WO2022116773A1 - 一种油溶性缓蚀剂水剂及其制备方法和重生方法 - Google Patents

一种油溶性缓蚀剂水剂及其制备方法和重生方法 Download PDF

Info

Publication number
WO2022116773A1
WO2022116773A1 PCT/CN2021/128913 CN2021128913W WO2022116773A1 WO 2022116773 A1 WO2022116773 A1 WO 2022116773A1 CN 2021128913 W CN2021128913 W CN 2021128913W WO 2022116773 A1 WO2022116773 A1 WO 2022116773A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
corrosion inhibitor
preparation
water
temperature
Prior art date
Application number
PCT/CN2021/128913
Other languages
English (en)
French (fr)
Inventor
江晶晶
何益杉
黄丽华
曹军
闫静
陈文�
唐永帆
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to CA3196516A priority Critical patent/CA3196516A1/en
Publication of WO2022116773A1 publication Critical patent/WO2022116773A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Definitions

  • the invention relates to the technical field of corrosion inhibitors, in particular to an oil-soluble corrosion inhibitor water agent and a preparation method and regeneration method thereof.
  • Corrosion inhibitors are widely used in many industries as one of the important means to inhibit metal corrosion.
  • the pipeline transportation medium is mostly a mixture of oil, water and gas with strong corrosiveness.
  • organic corrosion inhibitors can be simply divided into water-soluble corrosion inhibitors and oil-soluble corrosion inhibitors.
  • water-soluble corrosion inhibitors have greater solubility in the water phase
  • oil-soluble corrosion inhibitors have greater solubility in the oil phase.
  • CN103450865A discloses an oil-soluble anti-hydrogen sulfide corrosion inhibitor, and the solvent used is kerosene
  • CN102747374A discloses an oil-soluble corrosion inhibitor and its preparation method and application, and the solvent used is C6-C10 aromatic hydrocarbons
  • CN102965149A discloses a preparation method of an oil-soluble corrosion inhibitor, and the solvent used is benzene, toluene or xylene
  • CN106336900A discloses an amide type high-efficiency oil-soluble high-temperature corrosion inhibitor, and the solvent used is toluene.
  • water-soluble corrosion inhibitors are usually used as corrosion protection for metal materials in water media, and are often used as corrosion inhibitors for continuous injection in the oil and gas field industry.
  • the oil-soluble corrosion inhibitor itself is difficult to dissolve and disperse in the water phase, but has relatively strong film-forming properties, and is usually only used as a pre-film (batch) corrosion inhibitor. This process is like brushing the metal surface first. A coat of paint.
  • oil-soluble corrosion inhibitors are also used for continuous injection. In the actual application process, continuous injection is to directly add the corrosion inhibitor into the pipeline. After the corrosion inhibitor is in contact with the gas field water, it dissolves and disperses and exerts its corrosion inhibition effect.
  • the oil-soluble corrosion inhibitor is used for continuous injection, it usually floats on the water surface or is suspended in the water in the form of large oil droplets, and it is difficult to quickly achieve the effect of uniform dispersion in the water body, which is not conducive to the corrosion inhibitor.
  • the rapid completion of the process of migration of molecules from the water phase and adsorption to the metal surface causes the metal surface to fail to adsorb the corrosion inhibitor in time and there is a "blank period", which may affect the corrosion inhibitor's anti-corrosion effect on the metal material.
  • oil-soluble corrosion inhibitor is one of the commonly used corrosion inhibitors, because of its good film formation and long film durability, once it is adsorbed on the metal surface, it tends to have better corrosion resistance than water-soluble corrosion inhibitors. protective effect. That is to say, in terms of the mechanism of corrosion inhibitor action, the decisive step that affects the effect of oil-soluble corrosion inhibitor is usually the migration and adsorption process of corrosion inhibitor molecules. Scheme of corrosion inhibitor dispersed in water.
  • oil-soluble corrosion inhibitors may involve risks of harming the environment during storage and transportation.
  • chemical plastic barrels are usually used to contain the corrosion inhibitor.
  • the packaged plastic barrels are difficult to clean due to the adhesion of solvent oil and become difficult to handle. Hazardous wastes bring safety to the enterprise. Environmental and economic pressures. When using water solution, the cleaning and recycling of packaging barrels also become much easier.
  • the water agent can be pre-prepared into a concentrated liquid with a higher concentration, and then according to the actual situation of the operation site, it is more convenient to choose general water for dilution, because water is a convenient and easily available raw material .
  • water there is a risk of on-site dilution, and compared with water, it is relatively inconvenient to obtain solvent oil on-site.
  • CN106047328A discloses a nano-emulsion corrosion inhibitor containing imidazoline-based ionic liquid and its preparation method, it applies the principle of emulsion dispersion, but its method is not universal, and does not have the method of preparing oil-soluble corrosion inhibitor into water special functions of the agent. Therefore, there is still an urgent need to prepare oil-soluble corrosion inhibitors into water agents.
  • the purpose of the present invention is to provide a preparation method of an oil-soluble corrosion inhibitor aqueous solution, and the oil-soluble corrosion inhibitor aqueous solution prepared by the preparation method can quickly and directly disperse the oil-soluble corrosion inhibitor. In the water.
  • Another object of the present invention is to provide the oil-soluble corrosion inhibitor water preparation prepared by the above preparation method.
  • Still another object of the present invention is to provide a method for regenerating the above-mentioned oil-soluble corrosion inhibitor aqueous solution.
  • the present invention provides a preparation method of an oil-soluble corrosion inhibitor aqueous agent, the preparation method comprising the following steps: (1) obtaining the electrical conductivity of the oil-soluble corrosion inhibitor aqueous agent and reducing it to no The temperature T is higher than 100 ⁇ s/cm; (2) water is gradually added dropwise to the corrosion inhibitor stock solution obtained by mixing the oil-soluble corrosion inhibitor and the solvent oil uniformly to obtain a reversed-phase micelle solution A, and then the described The corrosion inhibitor reversed micelle solution A is heated to a temperature above the temperature T and maintained at this temperature; (3) the nonionic surfactant, anionic surfactant and water are mixed uniformly to obtain a mixed solution B, and the mixed solution B is mixed Be warmed up to the temperature above the temperature T and maintain the temperature; (4) mix the reversed-phase micelle solution A and the mixed solution B evenly and keep the temperature above the temperature T and stir for no more than 2 minutes. Immediately lower the temperature , that is, oil-soluble corrosion inhibitor water.
  • the temperature T is determined by including the following methods: mixing all raw materials uniformly according to the formula components of the oil-soluble corrosion inhibitor water agent in advance to obtain a mixed solution C. Gradually heat up the mixed solution C and detect the trend of the conductivity of the mixed solution C changing with temperature during the heating process. As the temperature increases, the conductivity value changes from increasing to decreasing and continues to decrease to no Above 100 ⁇ s/cm, the corresponding temperature when the recorded conductivity decreases to not higher than 100 ⁇ s/cm is the temperature T.
  • the raw material of the oil-soluble corrosion inhibitor water agent includes the following components in parts by weight: 0.5-1.5 parts of oil-soluble corrosion inhibitor, 2-10 parts of solvent oil, nonionic surfactant 2-6 parts, 0.01-0.2 parts of anionic surfactant, 5-20 parts of water.
  • the whole process needs to keep stirring, and the stirring condition is preferably 50-600 rpm, as long as the materials can be mixed evenly, and the higher the Conditional stirring methods are also possible, but are not recommended from the point of view of energy consumption.
  • the control speed is 50-200rpm.
  • the method for preparing the oil-soluble corrosion inhibitor into a water agent of the present invention is relatively simple, and can be prepared by changing the temperature under the condition of slow stirring without high-intensity stirring.
  • the above-mentioned temperature T is a key temperature in the preparation process of the oil-soluble corrosion inhibitor water agent.
  • the conductivity value of the above-mentioned mixed solution C usually increases gradually with the increase of the temperature.
  • the temperature exceeds a certain value usually The temperature is between 30-80 °C, different types of surfactants will have certain differences
  • the conductivity value will quickly decrease to below 100 ⁇ s/cm, when the conductivity is reduced to 100 ⁇ s/cm
  • the temperature T is the best The heating temperature T, theoretically speaking, the temperature T in the steps (2)-(4) in the process of preparing the oil-soluble corrosion inhibitor water agent can be replaced by a temperature greater than T, but from the perspective of energy saving,
  • the temperature T can be used. In the case of the same formula composition, the determination of the temperature T only needs to be done once. The subsequent batch preparation still needs to raise the temperature to the temperature T.
  • the oil-soluble corrosion inhibitor accounts for 0.01-20%, preferably 10%, of the corrosion inhibitor stock solution.
  • the way to mix the oil-soluble corrosion inhibitor with the mineral spirits evenly includes stirring.
  • the oil-soluble corrosion inhibitor is selected from hydrocarbon or ester solvent-dissolved and dispersed corrosion inhibitors, preferably CT2-19.
  • the mineral oil is selected from polar or non-polar oils, such as gas-to-oil, paraffin oil, diesel oil, peanut oil, rapeseed oil, isopropyl myristate, capric alkane or octane, etc., preferably one selected from hydrocarbon mineral oil and ester vegetable oil.
  • polar or non-polar oils such as gas-to-oil, paraffin oil, diesel oil, peanut oil, rapeseed oil, isopropyl myristate, capric alkane or octane, etc.
  • oil-soluble corrosion inhibitors need to be dissolved in solvent oil when used, so they are usually mixed with solvent oil in the production and sales stage. In this case, there is no need to prepare corrosion inhibitor stock solution in advance and directly Just add water dropwise.
  • the oil-soluble corrosion inhibitor can be selected according to the actual situation, without any specific limitation, this type of corrosion inhibitor can usually be easily dissolved and dispersed in the oil substance, and in most cases it is a uniform and transparent phase, And this type of corrosion inhibitor is usually difficult to dissolve and disperse in the water phase. When added to the water phase, it usually floats or is suspended in the water phase. If the amount is too large, oil droplets will be formed on the water surface.
  • the oil-soluble corrosion inhibitor preferably adopts hydrocarbons.
  • a corrosion inhibitor dissolved and dispersed in an ester solvent such as CT2-19 corrosion inhibitor from the Natural Gas Research Institute of PetroChina Southwest Oil and Gas Field Branch.
  • CT2-19 corrosion inhibitor from the Natural Gas Research Institute of PetroChina Southwest Oil and Gas Field Branch.
  • the effect of dissolving and dispersing the oil-soluble corrosion inhibitor in the oil-soluble corrosion inhibitor is used as the selection basis. After the oil-soluble corrosion inhibitor and the solvent oil are stirred evenly, it is better to have no precipitation and suspended matter under standing conditions, usually as Homogeneous and transparent solution.
  • the preparation method of the reversed-phase micellar solution A specifically includes: gradually adding water (the rate of the dripping water) to the corrosion inhibitor stock solution under the stirring condition of 50-200 rpm. not more than 1 ml/min), and continued stirring for 24 hours to obtain reversed-phase micellar solution A.
  • water the rate of the dripping water
  • the water added dropwise into the oil-soluble corrosion inhibitor cannot achieve solubilization or the amount of solubilization is very small, and the water and oil stratification is obvious.
  • a small amount of carbon number of C4-C12 needs to be added.
  • the carbon alcohol such as n-octanol, is used to achieve water solubilization and promote the formation of reversed micelles, wherein the amount of carbon alcohol does not exceed the amount of water added here.
  • the amount of water in the reversed micelle solution in the above step (2) needs to be determined by experiments, and it is necessary to ensure that the water added to the corrosion inhibitor stock solution is completely solubilized, specifically, according to the steps of step (2), in the corrosion inhibitor After a certain amount of water is solubilized in the stock solution, there may be residual water that is not effectively solubilized in the system, which needs to be removed.
