WO2022116393A1 - 磁浮重力补偿装置以及包括该装置的运动台 - Google Patents

磁浮重力补偿装置以及包括该装置的运动台 Download PDF

Info

Publication number
WO2022116393A1
WO2022116393A1 PCT/CN2021/076424 CN2021076424W WO2022116393A1 WO 2022116393 A1 WO2022116393 A1 WO 2022116393A1 CN 2021076424 W CN2021076424 W CN 2021076424W WO 2022116393 A1 WO2022116393 A1 WO 2022116393A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic steel
inner base
steel
magnetic
Prior art date
Application number
PCT/CN2021/076424
Other languages
English (en)
French (fr)
Inventor
胡兵
江旭初
袁嘉欣
蒋赟
Original Assignee
上海隐冠半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海隐冠半导体技术有限公司 filed Critical 上海隐冠半导体技术有限公司
Priority to KR1020237015977A priority Critical patent/KR20230079455A/ko
Priority to JP2023528446A priority patent/JP2023549227A/ja
Publication of WO2022116393A1 publication Critical patent/WO2022116393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the invention relates to the field of integrated circuit equipment manufacturing, and more particularly to a constant-rigidity maglev gravity compensation device and a motion table including the device.
  • the micro-movement stage is the core component, which can complete the precise positioning of the silicon wafer in the vertical three axes of Z/Rx/Ry.
  • the conventional vertical three-axis micro-motion stage three actuators are usually used for a three-point layout, and then a flexible mechanism is used for vertical guidance and motion decoupling to ensure vertical performance.
  • the magnetic levitation voice coil motor device proposed by U.S. patent US2009066168A1 compensates the gravity of the vertical motion module by the magnetic resistance of the magnetic levitation gravity compensation device, and compensates the force of the flexible mechanism by adjusting the amplitude and direction of the coil input current.
  • the magnetic levitation coil motor not only has a complicated magnetic circuit structure, but also has a rigidity of the output magnetic levitation force close to zero, so the control algorithm must be used to achieve control accuracy.
  • a gravity compensation device with a simple structure, constant stiffness in a small stroke range, and the opposite stiffness of the flexible mechanism is needed at this stage, that is, the compensation device at the zero point can output the same gravity amplitude and opposite direction as the vertical motion module. force, and the output stiffness of the compensation device is guaranteed to be constant.
  • the air flotation gravity compensation device commonly used in the industry can adjust the pressure of the compressed gas in real time through a proportional valve to achieve constant stiffness gravity compensation. Performance has an impact.
  • the purpose of the present invention is to provide a constant stiffness maglev gravity compensation device with simple structure and control and no hysteresis in control, so as to solve the problems existing in the above-mentioned prior art.
  • maglev gravity compensation device comprising:
  • first end magnet steel and a second end magnet steel are respectively located at two axial ends of the inner base magnet steel and extend in the axial direction , and the outer diameters of the first end magnet steel and the second end magnet steel gradually increase along the directions away from the two axial ends of the inner base magnet steel;
  • the outer ring magnetic steel which is cylindrical, is located outside the inner base magnetic steel coaxially with the inner base magnetic steel and is radially spaced from the inner base magnetic steel.
  • the magnetization direction of the first end magnet steel and the second end magnet steel is axially outward from the inner base magnet steel, and the magnetization direction of the outer magnetic ring magnet steel is The magnetic direction is radially outward.
  • first end magnet and the second end magnet are mirror-symmetrical with respect to an axial bisector of the inner base magnet.
  • the central axes of the inner base magnet, the first end magnet and the second end magnet coincide with each other and are rotationally symmetric about the central axis.
  • the inner base magnet has axial through holes, and the first end magnet and the second end magnet have axial through holes.
  • the inner base magnetic steel is cylindrical
  • the first end magnetic steel is composed of multiple sections of cylindrical magnetic steel adjacent to each other in the axial direction
  • the second end magnetic steel is composed of axial magnetic steels.
  • the inner diameter of the multi-segment cylindrical magnets is the same, and the outer diameters are from the cylindrical magnet far from the inner base magnet to the cylindrical magnet close to the inner base magnet. The magnets decrease in turn.
  • the difference between the outer diameters of adjacent cylindrical magnets in the multi-segment cylindrical magnets of the first end magnets is equal, and the axial lengths are equal;
  • the difference between the outer diameters of adjacent cylindrical magnets in the multi-stage cylindrical magnets of the second end magnets is equal, and the axial lengths are equal.
  • the first end magnetic steel is composed of three sections of cylindrical magnetic steel adjacent to each other in the axial direction
  • the second end magnetic steel is composed of three sections of cylindrical magnetic steel adjacent to each other in the axial direction. composition.
  • the outer diameter of the cylindrical magnet farthest from the inner base magnet among the first end magnet and the second end magnet is R 5
  • the axial length is L 5
  • the outer diameter of the inner base magnet is R 2
  • the axial length of the outer ring magnet is L 1 , where R 2 /2 ⁇ R 5 ⁇ R 2 , L 1 /4 ⁇ L 5 ⁇ L 1 /2.
