WO2022116958A1 - 用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法 - Google Patents

用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法 Download PDF

Info

Publication number
WO2022116958A1
WO2022116958A1 PCT/CN2021/134284 CN2021134284W WO2022116958A1 WO 2022116958 A1 WO2022116958 A1 WO 2022116958A1 CN 2021134284 W CN2021134284 W CN 2021134284W WO 2022116958 A1 WO2022116958 A1 WO 2022116958A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
transparent
liquid crystal
layer
projection
Prior art date
Application number
PCT/CN2021/134284
Other languages
English (en)
French (fr)
Inventor
王璐
李大铭
赵莉
Original Assignee
法国圣戈班玻璃公司
王璐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法国圣戈班玻璃公司, 王璐 filed Critical 法国圣戈班玻璃公司
Priority to US18/251,201 priority Critical patent/US20230403376A1/en
Priority to EP21899989.4A priority patent/EP4258054A1/en
Publication of WO2022116958A1 publication Critical patent/WO2022116958A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133769Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers comprising an active, e.g. switchable, alignment layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/001Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles integrated in the windows, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Definitions

  • Embodiments of the present disclosure relate generally to the field of glass technology, and more particularly, to liquid crystal projection layers for glass, glass including liquid crystal projection layers, vehicles including liquid crystal projection layers, vehicles including glass, manufacturing of Method of liquid crystal projection layer and method of making glass.
  • An object of the present disclosure is to provide a liquid crystal projection layer for glass, a glass including a liquid crystal projection layer, a vehicle including a liquid crystal projection layer, a vehicle including the glass, a method of manufacturing a liquid crystal projection layer for glass, and a method of manufacturing glass , so as to at least partially solve the above problems existing in the prior art.
  • a liquid crystal projection layer for glass includes a first glass including a first surface and a second surface that face away from each other.
  • the liquid crystal projection layer includes: a transparent projection layer disposed on the side of the first glass close to the second surface and configured to display the projected image received from the projector; and a liquid crystal module disposed on the between the first glass and the transparent projection layer, and is configured to be switchable between a transparent mode and a privacy mode, wherein in the transparent mode, the liquid crystal module allows display on the transparent projection layer The transmission of the projected image toward the first glass, and in the privacy mode, the liquid crystal module prevents the transmission of the projected image displayed on the transparent projection layer toward the first glass.
  • the transparent projection display on the glass can be realized by using the transparent projection layer, and the switching between the transparent mode and the privacy mode can be realized by using the liquid crystal module, wherein in the transparent mode, the glass It can maintain transparency, and in the privacy mode, the image projected on the transparent projection layer can be prevented from being transmitted toward the first glass, so that the projected image cannot be seen from the side of the first glass, thereby realizing privacy protection.
  • Such glass can meet the needs of maintaining transparency under the normal operation of the vehicle and realizing privacy protection under the condition of transparent projection display.
  • different mode combinations can be realized to meet the needs of different application scenarios.
  • the liquid crystal module includes: a liquid crystal layer including liquid crystal molecules; a first alignment layer and a second alignment layer, respectively disposed on opposite sides of the liquid crystal layer, and configured to preset the the deflection state of the liquid crystal molecules in the liquid crystal layer; a first transparent electrode layer and a second transparent electrode layer are respectively disposed on the outside of the first alignment layer and the second alignment layer relative to the liquid crystal layer, and is configured to change the deflection state of the liquid crystal molecules in the liquid crystal layer when power is applied, so that the liquid crystal module is switched between the transparent mode and the privacy mode; a first transparent substrate and a second a transparent substrate, respectively disposed on the outside of the first transparent electrode layer and the second transparent electrode layer relative to the liquid crystal layer, and configured to carry the first transparent electrode layer and the second transparent electrode layer, respectively an electrode layer; and a first polarizer and a second polarizer, respectively disposed outside the first transparent substrate and the second transparent substrate relative to the liquid crystal layer.
  • the deflection state of the liquid crystal molecules in the liquid crystal layer can be adjusted by controlling the energization of the first transparent electrode layer and the second transparent electrode layer, so as to realize the switching between the transparent mode and the privacy mode of the liquid crystal module. switch.
  • the polarization directions of the first polarizer and the second polarizer are perpendicular to each other, wherein when the first transparent electrode layer and the second transparent electrode layer are electrified, the liquid crystal mode The group is in the privacy mode, and the liquid crystal module is in the transparent mode when the first transparent electrode layer and the second transparent electrode layer are not energized.
  • the liquid crystal module can be placed in a privacy mode when the first transparent electrode layer and the second transparent electrode layer are energized, and in a transparent mode when not energized. In this way, the switching of the liquid crystal module between the transparent mode and the privacy mode can be realized accurately and reliably.
  • the first transparent electrode layer and the second transparent electrode layer are energized only when the projection display on the glass is required and privacy protection is required, the first transparent electrode layer and the second transparent electrode layer do not need to be energized in other cases. Since the power is energized, the power consumption of the liquid crystal module can be reduced.
  • the polarization directions of the first polarizer and the second polarizer are parallel, wherein when the first transparent electrode layer and the second transparent electrode layer are electrified, the liquid crystal mode The group is in the transparent mode, and the liquid crystal module is in the privacy mode when the first transparent electrode layer and the second transparent electrode layer are not energized.
  • the liquid crystal module can be in the transparent mode when the first transparent electrode layer and the second transparent electrode layer are powered on, and in the privacy mode when the power is not on, so it can also be accurately and reliably realized Switching between transparent mode and privacy mode of the liquid crystal module.
  • a glass comprising: the liquid crystal projection layer according to the first aspect of the present disclosure; and the first glass.
  • the glass further includes: a flexible solar cell layer disposed between the first glass and the liquid crystal module, and configured to generate electricity when exposed to light.
  • a flexible solar cell layer to convert solar energy into electrical energy, an additional energy supply can be provided.
  • Such glass can be used, for example, as a sunroof of a vehicle to provide additional power for the vehicle, thereby making the vehicle more energy efficient and environmentally friendly.
  • the glass further includes: an infrared blocking layer disposed between the first glass and the liquid crystal module and configured to block infrared rays passing through the first glass toward the liquid crystal Mod spread.
  • the infrared blocking layer can prevent infrared rays from passing through the glass, thereby reducing temperature rise in vehicles, buildings, or other locations during hot seasons.
  • the glass further comprises: a transparent low-emissivity layer disposed on a side of the transparent projection layer away from the first glass, and having a characteristic that the emissivity to light is less than a first threshold.
  • the transparent low-e layer can reflect heat back within the vehicle or building, etc., thereby maintaining the temperature within the vehicle, building or other location to some extent during cold seasons.
  • the transparent projection layer includes at least one of the following: a transparent display film, bonded with the liquid crystal module through a transparent adhesive layer, and configured to display the projection image; and doping
  • the transparent adhesive layer is adhered to the side of the liquid crystal module away from the first glass, and is configured to display the projected image.
  • the transparent display film or doped transparent adhesive layer can reliably scatter light projected thereon, thereby clearly displaying the projected image on the glass.
  • the glass further includes a second glass stacked with the first glass and including a third surface and a fourth surface facing away from each other, the third surface facing the second surface ; wherein, the liquid crystal module and the transparent projection layer are arranged between the first glass and the second glass.
  • the first glass and the second glass may form a laminated glass, and such laminated glass can be suitable for various scenarios, such as on a vehicle, on a building, or other applications.
  • the glass further includes a transparent low emissivity layer coated on the fourth surface and having an emissivity to light less than a first threshold.
  • the transparent low-e layer can be incorporated into the vehicle. The heat inside the building or other application is reflected back, thus maintaining the temperature inside the car to some extent during the cold season.
  • the transparent projection layer includes at least one of: a doped transparent adhesive layer that bonds the liquid crystal module to the second glass, and is configured to display the projected image; and a transparent display layer disposed on the third surface and configured to display the projected image.
  • the doped transparent adhesive layer or transparent display layer can reliably scatter light projected thereon, thereby clearly displaying the projected image.
  • the glass is vehicle glass or architectural glass.
  • the liquid crystal module may be placed in a transparent mode, thereby making the vehicle glass transparent; in addition, if projection is not performed on the glass
  • the LCD module can be placed in privacy mode, so that the vehicle glass is opaque; in addition, if the projector is used to project on the vehicle glass and the user does not want people outside the vehicle to see the projection the image, the LCD module can be placed in privacy mode, thereby making the vehicle glass opaque; in addition, if the projector is used to project on the vehicle glass and the user wants people outside the vehicle to see the projected image, the LCD module can be made In transparent mode, so that people inside and outside the vehicle can see the image projected on the glass of the vehicle.
  • the liquid crystal module can be placed in a transparent mode, thereby making the building glass transparent; Projecting on glass but people in the building need a certain privacy, the LCD module can be put in privacy mode, so that the building glass is opaque; When people outside the building see the projected image, the LCD module can be placed in privacy mode, making the building glass opaque; in addition, if a projector is used to project on the building glass and the user wants people outside the building Seeing the projected image, the liquid crystal module can be placed in a transparent mode, so that people inside and outside the building can see the image projected on the glass of the building.
  • a vehicle comprising: the liquid crystal projection layer according to the first aspect of the present disclosure; and a projector configured to provide a projected image towards the transparent projection layer in the glass.
  • a vehicle comprising: a glass according to the second aspect of the present disclosure; and a projector configured to provide a projected image towards the transparent projection layer in the glass.
  • a method of manufacturing a liquid crystal projection layer for glass includes a first glass including a first surface and a second surface that face away from each other.
  • the method includes: providing a transparent projection layer disposed on a side of the first glass proximate the second surface and configured to display a projection image received from a projector; and placing a liquid crystal model A group is disposed between the first glass and the transparent projection layer, the liquid crystal module is configured to be switchable between a transparent mode and a privacy mode, wherein in the transparent mode, the liquid crystal module allows The transmission of the projected image displayed on the transparent projection layer towards the first glass, and in the privacy mode, the liquid crystal module prevents the projection image displayed on the transparent projection layer from being directed towards the first glass Transmission of glass.
  • a method of manufacturing a glass comprising: providing a first glass, the first glass including a first surface and a second surface facing away from each other; disposing a transparent projection layer on the a side of the first glass close to the second surface, the transparent projection layer is configured to display the projection image received from the projector; and a liquid crystal module is disposed between the first glass and the transparent projection layer the liquid crystal module is configured to be switchable between a transparent mode and a privacy mode, wherein in the transparent mode, the liquid crystal module allows the projected image displayed on the transparent projection layer to face the first The transmission of a glass, and in the privacy mode, the liquid crystal module prevents the transmission of the projected image displayed on the transparent projection layer toward the first glass.
  • the method further includes: providing a second glass, the second glass including a third surface and a fourth surface facing away from each other, the third surface facing the second surface; and The liquid crystal module and the transparent projection layer are disposed between the second surface and the third surface.
  • FIG. 1 shows a transparent projection display scheme according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a glass according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a liquid crystal module according to an embodiment of the present disclosure
  • FIG. 4 shows a working state of a liquid crystal module according to an embodiment of the present disclosure when no electricity is turned on, wherein the polarization directions of the first polarizer and the second polarizer are perpendicular to each other;
  • Fig. 5 shows the working state of the liquid crystal module shown in Fig. 4 when it is powered on;
  • FIG. 6 shows the working state of the liquid crystal module according to another embodiment of the present disclosure when the power is not turned on, wherein the polarization directions of the first polarizer and the second polarizer are parallel;
  • Fig. 7 shows the working state of the liquid crystal module shown in Fig. 6 under the condition of power-on
  • FIG. 8 shows a projection state of the glass in a transparent mode according to an embodiment of the present disclosure
  • Fig. 9 shows the projection state of the glass in privacy mode according to one embodiment of the present disclosure
  • FIG. 10 shows a projection state of a glass in a privacy mode according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a glass according to another embodiment of the present disclosure.