  • the above system can be centrifuged under a high-speed centrifuge for 10 minutes to obtain a reversed-phase micellar solution. A; instead of centrifugation, the system can be left standing for a long time (24 hours) to achieve the effect of removing the residual water that is not effectively solubilized.
  • the amount of effectively solubilized water is directly used as the The amount of water added in step (2), that is, in the experimental stage, not only the amount of water added dropwise into the corrosion inhibitor stock solution needs to be recorded, but also the residual ineffective solubilization removed by centrifugation or standing for a long time.
  • the amount of water can be assisted to determine the amount of water in this step (2).
  • the mass of the dropwise added water accounts for 0.01-2% of the mass of the reversed-phase micellar liquid A.
  • the mass ratio of the total mass of the nonionic surfactant and the anionic surfactant to the reversed-phase micelle liquid A is 1:(5-1) .
  • the mass ratio of the nonionic surfactant to the anionic surfactant is (1000-10):1.
  • the nonionic surfactant is selected from temperature-sensitive surfactants containing polyoxyethylene structure in molecular structure and temperature-sensitive surfactants containing polyol ester structure in molecular structure one or a combination of both.
  • alkylphenol polyoxyethylene ether series such as nonylphenol polyoxyethylene (9.7) ether
  • CE series such as C12E4, C12E10
  • Span such as Span80
  • Tween such as Tween80
  • One of them can be selected as a combination of more than one.
  • the requirement is that after the oil phase and the water phase are mixed, the conductivity of the mixed system can have a sudden and sharp drop at a certain temperature.
  • two surfactants with different lipophilic and hydrophilic balance values are needed to achieve this. best effect.
  • temperature-sensitive nonionic surfactants is based on the law that the degree of hydration of its hydrophilic groups is affected by temperature. Generally, the higher the temperature, the lower the degree of hydration, and the lower the hydrophilicity. From the perspective of the whole ternary system of nonionic surfactant-water-oil (the oil here is actually reversed micellar liquid), temperature changes will cause changes in the phase state of the system. When the whole system is raised to a specific temperature range, the system will become a bicontinuous microemulsion phase or a liquid crystal phase. At this time, the hydrophilicity and lipophilicity of the nonionic surfactant reach a balance. Rapid cooling will form an extremely stable oil-in-water nanoemulsion system, and the oil-soluble corrosion inhibitor is stably encapsulated in the oil-phase core due to the formation of reversed-phase micelles.
  • the anionic surfactant is selected from monovalent fatty acid salts with a carbon chain length of C8-18. Its function is to increase the pH response function of the entire system, because the general application scenario of corrosion inhibitors is acid gas field water, that is, the lower the pH value, the stronger the acidity, and it happens that sodium oleate will be converted into oleic acid at a low pH value. , so that when the corrosion inhibitor system encounters an acidic medium, the highly water-soluble sodium oleic acid in it is converted into a poorly water-soluble oleic acid, which destroys the stability of the entire water agent system, which can accelerate the The rapid release of the active ingredient of the corrosion inhibitor in the whole water system. That is to say, the more acidic the corrosive medium the final water agent system encounters, the faster its active ingredients will be released.
  • the fatty acid salt is selected from sodium oleate.
  • nonionic surfactant is a mixture of sorbitan fatty acid ester and sorbitan monooleate polyoxyethylene ether, and the weight ratio of the two is 37:63
  • anionic surfactant is sodium cocoate.
  • the mass percentage of water contained in the finally prepared oil-soluble corrosion inhibitor aqueous formulation is 30%-90%, preferably 40%-80%, and more preferably 50%-70%. %.
  • the cooling rate is greater than or equal to 10°C/min.
  • any method that can rapidly cool the system can be adopted, and specific means include, but are not limited to, performing an ice-water bath on the system.
  • the obtained mixed system can also be poured into low-temperature water whose temperature has been controlled in advance. The lower the temperature of the low-temperature water, the better, and the amount of water here can be adjusted as required.
  • the water agent system has other effects, keep stirring, and complete the rapid cooling.
  • the present invention also provides the oil-soluble corrosion inhibitor water preparation prepared by the above preparation method.
  • the oil-soluble corrosion inhibitor aqueous agent prepared by the above preparation method is an aqueous agent system with a reverse micelle/oil/water type multiple emulsion structure, which can be understood as being composed of a thermodynamically stable inner core and a kinetically stable outer shell.
  • the oil-soluble corrosion inhibitor aqueous system prepared by the above preparation method has a (reverse micelle/oil/water) type multiple emulsion structure, which is a special dual structure.
  • the inverse part of the system is a thermodynamically stable system, which is formed spontaneously, and the system will not destabilize over time, which is helpful for the stable existence of the corrosion inhibitor in the oil phase.
  • the (oil/water) emulsion part of the system is a thermodynamically unstable system, and theoretically, it will inevitably appear unstable over time.
  • the oil-soluble corrosion inhibitor is highly dispersed in the droplet core. , it can also form a film on the metal surface better in water. It has extremely significant dynamic stability characteristics, and the droplet size is extremely small. Usually, there will be no instability phenomenon after standing for more than half a year, that is, there will be no phenomena such as delamination and floating.
  • the color of the water product of the oil-soluble corrosion inhibitor prepared by the above preparation method may have a great relationship with the color of the corrosion inhibitor itself, which is generally transparent or translucent, but generally has a light blue phenomenon after dilution with water.
  • the oil-soluble corrosion inhibitor water agent can be directly added to the required water body medium, and it can be quickly dispersed in the water body.
  • the oil-soluble corrosion inhibitor water agent can also be used after being diluted with water in any proportion in advance according to the actual situation.
  • the present invention also provides a method for regenerating the above-mentioned oil-soluble corrosion inhibitor aqueous solution, wherein the regeneration method includes the following steps: when the oil-soluble corrosion inhibitor aqueous solution is destabilized, regenerate the oil-soluble corrosion inhibitor solution The water agent is heated to the temperature T and kept for 1-10 minutes, and then the water agent of the oil-soluble corrosion inhibitor is rapidly cooled down to obtain the regenerated water agent of the oil-soluble corrosion inhibitor.
  • cooling rate is greater than or equal to 10°C/min.
  • the oil-soluble corrosion inhibitor water agent prepared by the preparation method of the present invention is usually translucent to transparent, and after dilution with water, it is light blue to milky white, and the water agent can be directly added to the required water medium during use. , which can quickly disperse in water.
  • the water agent can also be diluted with any proportion of water before use according to the actual situation.
  • the water preparation prepared by the preparation method of the present invention has a reverse micelle/oil/water type nanoemulsion structure, the particle size of the emulsion is less than 300 nm, and the oil-soluble corrosion inhibitor is highly dispersed in the droplet core. , in the water agent, it can also form a film on the metal surface better. In addition, due to the extremely small size of the droplets, delamination and floating will not occur after being placed at room temperature for several months.
  • the preparation method of the oil-soluble corrosion inhibitor water agent of the present invention is relatively simple, and it can be prepared by changing the temperature under the condition of slow stirring without high-intensity stirring.
  • Fig. 1 is the relation diagram of electrical conductivity with temperature in the preparation process of the oil-soluble corrosion inhibitor water agent of Example 1 of the present invention
  • Fig. 2 is the particle size distribution diagram of the oil-soluble corrosion inhibitor water preparation prepared in Example 1 of the present invention
  • Figure 3A is the coupled multi-electrode test evaluation of Example 5 of the present invention: the L360 tow electrode epitope potential distribution at 0 min under blank conditions;
  • Fig. 3B is the coupled multi-electrode test evaluation of Example 5 of the present invention: the distribution of the epitope potential of the L360 tow electrode under blank conditions for 30 min;
  • Figure 4A is the coupled multi-electrode test evaluation of Example 5 of the present invention: the L360 tow electrode epitope distribution diagram at 0min at a concentration of 50ppm corrosion inhibitor;
  • Example 4B is the coupled multi-electrode test evaluation of Example 5 of the present invention: the L360 tow electrode epitope distribution diagram at 50 ppm corrosion inhibitor concentration for 30 min;
  • Example 5A is a test evaluation of the coupled multi-electrode in Example 5 of the present invention: a blank control diagram of the tow electrode after soaking for 30 min under blank conditions;
  • Example 5B is the coupled multi-electrode test evaluation of Example 5 of the present invention: the appearance of the tow electrode after immersion in 50 ppm corrosion inhibitor for 30 min;
  • FIG. 6 is a relationship curve between the corrosion inhibition rate of the aqueous corrosion inhibitor and the number of cycles of instability-regeneration according to Example 8 of the present invention.
  • the present embodiment provides a preparation method of an oil-soluble corrosion inhibitor aqueous agent, and the specific steps are as follows:
  • a water preparation prepared from oil-soluble corrosion inhibitor sulfur-containing imidazoline derivatives (that is, oil-soluble corrosion inhibitor water preparation), which comprises the following raw materials in parts by weight: 1 part of oil-soluble corrosion inhibitor, 0# 4 parts of diesel oil, 2.5 parts of nonionic surfactant, 0.025 part of anionic surfactant, and 17.5 parts of water.
  • the oil-soluble corrosion inhibitor is the corrosion inhibitor CT2-19 independently developed by the Natural Gas Research Institute of PetroChina Southwest Oil and Gas Field Branch
  • the non-ionic surfactant is sorbitan fatty acid ester and sorbitan mono-oil
  • the mixture of ester polyoxyethylene ether, the weight ratio of the two is 37:63
  • the anionic surfactant is selected as sodium oleate.
  • the conductivity change trend chart shows that when the temperature rises to 55°C, the conductivity decreases rapidly, at 60°C, the conductivity rises, and continues to decrease at 62°C.
  • the temperature rises to 67°C the conductivity decreases to 100 ⁇ s. /cm or less, therefore, the temperature T was set to 67°C.
  • CT2-19 consists of the main agent and solvent oil.
  • the main agent is a sulfur-containing imidazoline derivative with a concentration of 10wt% and a sulfur-containing
  • the solvent oil is 0# diesel oil, and the mixture is uniformly stirred. Under the condition that the stirring speed is 200rpm, 0.2g of water was gradually added dropwise to the corrosion inhibitor stock solution composed of sulfur-containing imidazoline derivatives and 0# diesel oil, and the stirring was continued for 24 hours to obtain reversed-phase micelle solution A. , and then the reversed-phase micellar solution A was heated to 67 °C and maintained.
  • the color of the corrosion inhibitor water preparation prepared in Example 1 is light blue. When it is dropped into the water, it can be observed that it is rapidly and uniformly dispersed in the water, so that it can be adapted to various filling methods.
  • the corrosion inhibitor CT2-19 as it is dropped into the water will float on the water surface like oil beads, and the dispersion is slow, which will lead to the oil slick state during impact filling.
  • solubility is positively correlated with temperature, that is, the lower the temperature, the lower the solubility, which may lead to unstable phenomena such as stratification and precipitation of some oil-soluble corrosion inhibitors stored in a low temperature environment in winter.
  • the water preparation prepared by the method provided in the embodiment of the present invention has extremely high stability, and the stability of the water preparation is negatively correlated with temperature, that is, the lower the temperature, the higher the stability, and the instability such as delamination and precipitation is not easy to occur. Phenomenon.
