく、さらに5nm以下であることが好ましい。本発明の製造方法では、支持体表面の凹凸がポリイミド表面に転写するため、表面粗さ10nm以下の支持体を用いることで、支持体から剥離した樹脂層の表面が平滑なフレキシブル基板を得ることができる。
 <高分子前駆体を化学反応させる工程>
 高分子前駆体を化学反応させて高分子を含む樹脂層を前記支持体上に有する積層体を得る工程では、樹脂層の種類に応じた条件が適用されるが、例えば、ポリイミド系樹脂の樹脂層の場合、以下のようになる。
 イミド化反応のための熱処理としては、一定温度で行なうことも可能であるが、連続的又は段階的に温度を上昇させながら行なうことが、急激な樹脂層の収縮を回避して、破断、急激な溶媒揮発による表面平滑性の悪化などを抑制する観点から好ましい。
 温度を上昇させながら熱処理を行なう場合、最低温度としては150~190℃が好ましく、最高温度としては280~450℃が好ましい。また最低温度としては180~190℃がより好ましく、最高温度としては290~450℃がより好ましい。一定温度で行なう場合、200~370℃が好ましく、210~350℃がより好ましい。なお、塗布した溶液の乾燥温度から連続して昇温させることも可能である。
 乾燥後の熱処理のトータルの時間としては、5~100分が好ましく、10~50分がより好ましい。
 <樹脂層の特性>
 本発明の一実施形態である樹脂層は単層構成であっても構わないし、2層以上の複層(積層)構成であっても構わない。樹脂層が単層構造の場合は、樹脂層の物性(加熱後の反り、引張弾性率、融点、ガラス転移温度、黄色度指数、全光線透過率、ヘイズ、CTE等)は樹脂層全体の値を指す。
 樹脂層と支持体の積層体の300℃で1時間加熱時の反り量は、300μm以下が好ましく、さらに好ましくは250μm以下である。積層体の反りが300μm以下であると、高温加熱を伴う後工程、例えば機能層を形成する工程で、反りによる支障が生じにくくなる傾向がある。また、下限値については特に規定しないが、0μmが最も好ましく、実質的には50μmである。
 また、300℃で1時間加熱した積層体から剥離した樹脂層の反り量、又は加熱していない積層体からレーザーにより剥離した樹脂層の反り量は、1000μm以下が好ましく、より好ましくは800μm以下である。支持体から剥離した樹脂層の反り量が1000μm以下であると、剥離した樹脂層のハンドリング時に反りによる問題が生じにくく、例えば機能層の割れ等が生じにくくなる。また、下限値については特に規定しないが、0μmが最も好ましく、実質的には50μmである。
 前記樹脂層が、透明高耐熱樹脂層である場合、その黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記透明樹脂層の黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。
 本発明における透明高耐熱樹脂層の波長400nmにおける光線透過率は70%以上が好ましく、より好ましくは72%以上であり、さらに好ましくは75%以上であり、より一層好ましくは80%以上である。前記透明樹脂層の波長400nmの光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには99%以下であることが好ましく、より好ましくは98%以下であり、さらに好ましくは97%以下である。
 本発明における透明高耐熱樹脂層のヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。下限は特に限定されないが、工業的には、0.01以上であれば問題なく、0.05以上であっても差し支えない。
 樹脂層の30℃から250℃の間の平均の線膨張係数(CTE)は、50ppm/K以下であることが好ましい。より好ましくは45ppm/K以下であり、さらに好ましくは40ppm/K以下であり、よりさらに好ましくは30ppm/K以下であり、特に好ましくは20ppm/K以下である。また-5ppm/K以上であることが好ましく、より好ましくは-3ppm/K以上であり、さらに好ましくは1ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても樹脂層と無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記樹脂層のCTEとは、樹脂層の流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。
 本発明における樹脂層の厚さは5μm以上が好ましく、より好ましくは8μm以上であり、さらに好ましくは15μm以上であり、より一層好ましくは20μm以上である。前記樹脂層の厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには200μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。樹脂層の厚さが5μm以上であると、安定して均一な樹脂層の作製が行ない易くなり、樹脂層の厚さが200μm以下であると、物性を維持しながら溶剤を完全に除去し易く、フレキシブル基板としての屈曲性も発現し易くなる。
 前記樹脂層の引張弾性率は、1GPa以上であることが好ましく、より好ましくは2GPa以上であり、さらに好ましくは3GPa以上である。引張弾性率の上限は特に制限されないが、15GPa程度である。前記引張弾性率が、15GPa以下であると、前記樹脂層をフレキシブルな樹脂層として使用できる。前記引張弾性率が4GPa以上であると、ハンドリング中に過度な伸びが生じにくい。
 前記樹脂層の一定面積当たりのゲル欠陥個数は、0~10個/mが好ましく、0~8個/mがより好ましく、0~5個/mが更に好ましい。一定面積当たりのゲル欠陥個数が20個/m以下であると、ゲル欠陥による物性や外観の劣化をより効果的に抑制することができるようになる。
<フレキシブル基板の製造方法>
 本発明の一実施形態であるフレキシブル基板の製造方法は、以上のような積層体の製造方法で得られた前記積層体の前記樹脂層に、機能層を形成する機能層形成工程と、前記樹脂層を前記支持体から剥離して前記樹脂層上に前記機能層を有するフレキシブル基板を得る分離工程とを含むものである。
<機能層>
 本発明において、機能層とは、液晶表示装置や有機EL表示装置、電子ペーパー、タッチパネル等の表示装置、照明装置、検出装置、又はその構成部品を構成する層や各種機能性材料層を構成するものであって、具体的には、電極層、発光層、ガスバリア層、接着層、粘着層、薄膜トランジスタ、配線層、透明導電層等の1種又は2種以上を組み合わせたようなものを意味する。