  • FIG. 20 shows a flowchart of a method of manufacturing glass according to one embodiment of the present disclosure.
  • the term “including” and variations thereof mean open-ended inclusion, ie, "including but not limited to”.
  • the term “or” means “and/or” unless specifically stated otherwise.
  • the term “based on” means “based at least in part on”.
  • the terms “one example embodiment” and “one embodiment” mean “at least one example embodiment.”
  • the term “another embodiment” means “at least one additional embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects.
  • the inventors of the present application found that the solution of directly performing projection display on the vehicle glass needs to solve many problems.
  • people in the car may need privacy when projecting on the glass of the vehicle, and do not want the content projected on the glass of the vehicle to be seen by people outside the car, and when privacy is not required, it is necessary to be able to keep the glass transparent.
  • Conventional transparent projection display solutions cannot meet such demands, thus limiting the application of transparent projection display solutions on vehicle glass.
  • the glass of the embodiment of the present disclosure adopts a combination of a transparent projection layer and a liquid crystal module, which can not only realize the function of transparent projection display, but also realize the function of privacy protection under the condition of transparent projection display.
  • FIG. 1 shows a transparent projection display scheme according to an embodiment of the present disclosure.
  • light 80 emitted by projector 70 is projected onto transparent projection display screen 90 to be scattered by projection display screen 90 for presentation to a user.
  • the projection display screen 90 is transparent, the light 80 projected on the projection display screen 90 can continue to propagate forward through the projection display screen 90 .
  • the images projected on the projection display screen 90 can be seen on both sides of the projection display screen 90 , which are the rear-facing image and the forward-facing image, respectively.
  • the following requirements may exist.
  • the people inside the vehicle may need privacy, and the content projected on the vehicle glass may not be seen by the people outside the vehicle.
  • the glass needs to be kept transparent.
  • Conventional transparent projection display solutions cannot meet such demands, thus limiting the application of transparent projection display solutions on vehicle glass.
  • FIG. 2 shows a schematic structural diagram of a glass according to an embodiment of the present disclosure.
  • the glass 100 includes a first glass 11 , a liquid crystal module 30 , a transparent projection layer 20 and a second glass 12 which are stacked in sequence.
  • the first glass 11 , the liquid crystal module 30 , the transparent projection layer 20 and the second glass 12 are bonded together by the transparent adhesive layer 10 .
  • the transparent adhesive layer 10 may be, for example, polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA), or other known types or future available transparent adhesives, the scope of the present disclosure is not in this regard. Restricted.
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • the first glass 11 includes a first surface 111 and a second surface 112 facing away from each other.
  • the second glass 12 includes a third surface 123 and a fourth surface 124 facing away from each other, the third surface 123 facing the second surface 112 .
  • the transparent projection layer 20 is disposed between the liquid crystal module 30 and the second glass 12 and is configured to display a projected image received from a projector disposed on the side of the second glass 12 facing the interior of the vehicle.
  • the first glass 11 represents the outer glass near the exterior of the vehicle
  • the second glass 12 represents the inner glass near the passenger.
  • the first surface 111 of the first glass 11 faces the outside of the vehicle
  • the second surface 112 of the first glass 11 faces the second glass 12
  • the third surface 123 of the second glass 12 faces the first glass 11
  • the fourth surface 123 of the second glass 12 faces the first glass 11 .
  • Surface 124 faces the interior of the vehicle.
  • the transparent display film 21 is adhered to the liquid crystal module 30 and the second glass 12 through the transparent adhesive layer 10 .
  • the transparent projection layer 20 may also be of other types, which will be described in detail below.
  • the liquid crystal module 30 is disposed between the first glass 11 and the transparent projection layer 20, and is configured to be switchable between a transparent mode and a privacy mode. In the transparent mode, the liquid crystal module 30 allows the projection image displayed on the transparent projection layer 20 to continue to be transmitted toward the first glass 11 . In the privacy mode, the liquid crystal module 30 prevents the projection image displayed on the transparent projection layer 20 from being transmitted toward the first glass 11 .
  • the transparent projection display on the glass 100 can be realized through the transparent projection layer 20 , and the switching between the transparent mode and the privacy mode can be realized through the liquid crystal module 30 , wherein In the transparent mode, the glass 100 can remain transparent, and in the privacy mode, the projected image on the transparent projection layer 20 can be prevented from being transmitted toward the first glass 11 , so that the projected image cannot be seen from the first glass 11 side images for privacy protection.
  • Such glass 100 can meet the requirements of maintaining transparency under the normal operation of the vehicle and realizing privacy protection under the condition of transparent projection display.
  • different mode combinations can be realized, so as to meet the requirements of different application scenarios.
  • FIG. 3 shows a schematic structural diagram of a liquid crystal module 30 according to an embodiment of the present disclosure.
  • the liquid crystal module 30 basically has a symmetrical structure, and sequentially includes a liquid crystal layer 31 , a first alignment layer 321 and a second alignment layer 322 , a first transparent electrode layer 331 and a second transparent electrode from the inside to the outside.
  • Layer 332 first transparent substrate 341 and second transparent substrate 342 , and first polarizer 351 and second polarizer 352 .
  • the liquid crystal layer 31 includes liquid crystal molecules and spacers (not shown).
  • the spacer is used to support the liquid crystal molecules, thereby providing a certain strength to the liquid crystal layer 31 .
  • the first alignment layer 321 and the second alignment layer 322 are respectively disposed on opposite sides of the liquid crystal layer 31 .
  • the first alignment layer 321 and the second alignment layer 322 are used to twist the liquid crystal molecules in the liquid crystal layer 31 when the first transparent electrode layer 331 and the second transparent electrode layer 332 are not energized, thereby presetting the liquid crystal molecules in the liquid crystal layer 31 .
  • the deflection state of liquid crystal molecules are respectively disposed outside the first alignment layer 321 and the second alignment layer 322 with respect to the liquid crystal layer 31 .
  • the first transparent electrode layer 331 and the second transparent electrode layer 332 may be transparent conductive oxide layers (Transparent Conducting Oxide, TCO), such as indium tin oxide (tin doped In 2 O 3 , ITO), fluorine doped SnO 2 (FTO), antimony or fluorine doped SnO 2 (ATO), Al doped ZnO (AZO), etc.
  • TCO Transparent Conducting Oxide
  • ITO indium tin oxide
  • FTO fluorine doped SnO 2
  • ATO antimony or fluorine doped SnO 2
  • Al doped ZnO Al doped ZnO
  • the first transparent electrode layer 331 and the second transparent electrode layer 332 may also be other types of conductive layers.
  • the first transparent electrode layer 331 and the second transparent electrode layer 332 can change the deflection state of the liquid crystal molecules in the liquid crystal layer 31 under the condition of electrification, so that the liquid crystal module 30 can be switched between the transparent mode and the privacy mode.
  • the first transparent substrate 341 and the second transparent substrate 342 are respectively disposed outside the first transparent electrode layer 331 and the second transparent electrode layer 332 with respect to the liquid crystal layer 31 .
  • the first transparent substrate 341 and the second transparent substrate 342 support the first transparent electrode layer 331 and the second transparent electrode layer 332, respectively.
  • the first transparent substrate 341 and the second transparent substrate 342 may be an ultra-thin glass layer, a resin layer or other materials.
  • the first transparent electrode layer 331 and the second transparent electrode layer 332 may be coated or otherwise formed on the first transparent substrate 341 and the second transparent substrate 342 .
  • the first polarizer 351 and the second polarizer 352 are respectively disposed outside the first transparent substrate 341 and the second transparent substrate 342 with respect to the liquid crystal layer 31 .
  • the first polarizer 351 and the second polarizer 352 can respectively allow light in a specific polarization direction to pass through, and filter out the rest of the light.
  • the first polarizer 351 and/or the second polarizer 352 may be a light absorption type polarizer or a light reflection type polarizer or a combination of the two, which will be described in detail below with reference to FIGS. 8 to 10 .
  • the effective range of the polarizer includes at least the visible light range. Polarizers can provide a wide field of view and have high extinction ratios for incident light at non-normal incidence angles.
  • the liquid crystal module 30 may be of various types, such as a twisted nematic (TN) liquid crystal module, a vertical alignment (VA) liquid crystal module, or a wide area vertical alignment (MVA) LCD module.
  • TN twisted nematic
  • VA vertical alignment
  • MVA wide area vertical alignment
  • LCD liquid crystal module
  • FIG. 4 shows the working state of the liquid crystal module 30 according to an embodiment of the present disclosure when the power is not turned on
  • FIG. 5 shows the working state of the liquid crystal module 30 shown in FIG. 4 when the power is turned on .
  • some components of the liquid crystal module 30 are omitted in FIGS. 4 and 5 .
  • the polarization directions of the first polarizer 351 and the second polarizer 352 are perpendicular to each other.
  • the predetermined deflection state of the two alignment layers 322 for example, the liquid crystal molecules 311 have optical rotation for linearly polarized light without an electric field applied.
  • the deflection state of the liquid crystal molecules 311 in the liquid crystal layer 31 when reaching the second polarizer 352 is consistent with the polarization direction of the second polarizer 352 , so that light can pass through the second polarizer 352 and be output as polarized light.
  • the liquid crystal module 30 can be made to be in the transparent mode.
  • the polarized light is linearly polarized light.
  • the contrast of the liquid crystal can be adjusted to switch between transparent and privacy modes.
  • the switching between the transparent mode and the privacy mode of the liquid crystal module 30 can be accurately and reliably realized.
  • the first transparent electrode layer 331 and the second transparent electrode layer 332 are energized only when the projection display on the glass 100 is required and privacy protection is required, the first transparent electrode layer 331 and the second transparent electrode layer 332 do not need to be energized in other cases.
  • the two transparent electrode layers 332 are energized, so the power consumption of the liquid crystal module 30 can be reduced.
  • FIG. 6 shows the working state of the liquid crystal module 30 according to another embodiment of the present disclosure when the power is not turned on
  • FIG. 7 shows the working state of the liquid crystal module 30 shown in FIG. 6 when the power is turned on
  • some components of the liquid crystal module 30 are omitted in FIGS. 6 and 7 .
  • the polarization directions of the first polarizer 351 and the second polarizer 352 are parallel.
  • the deflection state of the liquid crystal molecules 311 in the liquid crystal layer 31 when they reach the second polarizer 352 is inconsistent with the polarization direction of the second polarizer 352, so that the light is blocked by the second polarizer 352 and no light is transmitted through the second polarizer 352.
  • Polarizer 352. In this way, the liquid crystal module 30 can be placed in the privacy mode.
  • the switching between the transparent mode and the privacy mode of the liquid crystal module 30 can also be accurately and reliably realized.
  • the polarization directions of the first polarizer 351 and the second polarizer 352 may also have other relationships, and the liquid crystal module 30 can also be switched between the transparent mode and the privacy mode. This will not be repeated in this article.
  • FIG. 8 shows a projection state of the glass 100 in a transparent mode according to an embodiment of the present disclosure, wherein the first polarizer 351 and/or the second polarizer 352 of the glass 100 in FIG. 8 may be It is a light-absorbing polarizer and/or a light-reflecting polarizer.
  • the light emitted by the projector 70 is projected onto the transparent projection layer 20 .
  • the transparent projection layer 20 can scatter the received light, thereby presenting a projected image to a user in the vehicle.
  • the light projected on the transparent projection layer 20 can continue to propagate toward the liquid crystal module 30 through the transparent projection layer 20 . Since the liquid crystal module 30 is in the transparent mode, the light propagating to the liquid crystal module 30 can continue to propagate through the liquid crystal module 30 . With such an arrangement, the images projected on the transparent projection layer 20 can be seen on both sides of the glass 100 , which are the rear-facing image and the forward-facing image, respectively.
  • FIG. 9 shows a projection state of the glass 100 in a privacy mode according to an embodiment of the present disclosure, wherein the first polarizer 351 and the second polarizer 352 of the glass 100 in FIG. 9 are light absorbing polarizers.
  • the light emitted by the projector 70 is projected onto the transparent projection layer 20 .
  • the transparent projection layer 20 can scatter the received light, thereby presenting a projected image to a user in the vehicle.
  • the light projected on the transparent projection layer 20 can continue to propagate toward the liquid crystal module 30 through the transparent projection layer 20 . Since the liquid crystal module 30 is in the privacy mode at this time, the liquid crystal module 30 appears black or other colors, so the light propagating to the liquid crystal module 30 cannot pass through the liquid crystal module 30 .
  • the image projected on the transparent projection layer 20 ie, the rearward image
  • the frontward image cannot be seen on the front side of the glass 100 .
  • the glass 100 appears black or other color from the outside of the glass 100, and the projected image cannot be seen.
  • FIG. 10 shows a projection state of the glass 100 in a privacy mode according to another embodiment of the present disclosure, wherein the first polarizer 351 and the second polarizer 352 of the glass 100 in FIG. 10 are light reflection polarizers.
  • the light emitted by the projector 70 is projected onto the transparent projection layer 20 .
  • the transparent projection layer 20 can scatter the received light, thereby presenting a projected image to the user.