  • Table 1 shows that It can be seen that under neutral conditions, the stability of the water preparation prepared in this example is extremely high, and under acid regulation, the stability of the water preparation system will be destroyed, mainly because when the water preparation encounters an acidic medium, wherein The highly water-soluble sodium oleate will be converted into less water-soluble oleic acid, which will destroy the stability of the entire water agent system, thereby accelerating the rapid release of the active ingredients of the corrosion inhibitor in the entire water agent system. .
  • the water preparation prepared in this example was placed in minus 10°C and frozen for 2 hours. After natural thawing, no unstable phenomena such as delamination were found in the water preparation, and it had better freeze-thaw stability;
  • the aqueous solution was placed in the centrifuge, the centrifuge speed was set to 3000rpm, and the centrifuge was centrifuged for 30 minutes. No emulsion stratification was observed, and it had excellent mechanical stability.
  • the continuous phase of the oil-soluble corrosion inhibitor is solvent oil, which has a low flash point, so that the product of the corrosion inhibitor is generally close to the flash point of solvent oil.
  • the flash point of the corrosion agent CT2-19 is 60°C, which is close to the temperature of the surface gathering and transportation system of the oil and gas field.
  • the continuous phase of the water agent obtained by the preparation method of the present invention is water, the flash point is high, and the test reaches 90°C without flashing, far exceeding the temperature of the ground gathering and transportation system, so that the water agent has more obvious advantages in field application.
  • the average particle size of the sulfur-containing imidazoline derivative aqueous agent obtained in the embodiment of the present invention is measured by a Malvern laser particle sizer, and its particle size distribution is shown in Figure 2. It can be seen that the particle size in the aqueous agent is less than 300 nm, and most of the particles are The diameter distribution is between 140-210nm.
  • the present embodiment provides a preparation method of an oil-soluble corrosion inhibitor aqueous agent, and the specific steps are as follows:
  • a water preparation prepared from oil-soluble corrosion inhibitor quinoline (that is, oil-soluble corrosion inhibitor water preparation), which comprises the following raw materials in parts by weight: 1 part of oil-soluble corrosion inhibitor (quinoline), liquid paraffin 4 parts of oil, 2.5 parts of nonionic surfactant, 0.025 part of anionic surfactant, and 7.5 parts of water.
  • the nonionic surfactant is coco-polyoxyethylene (4) ether
  • the anionic surfactant is sodium palmitate.
  • mixed solution C mix all raw materials uniformly according to the above-mentioned formula components to obtain mixed solution C, gradually heat up the above-mentioned mixed solution under the condition that the stirring speed is 100 rpm, and use a conductivity meter to monitor the conductivity value of the mixed solution with temperature during the heating process.
  • the temperature rises to 40°C the conductivity decreases rapidly, and when the temperature rises to 50°C, the conductivity decreases to less than 100 ⁇ s/cm. Therefore, 50°C is taken as the temperature T.
  • nonionic surfactant 10g nonionic surfactant, 0.1g anionic surfactant and 29.8g water are mixed, mixed solution B is obtained, and mixed solution B is heated to 50 °C and keeps, wherein nonionic surfactant is coconut oil-based polyoxyethylene (4) ether, the anionic surfactant is selected as sodium palmitate.
  • the water preparation prepared in this example was placed in minus 10°C and frozen for 2 hours. After natural thawing, no unstable phenomena such as delamination were found in the water preparation, and it had better freeze-thaw stability;
  • the aqueous solution was placed in the centrifuge, the centrifuge speed was set to 3000rpm, and the centrifuge was centrifuged for 30 minutes. No emulsion stratification was observed, and it had excellent mechanical stability.
  • the present embodiment provides a preparation method of an oil-soluble corrosion inhibitor aqueous agent, and the specific steps are as follows:
  • a kind of water agent (that is, oil-soluble corrosion inhibitor water agent) prepared from oil-soluble corrosion inhibitor rosin imidazoline quaternary ammonium salt, it comprises the raw material of following parts by weight: oil-soluble corrosion inhibitor (rosin imidazoline quaternary ammonium salt) ammonium salt) 1 part, 9 parts of 5# diesel oil, 5 parts of nonionic surfactant, 0.1 part of anionic surfactant, and 20 parts of water.
  • the nonionic surfactant is a mixture of sorbitan fatty acid ester and sorbitan monooleate polyoxyethylene ether, the weight ratio of the two is 37:63, and the anionic surfactant is selected as coconut oil sodium.
  • the preparation method of rosin imidazoline quaternary ammonium salt refers to the invention patent of CN108727268A published by Natural Gas Research Institute of PetroChina Southwest Oil and Gas Field Branch the content of Example 1. Under the condition of low-speed stirring, 0.2 g of water was gradually added dropwise to the corrosion inhibitor stock solution, and the stirring was continued for 24 hours to obtain reversed-phase micelle solution A, and then the reversed-phase micelle solution was heated to 80 °C and kept for 24 hours. .
  • Agent Rosin imidazoline quaternary ammonium saline agent Rosin imidazoline quaternary ammonium saline agent.
  • the color of the aqueous corrosion inhibitor prepared in this example is light blue.
  • the water preparation prepared in this example was placed in minus 10°C and frozen for 2 hours. After natural thawing, no unstable phenomena such as delamination were found in the water preparation, and it had better freeze-thaw stability;
  • the aqueous solution was placed in the centrifuge, the centrifuge speed was set to 3000rpm, and the centrifuge was centrifuged for 30 minutes. No emulsion stratification was observed, and it had excellent mechanical stability.
  • the present embodiment provides a preparation method of an oil-soluble corrosion inhibitor aqueous agent, and the specific steps are as follows:
  • Corrosion rate evaluation was carried out on the corrosion inhibitor water preparation prepared in Example 1 by weight loss method.
  • Test conditions 80° C., 5.0 wt% NaCl aqueous solution (deoxygenated), H 2 S: 1000 ppm, CO 2 : 240 ppm, oxygen-free environment.
  • TP110S which is a commonly used material in oil and gas fields.
  • Dosage instructions The filling concentration of the original CT2-19 oil-soluble corrosion inhibitor is calculated according to the product (sulfur-containing imidazoline derivatives, solvent oil), and the filling concentration of the prepared water agent is also calculated according to the product (sulfur-containing imidazoline derivatives, Mineral oil, water, surfactant) calculation. Therefore, under the same dosage, the effective concentration of the water agent is equivalent to 20% of the original CT2-19.
  • the experimental method is carried out with reference to the standard JB/T7901-2001 metal material laboratory uniform corrosion full immersion test method.
  • the corrosion rate was calculated by calculating the weight loss before and after the test, and then the corrosion inhibition rate was calculated by comparing with the blank condition.
  • the test data are shown in Table 2.
  • This embodiment provides a coupled multi-electrode test evaluation test, and the specific operations are as follows:
  • the coupled multi-electrode test and evaluation were carried out on the corrosion inhibitor water agent prepared in Example 1.
  • the evaluation conditions were the same as those in Example 4, and the potential distributions under blank conditions and 50 mg/L water preparation conditions were measured respectively.
  • Figure 3A and Figure 3B show the distribution of the epitope potential of the L360 tow electrode at 0 min and 30 min of equilibrium under blank conditions, in which Figure 3A shows the distribution of the epitope potential of the L360 tow electrode at 0 min of equilibrium, and Figure 3B is the equilibrium The distribution of the epitope potential of the L360 tow electrode at 30min. It can be seen from FIG. 3A and FIG. 3B that with the extension of time, the overall potential of the electrode surface increases slightly, which indicates that a layer of corrosion products has been formed on the metal surface.
  • Figure 4A and Figure 4B show the electrode surface potential distribution when the addition amount of the corrosion inhibitor water is 50 mg/L.
  • Figure 4A shows the distribution of the epitope potential of the L360 tow electrode at 0 min of equilibrium
  • Figure 4B shows the distribution of the epitope potential of the L360 tow electrode at 30 min of equilibrium. It can be found that the potential distribution is still relatively uniform after adding the corrosion inhibitor water.
  • the comparison at the same time shows that the potential of the metal surface increases slightly after the corrosion inhibitor is added, which indicates that the adsorption of the corrosion inhibitor makes the metal thermodynamically corroded. The tendency is reduced, and the metal surface potential does not appear to have a minimum value, indicating that the corrosion inhibitor is uniformly adsorbed on the metal surface.
  • Figures 5A and 5B show the appearance of the tow electrode after the test.
  • Figure 5A is the tow electrode under blank conditions
  • Figure 5B is the tow electrode under the condition of 50 mg/L water solution. It can be clearly seen that without adding When the corrosion inhibitor is used, after the test, the electrode surface is covered with a black corrosion product film, and after adding the corrosion inhibitor, the metal is immersed in the corrosion solution for 30 minutes, showing a uniform and bright appearance. This shows that the new corrosion inhibitor can form a layer of adsorption film on the metal surface, which inhibits the electrochemical process of corrosion to a large extent.
  • this embodiment is set to evaluate it:
  • PE polyethylene
  • test piece Immerse the test piece in the oil-soluble corrosion inhibitor and its water agent.
  • the adhering amount should not fall off after hanging for 60s, then place it in a glassware and weigh it as m 2 , and further add water to the glassware and keep it at room temperature. After soaking for 10 min, the glassware was shaken on a rotary shaker for 5 min.
  • Example 3 For the CT2-19 original agent (sulfur-containing imidazoline derivative+solvent oil) adopted in Example 1, the CT2-19 water preparation prepared in Example 1, the rosin imidazoline quaternary ammonium salt adopted in Example 3 and The rosin imidazoline quaternary ammonium salt solution prepared in Example 1 was tested for cleaning efficiency, and the test results are shown in Table 3.
  • the indoor pass test device (the experimental device is recorded in the invention patent application with the application number of 202010708891.1, the full text of the invention patent application is incorporated herein by reference) for different types of corrosion inhibitors.
  • the dispersion rate was tested.
  • the test device consists of a section of simulated pipeline with an upstream corrosion inhibitor filling port and a downstream corrosion inhibitor concentration monitor.
  • Test method load a certain amount of simulated solution (corrosion medium) into the pipeline, weigh a certain amount of corrosion inhibitor in advance (the specific amount is usually calculated according to the final concentration added to the simulated solution, in this example, 10L of the solution is loaded into the pipeline,
  • the effective concentration of the corrosion inhibitor is calculated according to 200mg/L, the amount of the corrosion inhibitor that should be weighed is 2g), add 2g of the corrosion inhibitor at one time to the upstream filling port, and record the initial time; at the same time, the downstream concentration monitoring
  • the device begins to analyze and record the concentration of the corrosion inhibitor (draw the curve of the concentration changing with time). When the concentration monitoring device records that the concentration of the corrosion inhibitor is 200 mg/L, the equilibrium time is recorded.
  • the difference between the equilibrium time and the initial time is the dispersion time of the corrosion inhibitor, which is recorded as t.
  • the size of the t value indirectly reflects the dispersion speed of the corrosion inhibitor in the solution medium.
  • Oil-soluble corrosion inhibitor as is, t/s Water agent, t/s quinoline 324 56 CT2-19 275 63 Rosin imidazoline quaternary ammonium salt 378 72
  • water agent of the oil-soluble corrosion inhibitor provided by the present invention and other components and operations of the preparation method thereof are known to those of ordinary skill in the art, and the unmentioned operations, steps, parameters and The working principle can be known to those of ordinary skill in the art without any creative effort.
  • Those skilled in the art can refer to the related products and their preparation processes in the prior art, which will not be described in detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明提供了一种油溶性缓蚀剂水剂及其制备方法和重生方法。该制备方法包括如下步骤:(1)获取所述油溶性缓蚀剂水剂电导率降低至不高于100μs/cm时的温度T;(2)向由油溶性缓蚀剂与溶剂油混合均匀得到的缓蚀剂储备液中逐渐滴加水,制得反相胶束液A,然后将所述缓蚀剂反相胶束液A升温至温度T并维持该温度;(3)将非离子表面活性剂、阴离子表面活性剂与水混合均匀得到混合液B,将所述混合液B升温至温度T并维持该温度;(4)将所述反相胶束液A和所述混合液B混合均匀并保持在所述温度T下搅拌不超过2分钟后立即降温,即得油溶性缓蚀剂水剂。通过该方法制得的油溶性缓蚀剂水剂制备简单,应用简便,稳定性高。