 機能層を設けた樹脂層は、例えば、有機EL照明装置で用いたり、ITO等が積層された導電性樹脂層、水分や酸素等の浸透を防止するガスバリア樹脂層、フレキシブル回路基板の構成部品などの各種機能を有した機能性材料であるフレキシブル基板として用いられる。
<フレキシブル基板>
 機能層を設けた樹脂層をフレキシブル基板というが、これは人手で曲げられる程度の屈曲性を有する電子機器用素子または電子機器用部材である。フレキシブル基板が電子機器に搭載される形態は、曲率が使用時に変化する屈曲用途でもよく、曲率が変化しない固定曲面でもよく、また平面でもよい。
 本発明において、支持体からの樹脂層の剥離には、機械的な剥離、あるいはレーザー光を用いることができる。剥離強度が一定以上の場合には、レーザー光を用いることが好ましい。
 <レーザー光>
 レーザーとしては各種気体レーザー、固体レーザー(半導体レーザー)等が挙げられ、エキシマレーザー、Nd-YAGレーザー、Arレーザー、COレーザー、He-Neレーザー等を用いることができる。これらのレーザーは、波長に応じて、UV領域用レーザー(410nm以下)、緑、可視光領域対レーザー(500~700nm)、近赤外領域の大レーザー(700~2000nm)、赤外線領域対レーザー(2000nm以上)などに大別できる。
 本発明においては、UVレーザーとして410nm以下の波長領域のレーザー光を使用し、詳しくは、300nm~410nmの波長領域におけるいずれかの波長を有するレーザー光を支持体の他方の面から照射する。なかでも、好ましくは360nm以下の波長のNd-YAGレーザーの第3高調波(355nm)を挙げることができ、更に好ましくは310nm以下の波長のXe-Clエキシマレーザー(308nm)が挙げられる。
 本発明でのレーザー照射は樹脂層を形成した面とは反対側の支持体の裏面全面を照射することが好ましい。支持体全面を照射する方法としては、レーザーノズルを固定してステージをXY方向に移動しながら照射してもよく、レーザーノズルをXY方向に移動しながら照射してもよい。レーザーのノズル形状は任意に選定することができ、例えば、点レーザー、ラインレーザーが有る。本発明においては、できるだけ照射幅の広いラインレーザーでの照射が好ましい。
 好適には、本発明でのレーザー照射はノズルを移動させながらパルスで照射する。レーザー強度はその照射範囲内で分布があり、一般的には中心部分の強度が強く、周辺部分の強度は低い。したがって、レーザー照射する際は、レーザー強度ができるだけ均一なもの、もしくは、そのレーザー照射域の一部をオーバーラップさせながら照射する。そのオーバーラップは少ない方が、照射速度が速くなり好ましい。
 また、レーザー照射域の一部をオーバーラップさせながら照射する場合、オーバーラップする箇所には強いエネルギーがかかるため、支持体を介して樹脂層を変質させる恐れがある。そのため、レーザー光の重なり幅がビームサイズ幅長さの50%以下の長さで重なるようにし、好ましくは30%以下の長さで重なるようにして、レーザー光を支持体の他方の面から複数回照射するのがよい。
 レーザーの照射エネルギーが強いと樹脂層を変質させる恐れがあり、弱いと支持体から樹脂層が剥がれないことが考えられる。そのため支持体の他方の面に当たるレーザー光の照射エネルギーは10mJ以上500mJ以下であるのがよく、好ましくは80mJ以上300mJ以下にするのがよい。ここで、支持体の他方の面に当たるレーザー光の照射エネルギーは、エネルギー密度(mJ/cm)とビームの重なりを考慮したエネルギーの和となる。
 以下に実施例及び比較例を挙げ、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されることはない。なお、本発明では、以下の方法により、物性等を測定し、又は評価した。
 <引張試験>
 ポリイミドフィルムを、流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。引張試験機(島津製作所製、オートグラフ、機種名AG-5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、伸度、破断強度を測定し、MD方向とTD方向の平均値を求めた。その結果を表1A~表1Bに示す。
 <ポリイミドフィルムのゲル欠陥個数の計数>
 長尺のポリイミドフィルムを白熱灯で照らしながら20m走行させ、偏光板を通して欠陥を確認した。確認された欠陥のうち、暗く見える欠陥(暗欠陥)は鉄粉等の異物由来であるため除外し、明るく見える欠陥(明欠陥)の詳細確認を行い、1000mあたりのゲル欠陥の個数をカウントした。
 <樹脂層のゲル欠陥個数の計数>
 支持体付きの樹脂層を白熱灯で照らし、偏光板を通して欠陥を確認した。確認された欠陥のうち、暗く見える欠陥(暗欠陥)は鉄粉等の異物由来であるため除外し、明るく見える欠陥(明欠陥)の詳細確認を行い、ゲル欠陥の個数をカウントした。ゲル欠点の個数カウントはそれぞれの条件で作製した樹脂層10枚について実施し、1mあたりのゲル欠陥の個数を求めた。
 <ポリアミド酸フィルムと支持体の剥離強度>
 自己支持性を得たポリアミド酸フィルムと支持体の積層体、すなわちピンテンター把持前の、剥離工程直前の積層体をサンプリングした。支持体からポリアミド酸フィルムをそのまま剥離するとポリアミド酸フィルムが伸びてしまい、正確な剥離強度を測定することができないため、ポリアミド酸の上からスコッチメンディングテープ(スリーエム製)を貼り付け、テープの幅に合わせてテープ/ポリアミド酸フィルム/支持体の積層体を切り出した。支持体側を両面テープでステージに固定し、テープごとポリアミド酸フィルムをチャックで掴んで支持体とポリアミド酸フィルムの90°剥離強度を測定した。90°剥離強度の測定条件は、下記の通りである。
 固定した支持体に対してポリアミド酸フィルムを90°の角度で引き剥がす。5回測定を行い、平均値を測定値とする。
測定装置    ; 日本計測システム製 JSV-H1000
測定温度    ; 室温(25℃)
剥離速度    ; 100mm/min 
雰囲気     ; 大気
測定サンプル幅 ; 1.2cm
 <色ムラの観察>
 有色タイプのポリイミドフィルムについて、フィルム全幅の左右端部、中央から10cm角のサンプルを切り出し、白上質紙の上に乗せ、蛍光灯下で目視で観察し、色のムラがないかの確認を行った。同様の作業を少なくともMD方向に2m離れた位置4箇所で実施し、下記の基準で評価した。
◎:3×4の12箇所すべてで色ムラが観察されない。
○:12箇所のうち、1~2箇所で色ムラが観察される。
×:12箇所のうち、3箇所以上で色ムラが観察される。
 <イエローインデックス(YI)>