  • the radial dimension of the axial through hole of the inner base magnetic steel is the same as the radial dimension of the axial through hole of the first end magnet steel and the second end magnet steel.
  • the radial dimension of the axial through holes of the first end magnet steel and the second end magnet steel is directed from the end away from the inner base magnet towards the inner base magnet decrease.
  • the included angle ⁇ between the inner peripheral surface of the axial through hole of the first end magnet steel and the second end magnet steel and the radial direction is the same as the angle ⁇ of the first end magnet steel and the radial direction.
  • the relationship between the angle ⁇ between the outer peripheral surface of the second end magnet steel and the radial direction is ⁇ 135°.
  • the outer magnetic ring magnetic steel is composed of a plurality of arc-shaped plates adjacent to each other in the circumferential direction.
  • the inner base magnetic steel includes a diameter-reduced section, and the diameter-reduced section is located in an axial middle section of the inner base magnetic steel and has an outer diameter smaller than that of the rest.
  • the axial length of the outer ring magnet is L 1
  • the axial length of the end magnet is L 2
  • the axial length of the inner base magnet is L 3
  • the end magnet is L 3 .
  • the axial movement stroke of the steel and the inner base magnetic steel relative to the outer magnetic ring magnetic steel is S
  • the difference between the mechanical stroke and the effective stroke is ⁇ S
  • L 3 +2L 2 -L 1 S+ ⁇ S
  • the value range of ⁇ S/S is [0.1, 3.0].
  • the base angle ⁇ of the end magnet steel is 60° to 88°.
  • the base angle ⁇ of the end magnet steel is 75°.
  • the present invention also provides a motion table, comprising a workpiece table and a base, the workpiece table is configured to be able to rotate and move vertically relative to the base, and the magnetic levitation gravity compensation device is provided below the workpiece table.
  • the magnetic levitation gravity compensation device of the present invention solves the problems of complex structure, complicated control and hysteresis in control of the prior art aerodynamic constant stiffness gravity compensation device, and solves the problem that the existing gravity compensation device has zero stiffness or nonlinearity.
  • the invention realizes the characteristic that the magnetic levitation output force is linear along the stroke, and the output force at the zero point can offset the vertical structure gravity.
  • the invention can not only compensate the gravity of the vertical motion mechanism, but also realize constant stiffness compensation based on the linearization of the magnetic field, balance the elastic deformation reaction force of the flexible mechanism within the stroke range, reduce the load of the vertical actuator, and greatly improve the The vertical performance of the micro-movement stage.
  • FIG. 1 is a schematic structural diagram of a maglev gravity compensation device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal cross-sectional view of the embodiment shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the magnetization direction of the magnetic steel of the embodiment shown in FIG. 1 .
  • FIG. 4 is a schematic view of the size of the magnetic steel of the embodiment shown in FIG. 1 .
  • FIG. 5 is an output force curve within the stroke range of the embodiment shown in FIG. 1 .
  • FIG. 6 is a schematic structural diagram of a maglev gravity compensation device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the size of the magnetic steel of the magnetic levitation gravity compensation device according to the third embodiment of the present invention (D 2 >D 3 ).
  • FIG 8 is a schematic diagram of the size of the magnetic steel of the magnetic levitation gravity compensation device according to the third embodiment of the present invention (D 2 ⁇ D 3 ).
  • FIG. 10 is a schematic diagram of the size of the magnetic steel of the magnetic levitation gravity compensation device according to the third embodiment of the present invention (R 3 >R 2 ).
  • FIG. 11 is a schematic diagram of the magnetizing direction of the magnetic steel of the magnetic levitation gravity compensation device according to the fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the magnetic levitation gravity compensation device and the magnetization direction of the magnetic steel according to the fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a wedge-shaped hole structure of a maglev gravity compensation device according to a fifth embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a maglev gravity compensation device according to a sixth embodiment of the present invention.
  • 16 is a schematic structural diagram of a stepped magnetic steel group according to a seventh embodiment of the present invention.
  • 17 is a schematic diagram of the magnetization direction of the stepped magnet steel group according to the seventh embodiment of the present invention.
  • FIG. 18 is a schematic view of the dimensions of the magnet steel of the stepped magnet steel group according to the seventh embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a circular truncated magnetic steel and a circular magnetic steel scheme according to an eighth embodiment of the present invention.
  • FIG. 20 is a schematic diagram of the dimensions of the circular truncated magnetic steel and the circular ring magnetic steel according to the eighth embodiment of the present invention.
  • Fig. 21 is the layout form of the magnetic levitation gravity compensation device in the motion table according to the present invention.
  • the workpiece table can realize the rotation and vertical lifting of the silicon wafers carried on it around the Z direction.
  • the workpiece table can be driven by a voice coil motor to achieve its lifting.
  • a gravity compensation device such as a maglev gravity compensation device is usually provided.