Description

一种油溶性缓蚀剂水剂及其制备方法和重生方法 技术领域
本发明涉及缓蚀剂技术领域,具体涉及一种油溶性缓蚀剂水剂及其制备方法和重生方法。
背景技术
缓蚀剂作为抑制金属腐蚀的重要手段之一在诸多行业中有着广泛的应用。特别是油气田集输领域,管道输送介质多为腐蚀性较强的油、水、气等混合物。按照溶解性的差别,可将有机类缓蚀剂简单区分为水溶性缓蚀剂、油溶性缓蚀剂。顾名思义,水溶性缓蚀剂在水相中有着较大的溶解度,油溶性缓蚀剂在油相中有着较大的溶解度。
例如CN103450865A公开了一种油溶性抗硫化氢缓蚀剂,其采用的溶剂为煤油;CN102747374A公开了一种油溶性缓蚀剂及其制备方法和应用,其采用的溶剂为C6-C10的芳烃;CN102965149A公开了一种油溶性缓蚀剂的制备方法,其采用的溶剂为苯、甲苯或二甲苯;CN106336900A公开了一种酰胺型高效油溶性高温缓蚀剂,其采用的溶剂为甲苯。
在实际应用过程中,水溶性缓蚀剂通常用作水体介质中金属材料的腐蚀防护,在油气田行业中经常用作连续加注用的缓蚀剂。而油溶性缓蚀剂自身因为难以在水相中溶解分散,但又具有相对较强的成膜性,通常仅用作预膜(批处理)缓蚀剂,这个过程就好比在金属表面先刷一层油漆。但是,某些特殊情况下,油溶性缓蚀剂也会用于连续加注。在实际应用过程中,连续加注是直接将缓蚀剂加入到管道中,缓蚀剂与气田水接触后,溶解分散并发挥其缓蚀作用。此时,若将油溶性缓蚀剂用于连续加注,其通常呈大油珠状态漂浮于水面或悬浮于水中,很难快速达到在水体中均匀分散的效果,也就不利于缓蚀剂分子由水相迁移并吸附到金属表面的过程的快速完成,这就造成金属表面未能及时吸附缓蚀剂而存在“空窗期”,进而可能影响缓蚀剂对金属材料的防腐效果。
而实际上,油溶性缓蚀剂作为常用的缓蚀剂种类之一,因其成膜性好,膜持久性长,其一旦吸附到金属表面往往将具有较水溶性缓蚀剂更好的腐蚀防护效果。也就是说,从缓蚀剂作用机理上来讲影响油溶性缓蚀剂效果发挥的决定步骤通常为缓蚀剂分子的迁移和吸附过程,但现有技术中还不具备快速、直接将油溶性的缓蚀剂分散在水中的方案。
另一方面,从环保角度来看,油溶性缓蚀剂在存储运输过程中可能涉及危害环境的风险。如实际应用过程中,通常使用化工塑料桶盛装缓蚀剂,当缓蚀剂用完后,包装的塑料桶因为粘附有溶剂油难以清洗而成了难以处理的危险废物,给企业带来安全环保及 经济压力。而使用水剂的话,包装桶的清洗处理及回收也变得容易的多。
此外,从现场使用方便程度来看,水剂可以预先制备成浓度较高的浓缩液,然后根据作业现场实际情况,选择一般的水进行稀释即可,较为方便,因为水是方便易得的原料。而油剂的话,现场稀释存在风险,而且相对于水来说,溶剂油的现场获得相对来说要较为不便。CN106047328A虽然公开了一种含咪唑啉基离子液体的纳米乳液缓蚀剂及其制备方法,其应用了乳液分散的原理,但其方法不具有普遍性,不具有将油溶性缓蚀剂制备成水剂的特殊功能。因此,目前依旧具有将油溶性缓蚀剂制备成水剂的迫切需求。
发明内容
为了解决上述问题,本发明的目的在于提供一种油溶性缓蚀剂水剂的制备方法,通过该制备方法制得的油溶性缓蚀剂水剂可以快速、直接将油溶性的缓蚀剂分散在水中。
本发明的另一个目的在于提供上述制备方法制备出的油溶性缓蚀剂水剂。
本发明的再一个目的在于提供上述油溶性缓蚀剂水剂的重生方法。
为达上述目的,一方面,本发明提供了一种油溶性缓蚀剂水剂的制备方法,该制备方法包括如下步骤:(1)获取所述油溶性缓蚀剂水剂电导率降低至不高于100μs/cm时的温度T;(2)向由油溶性缓蚀剂与溶剂油混合均匀得到的缓蚀剂储备液中逐渐滴加水,制得反相胶束液A,然后将所述缓蚀剂反相胶束液A升温至温度T以上的温度并维持该温度;(3)将非离子表面活性剂、阴离子表面活性剂与水混合均匀得到混合液B,将所述混合液B升温至温度T以上的温度并维持该温度;(4)将所述反相胶束液A和所述混合液B混合均匀并保持在所述温度T以上的温度搅拌不超过2分钟后立即降温,即得油溶性缓蚀剂水剂。
根据本发明的一些具体实施方案,步骤(1)中,所述温度T是通过包括如下的方法进行确定的:预先按照油溶性缓蚀剂水剂的配方组分将所有原料混合均匀得到混合液C,将所述混合液C逐渐升温并在升温过程中检测所述混合液C的电导率随温度变化的趋势,随着温度升高,电导率值由升高变为降低且持续降低至不高于100μs/cm,记录电导率降低至不高于100μs/cm时对应的温度即为所述温度T。
根据本发明的一些具体实施方案,所述油溶性缓蚀剂水剂的原料包括如下重量份的组分:油溶性缓蚀剂0.5-1.5份、溶剂油2-10份、非离子表面活性剂2-6份、阴离子表面活性剂0.01-0.2份、水5-20份。
根据本发明的一些具体实施方案,上述步骤(1)-(4)的制备过程中,全过程需要保持搅拌,搅拌条件优选为50-600rpm,只需满足能使物料混合均匀即可,更高条件 的搅拌方式也可,但从能耗的角度考虑不推荐。其中低速搅拌的情况下控制转速为50-200rpm。本发明这种将油溶性缓蚀剂制备成水剂的方法较为简单,无需高强度的搅拌,在慢速搅拌条件下通过温度变化即可制备而成。
上述温度T是油溶性缓蚀剂水剂制备过程中的一个关键温度,上述混合溶液C在升温过程中通常情况下电导率数值随温度升高先逐渐增加,当温度超过某一定值后(通常该温度在30-80℃之间,不同类型的表面活性剂会有一定区别),电导率值迅会速降低至100μs/cm以下,当电导率降低至100μs/cm时的温度为最佳的加热温度T,理论上讲,在油溶性缓蚀剂水剂制备方法过程中的步骤(2)-(4)中的温度T可以通过大于T的温度来进行代替,但从节能的角度考量,采用温度T即可。在配方组成一致的情况下,温度T的确定只需要进行一次即可。后续的批量制备还是需要把温度升高到温度T。
根据本发明的一些具体实施方案,步骤(1)中,以质量百分比计,所述油溶性缓蚀剂占所述缓蚀剂储备液的0.01-20%,优选10%。油溶性缓蚀剂与溶剂油混合均匀的方式包括搅拌。
根据本发明的一些具体实施方案,所述油溶性缓蚀剂选自烃类或酯类溶剂溶解分散的缓蚀剂,优选CT2-19。
根据本发明的一些具体实施方案,所述溶剂油选自极性或者非极性的油类物质,如气制油、石蜡油、柴油、花生油、菜籽油、异丙基豆蔻酸酯、癸烷或辛烷等,优选自烃类矿物油和酯类植物油中的一种。
在生产实践中,油溶性缓蚀剂在使用时需要溶解在溶剂油中,故其在生产销售阶段通常已经和溶剂油混合在一起,此时则不需要提前制备缓蚀剂储备液,直接进行滴加水即可。在步骤(2)中,油溶性缓蚀剂可以根据实际情况需要选择,不作具体限定,该类缓蚀剂通常可以较容易地溶解分散在油类物质中,多数情况下呈均一透明的相,且该类缓蚀剂通常较难溶解分散在水相中,加入到水相中通常漂浮或悬浮于水相中,加量过大会在水面上形成油珠,油溶性缓蚀剂优选采用烃类或酯类溶剂溶解分散的缓蚀剂,例如中国石油西南油气田分公司天然气研究院的CT2-19缓蚀剂。在实际应用过程中,以油溶性缓蚀剂在其中溶解分散的效果作为选择依据,油溶性缓蚀剂与溶剂油搅拌均匀后,静置条件下以不出现沉淀、悬浮物为佳,通常为均一透明的溶液。
根据本发明的一些具体实施方案,所述反相胶束液A的制备方法具体包括:在50-200rpm转速的搅拌条件下向所述缓蚀剂储备液中逐渐滴加水(该滴加水的速率不超过1ml/min),并持续搅拌24小时,得到反相胶束液A。在使用部分油溶性缓蚀剂的情况下,滴加进入油溶性缓蚀剂的水无法实现增溶或增溶量极少,水油分层明显,此时需 要加入少量碳数为C4-C12的碳醇,如正辛醇,用以实现水的增溶,促进反相胶束的形成,其中碳醇的用量不超过此处水的添加量。
上述步骤(2)反相胶束液中水的用量需要通过实验确定,需要确保添加至缓蚀剂储备液的水完全增溶,具体为,按照步骤(2)的步骤在所述缓蚀剂储备液中增溶一定量的水后,体系中可能存在有未有效增溶的残余水,需要将其去除,可以将上述体系置于高速离心机下离心10分钟,制得反相胶束液A;也可以不采用离心的方式,而是将体系通过长时间的静置(24小时)达到去除未有效增溶残余水的效果,在后期的制备工艺中,直接采用有效增溶的水量作为步骤(2)中水的添加量,即在实验阶段不仅需要记录滴加进入缓蚀剂储备液中的水的用量,还需要记录通过离心或长时间静置后去除的未有效增溶的残余水的量,从而可以辅助确定本步骤(2)中水的用量。
根据本发明的一些具体实施方案,滴加的水的质量占所述反相胶束液A质量的0.01-2%。
根据本发明的一些具体实施方案,步骤(3)中,所述非离子表面活性剂和所述阴离子表面活性剂的总质量与反相胶束液A的质量比为1:(5-1)。
根据本发明的一些具体实施方案,步骤(3)中,所述非离子表面活性剂与所述阴离子表面活性剂的质量比为(1000-10):1。
根据本发明的一些具体实施方案,所述非离子表面活性剂选自分子结构中含有聚氧乙烯结构的温度敏感型表面活性剂和分子结构中含有多元醇酯结构的温度敏感型表面活性剂中的一种或两种的组合。例如:烷基酚聚氧乙烯醚系列(如壬基酚聚氧乙烯(9.7)醚)、CE系列(如C12E4、C12E10)、Span(如Span80)和Tween(如Tween80),在使用过程中可以选择其中的一种也可以为多种的组合。其要求是油相和水相混合后能实现在一定温度下使得混合体系电导率有突变式的急剧下降,通常情况下需要两种具备不同亲油亲水平衡值的表面活性剂复配才能达到最佳效果。
选择温度敏感型的非离子表面活性剂,是利用了其亲水基团的水化程度受温度影响而变化的规律,通常温度越高其水化程度越低,表现出的亲水性降低。从整个非离子表面活性剂-水-油(此处的油实际上是反相胶束液)三元体系来看,温度变化将引起体系相态的变化,当选择好三相之间适当的比例,将整个体系升高至特定的温度范围时,体系将成为双连续微乳液相或者液晶相,此时非离子表面活性剂的亲水性和亲油性达到一个平衡,在此条件下保持搅拌并迅速降温将形成极为稳定的水包油纳米乳状液体系,而油溶性缓蚀剂事先由于形成了反相胶束液而被稳定包覆在油相内核中。