 透明ポリイミドフィルムについて、カラーメーター(ZE6000、日本電色社製)およびC2光源を使用して、ASTM D1925に準じてフィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。尚、同様の測定を3回行い、その算術平均値を採用した。
 YI=100×(1.28X-1.06Z)/Y
 <還元粘度>
 樹脂濃度が0.2g/dlとなるようにN,N-ジメチルアセトアミド(DMAc)を添加して溶解した溶液をウベローゼ型の粘度管により25℃で測定した。
 <樹脂層とガラスの積層体の300℃で1時間加熱時の反り量>
 得られたポリイミド樹脂層とガラスの積層体F1~F8について、反り量の測定を実施した。積層体の反り(μm)とは、下記の所定の熱処理を行った前後の積層体の面方向に対する厚さ方向への変形度合を意味し、具体的には、図1に示すように、100mm×100mmの試験片12を、室温で定盤11上に試験片を凹状となるように静置し、四隅の平面からの距離(h1rt、h2rt、h3rt、h4rt:単位mm)の平均値を元の反り量(mm)とし、300℃で1時間加熱処理した後に、平面上に試験片を凹状となるように静置し、四隅の平面からの距離(h1、h2、h3、h4:単位mm)の平均値を反り量(mm)とし、これの元の反り量からの差を300℃で1時間加熱時の反り量とした。測定値は10点の平均値とする。
 但し、10点のサンプリングをするに十分な積層体がない場合も、3枚以上で測定する。具体的には、次式によって算出される。
   元の反り量(μm)=(h1rt+h2rt+h3rt+h4rt)/4
   反り量(μm)=(h1+h2+h3+h4)/4
   300℃の反り量(μm)=反り量-元の反り量
 <剥離後の樹脂層の反り>
 積層体F2、F3、F7については、300℃で1時間加熱処理した後に、支持体から樹脂層を機械的に剥離し、100mm×100mmのサイズにカットした後、室温で定盤上に試験片を凹状となるように静置し、四隅の隅の定盤からの高さをVH-Z20R(キーエンス製)を用いて測定し、その平均値を樹脂層の反りとした。測定は各フィルムにつき100mm×100mmの5枚の試験片を用いてその平均値を算出した。
 積層体F1、F4、F5、F6、F8~F10についてはレーザーを用いて支持体からの樹脂層の剥離を行い、同様に反り量を測定した。レーザー剥離は産業用エキシマレーザー、LightMachinery社製IPEX―840で波長308nm、(パルス幅50ns、ビームサイズ14mm×1.2mm)、移動速度6mm/sのレーザー光をガラス側から照射することで実施した。具体的には積層体のガラス側の面に対して全面に均一なエネルギー分布となるようにレーザー光の重なり幅を2mmとし5往復かけてガラス基板の裏面に対してレーザー光を複数回照射した。
 <合成例1-1(ポリアミド酸溶液1-1の作製)>
 モノマーとしてのモル比ODA/PMDA=1/1、モノマー仕込濃度15質量%となるように、窒素導入管、温度計、攪拌棒を備えた容器を窒素置換した後、3,3’-ジアミノジフェニルエーテル(ODA)を入れ、次いで、N,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させてから、ピロメリット酸二無水物(PMDA)を加えた。25℃にて5時間攪拌して重合させると、褐色の粘調なポリアミド酸溶液1-1が得られた。還元粘度(ηsp/C)は2.1dl/gであった。
 <合成例1-2(ポリアミド酸溶液1-2の作製)>
 窒素導入管, 温度計, 攪拌棒を備えた反応容器内を窒素置換した後,5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(p-DAMBO)300質量部を仕込んだ。次いで, DMAc4400質量部を加えて完全に溶解させた後, ピロメリット酸二無水物300質量部を加え,25℃の反応温度で17時間攪拌すると,褐色で粘調なポリアミド酸溶液1-2が得られた。還元粘度(ηsp/C)は4.1dl/gであった。
 <合成例1-3(ポリアミド酸溶液1-3の作製)>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、19.86質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、4.97質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、103.7質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加えて完全に溶解させ、次いで、31.02質量部の4,4’-オキシジフタル酸無二水物(ODPA)を固体のまま分割添加した後、室温で24時間攪拌した。得られたポリアミド酸溶液1-3の還元粘度(ηsp/C)は0.70dl/gであった。
 <合成例1-4(ポリアミド酸溶液1-4の作製)>
 窒素導入管、還流管、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、230質量部のN,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させ、次いで、44.42質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を固体のまま分割添加した(6FDA/TFMBのモル比=1.00/1.00)後、室温で24時間攪拌した。得られたポリアミド酸溶液1-4の還元粘度(ηsp/C)は1.10dl/gであった。
 <合成例1-5(ポリアミド酸溶液1-5の作製)>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、33.36質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、336.31質量部のN-メチル-2-ピロリドン(NMP)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.3質量%)になるように加え完全に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)、11.34質量部の3,3’,4,4’-ビフェニルテトラカルボン酸(BPDA)、4.85質量部の4,4’-オキシジフタル酸無二水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分15質量%、還元粘度3.50dl/gのポリアミド酸溶液1-5(TFMB//CBDA/BPDA/ODPAのモル比=1.00//0.48/0.37/0.15)を得た。
 <合成例1-6(ポリアミド酸溶液1-6の作製)>