  • the light projected on the transparent projection layer 20 can continue to propagate toward the liquid crystal module 30 through the transparent projection layer 20 . Since the liquid crystal module 30 is in the privacy mode at this time, the liquid crystal module 30 is in the form of a reflector, so the light propagating to the liquid crystal module 30 cannot pass through the liquid crystal module 30 .
  • the image projected on the transparent projection layer 20 can only be seen on the inside of the glass 100, i.e., the backward image, and the front image cannot be seen on the outside of the glass 100.
  • the glass 100 looks like a mirror from the outside of the glass 100 .
  • FIGS. 11-19 Exemplary structures of glass 100 according to other embodiments disclosed herein will be described below with reference to FIGS. 11 to 19 .
  • the glass 100 shown in FIGS. 11-19 is more or less similar in structure to the glass 100 shown in FIG. 2 .
  • FIG. 2 Exemplary structures of glass 100 according to other embodiments disclosed herein will be described below with reference to FIGS. 11 to 19 .
  • the glass 100 shown in FIGS. 11-19 is more or less similar in structure to the glass 100 shown in FIG. 2 .
  • only their differences in structure will be described in detail, and the same parts will not be repeated.
  • the glass 100 shown in FIG. 11 is similar in structure to the glass 100 shown in FIG. 2 , except that the glass 100 shown in FIG. 11 further includes the flexible solar cell layer 40 .
  • the flexible solar cell layer 40 is disposed between the first glass 11 and the liquid crystal module 30, and is configured to generate electricity when receiving light. Disposing the flexible solar cell layer 40 between the first glass 11 and the liquid crystal module 30 is based on various considerations. For example, the flexible solar cell layer 40 is not disposed on the third surface 123 or the fourth surface 124 of the second glass 12 because this would affect the power generation efficiency of the flexible solar cell layer 40 . In addition, the flexible solar cell layer 40 is also not disposed on the first surface 111 of the first glass 11 because this would affect the weather resistance of the glass 100 .
  • the flexible solar cell layer 40 is adhered to the first glass 11 and the liquid crystal module 30 through the transparent adhesive layer 10 .
  • additional energy supply can be provided by providing the flexible solar cell layer 40 to convert solar energy into electrical energy.
  • Such glass 100 can be used as a sunroof of a vehicle, for example, so as to provide additional power for the vehicle, thereby making the vehicle more energy-saving and environmentally friendly.
  • the flexible solar cell layer 40 may cover one or more portions of the first glass 11 .
  • the glass 100 shown in FIG. 12 is similar in structure to the glass 100 shown in FIG. 2 , the difference is that the glass 100 shown in FIG. 12 further includes the infrared blocking layer 50 .
  • the infrared blocking layer 50 is disposed between the first glass 11 and the liquid crystal module 30 , and is configured to prevent infrared rays passing through the first glass 11 from propagating toward the liquid crystal module 30 . Disposing the infrared blocking layer 50 between the first glass 11 and the liquid crystal module 30 is also considered from various aspects.
  • the infrared blocking layer 50 is not disposed on the third surface 123 or the fourth surface 124 of the second glass 12 because, for example, the infrared blocking layer may be silver plated if placed on the third surface 123 or the fourth surface 123 of the second glass 12
  • the four surfaces 124 affect the viewing effect of the image projected on the transparent projection layer 20 .
  • the infrared blocking layer 50 is also not disposed on the first surface 111 of the first glass 11 because this may affect the weather resistance of the glass 100 .
  • the infrared blocking layer 50 may be coated on the second surface 112 of the first glass 11 as a coating, and adhered to the liquid crystal module 30 through the transparent adhesive layer 10 .
  • the infrared blocking layer 50 may be one or more layers of silver coatings to reflect infrared rays incident through the first glass 11 .
  • the infrared blocking layer 50 can prevent infrared rays from passing through the glass 100, thereby reducing the temperature rise in vehicles, buildings or other places during hot seasons.
  • At least one embodiment of the present invention also includes combining the flexible solar cell layer 40 and the infrared blocking layer 50 together.
  • the infrared blocking layer 50 does not include a silver-plated layer, but may be a PET anti-infrared layer.
  • the flexible solar cell layer 40 is close to the second surface 112 of the first glass 11 and is more outward than the infrared blocking layer 50 .
  • the glass 100 shown in FIG. 13 is similar in structure to the glass 100 shown in FIG. 12 , the difference is that the glass 100 shown in FIG. 13 further includes a transparent low-emissivity layer 60 .
  • a transparent low-e layer 60 may be coated or otherwise disposed on the fourth surface 124 of the second glass 12 .
  • the transparent low-emissivity layer 60 has the characteristic that the emissivity to light is smaller than the first threshold value.
  • the first threshold may be, for example, 0.2.
  • the transparent low emissivity layer 60 can reflect heat back within the vehicle or building, etc., thereby maintaining the temperature within the vehicle, building or other location to some extent during cold seasons.
  • the transparent low-emissivity layer 60 may be provided on the glass 100 alone without the infrared blocking layer 50 .
  • the low-emissivity layer 60 is a film-based product composed of multiple layers of metals or other compounds.
  • the low-emissivity layer 60 is also called a Low-E (Low Emissivity) layer, and has excellent thermal insulation effect and good light transmittance. By adding a low-emissivity layer on the glass surface, the emissivity of the glass can be reduced, and the absorption rate can also be reduced.
  • the low-E layer can be a film-based product composed of multiple layers of metals or other compounds.
  • TCO Transparent Conducting Oxide
  • ITO Indium Tin Oxide
  • SnO 2 Antimony or Fluorine doped SnO 2
  • Al-doped zinc oxide transparent conductive film Al doped ZnO, ie AZO
  • a transparent low-e layer 60 is shown on the fourth surface 123 of the second glass 12 in FIG. 13 .
  • the low-emissivity layer 60 when in building applications, as known to those skilled in the construction field, can be a silver-plated layer, and is non-transparent, and when the architectural glass is double-glazed, the middle is In vacuum mode, the liquid crystal projection layer is located on the third surface 123 of the second glass 12 , and the low-emissivity layer 60 is located on the second surface 112 of the first glass.
  • the low-emissivity layer 60 can be silver-plated on the second surface 112 layer, and/or the low emissivity layer 60 is bonded to the liquid crystal projection layer by PET glue.
  • the low-emissivity layer may be a transparent conductive oxide layer as described in front of the automobile glass, which may be located at the position shown in FIG. 13 , which will not be repeated here.
  • the glass 100 shown in FIG. 14 is similar in structure to the glass 100 shown in FIG. 2 , except that the glass 100 shown in FIG. 14 further includes the infrared blocking layer 50 .
  • the infrared blocking layer 50 is disposed between the first glass 11 and the liquid crystal module 30 , and is configured to prevent infrared rays passing through the first glass 11 from propagating toward the liquid crystal module 30 .
  • the infrared blocking layer 50 is adhered to the first glass 11 and the liquid crystal module 30 through the transparent adhesive layer 10 .
  • the infrared blocking layer 50 may be an infrared blocking resin film or other types of films to reflect infrared rays incident through the first glass 11 . In such an embodiment, the infrared blocking layer 50 can also prevent infrared rays from passing through the glass 100, thereby reducing the temperature rise in vehicles, buildings or other places in hot seasons.
  • the glass 100 shown in FIG. 15 is similar in structure to the glass 100 shown in FIG. 14 , the difference is that the glass 100 shown in FIG. 15 further includes a transparent low-emissivity layer 60 .
  • a transparent low-e layer 60 may be coated or otherwise disposed on the fourth surface 124 of the second glass 12 .
  • the transparent low-emissivity layer 60 has the characteristic that the emissivity to light is smaller than the first threshold value. In such an embodiment, the transparent low emissivity layer 60 can reflect heat back within the vehicle or building, etc., thereby maintaining the temperature within the vehicle, building or other location to some extent during cold seasons. It should be understood that in some embodiments, the transparent low-emissivity layer 60 may be provided on the glass 100 alone without the infrared blocking layer 50 .
  • the glass 100 shown in FIG. 16 is similar in structure to the glass 100 shown in FIG. 2 , except that the transparent transparent layer 20 in the glass 100 shown in FIG. 16 is formed as a doped transparent adhesive layer 22 .
  • the doped transparent adhesive layer 22 is bonded to the side of the liquid crystal module 30 away from the first glass 11 and is bonded to the second glass 12 .
  • the doped transparent adhesive layer 22 is configured to display an image projected thereon.
  • the doped transparent adhesive layer 22 can, on the one hand, act as an adhesive, reducing the need for the transparent adhesive layer 10, and on the other hand, can reliably conduct light projected thereon. scatter, thereby clearly showing the projected image.
  • the glass 100 shown in FIG. 17 is similar in structure to the glass 100 shown in FIG. 2 , except that the transparent projection layer 20 in the glass 100 shown in FIG. 17 is formed as the transparent display layer 23 .
  • the transparent display layer 23 may be coated or otherwise formed on the third surface 123 of the second glass 12 and bonded to the liquid crystal module 30 through the transparent adhesive layer 10 .
  • the use of a transparent display layer 23 reduces the need for the transparent adhesive layer 10 on the one hand, and on the other hand reliably scatters light projected thereon, thereby clearly showing the projected image.
  • the glass 100 shown in FIG. 18 is similar in structure to the glass 100 shown in FIG. 17 , except that the glass 100 shown in FIG. 18 further includes the infrared blocking layer 50 .
  • the infrared blocking layer 50 is disposed between the first glass 11 and the liquid crystal module 30 , and is configured to prevent infrared rays passing through the first glass 11 from propagating toward the liquid crystal module 30 .
  • the infrared blocking layer 50 may be coated on the second surface 112 of the first glass 11 and adhered to the liquid crystal module 30 through the transparent adhesive layer 10 .
  • the infrared blocking layer 50 may be one or more layers of silver coatings to reflect infrared rays incident through the first glass 11 . In such an embodiment, the infrared blocking layer 50 can prevent infrared rays from passing through the glass 100, thereby reducing the temperature rise in vehicles, buildings or other places during hot seasons.
  • the glass 100 shown in FIG. 19 is similar in structure to the glass 100 shown in FIG. 18 , the difference is that the glass 100 shown in FIG. 19 further includes a transparent low-emissivity layer 60 .
  • a transparent low-e layer 60 may be coated or otherwise disposed on the fourth surface 124 of the second glass 12 .
  • the transparent low-emissivity layer 60 has the characteristic that the emissivity to light is smaller than the first threshold value. In such an embodiment, the transparent low emissivity layer 60 can reflect heat back within the vehicle or building, etc., thereby maintaining the temperature within the vehicle, building or other location to some extent during cold seasons. It should be understood that in some embodiments, the transparent low-emissivity layer 60 may be provided on the glass 100 alone without the infrared blocking layer 50 .
  • the transparent projection layer 20 and/or the liquid crystal module 30 may cover one or more parts of the first glass 11, or cover the entire first glass 11, so as to realize the corresponding transparent projection display function,
  • the scope of the present disclosure is not limited in this regard.
  • the first glass 11 and the second glass 12 form laminated glass, and such laminated glass can be applied to various application scenarios, such as on vehicles or buildings, or other places.
  • the second glass 12 may be omitted, such that the glass 100 is formed as a single layer of glass.
  • the projection display on the transparent projection layer 20 can also be realized by a projector disposed on the side of the transparent projection layer 20 away from the first glass 11 , and can also be realized by the liquid crystal module 30 Toggle between transparent mode and privacy mode.
  • the operation of other structures in the glass 100 is not affected, as will be clear to those skilled in the art.
  • a liquid crystal projection layer may be provided on the fourth surface 124 of the second glass 12 .
  • no low emissivity layer is included on the fourth surface 124 of the second glass 12 .
  • the glass 100 according to embodiments of the present disclosure may be used in various application scenarios, such as on vehicles, on buildings, or other places.
  • the liquid crystal module 30 may be placed in a transparent mode, thereby making the vehicle glass transparent; 100, but the person in the vehicle needs a certain privacy, the liquid crystal module 30 can be in the privacy mode, so that the vehicle glass is opaque; When a person sees the projected image, the liquid crystal module 30 can be placed in a privacy mode, thereby making the vehicle glass opaque; in addition, if a projector is used to project on the vehicle glass and the user wants people outside the vehicle to see the projected image , the liquid crystal module 30 can be in a transparent mode, so that people inside and outside the vehicle can see the image projected on the glass of the vehicle.
  • the liquid crystal module 30 can be placed in a transparent mode, thereby making the building glass transparent; in addition, if the projection is not performed on the glass 100 but the people in the building need a certain privacy, the liquid crystal module 30 can be placed in the privacy mode, so that the building glass is opaque; Projecting and the user does not want people outside the building to see the projected image, the liquid crystal module 30 can be placed in a privacy mode, thereby making the building glass opaque; in addition, if the projector is used to project on the building glass and the user It is hoped that people outside the building can see the projected image, and the liquid crystal module 30 can be in a transparent mode, so that people inside and outside the building can see the image projected on the glass of the building.
  • method 200 includes: at 202, providing a first glass, the first glass including a first surface and a second surface facing away from each other; at 204, disposing a transparent projection layer on the first glass the side of the second surface close to the second surface, the transparent projection layer is configured to display the projection image received from the projector; and at 206, a liquid crystal module is disposed between the first glass and the transparent projection layer the liquid crystal module is configured to be switchable between a transparent mode and a privacy mode, wherein in the transparent mode, the liquid crystal module allows the projected image displayed on the transparent projection layer to face the first The transmission of a glass, and in the privacy mode, the liquid crystal module prevents the transmission of the projected image displayed on the transparent projection layer toward the first glass.
  • method 200 further includes: providing a second glass, the second glass including a third surface and a fourth surface facing away from each other, the third surface facing the second surface; and The liquid crystal module and the transparent projection layer are disposed between the second surface and the third surface.