根据本发明的一些具体实施方案,步骤(3)中,所述阴离子表面活性剂选自碳链 长度在C8-18的单价脂肪酸盐。其作用是让整个体系增加pH响应的功能,因为缓蚀剂一般的应用场景为酸性气田水,即pH值越低酸性越强,而恰好油酸钠在低的pH值下会转化成油酸,这样在缓蚀剂体系遇到酸性介质时,其中的水溶性很强的油酸钠转变为水溶性较差的油酸,这样一来就破坏了整个水剂体系的稳定性,从而可以加速整个水剂体系中缓蚀剂有效成分的快速释放。也就是说最终的水剂体系遇到酸性越强的腐蚀介质,其有效成分将释放的越快。
根据本发明的一些具体实施方案,所述脂肪酸盐选自油酸钠。
根据本发明的一些具体实施方案,其中非离子表面活性剂为失水山梨糖醇脂肪酸酯和失水山梨醇单油酸酯聚氧乙烯醚的混合物,两者的重量比为37:63,阴离子表面活性剂选择为椰油酸钠。
根据本发明的一些具体实施方案,最终制得的油溶性缓蚀剂水剂中所包含的水的质量百分比为30%-90%,优选为40%-80%,进一步优选为50%-70%。
根据本发明的一些具体实施方案,步骤(4)中,降温速率≥10℃/min。其中,能使体系快速降温的方法均可以采用,具体的手段包括但不限于对体系进行冰水浴。还可以将所得混合体系倾倒入事先控制好温度的低温水中,低温水的温度越低越好,并且此处的水量可根据需要进行调控,水量的多少除影响浓度和降温速率外不会对最终水剂体系产生其他影响,保持搅拌,完成迅速降温。
本发明还提供了通过上述制备方法制备得到的油溶性缓蚀剂水剂。
通过上述制备方法制得的油溶性缓蚀剂水剂为反相胶束/油/水型多重乳状液结构的水剂体系,可以理解为由热力学稳定的内核和动力学稳定的外壳构成。
通过上述制备方法制得的油溶性缓蚀剂水剂体系呈(反相胶束/油/水)型多重乳状液结构,这是一种特殊的双重结构。其中体系中(胶束/油)反相部分为热力学稳定体系,其是自发形成的,随时间变化体系不会出现失稳现象,这有助于缓蚀剂在油相中的稳定存在。而体系中的(油/水)乳液部分则是热力学不稳定体系,理论上其随时间延长将不可避免的出现失稳现象。但是,由于采用本发明中先升温再迅速降温的方法制得的(油/水)乳液是一种粒径在300nm以下的纳米乳液体系,油溶性缓蚀剂在液滴核中,已经高度分散,在水体中也可以较好的在金属表面成膜。其具备极其显著的动力学稳定特性,并且液滴尺寸极小,通常情况下静置半年时间以上都不会出现失稳现象,即不会出现分层、漂浮等现象。
通过上述制备方法制得的油溶性缓蚀剂的水剂产品颜色可能和缓蚀剂本身的颜色有很大关系,一般是透明或者半透明的,但用水稀释后一般都有淡蓝色的现象。在使用 时可直接取油溶性缓蚀剂水剂加到需要的水体介质中,其能够迅速在水体中分散。所述油溶性缓蚀剂水剂也可以根据实际情况事先与任意比例的水稀释后再用。
本发明还提供了上述油溶性缓蚀剂水剂的重生方法,其中,所述重生方法包括以下步骤:当所述油溶性缓蚀剂水剂出现失稳现象后,将所述油溶性缓蚀剂水剂升温至所述温度T并保持1-10分钟,然后对所述油溶性缓蚀剂水剂迅速降温,即得重生后的油溶性缓蚀剂水剂。
根据本发明的一些具体实施方案,其中,所述降温速率≥10℃/min。
本发明的有益效果:
(1)通过本发明的制备方法所制得的油溶性缓蚀剂水剂通常为半透明至透明,用水稀释后呈淡蓝色至乳白色,使用时可直接取水剂加到需要的水体介质中,其能够迅速在水体中分散。水剂也可以根据实际情况事先与任意比例的水稀释后再用。
(2)通过本发明的制备方法制备成的水剂为反相胶束/油/水型纳米乳状液结构,乳状液粒径小于300nm,油溶性缓蚀剂在液滴核中,已经高度分散,在水剂中也可以较好的在金属表面成膜。此外,因为液滴尺寸极小,在常温下放置数月也不会出现分层、漂浮等现象。
(3)本发明的这种油溶性缓蚀剂水剂的制备方法较为简单,无需高强度的搅拌,在慢速搅拌条件下通过温度变化即可制备而成。
(4)在使用过程中即便水剂出现了分层,漂浮等失稳现象,通过本发明的重生方法即可重新还原成性能稳定的水剂,使用保存极为方便。
附图说明
图1为本发明实施例1的油溶性缓蚀剂水剂制备过程中电导率随温度变化关系图;
图2为本发明实施例1制得的油溶性缓蚀剂水剂的粒度分布图;
图3A为本发明实施例5的耦合多电极测试评价:空白条件下0min时L360丝束电极表位电位分布情况;
图3B为本发明实施例5的耦合多电极测试评价:空白条件下30min时L360丝束电极表位电位分布情况;
图4A为本发明实施例5的耦合多电极测试评价:50ppm缓蚀剂浓度下0min时L360丝束电极表位分布图;
图4B为本发明实施例5的耦合多电极测试评价:50ppm缓蚀剂浓度下30min时L360丝束电极表位分布图;
图5A为本发明实施例5的耦合多电极测试评价:空白条件下,丝束电极浸泡30min后的空白对照图;
图5B为本发明实施例5的耦合多电极测试评价:丝束电极浸泡于50ppm缓蚀剂30min后的外观图;
图6为本发明实施例8的缓蚀剂水剂缓蚀率与失稳-再生的循环次数的关系曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤的过程、方法不必限于清楚地列出的那些步骤,而是可包括没有清楚地列出的或对于这些过程、方法固有的其它步骤。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1
本实施例提供了一种油溶性缓蚀剂水剂的制备方法,具体步骤如下:
一种由油溶性缓蚀剂含硫咪唑啉衍生物制备成的水剂(即,油溶性缓蚀剂水剂),其包括如下重量份数的原料:油溶性缓蚀剂1份、0#柴油4份、非离子型表面活性剂2.5份、阴离子型表面活性剂0.025份、水17.5份。其中,所述油溶性缓蚀剂为中国石油西南油气田分公司天然气研究院自主研发的缓蚀剂CT2-19,非离子表面活性剂为失水山梨糖醇脂肪酸酯和失水山梨醇单油酸酯聚氧乙烯醚的混合物,两者的重量比为37:63,阴离子表面活性剂选择为油酸钠。
首先按照上述的配方组分将所有原料混合均匀得到混合液C,将上述混合液在缓慢搅拌下逐渐升温,升温过程中用电导率仪监测混合液的电导率数值随温度变化的趋势,得到如图1所示的电导率变化趋势图,当温度升高至55℃时,电导率迅速下降,60℃时电导率回升,在62℃继续下降,升高温度至67℃时电导率降低至100μs/cm以下,因此, 以67℃作为温度T。
取20g中国石油西南油气田分公司天然气研究院自主研发的缓蚀剂CT2-19,CT2-19由主剂和溶剂油组成,其中主剂为含硫咪唑啉衍生物,浓度为10wt%,含硫咪唑啉衍生物的制备方法参考公开号为CN101050537A的发明专利申请中实施例1的内容,溶剂油为0#柴油,混合搅拌均匀。在搅拌转速为200rpm的条件下,向由含硫咪唑啉衍生物与0#柴油组成的缓蚀剂储备液中逐渐滴加0.2g的水,并且持续搅拌24小时,得到反相胶束液A,然后将该反相胶束液A升温至67℃并保持。
将10g非离子表面活性剂、0.1g阴离子表面活性剂和69.8g水混合均匀后得到混合液B,将混合液B升温至67℃并保持,其中非离子表面活性剂为失水山梨糖醇脂肪酸酯和失水山梨醇单油酸酯聚氧乙烯醚的混合物,两者的重量比为37:63,阴离子表面活性剂选择为油酸钠。
将67℃下的反相胶束液A和混合液B混合均匀并保持在67℃搅拌30秒后将整个体系转移至冰水浴中,搅拌条件下使其迅速降温,制得油溶性缓蚀剂CT2-19水剂。
实施例1制得的缓蚀剂水剂的颜色为淡蓝色,将其滴入水中,可观察到其在水中迅速分散均匀,使其能够适应多种加注方式。而缓蚀剂CT2-19原样滴入水中则呈油珠样漂浮在水面上,分散较慢,会导致冲击性加注时易呈浮油状态。
一般情况下溶解度与温度呈正相关性,即温度越低溶解度越低,这就可能会导致部分油溶性缓蚀剂在冬天低温的环境下存储会出现分层、析出等不稳定现象。但本发明实施例提供的方法制得的水剂稳定性极高,水剂的稳定性与温度呈负相关性,即温度越低稳定性反而会越高,不易出现分层、析出等不稳定现象。
通过pH调节剂调节本实施例制得的水剂的pH值为2、3、4、5、6、7,通过长时间静置测定其失稳时间,结果参见表1,通过表1可以看出,在中性条件下,本实施例制得的水剂的稳定性极高,而在酸性调节下,水剂体系的稳定性会被破坏,主要是因为水剂遇到酸性介质时,其中的水溶性很强的油酸钠会转变为水溶性较差的油酸,这样一来就破坏了整个水剂体系的稳定性,从而可以加速整个水剂体系中缓蚀剂有效成分的快速释放。
表1水剂的pH响应性
pH 失稳时间
2 1.3小时
3 3.7小时
4 10.3小时
5 38小时
6 10天
7 6个月无分层
将本实施例制得的水剂放置在零下10℃下冷冻2小时,自然解冻后未发现水剂出现分层等不稳定现象,其具有较优的冻融稳定性;将本实施例制得的水剂放置在离心机内,设定离心机转速3000rpm,离心30分钟,未观察到乳液分层现象,其具有较优的机械稳定性。
油溶性缓蚀剂的连续相为溶剂油,闪点较低,导致缓蚀剂产品一般与溶剂油的闪点接近,如国标5号柴油的闪点为55℃,使用柴油作为溶剂油的缓蚀剂CT2-19的闪点为60℃,与油气田地面集输系统温度接近。而本发明制备方法获得的水剂的连续相为水,闪点高,试验至90℃未闪,远超地面集输系统温度,使得水剂在现场应用中具有更为明显的优势。
对本发明实施例获得的含硫咪唑啉衍生物水剂通过马尔文激光粒度仪测定平均粒径,其粒度分布如图2所示,可以看出水剂中的粒径小于300nm,绝大部分的粒径分布在140-210nm之间。
实施例2
本实施例提供了一种油溶性缓蚀剂水剂的制备方法,具体步骤如下:
一种由油溶性缓蚀剂喹啉制备成的水剂(即,油溶性缓蚀剂水剂),其包括如下重量份数的原料:油溶性缓蚀剂(喹啉)1份、液体石蜡油4份、非离子型表面活性剂2.5份、阴离子型表面活性剂0.025份、水7.5份。其中非离子表面活性剂为椰油基聚氧乙烯(4)醚,阴离子表面活性剂为棕榈酸钠。