 式(1)の構造で表される酸無水物基含有のダブルデッカー型シルセスキオキサン誘導体(AASQ1)を日本材料技研(株)製より入手した。
Figure JPOXMLDOC01-appb-C000003
 次に、窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、490.2質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、5340質量部のN-メチル-2-ピロリドン(NMP)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.3質量%になるように加え完全に溶解させ、次いで、327.2質量部のピロメリット酸二無水物(PMDA)、45.4質量部のAASQ1をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分14質量%、還元粘度1.46dl/gのポリアミド酸溶液1-6(TFMB//PMDA/AASQ1のモル比=1.00//0.98/0.02)を得た。
 <合成例1-7(ポリアミド酸溶液1-7の作製)>
 式(2)の構造で表されるアミノ基含有のダブルデッカー型シルセスキオキサン誘導体(AMSQ1)を、特開2006-265243号公報に記載された方法で製造した。
Figure JPOXMLDOC01-appb-C000004
 次に、窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、470.8質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、39.9質量部のAMSQ1、6880質量部のN-メチル-2-ピロリドン(NMP)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.3質量%になるように加え完全に溶解させ、次いで、325.6質量部のピロメリット酸二無水物(PMDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分11質量%、還元粘度3.50dl/gのポリアミド酸溶液1-7(TFMB/AMSQ1//PMDAのモル比=0.98/0.02//1.00)を得た。
 <実施例1-1(ポリイミドフィルムF1の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面(非処理面)上にイソキノリン(融点26℃)のDMAc溶液(濃度10質量%)をワイヤコーターを用いてギャップ100μmにて塗工し、続けて90℃の炉を3分間かけて通過させて、イソキノリンが濃縮した液状塗膜を得た。イソキノリンの塗布量(存在量)は、得られるポリイミドフィルムの厚み1μm当たり、7.36mg/mであった。
 その上に最終膜厚(ポリイミドフィルムの膜厚)が15μmとなるように合成例1-1で得られたポリアミド酸溶液1-1を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF1を200m得た。
 <実施例1-2(ポリイミドフィルムF2の作製)>
 実施例1-1において、イソキノリン溶液の代わりにピリジン(融点-41.6℃)のDMAc溶液(濃度10質量%)、ポリアミド酸溶液1-1の代わりにポリアミド酸溶液1-2を使用した以外は実施例1-1と同様にしてポリイミドフィルムF2を得た。なお、ピリジンの塗布量(存在量)は、得られるポリイミドフィルムの厚み1μm当たり、98.2mg/mであった。
 <実施例1-3(ポリイミドフィルムF3の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上にイソキノリンのDMAc溶液(濃度10質量%)をワイヤコーターを用いてギャップ100μmにて塗工し、続けて90℃の炉を3分間かけて通過させて、イソキノリンが濃縮した液状塗膜を得た。イソキノリンの塗布量(存在量)は、得られるポリイミドフィルムの厚み1μm当たり、7.36mg/mであった。
 その上に最終膜厚が15μmとなるように合成例1-3で得られたポリアミド酸溶液1-3を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、280℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF3を200m得た。
 <実施例1-4(ポリイミドフィルムF4の作製)>
 実施例1-3において、イソキノリン溶液の代わりにピリジンのDMAc溶液(濃度10質量%)、ポリアミド酸溶液1-3の代わりにポリアミド酸溶液1-4を使用した以外は実施例1-3と同様にしてポリイミドフィルムF4を得た。なお、ピリジンの塗布量(存在量)は、得られるポリイミドフィルムの厚み1μm当たり、98.2mg/mであった。
 <比較例1-1(ポリイミドフィルムF5の作製)>
 合成例1-1で得られたポリアミド酸溶液1-1に対しイソキノリンの質量比が10質量%となるようにイソキノリンのDMAc溶液(濃度10質量%)を添加した。その後、連続的にミキサーで撹拌し、得られたイソキノリン含有ポリアミド酸溶液を直ちにコンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF5を200m得た。
 <比較例1-2(ポリイミドフィルムF6の作製)>
 合成例1-4で得られたポリアミド酸溶液1-4に対しピリジンの質量比が10質量%となるようにピリジンを添加した。その後、連続的にミキサーで撹拌し、得られたピリジン含有ポリアミド酸溶液を直ちにコンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、280℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF6を200m得た。
 <比較例1-3(ポリイミドフィルムF7の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-2で得られたポリアミド酸溶液1-2を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF8を200m得た。
 <比較例1-4(ポリイミドフィルムF8の作製)>
ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-3で得られたポリアミド酸溶液1-3を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、280℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF8を200m得た。