Abstract

一种用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法,玻璃(100)包括第一玻璃(11)和液晶投影层,第一玻璃(11)包括彼此相背的第一表面(111)和第二表面(112)。液晶投影层包括:透明投影层(20),设置在第一玻璃(11)的靠近第二表面(112)的一侧,并且被配置为显示从投影仪(70)接收的投影图像;以及液晶模组(30),设置在第一玻璃(11)与透明投影层(20)之间,并且被配置为能够在透明模式与隐私模式之间切换,其中在透明模式下,液晶模组(30)允许在透明投影层(20)上显示的投影图像朝向第一玻璃(11)的传送,并且在隐私模式下,液晶模组(30)阻止在透明投影层(20)上显示的投影图像朝向第一玻璃(11)的传送,因此,用于玻璃的液晶投影层能够在车辆正常运行的情况下保持透明并且在进行透明投影显示的情况下实现隐私保护。

Description

用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法 技术领域
本公开的实施例总体上涉及玻璃技术领域,并且更具体地,涉及用于玻璃的液晶投影层、包括液晶投影层的玻璃、包括液晶投影层的车辆、包括玻璃的车辆、制造用于玻璃的液晶投影层的方法以及制造玻璃的方法。
背景技术
目前在车辆中越来越多地发现一个需求,就是除了中控大屏和可移动式屏之外,希望有更多的空间或平面作为信息媒体的呈现载体。为此目的,业内有人在探索如何利用投影仪直接在车辆玻璃上进行投影显示。然而,本申请的发明人发现这种直接在车辆玻璃上进行投影显示的方案需要解决很多方面的问题。首先,在车辆正常运行的状态下,车辆玻璃需要保持透明,以满足安全以及相关法规的要求,然而如何在透明的玻璃上进行投影显示是一个难题。为了解决这一问题,需要选择合适的透明投影膜以在保持玻璃透明的情况下实现投影显示,这样的投影膜需要既透明又能将投射到玻璃上的光反射到车内人的视野里。
发明内容
本公开的目的是提供一种用于玻璃的液晶投影层、包括液晶投影层的玻璃、包括液晶投影层的车辆、包括玻璃的车辆、制造用于玻璃的液晶投影层的方法以及制造玻璃的方法,以至少部分地解决现有技术中存在的上述问题。
根据本公开的第一方面,提供了一种用于玻璃的液晶投影层。所述玻璃包括第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面。所述液晶投影层包括:透明投影层,设置在所述第一玻璃的靠近所述第二表面的一侧,并且被配置为显示从投影仪接收的投影图像;以及液晶模组,设置在所述第一玻璃与所述透明投影层之间,并且被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
在根据本公开的实施例中,通过采用透明投影层能够实现在玻璃上的透明投影显示,并且通过采用液晶模组能够实现在透明模式与隐私模式之间的切换,其中在透明模式下,玻璃能够保持透明,而在隐私模式下能够防止在透明投影层上所投影的图像朝向第一玻璃传送,从而使得无法从第一玻璃一侧看到所投影的图像,实现隐私保护。这样的玻璃能够满足在车辆正常运行的情况下保持透明并且在进行透明投影显示的情况下实现隐私保护的需求。此外,通过透明投影层与液晶模组的组合,可以实现不同的模式组合,从而满足不同的应用场景需求。
在一些实施例中,所述液晶模组包括:液晶层,包括液晶分子;第一配向层和第二配向层,分别设置在所述液晶层的相对两侧,并且被配置为预设所述液晶层中的所述液晶分子的偏转状态;第一透明电极层和第二透明电极层,分别相对于所述液晶层设置在所述第一配向层和所述第二配向层的外侧,并且被配置为在通电的情况下改变所述液晶层中的液晶分子的偏转状态,以使所述液晶模组在所述透明模式与所述隐私模式之间切 换;第一透明基材和第二透明基材,分别相对于所述液晶层设置在所述第一透明电极层和所述第二透明电极层的外侧,并且被配置为分别承载所述第一透明电极层和所述第二透明电极层;以及第一偏光片和第二偏光片,分别相对于所述液晶层设置在所述第一透明基材和所述第二透明基材的外侧。在这样的实施例中,能够通过控制第一透明电极层和第二透明电极层的通电情况来调节液晶层中的液晶分子的偏转状态,从而实现液晶模组在透明模式与隐私模式之间的切换。
在一些实施例中,所述第一偏光片与所述第二偏光片的偏光方向垂直,其中在所述第一透明电极层和所述第二透明电极层通电的情况下,所述液晶模组处于所述隐私模式,并且在所述第一透明电极层和所述第二透明电极层未通电的情况下,所述液晶模组处于所述透明模式。在这样的实施例中,能够使液晶模组在第一透明电极层和第二透明电极层通电的情况下处于隐私模式,而在未通电的情况下处于透明模式。以此方式,能够准确可靠地实现液晶模组在透明模式与隐私模式之间的切换。此外,由于仅在需要在玻璃上进行投影显示并且需要隐私保护时对第一透明电极层和第二透明电极层通电,而在其他情况下不需要对第一透明电极层和第二透明电极层进行通电,因此能够减少液晶模组的功耗。
在一些实施例中,所述第一偏光片与所述第二偏光片的偏光方向平行,其中在所述第一透明电极层和所述第二透明电极层通电的情况下,所述液晶模组处于所述透明模式,并且在所述第一透明电极层和所述第二透明电极层未通电的情况下,所述液晶模组处于所述隐私模式。在这样的实施例中,能够使液晶模组在第一透明电极层和第二透明电极层通电的情况下处于透明模式,而在未通电的情况下处于隐私模式,因而同样能够准确可靠地实现液晶模组在透明模式与隐私模式之间的切换。
根据本公开的第二方面,提供了一种玻璃,包括:根据本公开的第一方面的液晶投影层;以及所述第一玻璃。
在一些实施例中,所述玻璃还包括:柔性太阳能电池层,设置在所述第一玻璃与所述液晶模组之间,并且配置为在接受光照的情况下发电。在这样的实施例中,通过设置柔性太阳能电池层以将太阳能转化为电能,能够提供额外的能源供应。这样的玻璃例如可以用作车辆的天窗,以便为车辆提供额外的电力,从而使得车辆更加节能环保。
在一些实施例中,所述玻璃还包括:红外阻挡层,设置在所述第一玻璃与所述液晶模组之间,并且被配置为阻止穿过所述第一玻璃的红外线朝向所述液晶模组传播。在这样的实施例中,红外阻挡层能够防止红外线透过玻璃,从而在炎热的季节降低车辆内、建筑物内或者其他场所内的温升。
在一些实施例中,所述玻璃还包括:透明的低辐射层,设置在所述透明投影层的远离所述第一玻璃的一侧,并且具有对光的辐射率小于第一阈值的特性。在这样的实施例中,透明的低辐射层能够将车辆内或建筑物内等的热量反射回来,从而在寒冷的季节在一定程度上保持车辆内、建筑物内或者其他场所内的温度。
在一些实施例中,所述透明投影层包括以下至少一项:透明显示膜,通过透明粘接层与所述液晶模组粘接在一起,并且被配置为显示所述投影图像;以及掺杂的透明粘接层,粘接至所述液晶模组的远离所述第一玻璃的一侧,并且被配置为显示所述投影图像。在这样的实施例中,透明显示膜或掺杂的透明粘接层能够可靠地对投射在其上的光进行散射,从而清楚地显示出在玻璃上所投影的图像。
在一些实施例中,所述玻璃还包括:第二玻璃,与所述第一玻璃堆叠设置,并且包括彼此相背的第三表面和第四表面,所述第三表面朝向所述第二表面;其中,所述液晶模组和所述透明投影层设置在所述第一玻璃与所述第二玻璃之间。在这样的实施例中,第一玻璃和第二玻璃可以形成夹层玻璃,这样的夹层玻璃能够适用于各种场景,例如车辆上、建筑物上或者其他应用场所。
在一些实施例中,所述玻璃还包括:透明的低辐射层,被涂覆在所述第四表面上,并且具有对光的辐射率小于第一阈值的特性。在这样的实施例中,透明的低辐射层能够将车辆内。建筑物内或者其他应用场所内的热量反射回来,从而在寒冷的季节在一定程度上保持车内的温度。
在一些实施例中,所述透明投影层包括以下至少一项:掺杂的透明粘接层,将所述液晶模组粘接至所述第二玻璃,并且被配置为显示所述投影图像;以及透明显示层,设置在所述第三表面上,并且被配置为显示所述投影图像。在这样的实施例中,掺杂的透明粘接层或透明显示层能够可靠地对投射在其上的光进行散射,从而清楚地显示出所投影的图像。
在一些实施例中,所述玻璃为车辆用玻璃或建筑物用玻璃。
在将根据本公开的实施例的玻璃用作车辆玻璃的情况下,如果未在玻璃上进行投影,可以使液晶模组处于透明模式,从而使得车辆玻璃透明;此外,如果未在玻璃上进行投影但车辆内的人需要一定的隐私,可以使液晶模组处于隐私模式,从而使得车辆玻璃不透明;此外,如果利用投影仪在车辆玻璃上进行了投影并且用户不希望车辆外的人看到所投影的图像,可以使液晶模组处于隐私模式,从而使得车辆玻璃不透明;此外,如果利用投影仪在车辆玻璃上进行了投影并且用户希望车辆外的人看到所投影的图像,可以使液晶模组处于透明模式,从而使得车辆内外的人都能看到在车辆玻璃上所投影的图像。
类似地,在将根据本公开的实施例的玻璃用作建筑物玻璃的情况下,如果未在玻璃上进行投影,可以使液晶模组处于透明模式,从而使得建筑物玻璃透明;此外,如果未在玻璃上进行投影但建筑物内的人需要一定的隐私,可以使液晶模组处于隐私模式,从而使得建筑物玻璃不透明;此外,如果利用投影仪在建筑物玻璃上进行了投影并且用户不希望建筑物外的人看到所投影的图像,可以使液晶模组处于隐私模式,从而使得建筑物玻璃不透明;此外,如果利用投影仪在建筑物玻璃上进行了投影并且用户希望建筑物外的人看到所投影的图像,可以使液晶模组处于透明模式,从而使得建筑物内外的人都能看到在建筑物玻璃上所投影的图像。