首先按照上述的配方组分将所有原料混合均匀得到混合液C,将上述混合液在搅拌转速为100rpm的条件下逐渐升温,升温过程中用电导率仪监测混合液的电导率数值随温度变化的趋势,当温度升高至40℃时,电导率迅速下降,升高温度至50℃时电导率降低至100μs/cm以下,因此,以50℃作为温度T。
取4g喹啉和16g液体石蜡油混合搅拌均匀,得到缓蚀剂储备液,在低速搅拌条件下,向缓蚀剂储备液中逐渐滴加0.2的水,并且持续搅拌24小时,制得反相胶束液A,然后将该反相胶束液升温至50℃并保持。
将10g非离子表面活性剂、0.1g阴离子表面活性剂和29.8g水混合均匀后得到混合液B,将混合液B升温至50℃并保持,其中非离子表面活性剂为椰油基聚氧乙烯(4)醚,阴离子表面活性剂选择为棕榈酸钠。
将50℃下的反相胶束液A和混合液B混合均匀并保持在50℃下搅拌10秒后,在搅拌条件下使体系迅速降温,降温速率控制在12℃/min,制得油溶性缓蚀剂喹啉水剂。本实施例制得的缓蚀剂水剂的颜色为淡蓝色。
将本实施例制得的水剂放置在零下10℃下冷冻2小时,自然解冻后未发现水剂出现分层等不稳定现象,其具有较优的冻融稳定性;将本实施例制得的水剂放置在离心机内,设定离心机转速3000rpm,离心30分钟,未观察到乳液分层现象,其具有较优的机械稳定性。
实施例3
本实施例提供了一种油溶性缓蚀剂水剂的制备方法,具体步骤如下:
一种由油溶性缓蚀剂松香咪唑啉季铵盐制备成的水剂(即,油溶性缓蚀剂水剂),其包括如下重量份数的原料:油溶性缓蚀剂(松香咪唑啉季铵盐)1份、5#柴油9份、非离子型表面活性剂5份、阴离子型表面活性剂0.1份、水20份。其中非离子表面活性剂为失水山梨糖醇脂肪酸酯和失水山梨醇单油酸酯聚氧乙烯醚的混合物,两者的重量比为37:63,阴离子表面活性剂选择为椰油酸钠。
首先按照上述的配方组分将所有原料混合均匀得到混合液C,将上述混合液在搅拌转速为50rpm的条件下逐渐升温,升温过程中用电导率仪监测混合液的电导率数值随温度变化的趋势,当温度升高至70℃时,电导率迅速下降,升高温度至80℃时电导率降低至100μs/cm以下。因此,以80℃作为温度T。
取1g松香咪唑啉季铵盐和19g 5#柴油混合均匀,制得缓蚀剂储备液,松香咪唑啉季铵盐的制备方法参考中国石油西南油气田分公司天然气研究院公开号为CN108727268A的发明专利中实施例1的内容。在低速搅拌条件下,向缓蚀剂储备液中逐渐滴加0.2g的水,并且持续搅拌24小时,制得反相胶束液A,然后将该反相胶束液升温至80℃并保持。
将10g非离子表面活性剂、0.5g阴离子表面活性剂和29.8g水混合均匀后得到混合液B,将混合液B升温至80℃并保持,其中非离子表面活性剂为失水山梨糖醇脂肪酸酯和失水山梨醇单油酸酯聚氧乙烯醚的混合物,两者的重量比为37:63,阴离子表面活性剂选择为椰油酸钠。
将80℃下的反相胶束液A和混合液B混合均匀并保持在80℃下搅拌1分钟后将整个体系转移至冰水浴中,搅拌条件下使其迅速降温,制得油溶性缓蚀剂松香咪唑啉季铵盐水剂。本实施例制得的缓蚀剂水剂的颜色为淡蓝色。
将本实施例制得的水剂放置在零下10℃下冷冻2小时,自然解冻后未发现水剂出现 分层等不稳定现象,其具有较优的冻融稳定性;将本实施例制得的水剂放置在离心机内,设定离心机转速3000rpm,离心30分钟,未观察到乳液分层现象,其具有较优的机械稳定性。
实施例4
本实施例提供了一种油溶性缓蚀剂水剂的制备方法,具体步骤如下:
通过失重法对实施例1制得的缓蚀剂水剂开展腐蚀速率评价。
试验条件:80℃,5.0wt%NaCl水溶液(除氧),H 2S:1000ppm,CO 2:240ppm,无氧环境。
试验周期:72小时。
金属材质:TP110S,其为油气田井下常用材质。
加量说明:原CT2-19油溶性缓蚀剂加注浓度按照产品(含硫咪唑啉衍生物、溶剂油)计算,制备成的水剂加注浓度也按照产品(含硫咪唑啉衍生物、溶剂油、水、表面活性剂)计算。因此相同加量下,水剂的有效浓度相当于原CT2-19的20%。
实验方法参照标准JB/T7901-2001金属材料实验室均匀腐蚀全浸试验方法进行。通过计算试验前后的失重计算腐蚀速率,再与空白条件对比计算得到缓蚀率,试验数据参见表2。
通过表2的数据可以看出,本发明实施例1提供的油溶性缓蚀剂的水剂缓蚀率水平与油溶性缓蚀剂原剂相当,依然保持在较好水平。
表2腐蚀评价数据表
Figure PCTCN2021128913-appb-000001
实施例5
本实施例提供了耦合多电极测试评价试验,具体操作如下:
对实施例1制得的缓蚀剂水剂开展耦合多电极测试评价。评价工况与实施例4相同,分别测定空白条件和50mg/L水剂条件下的电位分布。
如图3A和图3B所示为空白条件下中,平衡0min和30min时L360丝束电极表位电位分布情况,其中图3A为平衡0min时L360丝束电极表位电位分布情况,图3B为平衡30min时L360丝束电极表位电位分布情况。由图3A和图3B可以看出随着时间的延长,电极表面电位整体略有升高,这说明金属表面已经形成了一层腐蚀产物层。
图4A和图4B为缓蚀剂水剂加量为50mg/L时的电极表面电位分布情况。其中图4A为平衡0min时L360丝束电极表位电位分布情况,图4B为平衡30min时L360丝束电极表位电位分布情况。可以发现加入缓蚀剂水剂后电位分布依然较均匀,此外,同一时间的对比情况可看出加注缓蚀剂以后金属表面电位略有升高,这说明缓蚀剂的吸附使得金属热力学腐蚀倾向减小,且金属表面电位未出现极小值说明缓蚀剂是均匀吸附在金属表面的。
图5A和图5B给出了丝束电极测试后的外观图,图5A为空白条件下的丝束电极,图5B为50mg/L水剂条件下的丝束电极,可明显看出,未加缓蚀剂时,测试完后,电极表面被一层黑色腐蚀产物膜覆盖,而加注缓蚀剂以后,金属在腐蚀溶液中浸泡30分钟都呈现均匀光亮的形貌。这说明新型缓蚀剂很好的在金属表面形成了一层吸附膜,在较大程度上抑制了腐蚀的电化学过程。
实施例6
为考察容纳缓蚀剂水剂包装桶清洗的难易程度,设置本实施例对其进行评价:
首先,获取化工产品包装桶用材质试片为试验对象,本实施例选择为聚乙烯(PE),其大小30mm×15mm×3mm。然后将试片置于干净玻璃器皿中,称量试片与干净玻璃器皿的质量之和为m 1
将试片浸没于油溶性缓蚀剂及其水剂中,粘附量以悬挂60s不脱落为宜,然后置于玻璃器皿中称重为m 2,进一步地在玻璃器皿中加入水,在室温下浸泡10min后,将玻璃器皿置于回旋式振荡器上振摇5min。
取出试片,将玻璃器皿和试片一同在室温下悬挂沥水60min(使水分尽量挥发干),将试片再次置于玻璃器皿中一起称重为m 3,根据如下公式计算清洗效率η:
Figure PCTCN2021128913-appb-000002
其中,清洗效率η的数值越大,说明越易清洗。
分别针对实施例1中采用的CT2-19原剂(含硫咪唑啉衍生物+溶剂油)、实施例1制得的CT2-19水剂、实施例3中采用的松香咪唑啉季铵盐及实施例1制得的松香咪唑 啉季铵盐水剂进行清洗效率的测试,测试结果如表3所示。
通过表3可以看出,对比粘附有CT2-19和CT2-19水剂的包装桶试片的清洗效率,以及对比粘附有松香咪唑啉季铵盐和松香咪唑啉季铵盐水剂的包装桶试片的清洗效率,本发明实施例制得的水剂产品的清洗效率明显高于对应的油溶性缓蚀剂。
表3清洗效率实验结果
对比试验样品 清洗效率/%
CT2-19 63.2
CT2-19水剂 98.7
松香咪唑啉季铵盐 59.4
松香咪唑啉季铵盐水剂 97.6
实施例7
为测试缓蚀剂的分散性能,室内通过试验装置(该实验装置记载于申请号为202010708891.1的发明专利申请之中,将该发明专利申请的全文引入这里作为参考)对不同类型的缓蚀剂的分散速率进行测试。该试验装置由一段模拟管道组成,管道具有上游缓蚀剂加注口和下游缓蚀剂浓度监测器。
试验方法:管道内装入一定量的模拟溶液(腐蚀介质),预先称取一定量的缓蚀剂(具体量通常按照加入到模拟溶液中的最终浓度计算,本实施例按照管道内装入溶液10L,缓蚀剂的有效浓度按照200mg/L计算,则应该称取的缓蚀剂的量为2g),在上游加注口一次性加入2g缓蚀剂,记录初始时间;与此同时,下游浓度监测装置开始分析记录缓蚀剂的浓度(绘制浓度随时间变化的曲线),当浓度监测装置记录到缓蚀剂浓度为200mg/L时,记录下平衡时间。
平衡时间与初始时间的差值为缓蚀剂的分散时间,记录为t,显然t值的大小间接反映了缓蚀剂在溶液介质中的分散快慢。
试验结果参考表4,由表4可以看出三种缓蚀剂的分散速率,均为水剂显著高于原样。
表4缓蚀剂分散速率试验结果
样品 油溶性缓蚀剂原样,t/s 水剂,t/s
喹啉 324 56
CT2-19 275 63
松香咪唑啉季铵盐 378 72
实施例8
为测试缓蚀剂水剂的可再生性能,针对实施例1制得的CT2-19水剂,室内开展老化加速试验,在80℃条件下缓蚀剂水剂出现分层的不稳定现象,通过升高失稳后的水剂温度至67℃,并在此温度下保持5min,然后迅速降温使其再生,如此失稳-再生为一个循环,每个循环取样后再次评价其防腐性能。评价条件与实施例2相同,水剂加注浓度为1000mg/L。结果如图6所示,可看出,在经历10个循环后,缓蚀剂的防腐性能无明显变化,说明缓蚀剂水剂具有良好的再生性能。
需要说明的是,本发明提供的油溶性缓蚀剂的水剂及其制备方法的其他构成以及操作对于本领域的普通技术人员来说是可知的,各未述及的操作、步骤、参数及工作原理对于本领域的普通技术人员来说无需付出创造性劳动即可获知,本领域技术人员可以参照现有技术中的相关产品及其制备工艺,在此不再详细描述。
以上仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (19)