 <比較例1-5(ポリイミドフィルムF9の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-1で得られたポリアミド酸溶液1-1を、コンマコーターを用いて塗工した。これを150℃にて5分間、200℃にて5分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離しようと試みたが、部分的に支持体側に表層が剥がれた状態となり、長尺のフィルムを得ることができなかった。
 <比較例1-6(ポリイミドフィルムF10の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-3で得られたポリアミド酸溶液1-3を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、280℃で5分。330℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF10を200m得た。
 <比較例1-7(ポリイミドフィルムF11の作製)>
ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-1で得られたポリアミド酸溶液1-1を、コンマコーターを用いて塗工した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で5分、480℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF11を200m得た。
 <実施例1-5(ポリイミドフィルムF12の作製)>
 実施例1-3において、ポリアミド酸溶液1-3の代わりにポリアミド酸溶液1-5を使用し、ポリアミド酸溶液の乾燥温度を90℃にて15分間とし、ピンテンター搬送時の温度条件を180℃で3分、230℃で3分、300℃で3分の条件で加熱した以外は実施例1-3と同様にしてポリイミドフィルムF12を得た。
 <実施例1-6(ポリイミドフィルムF13の作製)>
 実施例1-3において、ポリアミド酸溶液1-3の代わりにポリアミド酸溶液1-6を使用し、ポリアミド酸溶液の乾燥温度を90℃にて15分間とし、ピンテンター搬送時の温度条件を180℃で3分、250℃で3分、320℃で3分の条件で加熱した以外は実施例1-3と同様にしてポリイミドフィルムF13を得た。
 <実施例1-7(ポリイミドフィルムF14の作製)>
 実施例1-3において、ポリアミド酸溶液1-3の代わりにポリアミド酸溶液1-7を使用し、ポリアミド酸溶液の乾燥温度を90℃にて15分間とし、ピンテンター搬送時の温度条件を180℃で3分、250℃で3分、330℃で3分の条件で加熱した以外は実施例1-3と同様にしてポリイミドフィルムF14を得た。
 <比較例1-8(ポリイミドフィルムF15の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-5で得られたポリアミド酸溶液1-5を、コンマコーターを用いて塗工した。これを90℃にて15分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、280℃で5分、350℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF15を200m得た。
 <比較例1-9(ポリイミドフィルムF16の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-6で得られたポリアミド酸溶液1-6を、コンマコーターを用いて塗工した。これを90℃にて15分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、230℃で3分、300℃で5分、370℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF16を200m得た。
 <比較例1-10(ポリイミドフィルムF17の作製)>
 ポリエチレンテレフタラート製フィルムA4100(東洋紡株式会社製)の無滑面上に最終膜厚が15μmとなるように合成例1-7で得られたポリアミド酸溶液1-7を、コンマコーターを用いて塗工した。これを90℃にて15分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、250℃で3分、320℃で5分、400℃で5分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF17を200m得た。
 <評価>
 実施例1-1~1-7、及び比較例1-1~1-10で得られたフィルムF1~F17について、引張試験、ゲル欠陥個数の計数、ポリアミド酸フィルムと支持体の剥離強度の測定を実施した。褐色フィルムであるF1、F2、F5、F7、F9、F11については色ムラの観察を、それ以外のフィルムについてはYIの測定を実施した。その結果を表1A~表1Bに示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1A~表1Bの結果が示すように、反応促進剤を支持体にあらかじめ塗布した実施例1-1~1-7では、いずれも同じポリアミド酸溶液を使用した比較例と比べて、ゲル欠陥による引張弾性率、伸度、及び破断強度の低下と、色ムラとを抑制でき、更に、イエローインデックス(YI)の増大や支持体の剥離強度の増大を抑制できた。
 これに対して、実施例1-1と同じポリアミド酸溶液を使用した比較例のうち、反応促進剤を混合して使用した比較例1-1では、ゲル欠陥の増加による引張弾性率、伸度、及び破断強度の低下と色ムラの増加が見られ、剥離強度も増加していた。また、熱イミド化法を採用した比較例1-5及び1-7では、ゲル欠陥が生じにくいものの、剥離強度の増加が顕著であった。
 また、実施例1-2と同じポリアミド酸溶液を使用し、比較的低温で熱イミド化を行なった比較例1-3では、イミド化反応が不十分となり、引張弾性率、伸度、及び破断強度の低下と色ムラの増加が見られた。
 実施例1-3と同じポリアミド酸溶液を使用した比較例のうち、比較的低温で熱イミド化を行なった比較例1-4では、イミド化反応が不十分となり、引張弾性率、伸度、及び破断強度の低下が見られ、比較的高温で熱イミド化を行なった比較例1-6では、引張弾性率、伸度、及び破断強度が実施例1-3と同程度であるものの、イエローインデックス(YI)の増大や剥離強度の増加が顕著であった。
 実施例1-4と同じポリアミド酸溶液を使用し、反応促進剤を混合して使用した比較例1-2では、ゲル欠陥の増加による引張弾性率、伸度、及び破断強度の低下が見られ、剥離強度も増加していた。