根据本公开的第三方面,提供了一种车辆,包括:根据本公开的第一方面的液晶投影层;以及投影仪,被配置为朝向所述玻璃中的所述透明投影层提供投影图像。
根据本公开的第四方面,提供了一种车辆,包括:根据本公开的第二方面的玻璃;以及投影仪,被配置为朝向所述玻璃中的所述透明投影层提供投影图像。
根据本公开的第五方面,提供了一种制造用于玻璃的液晶投影层的方法。所述玻璃包括第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面。所述方法包括:提供透明投影层,所述透明投影层设置在所述第一玻璃的靠近所述第二表面的一侧,并且被配置为显示从投影仪接收的投影图像;以及将液晶模组设置在所述第一玻璃与所述透明投影层之间,所述液晶模组被配置为能够在透明模式与隐私模式之间切换,其中在所 述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
根据本公开的第六方面,提供了一种制造玻璃的方法,包括:提供第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面;将透明投影层设置在所述第一玻璃的靠近所述第二表面的一侧,所述透明投影层被配置为显示从投影仪接收的投影图像;以及将液晶模组设置在所述第一玻璃与所述透明投影层之间,所述液晶模组被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
在一些实施例中,所述方法还包括:提供第二玻璃,所述第二玻璃包括彼此相背的第三表面和第四表面,所述第三表面朝向所述第二表面;以及将所述液晶模组以及所述透明投影层设置在所述第二表面与所述第三表面之间。
提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开内容的关键特征或主要特征,也无意限制本公开内容的范围。
附图说明
通过参考附图阅读下文的详细描述,本公开的实施例的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例而非限制性的方式示出了本公开的若干实施例,其中:
图1示出了根据本公开的一个实施例的一种透明投影显示方案;
图2示出了根据本公开的一个实施例的玻璃的结构示意图;
图3示出了根据本公开的一个实施例的液晶模组的结构示意图;
图4示出了根据本公开的一个实施例的液晶模组在不通电的情况下的工作状态,其中第一偏光片与第二偏光片的偏光方向垂直;
图5示出了图4所示的液晶模组在通电的情况下的工作状态;
图6示出了根据本公开的另一实施例的液晶模组在不通电的情况下的工作状态,其中第一偏光片与第二偏光片的偏光方向平行;
图7示出了图6所示的液晶模组在通电的情况下的工作状态;
图8示出了根据本公开的一个实施例的玻璃在透明模式下的投影状态;
图9示出了根据本公开的一个实施例的玻璃在隐私模式下的投影状态;
图10示出了根据本公开的另一实施例的玻璃在隐私模式下的投影状态;
图11根据本公开的另一实施例的玻璃的结构示意图;
图12根据本公开的另一实施例的玻璃的结构示意图;
图13根据本公开的另一实施例的玻璃的结构示意图;
图14根据本公开的另一实施例的玻璃的结构示意图;
图15根据本公开的另一实施例的玻璃的结构示意图;
图16根据本公开的另一实施例的玻璃的结构示意图;
图17根据本公开的另一实施例的玻璃的结构示意图;
图18根据本公开的另一实施例的玻璃的结构示意图;
图19根据本公开的另一实施例的玻璃的结构示意图;以及
图20示出了根据本公开的一个实施例的制造玻璃的方法的流程图。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。
如在上文中所描述的,本申请的发明人发现直接在车辆玻璃上进行投影显示的方案需要解决很多方面的问题。例如,在车辆玻璃上进行投影显示时车内的人可能需要隐私,不希望在车辆玻璃上投影的内容被车外的人看到,而在不需要隐私的情况下又需要能够使得玻璃保持透明;常规的透明投影显示方案无法满足这样的需求,因而限制了透明投影显示方案在车辆玻璃上的应用。本公开的实施例的玻璃采用了透明投影层与液晶模组的组合,既能够实现透明投影显示的功能,又能够在进行透明投影显示的情况下实现隐私保护的功能。在下文中将参考附图结合示例性实施例来详细描述本公开的原理。
图1示出了一种根据本公开的一个实施例的透明投影显示方案。如图1所示,由投影仪70发出的光80被投射到透明投影显示屏90上,以便由投影显示屏90进行散射,从而呈现给用户。此外,由于投影显示屏90是透明的,因此投射到投影显示屏90上的光80可以穿过投影显示屏90继续向前传播。利用这样的布置,在投影显示屏90两侧均能够看到在投影显示屏90上所投影的图像,分别是后向图像和前向图像。然而,在将这样的透明投影显示方案应用到车辆玻璃上时,可能会存在如下需求。在车辆玻璃上进行投影显示时车内的人可能需要隐私,不希望在车辆玻璃上投影的内容被车外的人看到,而在不需要隐私的情况下又需要能够使得玻璃保持透明。常规的透明投影显示方案无法满足这样的需求,因而限制了透明投影显示方案在车辆玻璃上的应用。
因此,存在对于在车辆正常运行的情况下能够保持透明并且在进行透明投影显示的情况下能够实现隐私保护的新型车辆玻璃的需要。
图2示出了根据本公开的一个实施例的玻璃的结构示意图。如图2所示,玻璃100包括依次堆叠设置的第一玻璃11、液晶模组30、透明投影层20以及第二玻璃12。第一玻璃11、液晶模组30、透明投影层20以及第二玻璃12彼此之间通过透明粘接层10粘接在一起。透明粘接层10例如可以是聚乙烯醇缩丁醛(PVB)或乙烯-醋酸乙烯共聚物(EVA),或者其他已知类型或未来可用的透明粘接剂,本公开的范围在此方面不受限制。
第一玻璃11包括彼此相背的第一表面111和第二表面112。第二玻璃12包括彼此相背的第三表面123和第四表面124,第三表面123朝向第二表面112。透明投影层20 设置在液晶模组30与第二玻璃12之间,并且被配置为显示从设置在第二玻璃12的面向车辆内部的一侧的投影仪接收的投影图像。在实施例中,第一玻璃11表示靠近车辆外部的外侧玻璃,第二玻璃12表示靠近乘客的内侧玻璃。第一玻璃11的第一表面111面向车辆外部,第一玻璃11的第二表面112面向第二玻璃12,第二玻璃12的第三表面123面向第一玻璃11,第二玻璃12的第四表面124面向车辆内部。本领域技术人员可以理解,上述关于玻璃的顺序以及玻璃表面的顺序仅为示例,本领域技术人员可以根据实际生产进行调整。由投影仪发出的光在穿过透明投影层20之后是非偏振的。在图2所示的实施例中,透明投影层20包括透明显示膜21。透明显示膜21通过透明粘接层10粘接至液晶模组30和第二玻璃12。在其他实施例中,透明投影层20还可以为其他类型,在下文中将对此进行详细说明。液晶模组30设置在第一玻璃11与透明投影层20之间,并且被配置为能够在透明模式与隐私模式之间切换。在透明模式下,液晶模组30允许在透明投影层20上显示的投影图像继续朝向第一玻璃11的传送。在隐私模式下,液晶模组30阻止在透明投影层20上显示的投影图像朝向第一玻璃11的传送。
在根据图2所示的实施例的玻璃100中,通过透明投影层20能够实现在玻璃100上的透明投影显示,并且通过液晶模组30能够实现在透明模式与隐私模式之间的切换,其中在透明模式下,玻璃100能够保持透明,而在隐私模式下能够防止在透明投影层20上所投影的图像朝向第一玻璃11传送,从而使得无法从第一玻璃11一侧看到所投影的图像,实现隐私保护。这样的玻璃100能够满足在车辆正常运行的情况下保持透明并且在进行透明投影显示的情况下实现隐私保护的需求。此外,通过透明投影层20与液晶模组30的组合,可以实现不同的模式组合,从而满足不同的应用场景需求。
图3示出了根据本公开的一个实施例的液晶模组30的结构示意图。如图3所示,液晶模组30基本上呈对称结构,并且从内到外依次包括液晶层31、第一配向层321和第二配向层322、第一透明电极层331和第二透明电极层332、第一透明基材341和第二透明基材342、以及第一偏光片351和第二偏光片352。
液晶层31包括液晶分子以及间隔物(未示出)。该间隔物用于支撑液晶分子,从而为液晶层31提供一定强度。第一配向层321和第二配向层322分别设置在液晶层31的相对两侧。第一配向层321和第二配向层322用于在第一透明电极层331和第二透明电极层332不通电的情况下使液晶层31中的液晶分子扭转,从而预设液晶层31中的液晶分子的偏转状态。第一透明电极层331和第二透明电极层332分别相对于液晶层31设置在第一配向层321和第二配向层322的外侧。在根据本公开的实施例中,第一透明电极层331和第二透明电极层332可以为透明导电氧化物层(Transparent Conducting Oxide,即TCO),例如氧化铟锡(tin doped In 2O 3,即ITO)、氟掺杂氧化锡(fluorine doped SnO 2,即FTO)、氧化锡锑(antimony or fluorine doped SnO 2,即ATO)、掺铝氧化锌(Al doped ZnO,即AZO)等。在其他实施例中,第一透明电极层331和第二透明电极层332还可以为其他类型的导电层。第一透明电极层331和第二透明电极层332在通电的情况下能够改变液晶层31中的液晶分子的偏转状态,以使液晶模组30在透明模式与隐私模式之间切换。第一透明基材341和第二透明基材342分别相对于液晶层31设置在第一透明电极层331和第二透明电极层332的外侧。第一透明基材341和第二透明基材342分别承载第一透明电极层331和第二透明电极层332。第一透明基材341和第二透明基材342可以为超薄玻璃层、树脂层或者其他材质。第一透明电极层331和第二透明电极层332 可以涂覆在或者以其他方式形成在第一透明基材341和第二透明基材342上。第一偏光片351和第二偏光片352分别相对于液晶层31设置在第一透明基材341和第二透明基材342的外侧。第一偏光片351和第二偏光片352能够分别允许在特定偏光方向上的光通过,而过滤掉其余部分的光。第一偏光片351和/或第二偏光片352可以为光吸收型偏光片或光反射型偏光片或者两者的结合,对此将在下文中结合图8至图10进行详细说明。该偏光片的有效范围至少包括可见光范围。偏光片可以提供宽的视场,并且对于非法线入射角度的入射光具有高消光率。