  1. 一种油溶性缓蚀剂水剂的制备方法,其中,该制备方法包括如下步骤:
    (1)获取所述油溶性缓蚀剂水剂电导率降低至不高于100μs/cm时的温度T;
    (2)向由油溶性缓蚀剂与溶剂油混合均匀得到的缓蚀剂储备液中逐渐滴加水,制得反相胶束液A,然后将所述缓蚀剂反相胶束液A升温至温度T以上的温度并维持该温度;
    (3)将非离子表面活性剂、阴离子表面活性剂与水混合均匀得到混合液B,将所述混合液B升温至温度T以上的温度并维持该温度;
    (4)将所述反相胶束液A和所述混合液B混合均匀并保持在所述温度T以上的温度搅拌不超过2分钟后立即降温,即得油溶性缓蚀剂水剂。
  2. 根据权利要求1所述的制备方法,其中,步骤(1)中,所述温度T是通过包括如下的方法进行确定的:预先按照油溶性缓蚀剂水剂的配方组分将所有原料混合均匀得到混合液C,将所述混合液C逐渐升温并在升温过程中检测所述混合液C的电导率随温度变化的趋势,随着温度升高,电导率值由升高变为降低且持续降低至不高于100μs/cm,记录电导率降低至不高于100μs/cm时对应的温度即为所述温度T。
  3. 根据权利要求2所述的制备方法,其中,所述油溶性缓蚀剂水剂的原料包括如下重量份的组分:油溶性缓蚀剂0.5-1.5份、溶剂油2-10份、非离子表面活性剂2-6份、阴离子表面活性剂0.01-0.2份、水5-20份。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述步骤(1)-(4)的操作均需要进行搅拌,搅拌的转速为50-600rpm,优选为50-200rpm。
  5. 根据权利要求1-4任一项所述的制备方法,其中,步骤(2)中,以质量百分比计,所述油溶性缓蚀剂占所述缓蚀剂储备液的0.01-20%,优选10%。
  6. 根据权利要求1-5任一项所述的制备方法,其中,所述油溶性缓蚀剂选自烃类或酯类溶剂溶解分散的缓蚀剂。
  7. 根据权利要求1-6任一项所述的制备方法,其中,所述溶剂油选自极性或者非极性的油类物质,优选自烃类矿物油和酯类植物油中的一种。
  8. 根据权利要求1-7任一项所述的制备方法,其中,所述反相胶束液A的制备方法具体包括:在搅拌条件下向所述缓蚀剂储备液中逐渐滴加水,并持续搅拌24小时,得到反相胶束液A。
  9. 根据权利要求8所述的制备方法,其中,滴加的水的质量占所述反相胶束液A质量的0.01-2%。
  10. 根据权利要求1-9任一项所述的制备方法,其中,步骤(3)中,所述非离子表面活性剂和所述阴离子表面活性剂的总质量与反相胶束液A的质量比为1:(5-1)。
  11. 根据权利要求1-10任一项所述的制备方法,其中,步骤(3)中,所述非离子表面活性剂与所述阴离子表面活性剂的质量比为(1000-10):1。
  12. 根据权利要求1-11任一项所述的制备方法,其中,所述非离子表面活性剂选自分子结构中含有聚氧乙烯结构的温度敏感型表面活性剂和分子结构中含有多元醇酯结构的温度敏感型表面活性剂中的一种或两种的组合。
  13. 根据权利要求1-12任一项所述的制备方法,其中,步骤(3)中,所述阴离子表面活性剂选自碳链长度在C8-18的单价脂肪酸盐。
  14. 根据权利要求13所述的制备方法,其中,所述脂肪酸盐选自油酸钠。
  15. 根据权利要求1-14任一项所述的制备方法,其中,最终制得的油溶性缓蚀剂水剂中所包含的水的质量百分比为30%-90%,优选为40%-80%,进一步优选为50%-70%。
  16. 根据权利要求1所述的制备方法,其中,步骤(4)中,降温速率≥10℃/min。
  17. 权利要求1-16任一项所述的制备方法制备得到的油溶性缓蚀剂水剂。
  18. 权利要求17所述的油溶性缓蚀剂水剂的重生方法,其中,所述重生方法包括以下步骤:
    当所述油溶性缓蚀剂水剂出现失稳现象后,将所述油溶性缓蚀剂水剂升温至所述温度T并保持1-10分钟,然后对所述油溶性缓蚀剂水剂迅速降温,即得重生后的油溶性缓蚀剂水剂。
  19. 根据权利要求18所述的重生方法,其中,所述降温速率≥10℃/min。
PCT/CN2021/128913 2020-12-03 2021-11-05 一种油溶性缓蚀剂水剂及其制备方法和重生方法 WO2022116773A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3196516A CA3196516A1 (en) 2020-12-03 2021-11-05 Aqueous formulation of oil-soluble corrosion inhibitor, and preparation method and regeneration method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011396388.3 2020-12-03
CN202011396388.3A CN114592192B (zh) 2020-12-03 2020-12-03 一种油溶性缓蚀剂水剂及其制备方法和重生方法