 実施例1-5~1-7と同じポリアミド酸溶液を使用した比較例1-8~1-10では、引張弾性率、伸度、及び破断強度が、それぞれ実施例1-5~1-7と同程度であるものの、イエローインデックス(YI)の増大や剥離強度の増加が顕著であった。
 <合成例2-1(ポリアミド酸溶液2-1の作製)>
 モノマーとしてのモル比ODA/PMDA=1/1、モノマー仕込濃度15質量%となるように、窒素導入管、温度計、攪拌棒を備えた容器を窒素置換した後、3,3’-ジアミノジフェニルエーテル(ODA)を入れ、次いで、N,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させてから、ピロメリット酸二無水物(PMDA)を加えた。25℃にて5時間攪拌して重合させると、褐色の粘調なポリアミド酸溶液2-1が得られた。還元粘度(ηsp/C)は2.1dl/gであった。
 <合成例2-2(ポリアミド酸溶液2-2の作製)>
 窒素導入管, 温度計, 攪拌棒を備えた反応容器内を窒素置換した後,5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(p-DAMBO)300質量部を仕込んだ。次いで, DMAc4400質量部を加えて完全に溶解させた後, ピロメリット酸二無水物300質量部を加え,25℃の反応温度で17時間攪拌すると,褐色で粘調なポリアミド酸溶液2-2が得られた。還元粘度(ηsp/C)は4.1dl/gであった。
 <合成例2-3(ポリアミド酸溶液2-3の作製)>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.0質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、252.1質量部のDMAcと滑剤としてコロイダルシリカ(平均粒子径80nm)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え完全に溶解させ、次いで、22.0質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAcを加え希釈し、固形分(NV)11質量%、還元粘度3.5dl/gのポリアミド酸溶液2-3を得た。
 <合成例2-4(ポリアミド酸溶液2-4の作製)>
 窒素同入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、8.9334質量部のTFMB、70質量部のDMAcと滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え完全に溶解させ、次いで、6.0666質量部のPMDAを分割添加した後、さらに85質量部のDMAcを加えて室温で6時間攪拌した。得られたポリアミド酸溶液2-4は透明で、固形分(Nv)15質量%、還元粘度4.4dl/gであった。
 <合成例2-5(ポリアミド酸溶液2-5の作製)>
 下記の式(2)の構造で表されるアミノ基含有のダブルデッカー型シルセスキオキサン誘導体(AMSQ1)を、特開2006-265243号公報に記載された方法で製造した。
Figure JPOXMLDOC01-appb-C000007
 次に、窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、470.8質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、39.9質量部のAMSQ1、6880質量部のN-メチル-2-ピロリドン(NMP)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.3質量%になるように加え完全に溶解させ、次いで、325.6質量部のピロメリット酸二無水物(PMDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分11質量%、還元粘度3.50dl/gのポリアミド酸溶液2-5(TFMB/AMSQ1//PMDAのモル比=0.98/0.02//1.00)を得た。
 <実施例2-1(ポリイミド樹脂層とガラスの積層体F1の作製)>
 両辺150mm、厚さ0.7mmの正方形の無アルカリガラス(コーニング社製、イーグル2000)上にイソキノリン(融点26℃)のDMAc溶液(濃度10質量%)をワイヤコーターを用いてギャップ100μmにて塗工し、続けて90℃の炉で3分間加熱し、イソキノリンが濃縮した液状塗膜を得た。イソキノリンの塗布量(存在量)は、得られるポリイミド樹脂層の厚み1μm当たり、7.36mg/mであった。
 その上からポリアミド酸溶液2-1をバーコーターで乾燥厚みが15μmになるように流延し、熱風オーブン内で90℃にて1時間乾燥した。その後、さらに5℃/minで徐々に400℃まで昇温し、さらに10min加熱してイミド化することで、厚み約15μmのポリイミド樹脂層とガラスの積層体F1を得た。
 <実施例2-2(ポリイミド樹脂層とガラスの積層体F2の作製)>
 実施例2-1において、イソキノリン溶液の代わりにピリジン(融点-41.6℃)のDMAc溶液(濃度10質量%)、ポリアミド酸溶液2-1の代わりにポリアミド酸溶液2-2を使用し、最終熱処理温度を450℃とした以外は実施例2-1と同様にしてポリイミド樹脂層とガラスの積層体F2を得た。なお、ピリジンの塗布量(存在量)は、得られるポリイミド樹脂層の厚み1μm当たり、98.2mg/mであった。
 <実施例2-3(ポリイミド樹脂層とガラスの積層体F3の作製)>
 実施例2-1において、ポリアミド酸溶液2-1の代わりにポリアミド酸溶液2-3を使用し、最終熱処理温度を300℃とした以外は実施例2-1と同様にしてポリイミド樹脂層とガラスの積層体F3を得た。
 <実施例2-4(ポリイミド樹脂層とガラスの積層体F4の作製)>
 実施例2-1において、イソキノリン溶液の代わりにピリジン(融点-41.6℃)のDMAc溶液(濃度10質量%)、ポリアミド酸溶液2-1の代わりにポリアミド酸溶液2-4を使用し、最終熱処理温度を360℃とした以外は実施例2-1と同様にしてポリイミド樹脂層とガラスの積層体F4を得た。
 <比較例2-1(ポリイミド樹脂層とガラスの積層体F5の作製)>
 合成例2-1で得られたポリアミド酸溶液2-1に対しイソキノリンの質量比が10質量%となるようにイソキノリンのDMAc溶液(濃度10質量%)を添加した。その後、連続的にミキサーで撹拌し、得られたイソキノリン含有ポリアミド溶液を直ちに両辺150mm、厚さ0.7mmの正方形の無アルカリガラス(コーニング社製、イーグル2000)上にバーコーターで乾燥厚みが15μmになるように流延し、熱風オーブン内で90℃にて1時間乾燥した。その後、さらに5℃/minで徐々に400℃まで昇温し、さらに10min加熱してイミド化することで、厚み約15μmのポリイミド樹脂層とガラスの積層体F5を得た。