在根据本公开的实施例中,液晶模组30可以为各种类型,例如扭转向列式(TN)液晶模组、垂直排列式(VA)液晶模组、或广域垂直排列式(MVA)液晶模组。在下文中将结合图4至图7以扭转向列式液晶模组作为示例来描述液晶模组30的工作原理。应当理解,其他类型的液晶模组30可以以类似的方式操作,从而实现在透明模式与隐私模式之间的切换。
图4示出了根据本公开的一个实施例的液晶模组30在不通电的情况下的工作状态,以及图5示出了图4所示的液晶模组30在通电的情况下的工作状态。为了清楚地显示出液晶模组30的工作原理,在图4和图5中省略了液晶模组30的一些部件。
如图4所示,第一偏光片351与第二偏光片352的偏光方向垂直。在非偏振光到达第一偏光片351时,第一偏光片351能够选择性地允许在一个偏光方向上的光通过,而将在其他偏光方向上的光过滤掉。由于第一透明电极层331和第二透明电极层332未通电,因此在液晶层31中不存在电场(E=0),使得液晶层31中的液晶分子311处于由第一配向层321和第二配向层322预设的偏转状态,例如,液晶分子311对于未加电场的线偏振光具有旋光性。此时,液晶层31中的液晶分子311在到达第二偏光片352时的偏转状态与第二偏光片352的偏光方向一致,因而使得光能够通过第二偏光片352,作为偏振光输出。以此方式,能够使得液晶模组30处于透明模式。在一个实施例中,该偏振光是线偏振光。此外,通过调整加在电极两端的电压,可以调整液晶的对比度,从而在透明和隐私两种模式之间切换。
如图5所示,由于第一透明电极层331和第二透明电极层332通电,因此在液晶层31中存在电场E。在电场E的作用下,液晶层31中的液晶分子311的偏转状态发生改变。此时,液晶层31中的液晶分子311在到达第二偏光片352时的偏转状态与第二偏光片352的偏光方向不一致,因而使得光被第二偏光片352阻挡,没有光透过第二偏光片352。以此方式,能够使得液晶模组30处于隐私模式。
通过使第一偏光片351与第二偏光片352的偏光方向垂直,能够准确可靠地实现液晶模组30在透明模式与隐私模式之间的切换。此外,由于仅在需要在玻璃100上进行投影显示并且需要隐私保护时对第一透明电极层331和第二透明电极层332通电,而在其他情况下不需要对第一透明电极层331和第二透明电极层332进行通电,因此能够减少液晶模组30的功耗。
图6示出了根据本公开的另一实施例的液晶模组30在不通电的情况下的工作状态,图7示出了图6所示的液晶模组30在通电的情况下的工作状态。同样,为了清楚地显示出液晶模组30的工作原理,在图6和图7中省略了液晶模组30的一些部件。
如图6所示,第一偏光片351与第二偏光片352的偏光方向平行。在非偏振光到达第一偏光片351时,第一偏光片351能够选择性地允许在一个偏光方向上的光通过,而 将在其他偏光方向上的光过滤掉。由于第一透明电极层331和第二透明电极层332未通电,因此在液晶层31中不存在电场(E=0),使得液晶层31中的液晶分子311处于由第一配向层321和第二配向层322预设的偏转状态。此时,液晶层31中的液晶分子311在到达第二偏光片352时的偏转状态与第二偏光片352的偏光方向不一致,因而使得光被第二偏光片352阻挡,没有光透过第二偏光片352。以此方式,能够使得液晶模组30处于隐私模式。
如图7所示,由于第一透明电极层331和第二透明电极层332通电,因此在液晶层31中存在电场E。在电场E的作用下,液晶层31中的液晶分子311的偏转状态发生改变。此时,液晶层31中的液晶分子311在到达第二偏光片352时的偏转状态与第二偏光片352的偏光方向一致,因而使得光能够通过第二偏光片352,作为偏振光输出。以此方式,能够使得液晶模组30处于透明模式。
通过使第一偏光片351与第二偏光片352的偏光方向平行,同样能够准确可靠地实现液晶模组30在透明模式与隐私模式之间的切换。
应当理解,在其他实施例中,第一偏光片351与第二偏光片352的偏光方向还可以具有其他关系,同样可以实现液晶模组30在透明模式与隐私模式之间的切换。在本文中对此将不再赘述。
图8至图10示出了根据本公开的实施例的玻璃100的不同工作状态。首先参考图8,图8示出了根据本公开的一个实施例的玻璃100在透明模式下的投影状态,其中图8中的玻璃100的第一偏光片351和/或第二偏光片352可以为光吸收型偏光片和/或光反射型偏光片。如图8所示,由投影仪70发出的光被投射到透明投影层20上。透明投影层20能够对所接收到的光进行散射,从而向车内的用户呈现投影图像。此外,投射到透明投影层20上的光能够穿过透明投影层20继续朝向液晶模组30传播。由于液晶模组30处于透明模式下,因而传播到液晶模组30上的光能够穿过液晶模组30继续传播。利用这样的布置,在玻璃100两侧均能够看到在透明投影层20上所投影的图像,分别是后向图像和前向图像。
图9示出了根据本公开的一个实施例的玻璃100在隐私模式下的投影状态,其中图9中的玻璃100的第一偏光片351和第二偏光片352为光吸收型偏光片。如图9所示,由投影仪70发出的光被投射到透明投影层20上。透明投影层20能够对所接收到的光进行散射,从而向车内的用户呈现投影图像。此外,投射到透明投影层20上的光能够穿过透明投影层20继续朝向液晶模组30传播。由于液晶模组30此时处于隐私模式下,液晶模组30呈现黑色或其他颜色,因而传播到液晶模组30上的光无法穿过液晶模组30。利用这样的布置,只能在玻璃100的内侧看到在透明投影层20上所投影的图像,即后向图像,而无法在玻璃100的前侧看到前向图像。从玻璃100的外侧看起来玻璃100呈黑色或其他颜色,无法看到所投影的图像。
图10示出了根据本公开的另一实施例的玻璃100在隐私模式下的投影状态,其中图10中的玻璃100的第一偏光片351和第二偏光片352为光反射型偏光片。如图10所示,由投影仪70发出的光被投射到透明投影层20上。透明投影层20能够对所接收到的光进行散射,从而向用户呈现投影图像。此外,投射到透明投影层20上的光能够穿过透明投影层20继续朝向液晶模组30传播。由于液晶模组30此时处于隐私模式下,液晶模组30呈反射镜的形式,因而传播到液晶模组30上的光无法穿过液晶模组30。利用这样 的布置,只能在玻璃100的内侧看到在透明投影层20上所投影的图像,即后向图像,而无法在玻璃100的外侧看到前向图像。从玻璃100的外侧看起来玻璃100是一面反射镜。
下面将结合图11至图19描述根据跟公开的其他实施例的玻璃100的示例性结构。图11至图19所示的玻璃100与图2所示的玻璃100在结构上或多或少地类似。在下文中将仅详细描述它们在结构上的区别,而对于相同的部分将不再赘述。
图11所示的玻璃100与图2所示的玻璃100在结构上类似,区别在于图11所示的玻璃100还包括柔性太阳能电池层40。柔性太阳能电池层40设置在第一玻璃11与液晶模组30之间,并且配置为在接受光照的情况下发电。将柔性太阳能电池层40设置在第一玻璃11与液晶模组30之间是出于多个方面的考虑的。例如,柔性太阳能电池层40未设置在第二玻璃12的第三表面123或第四表面124上,因为这会影响柔性太阳能电池层40的发电效率。此外,柔性太阳能电池层40也未设置在第一玻璃11的第一表面111上,因为这会影响玻璃100的耐候性。柔性太阳能电池层40通过透明粘接层10粘接至第一玻璃11和液晶模组30。在这样的实施例中,通过设置柔性太阳能电池层40以将太阳能转化为电能,能够提供额外的能源供应。这样的玻璃100例如可以用作车辆的天窗,以便为车辆提供额外的电力,从而使得车辆更加节能环保。在根据本公开的实施例中,柔性太阳能电池层40可以覆盖第一玻璃11的一个或多个部分。
图12所示的玻璃100与图2所示的玻璃100在结构上类似,区别在于图12所示的玻璃100还包括红外阻挡层50。红外阻挡层50设置在第一玻璃11与液晶模组30之间,并且被配置为阻止穿过第一玻璃11的红外线朝向液晶模组30传播。将红外阻挡层50设置在第一玻璃11与液晶模组30之间也是出于多个方面的考虑的。例如,红外阻挡层50未设置在第二玻璃12的第三表面123或第四表面124上,因为例如红外阻挡层可以是镀银的,如果置于第二玻璃12的第三表面123或第四表面124上会影响对于在透明投影层20上所投影的图像的观察效果。此外,红外阻挡层50也未设置在第一玻璃11的第一表面111上,因为这会影响玻璃100的耐候性。红外阻挡层50可以作为涂层涂覆在第一玻璃11的第二表面112上,并且通过透明粘接层10粘接至液晶模组30。红外阻挡层50可以为一层或多层银涂层,以反射通过第一玻璃11入射的红外线。在这样的实施例中,红外阻挡层50能够防止红外线透过玻璃100,从而在炎热的季节降低车辆内、建筑物内或者其他场所内的温升。