Publications (1)

Publication Number Publication Date
WO2022116773A1 true WO2022116773A1 (zh) 2022-06-09

Family

ID=81803065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128913 WO2022116773A1 (zh) 2020-12-03 2021-11-05 一种油溶性缓蚀剂水剂及其制备方法和重生方法

Country Status (3)

Country Link
CN (1) CN114592192B (zh)
CA (1) CA3196516A1 (zh)
WO (1) WO2022116773A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866797B1 (en) * 2000-08-03 2005-03-15 Bj Services Company Corrosion inhibitors and methods of use
CN101280222A (zh) * 2008-06-02 2008-10-08 中国石油化工集团公司 一种水溶性缓蚀剂及其制备方法和应用
CN108998799A (zh) * 2018-07-24 2018-12-14 淄博凯美可工贸有限公司 炼油装置用缓蚀剂及其制备方法和应用
CN110573591A (zh) * 2016-10-06 2019-12-13 杜兰教育基金委员会 用于递送油溶性材料的水溶性胶束
CN111472007A (zh) * 2020-04-03 2020-07-31 中国石油天然气股份有限公司 一种缓蚀阻垢剂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69330954D1 (de) * 1993-12-13 2001-11-22 Unilever Plc Stabile Öl-in-Wasser Emulsionen und Verfahren zu deren Herstellung
JP4582823B2 (ja) * 1995-03-29 2010-11-17 三菱化学株式会社 油溶性物質が可溶化ないし分散されてなる水性組成物
AU2003295279A1 (en) * 2002-12-24 2004-07-22 Willem Dijkhuizen Method for reducing the corrosivity of water-containing oil-mixtures
CN100413790C (zh) * 2005-05-18 2008-08-27 北京化工大学 一种用于冷却水系统中铜及铜合金设备的缓蚀阻垢技术
CN105363360A (zh) * 2014-08-26 2016-03-02 中国科学院大连化学物理研究所 一种温度刺激响应智能化的微乳液体系及其应用
CN108264891B (zh) * 2017-12-29 2020-04-10 南京华洲新材料有限公司 一种油溶性缓蚀剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866797B1 (en) * 2000-08-03 2005-03-15 Bj Services Company Corrosion inhibitors and methods of use
CN101280222A (zh) * 2008-06-02 2008-10-08 中国石油化工集团公司 一种水溶性缓蚀剂及其制备方法和应用
CN110573591A (zh) * 2016-10-06 2019-12-13 杜兰教育基金委员会 用于递送油溶性材料的水溶性胶束
CN108998799A (zh) * 2018-07-24 2018-12-14 淄博凯美可工贸有限公司 炼油装置用缓蚀剂及其制备方法和应用
CN111472007A (zh) * 2020-04-03 2020-07-31 中国石油天然气股份有限公司 一种缓蚀阻垢剂

Also Published As

Publication number Publication date
CN114592192A (zh) 2022-06-07
CA3196516A1 (en) 2022-06-09
CN114592192B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
Buist et al. Herding surfactants to contract and thicken oil spills in pack ice for in situ burning
Ahmed et al. Formation of fluid heavy oil-in-water emulsions for pipeline transportation
Luo et al. Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle
CA1337018C (fr) Procede de transport d'un fluide formant des hydrates
JP5694659B2 (ja) 油中水滴及び水中油滴のナノエマルジョンの調製方法
Jadhav et al. Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline
AU685208B2 (en) A method for inhibiting the plugging of conduits by gas hydrates
JP3889056B2 (ja) オイル輸出パイプラインのオンライン熱化学的脱ろう法
CN105368436B (zh) 一种小分子清洁压裂液及其制备方法与应用
CA2556919A1 (en) Polymeric nanoemulsion as drag reducer for multiphase flow
Chatterjee et al. A Family of Frost‐Resistant and Icephobic Coatings
NO168406B (no) Fremgangsmaate for fremstilling av hipr-emulsjoner av oljei vann samt slike emulsjoner
US4045360A (en) Inhibiting wax deposition from a wax-containing oil
WO2022116773A1 (zh) 一种油溶性缓蚀剂水剂及其制备方法和重生方法
Popoola et al. Triethanolamine (TEA) as flow improver for heavy crude oils
CA2282665A1 (fr) Procede et dispositif de determination de la stabilite d'une emulsion eau-hydrocarbures
Holt The effect of antifreeze proteins and poly (vinyl alcohol) on the nucleation of ice: a preliminary study
Zhang et al. Main challenges in demulsifier research and application
Li et al. A comprehensive review of wax deposition in crude oil systems: Mechanisms, influencing factors, prediction and inhibition techniques
WO2016036557A1 (en) Corrosion inhibition
Rogers et al. Cloud droplet nucleation by crude oil smoke and coagulated crude oil/wood smoke particles
Lang et al. Ultrasonic absorption study of microemulsions in ternary and pseudoternary systems
WO2008017739A1 (fr) Compositions a base d'acides carboxyliques pour protection temporaire de surfaces metalliques et films secs obtenus a partir desdites compositions
CN111826145B (zh) 一种石油结蜡调控剂及其使用方法和应用
FR2595752A1 (fr) Procede pour ameliorer la production de petrole brut visqueux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3196516

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899807

Country of ref document: EP

Kind code of ref document: A1