 <比較例2-2(ポリイミド樹脂層とガラスの積層体F6の作製)>
 比較例2-1において、イソキノリンの代わりにピリジンを質量比で10質量%使用し、ポリアミド酸溶液2-1の代わりにポリアミド酸溶液2-4を使用し、最終熱処理温度を360℃とした以外は比較例2-1と同様にしてポリイミド樹脂層とガラスの積層体F6を得た。
 <比較例2-3(ポリイミド樹脂層とガラスの積層体F7の作製)>
 両辺150mm、厚さ0.7mmの正方形の無アルカリガラス(コーニング社製、イーグル2000)上にポリアミド酸溶液2-3をバーコーターで乾燥厚みが15μmになるように流延し、熱風オーブン内で90℃にて1時間乾燥した。その後、さらに5℃/minで徐々に300℃まで昇温し、さらに10min加熱してイミド化することで、厚み約15μmのポリイミド樹脂層とガラスの積層体F7を得た。
 <比較例2-4(ポリイミド樹脂層とガラスの積層体F8の作製)>
 比較例2-3において、ポリアミド酸溶液2-3の代わりにポリアミド酸溶液2-1を使用し、最終熱処理温度を400℃とした以外は比較例2-3と同様にしてポリイミド樹脂層とガラスの積層体F8を得た。
 <実施例2-5(ポリイミド樹脂層とガラスの積層体F9の作製)>
 実施例2-1において、ポリアミド酸溶液2-1の代わりにポリアミド酸溶液2-5を使用し、最終熱処理温度を330℃とした以外は実施例2-1と同様にしてポリイミド樹脂層とガラスの積層体F9を得た。
 <比較例2-5(ポリイミド樹脂層とガラスの積層体F10の作製)>
 比較例2-3において、ポリアミド酸溶液2-3の代わりにポリアミド酸溶液2-5を使用し、最終熱処理温度を400℃とした以外は比較例2-3と同様にしてポリイミド樹脂層とガラスの積層体F10を得た。
 <評価>
 実施例2-1~2-5、及び比較例2-1~2-5で得られた積層体F1~F10について、積層体の反り、樹脂層の反り、ゲル欠陥個数の測定を実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2の結果が示すように、反応促進剤を支持体にあらかじめ塗布した実施例2-1~2-5では、いずれも積層体としての反り、及び剥離後の樹脂層の反りを低減できた。また、反応促進剤をポリアミド酸溶液に添加する場合と比べて、ゲル欠陥を抑制できた。
 これに対して、実施例2-1と同じポリアミド酸溶液を使用した比較例のうち、反応促進剤を混合して使用した比較例2-1では、ゲル欠陥の増加が見られ、積層体としての反り、及び剥離後の樹脂層の反りが増加していた。また、熱イミド化法を採用した比較例2-4では、ゲル欠陥が生じにくいものの、積層体としての反り、及び剥離後の樹脂層の反りがより顕著であった。
 実施例2-4と同じポリアミド酸溶液を使用し、反応促進剤を混合して使用した比較例2-2では、ゲル欠陥の増加が見られ、積層体としての反り、及び剥離後の樹脂層の反りが増加していた。
 また、実施例2-3と同じポリアミド酸溶液を使用し、熱イミド化を行なった比較例2-3では、ゲル欠陥が生じにくいものの、積層体としての反り、及び剥離後の樹脂層の反りがより顕著であった。
 実施例2-5と同じポリアミド酸溶液を使用した比較例2-5では、ゲル欠陥が生じにくいものの、積層体としての反り、及び剥離後の樹脂層の反りがより顕著であった。
 本発明によると、ゲル欠陥による物性や外観の劣化を抑制しつつ、高分子フィルムの着色や剥離強度の増大の問題も低減できる高分子フィルムの製造方法を提供することができるため、産業上の利用可能性が高いものとなる。
 本発明によると、ゲル欠陥を抑制しつつ、積層体としての反り、及び剥離後の樹脂層の反りを低減できる積層体の製造方法、並びにこれを利用したフレキシブル基板の製造方法を提供することができるため、産業上の利用可能性が高いものとなる。
 11 定盤
 12 試験片
 

Claims (15)

  1.  高分子前駆体を含む溶液を支持体上に塗布する工程と、前記高分子前駆体を化学反応させる工程と、を含む高分子の生成方法であって、
     前記高分子前駆体の化学反応を促進するための反応促進剤を、前記支持体の表面にあらかじめ存在させておく、高分子の生成方法。
  2.  請求項1に記載の高分子の生成方法により、前記支持体上に高分子フィルムを形成する工程を含む、高分子フィルムの製造方法。
  3.  塗布された前記溶液を加熱して自己支持性のある高分子前駆体フィルムを得る工程と、前記支持体から前記高分子前駆体フィルムを剥離する工程と、を含む請求項2に記載の高分子フィルムの製造方法。
  4.  前記支持体と前記高分子前駆体フィルムの剥離強度が0.001N/cm以上0.9N/cm以下である、請求項3に記載の高分子フィルムの製造方法。
  5.  前記高分子フィルムはポリイミド系樹脂フィルムであり、前記反応促進剤が単位面積当たりに存在する量は、ポリイミド系樹脂フィルムの厚み1μm当たり、5~150mg/mである請求項2~4いずれかに記載の高分子フィルムの製造方法。
  6.  前記高分子フィルムがポリイミドフィルムであり、前記高分子前駆体の溶液がポリアミド酸溶液である、請求項2~5いずれかに記載の高分子フィルムの製造方法。
  7.  前記反応促進剤がイミド化促進剤である、請求項5又は6に記載の高分子フィルムの製造方法。
  8.  前記高分子フィルムが透明ポリイミドフィルムである、請求項2~7いずれかに記載の高分子フィルムの製造方法。
  9.  請求項1に記載の高分子の生成方法により、高分子を含む樹脂層を前記支持体上に有する積層体を得る工程を含む、積層体の製造方法。
  10.  前記化学反応が加熱下で行なわれると共に、得られた前記積層体の300℃で1時間加熱時の反り量が300μm以下である、請求項9に記載の積層体の製造方法。
  11.  前記積層体は、前記支持体から剥離した前記樹脂層の反り量が1000μm以下である、請求項9又は10に記載の積層体の製造方法。
  12.  前記樹脂層はポリイミド系樹脂を含み、前記反応促進剤が単位面積当たりに存在する量は、前記樹脂層の厚み1μm当たり、5~150mg/mである請求項9~11いずれかに記載の積層体の製造方法。
  13.  前記高分子がポリイミドであり、前記高分子前駆体の溶液がポリアミド酸溶液である、請求項9~12いずれかに記載の積層体の製造方法。
  14.  前記反応促進剤がイミド化促進剤である、請求項12又は13に記載の積層体の製造方法。