尽管附图中未示出,本发明的至少一个实施例还包括将柔性太阳能电池层40和红外阻挡层50组合在一起。在该实施例中,红外阻挡层50不包括镀银层,而可以是PET抗红外层。其中,柔性太阳能电池层40靠近第一玻璃11的第二表面112,相比于红外阻挡层50更向外。
图13所示的玻璃100与图12所示的玻璃100在结构上类似,区别在于图13所示的玻璃100还包括透明的低辐射层60。透明的低辐射层60可以涂覆或者以其他方式设置在第二玻璃12的第四表面124上。透明的低辐射层60具有对光的辐射率小于第一阈值的特性。第一阈值,例如可以是0.2。在这样的实施例中,透明的低辐射层60能够将车辆内或建筑物内等的热量反射回来,从而在寒冷的季节在一定程度上保持车辆内、建筑物内或者其他场所内的温度。应当理解,在一些实施例中,可以在玻璃100上单独设置透明的低辐射层60,而不设置红外阻挡层50。低辐射层60是一种由多层金属或其他化合物组成的膜系产品。低辐射层60也称为Low-E(Low Emissivity)层,具有优异的 隔热效果和良好的透光性。通过在玻璃表面添加低辐射层,能让玻璃的辐射率降低,吸收率也随之减小。低辐射层可以是一种由多层金属或其他化合物组成的膜系产品。例如,透明导电氧化物层(Transparent Conducting Oxide,即TCO),氧化铟锡透明导电膜(tin doped In 2O 3,即ITO),锑或F掺杂SnO 2透明导电膜(antimony or fluorine doped SnO 2,即ATO或FTO),和/或掺Al氧化锌透明导电膜(Al doped ZnO,即AZO)等。
此外,在车辆应用中,在图13中示出了透明的低辐射层60在第二玻璃12的第四表面123上。
可选地,图中未示出,当在建筑物应用中,如建筑领域技术人员所知的,低辐射层60可以采用镀银层,且是非透明的,当建筑玻璃采用双层玻璃中间是真空方式时,液晶投影层位于第二玻璃12的第三表面123上,低辐射层60位于第一玻璃的第二表面112上,例如,低辐射层60可以是第二表面112上的镀银层,和/或低辐射层60通过PET胶粘合在液晶投影层上。当建筑玻璃采用夹胶的形式时,低辐射层可以是如前汽车玻璃所述的透明导电氧化物层,其可以位于如图13所示的位置,在此不予赘述。
图14所示的玻璃100与图2所示的玻璃100在结构上类似,区别在于图14所示的玻璃100还包括红外阻挡层50。红外阻挡层50设置在第一玻璃11与液晶模组30之间,并且被配置为阻止穿过第一玻璃11的红外线朝向液晶模组30传播。红外阻挡层50通过透明粘接层10粘接至第一玻璃11和液晶模组30。红外阻挡层50可以为红外阻挡树脂膜或其他类型的膜,以反射通过第一玻璃11入射的红外线。在这样的实施例中,红外阻挡层50同样能够防止红外线透过玻璃100,从而在炎热的季节降低车辆内、建筑物内或者其他场所内的温升。
图15所示的玻璃100与图14所示的玻璃100在结构上类似,区别在于图15所示的玻璃100还包括透明的低辐射层60。透明的低辐射层60可以涂覆或者以其他方式设置在第二玻璃12的第四表面124上。透明的低辐射层60具有对光的辐射率小于第一阈值的特性。在这样的实施例中,透明的低辐射层60能够将车辆内或建筑物内等的热量反射回来,从而在寒冷的季节在一定程度上保持车辆内、建筑物内或者其他场所内的温度。应当理解,在一些实施例中,可以在玻璃100上单独设置透明的低辐射层60,而不设置红外阻挡层50。
图16所示的玻璃100与图2所示的玻璃100在结构上类似,区别在于图16所示的玻璃100中的透明透明层20被形成为掺杂的透明粘接层22。掺杂的透明粘接层22粘接至液晶模组30的远离第一玻璃11的一侧并且粘接至第二玻璃12。掺杂的透明粘接层22被配置为显示在其上投影的图像。在这样的实施例中,掺杂的透明粘接层22一方面能够起到粘接作用,减少了对于透明粘接层10的需要,另一方面,能够可靠地对投射在其上的光进行散射,从而清楚地显示出所投影的图像。
图17所示的玻璃100与图2所示的玻璃100在结构上类似,区别在于图17所示的玻璃100中的透明投影层20被形成为透明显示层23。透明显示层23可以通过涂覆或者以其他方式形成在第二玻璃12的第三表面123上,并且通过透明粘接层10粘接至液晶模组30。在这样的实施例中,透明显示层23的使用一方面减少了对于透明粘接层10的需要,另一方面,能够可靠地对投射在其上的光进行散射,从而清楚地显示出所投影的图像。
图18所示的玻璃100与图17所示的玻璃100在结构上类似,区别在于图18所示 的玻璃100还包括红外阻挡层50。红外阻挡层50设置在第一玻璃11与液晶模组30之间,并且被配置为阻止穿过第一玻璃11的红外线朝向液晶模组30传播。红外阻挡层50可以涂覆在第一玻璃11的第二表面112上,并且通过透明粘接层10粘接至液晶模组30。红外阻挡层50可以为一层或多层银涂层,以反射通过第一玻璃11入射的红外线。在这样的实施例中,红外阻挡层50能够防止红外线透过玻璃100,从而在炎热的季节降低车辆内、建筑物内或者其他场所内的温升。
图19所示的玻璃100与图18所示的玻璃100在结构上类似,区别在于图19所示的玻璃100还包括透明的低辐射层60。透明的低辐射层60可以涂覆或者以其他方式设置在第二玻璃12的第四表面124上。透明的低辐射层60具有对光的辐射率小于第一阈值的特性。在这样的实施例中,透明的低辐射层60能够将车辆内或建筑物内等的热量反射回来,从而在寒冷的季节在一定程度上保持车辆内、建筑物内或者其他场所内的温度。应当理解,在一些实施例中,可以在玻璃100上单独设置透明的低辐射层60,而不设置红外阻挡层50。
在上文中描述了根据本公开的一些实施例的玻璃100的示例性。应当理解,本领域技术人员根据本公开的内容容易想到各种组合、改变或者变形,这样的组合、改变或者变形同样落入本公开的范围内。
在根据本公开的实施例中,透明投影层20和/或液晶模组30可以覆盖第一玻璃11的一个或多个部分,或者覆盖整个第一玻璃11,从而实现相应的透明投影显示功能,本公开的范围在此方面不受限制。
此外,在根据本公开的实施例中,第一玻璃11和第二玻璃12形成夹层玻璃,这样的夹层玻璃可以应用于各种应用场景,例如车辆上或建筑物上,或者其他场所。
应当理解,在其他实施例中,可以省略第二玻璃12,从而使得玻璃100被形成为单层玻璃。在单层玻璃的情况下,同样能够利用设置在透明投影层20的远离第一玻璃11的一侧上的投影仪实现在透明投影层20上的投影显示,并且同样能够利用液晶模组30实现在透明模式与隐私模式之间的切换。此外,在单层玻璃的情况下,不影响玻璃100中的其他结构的操作,这对于本领域技术人员而言是清楚的。
此外,可选地,液晶投影层可以设置在第二玻璃12的第四表面124上。在这种情形下,第二玻璃12的第四表面124上不包括低辐射层。
根据本公开的实施例的玻璃100可以用在各种应用场景下,诸如车辆上、建筑物上或者其他场所。
在将根据本公开的实施例的玻璃100用作车辆玻璃的情况下,如果未在玻璃100上进行投影,可以使液晶模组30处于透明模式,从而使得车辆玻璃透明;此外,如果未在玻璃100上进行投影但车辆内的人需要一定的隐私,可以使液晶模组30处于隐私模式,从而使得车辆玻璃不透明;此外,如果利用投影仪在车辆玻璃上进行了投影并且用户不希望车辆外的人看到所投影的图像,可以使液晶模组30处于隐私模式,从而使得车辆玻璃不透明;此外,如果利用投影仪在车辆玻璃上进行了投影并且用户希望车辆外的人看到所投影的图像,可以使液晶模组30处于透明模式,从而使得车辆内外的人都能看到在车辆玻璃上所投影的图像。
类似地,在将根据本公开的实施例的玻璃100用作建筑物玻璃的情况下,如果未在玻璃100上进行投影,可以使液晶模组30处于透明模式,从而使得建筑物玻璃透明;此 外,如果未在玻璃100上进行投影但建筑物内的人需要一定的隐私,可以使液晶模组30处于隐私模式,从而使得建筑物玻璃不透明;此外,如果利用投影仪在建筑物玻璃上进行了投影并且用户不希望建筑物外的人看到所投影的图像,可以使液晶模组30处于隐私模式,从而使得建筑物玻璃不透明;此外,如果利用投影仪在建筑物玻璃上进行了投影并且用户希望建筑物外的人看到所投影的图像,可以使液晶模组30处于透明模式,从而使得建筑物内外的人都能看到在建筑物玻璃上所投影的图像。
图20示出了根据本公开的一个实施例的制造玻璃的方法的流程图。如图20所示,方法200包括:在202,提供第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面;在204,将透明投影层设置在所述第一玻璃的靠近所述第二表面的一侧,所述透明投影层被配置为显示从投影仪接收的投影图像;以及在206,将液晶模组设置在所述第一玻璃与所述透明投影层之间,所述液晶模组被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
在一些实施例中,方法200还包括:提供第二玻璃,所述第二玻璃包括彼此相背的第三表面和第四表面,所述第三表面朝向所述第二表面;以及将所述液晶模组以及所述透明投影层设置在所述第二表面与所述第三表面之间。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其他普通技术人员能理解本文披露的各实施例。