  15.  請求項9~14いずれかに記載の製造方法で得られた前記積層体の前記樹脂層に、機能層を形成する機能層形成工程と、
     前記樹脂層を前記支持体から剥離して前記樹脂層上に前記機能層を有するフレキシブル基板を得る分離工程と、
    を含む、フレキシブル基板の製造方法。
     
PCT/JP2021/041558 2020-12-02 2021-11-11 高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法 WO2022118629A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536482A JPWO2022118629A1 (ja) 2020-12-02 2021-11-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-200149 2020-12-02
JP2020200149 2020-12-02
JP2020-200118 2020-12-02
JP2020200118 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022118629A1 true WO2022118629A1 (ja) 2022-06-09

Family

ID=81853710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041558 WO2022118629A1 (ja) 2020-12-02 2021-11-11 高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法

Country Status (3)

Country Link
JP (1) JPWO2022118629A1 (ja)
TW (1) TW202231744A (ja)
WO (1) WO2022118629A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125862A (ja) * 2005-11-07 2007-05-24 Fujifilm Corp プリント配線板用積層体、それを用いたプリント配線板、プリント配線基板の作製方法、電気部品、電子部品、および、電気機器
JP2008103622A (ja) * 2006-10-20 2008-05-01 Fujifilm Corp プリント配線板作製用積層体及びそれを用いたプリント配線板の作製方法
JP2010221647A (ja) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd ポリイミド管状成型体およびその製造方法、中間転写ベルト、定着ベルト、ならびに画像形成装置
WO2015174064A1 (ja) * 2014-05-12 2015-11-19 三井化学株式会社 ポリイミドフィルムの製造方法、電子機器の製造方法および塗膜の剥離方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125862A (ja) * 2005-11-07 2007-05-24 Fujifilm Corp プリント配線板用積層体、それを用いたプリント配線板、プリント配線基板の作製方法、電気部品、電子部品、および、電気機器
JP2008103622A (ja) * 2006-10-20 2008-05-01 Fujifilm Corp プリント配線板作製用積層体及びそれを用いたプリント配線板の作製方法
JP2010221647A (ja) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd ポリイミド管状成型体およびその製造方法、中間転写ベルト、定着ベルト、ならびに画像形成装置
WO2015174064A1 (ja) * 2014-05-12 2015-11-19 三井化学株式会社 ポリイミドフィルムの製造方法、電子機器の製造方法および塗膜の剥離方法

Also Published As

Publication number Publication date
TW202231744A (zh) 2022-08-16
JPWO2022118629A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
KR101775198B1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
JP2008230018A (ja) 透明ポリイミドフィルムの製造方法
CN111205457A (zh) 聚酰亚胺膜的制造方法
KR20230098789A (ko) 폴리이미드 필름 및 그 제조 방법
JP7287536B2 (ja) ポリイミドフィルムおよびその製造方法
WO2022118629A1 (ja) 高分子の生成方法、これを用いる高分子フィルムの製造方法、及び積層体の製造方法
WO2022070617A1 (ja) 無機基板とポリアミック酸硬化物の積層体
JP7476698B2 (ja) ポリイミドフィルム、ポリイミドフィルムと無機基板の積層体、フレキシブル電子デバイス
JP7103534B2 (ja) ポリイミドフィルムおよびその製造方法
WO2022102450A1 (ja) 無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法
WO2021256298A1 (ja) 無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法
WO2022102449A1 (ja) ポリイミドフィルムおよびその製造方法
JP2022018375A (ja) 樹脂溶液、フレキシブル電子デバイスおよびその製造方法
WO2022018994A1 (ja) 積層体およびフレキシブルデバイス作製方法
WO2021241570A1 (ja) 透明高耐熱フィルムを含む積層体
WO2021241574A1 (ja) 透明高耐熱フィルムを含む積層体
TW202400399A (zh) 薄膜之製造方法
JP2023177342A (ja) フィルムの製造方法
JP2023001599A (ja) 積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536482

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21900384

Country of ref document: EP

Kind code of ref document: A1