Claims (18)

  1. 一种用于玻璃的液晶投影层,所述玻璃包括第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面,所述液晶投影层包括:
    透明投影层,设置在所述第一玻璃的靠近所述第二表面的一侧,并且被配置为显示从投影仪接收的投影图像;以及
    液晶模组,设置在所述第一玻璃与所述透明投影层之间,并且被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
  2. 根据权利要求1所述的液晶投影层,其中所述液晶模组包括:
    液晶层,包括液晶分子;
    第一配向层和第二配向层,分别设置在所述液晶层的相对两侧,并且被配置为预设所述液晶层中的所述液晶分子的偏转状态;
    第一透明电极层和第二透明电极层,分别相对于所述液晶层设置在所述第一配向层和所述第二配向层的外侧,并且被配置为在通电的情况下改变所述液晶层中的液晶分子的偏转状态,以使所述液晶模组在所述透明模式与所述隐私模式之间切换;
    第一透明基材和第二透明基材,分别相对于所述液晶层设置在所述第一透明电极层和所述第二透明电极层的外侧,并且被配置为分别承载所述第一透明电极层和所述第二透明电极层;以及
    第一偏光片和第二偏光片,分别相对于所述液晶层设置在所述第一透明基材和所述第二透明基材的外侧。
  3. 根据权利要求2所述的液晶投影层,其中所述第一偏光片与所述第二偏光片的偏光方向垂直,并且
    其中在所述第一透明电极层和所述第二透明电极层通电的情况下,所述液晶模组处于所述隐私模式,并且在所述第一透明电极层和所述第二透明电极层未通电的情况下,所述液晶模组处于所述透明模式。
  4. 根据权利要求2所述的液晶投影层,其中所述第一偏光片与所述第二偏光片的偏光方向平行,并且
    其中在所述第一透明电极层和所述第二透明电极层通电的情况下,所述液晶模组处于所述透明模式,并且在所述第一透明电极层和所述第二透明电极层未通电的情况下,所述液晶模组处于所述隐私模式。
  5. 一种玻璃,包括:
    根据权利要求1-4中任一项所述的液晶投影层;以及
    所述第一玻璃。
  6. 根据权利要求5所述的玻璃,还包括:
    柔性太阳能电池层,设置在所述第一玻璃与所述液晶模组之间,并且配置为在接受光照的情况下发电。
  7. 根据权利要求5所述的玻璃,还包括:
    红外阻挡层,设置在所述第一玻璃与所述液晶模组之间,并且被配置为阻止穿过所述第一玻璃的红外线朝向所述液晶模组传播。
  8. 根据权利要求5所述的玻璃,还包括:
    透明的低辐射层,设置在所述透明投影层的远离所述第一玻璃的一侧,并且具有对光的辐射率小于第一阈值的特性。
  9. 根据权利要求5至8中任一项所述的玻璃,其中所述透明投影层包括以下至少一项:
    透明显示膜,通过透明粘接层与所述液晶模组粘接在一起,并且被配置为显示所述投影图像;以及
    掺杂的透明粘接层,粘接至所述液晶模组的远离所述第一玻璃的一侧,并且被配置为显示所述投影图像。
  10. 根据权利要求5至8中任一项所述的玻璃,还包括:
    第二玻璃,与所述第一玻璃堆叠设置,并且包括彼此相背的第三表面和第四表面,所述第三表面朝向所述第二表面;
    其中,所述液晶模组和所述透明投影层设置在所述第一玻璃与所述第二玻璃之间。
  11. 根据权利要求10所述的玻璃,还包括:
    透明的低辐射层,被涂覆在所述第四表面上,并且具有对光的辐射率小于第一阈值的特性。
  12. 根据权利要求10所述的玻璃,其中所述透明投影层包括以下至少一项:
    掺杂的透明粘接层,将所述液晶模组粘接至所述第二玻璃,并且被配置为显示所述投影图像;以及
    透明显示层,设置在所述第三表面上,并且被配置为显示所述投影图像。
  13. 根据权利要求5至8和11至12中任一项所述的玻璃,其中所述玻璃为车辆用玻璃或建筑物用玻璃。
  14. 一种车辆,包括:
    根据权利要求1-4中任一项所述的液晶投影层;以及
    投影仪,被配置为朝向所述玻璃中的所述透明投影层提供投影图像。
  15. 一种车辆,包括:
    根据权利要求5-13中任一项所述的玻璃;以及
    投影仪,被配置为朝向所述玻璃中的所述透明投影层提供投影图像。
  16. 一种制造用于玻璃的液晶投影层的方法,所述玻璃包括第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面,所述方法包括:
    提供透明投影层,所述透明投影层设置在所述第一玻璃的靠近所述第二表面的一侧,并且被配置为显示从投影仪接收的投影图像;以及
    将液晶模组设置在所述第一玻璃与所述透明投影层之间,所述液晶模组被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
  17. 一种制造玻璃的方法,包括:
    提供第一玻璃,所述第一玻璃包括彼此相背的第一表面和第二表面;
    将透明投影层设置在所述第一玻璃的靠近所述第二表面的一侧,所述透明投影层被配置为显示从投影仪接收的投影图像;以及
    将液晶模组设置在所述第一玻璃与所述透明投影层之间,所述液晶模组被配置为能够在透明模式与隐私模式之间切换,其中在所述透明模式下,所述液晶模组允许在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送,并且在所述隐私模式下,所述液晶模组阻止在所述透明投影层上显示的投影图像朝向所述第一玻璃的传送。
  18. 根据权利要求17所述的方法,还包括:
    提供第二玻璃,所述第二玻璃包括彼此相背的第三表面和第四表面,所述第三表面朝向所述第二表面;以及
    将所述液晶模组以及所述透明投影层设置在所述第二表面与所述第三表面之间。
PCT/CN2021/134284 2020-12-02 2021-11-30 用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法 WO2022116958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/251,201 US20230403376A1 (en) 2020-12-02 2021-11-30 Liquid crystal projection layer for glass, glass, vehicle and method for manufacturing the glass
EP21899989.4A EP4258054A1 (en) 2020-12-02 2021-11-30 Liquid crystal projection layer for glass, glass, vehicle, and glass manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011399775.2 2020-12-02
CN202011399775.2A CN113820879A (zh) 2020-12-02 2020-12-02 用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法

Publications (1)

Publication Number Publication Date
WO2022116958A1 true WO2022116958A1 (zh) 2022-06-09

Family

ID=78924943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134284 WO2022116958A1 (zh) 2020-12-02 2021-11-30 用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法

Country Status (4)

Country Link
US (1) US20230403376A1 (zh)
EP (1) EP4258054A1 (zh)
CN (1) CN113820879A (zh)
WO (1) WO2022116958A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626976A (zh) * 2022-08-11 2023-08-22 法国圣戈班玻璃公司 车窗玻璃及车载投影系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887655B1 (ja) * 2006-06-09 2007-02-28 クオリティ株式会社 乗物用ウインドウガラスの調光制御装置
CN101038349A (zh) * 2005-12-26 2007-09-19 旭硝子株式会社 用于车辆的层压玻璃
EP2128688A1 (en) * 2008-05-31 2009-12-02 Saint-Gobain Glass France S.A. Electrically switchable privacy glass pane
CN104749870A (zh) * 2013-12-25 2015-07-01 常州亚玛顿股份有限公司 双面投影幕及包含彼的双面投影显示系统
CN106273881A (zh) * 2015-05-29 2017-01-04 法国圣戈班玻璃公司 低辐射玻璃及其制造方法、车窗
CN106353960A (zh) * 2016-10-18 2017-01-25 孙绪刚 一种基于eva胶膜的透明防紫外投影屏及制备方法
CN110647004A (zh) * 2018-06-11 2020-01-03 法国圣戈班玻璃公司 投影屏、车窗以及车辆的投影系统
CN211005145U (zh) * 2019-11-02 2020-07-14 山东金晶科技股份有限公司 一种汽车玻璃组合结构
CN211468136U (zh) * 2019-11-27 2020-09-11 信义汽车部件(芜湖)有限公司 汽车挡风玻璃
CN111660769A (zh) * 2020-05-29 2020-09-15 福耀玻璃工业集团股份有限公司 一种投影智能窗

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130053081A (ko) * 2011-11-15 2013-05-23 현대자동차주식회사 자동차용 태양전지 선루프
US20130127202A1 (en) * 2011-11-23 2013-05-23 Shandon Dee Hart Strengthened Glass and Glass Laminates Having Asymmetric Impact Resistance
CN103258881B (zh) * 2013-05-07 2015-11-11 宁波山迪光能技术有限公司 薄膜太阳能电池板及其制备方法
JP6037070B1 (ja) * 2016-02-22 2016-11-30 大日本印刷株式会社 調光セル
CN106507074A (zh) * 2016-10-26 2017-03-15 于欢 一种汽车投影系统及其投影方法
CN107526226B (zh) * 2017-07-25 2020-07-03 江苏繁华玻璃股份有限公司 一种组合型调光玻璃复合窗及其制备方法
CN109597225A (zh) * 2018-12-17 2019-04-09 深圳大学 便捷切换ar显示与vr显示的显示装置及染料掺杂胆固醇液晶制作方法
CN110933388A (zh) * 2019-10-25 2020-03-27 广汽蔚来新能源汽车科技有限公司 投影成像系统、方法、装置和车辆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038349A (zh) * 2005-12-26 2007-09-19 旭硝子株式会社 用于车辆的层压玻璃
JP3887655B1 (ja) * 2006-06-09 2007-02-28 クオリティ株式会社 乗物用ウインドウガラスの調光制御装置
EP2128688A1 (en) * 2008-05-31 2009-12-02 Saint-Gobain Glass France S.A. Electrically switchable privacy glass pane
CN104749870A (zh) * 2013-12-25 2015-07-01 常州亚玛顿股份有限公司 双面投影幕及包含彼的双面投影显示系统
CN106273881A (zh) * 2015-05-29 2017-01-04 法国圣戈班玻璃公司 低辐射玻璃及其制造方法、车窗
CN106353960A (zh) * 2016-10-18 2017-01-25 孙绪刚 一种基于eva胶膜的透明防紫外投影屏及制备方法
CN110647004A (zh) * 2018-06-11 2020-01-03 法国圣戈班玻璃公司 投影屏、车窗以及车辆的投影系统
CN211005145U (zh) * 2019-11-02 2020-07-14 山东金晶科技股份有限公司 一种汽车玻璃组合结构
CN211468136U (zh) * 2019-11-27 2020-09-11 信义汽车部件(芜湖)有限公司 汽车挡风玻璃
CN111660769A (zh) * 2020-05-29 2020-09-15 福耀玻璃工业集团股份有限公司 一种投影智能窗

Also Published As

Publication number Publication date
CN113820879A (zh) 2021-12-21
US20230403376A1 (en) 2023-12-14
EP4258054A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US10551620B2 (en) Heads up display system
JP6374508B2 (ja) スマートガラス構造体及び輸送機関用窓ガラス
US6671008B1 (en) Electro-optical glazing structures having scattering and transparent modes of operation and methods and apparatus for making the same
JP6297054B2 (ja) 切換可能な光学特性を備えた窓ガラス
US7009665B2 (en) Electro-optical glazing structures having scattering and transparent modes of operation and methods and apparatus for making the same
US11679649B2 (en) Multifunctional switchable film and constructions including such a film
CN109588053B (zh) 用于减小电晕效应的包含具有特定微滴尺寸分布的pdlc薄膜的车辆玻璃板
WO2021115246A1 (zh) 调光玻璃及玻璃模组
US11586066B2 (en) Switchable polarized displays
JP2004534282A (ja) 可変の光学的性質を有する電気制御可能なデバイス、又はホログラフィック、サーモトロピック若しくは懸濁粒子系
US20230013056A1 (en) Systems With Adjustable Windows
KR20110043595A (ko) 제어된 적외선 반사를 갖는 전기 변색 디바이스
JPH1073850A (ja) 可変光学特性をもつ装置
US10175519B2 (en) Mirror display having touch panel
WO2022116958A1 (zh) 用于玻璃的液晶投影层、玻璃、车辆以及制造玻璃的方法
US7356969B1 (en) Electronically shaded thin film transparent monochromatic liquid crystal display laminated window shading system
WO2020054286A1 (ja) ガラス、合わせガラス
US11624861B2 (en) Vehicular rearview assemblies having polarized displays using electro-optic element
JP2020030355A (ja) 調光装置およびその製造方法
JPH1138455A (ja) 可変光学特性をもつ装置
CN111356589A (zh) 包括具有可电控光学性能的功能元件且具有改进的光学外观的复合玻璃板
CN215642149U (zh) 调光玻璃及调光模组
CN111061080A (zh) 一种高透变光膜等离子体充惰性气体组合玻璃及使用方法
CN113219709A (zh) 调光玻璃及调光模组
CN115734874A (zh) 具有漫反射元件和电致变色功能元件的复合玻璃板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021899989

Country of ref document: EP

Effective date: 20230703