  • an elastic connecting piece can be arranged between the workpiece table and the base. As the workpiece table rises and falls in the vertical direction, the elastic connecting piece will generate elastic force, and the elastic force changes linearly with the stroke of the workpiece table. .
  • the invention provides a magnetic levitation gravity compensation device that changes linearly with the stroke, so as to realize the compensation for the gravity of the workpiece table and the elastic force of the elastic connecting piece.
  • the magnetic levitation gravity compensation device 100 includes: an inner base magnet 103 , a first end magnet 102 a and a second end magnet 102 b , and an outer magnetic ring magnet 101 .
  • the inner base magnet 103 is cylindrical, and the first end magnet 102a and the second end magnet 102b are located at two axial ends of the inner base magnet 103 and extend axially downward and upward.
  • the first end magnet 102a is located axially below the inner base magnet 103 and the second end magnet 102b is located axially above the inner base magnet 103 .
  • the first end magnetic steel 102a and the second end magnetic steel 102b are in the shape of a truncated cone, and the outer diameters gradually increase downward and upward from the two axial ends near the inner base magnetic steel 103, respectively. big.
  • the first end magnet 102a and the second end magnet 102b are each provided with an axial through hole, and the axial through hole and the axial through hole of the inner base magnet 103 have the same diameter and communicate with each other.
  • the shape and size of the first end magnet 102 a and the second end magnet 102 b are the same as each other, and are mirror-symmetrical with respect to the middle radial plane of the inner base magnet 103 .
  • the outer ring magnet 101 has a cylindrical shape, and is located outside the inner base magnet 103 coaxially with the inner base magnet 103 and radially spaced from the inner base magnet 103 .
  • the first end magnet 102a and the second end magnet 102b are adjacent to the inner base magnet 103, but it should be understood that a certain air gap may also be provided therebetween, and the air gap is usually not greater than 1mm .
  • the outer magnetic ring magnetic steel 101 is the stator magnetic steel of the gravity compensation device, and the inner base magnetic steel 103 and the first end magnetic steel 102a and the second end magnetic steel 102b are the gravity compensation device mover magnetic steel .
  • the outer magnetic ring magnet 101 can also be set as the mover magnet of the gravity compensation device, and the inner base magnet 103 and the first end magnet 102a and the second end magnet 102b are the stator of the gravity compensation device. magnetic steel.
  • the vertical force can be understood as the magnetic levitation force of the device, wherein when the outer magnetic ring magnetic steel 101 and the inner base magnetic steel 103 are axially centered relative to each other, it is the device zero point, Since the device needs to compensate the gravity of the workpiece table when the device is at the zero point, the amplitude of the output magnetic buoyancy must be equal to the gravity of the workpiece table, and the elastic force of the elastic connector is zero.
  • the output magnetic buoyancy direction of the magnetic levitation gravity compensation device is vertically upward. Since the output force of the elastic connecting piece arranged between the workpiece table and the base changes linearly with the vertical movement of the workpiece table, only when the output magnetic levitation force of the device also changes linearly with the vertical movement of the workpiece table, and both change When the slopes are equal, the magnetic levitation gravity compensation device can fully realize the compensation effect of the gravity of the workpiece table and the elastic force of the elastic connecting piece. Based on this, the outer diameters of the first end magnetic steel 102a and the second end magnetic steel 102b in the device need to gradually increase from the ends close to the inner base magnetic steel 103 downward and upward respectively.
  • FIG. 3 shows the magnetization direction of each magnetic steel in the maglev gravity compensation device 100 .
  • the magnetization directions of the inner base magnet 103 and the second end magnet 102b are the same and both are axially upward, while the magnetization direction of the first end magnet 102a is axial downward, and the outer ring magnet 101 The magnetization direction is radially outward.
  • the magnetization direction of the outer ring magnet 101 can also be set to be radially inward, the magnetization direction of the first end magnet 102a is axially upward, and the second end magnet 102b and the inner magnet 102b
  • the magnetization directions of the base magnetic steel 103 are the same and both are axially downward.
  • the outer magnetic ring magnetic steel 101 is formed by splicing 8 pieces of magnetic steel.
  • the 8 segmented magnets are arc-shaped plate magnets bisected radially by a cylinder at equal angular intervals of 45°.
  • the outer magnetic ring magnetic steel 101 can also be formed by splicing other number of divided magnetic steels.
  • the number of divided pieces N is set to an even number, such as 2 Blocks, 4 blocks, 6 blocks, etc.
  • the outer magnetic ring magnetic steel 101 is formed by splicing the divided magnetic steels to facilitate the magnetization and processing of the magnetic steels.
  • the value of the pole arc coefficient a of the magnetic steel is positively related to the output stiffness of the magnetic levitation gravity compensation device, and the pole arc coefficient a of the magnetic steel is the pole arc coefficient of the magnetic steel.
  • the ratio of the arc length to the polar distance, the polar arc coefficient a is preferably [0.7, 0.95].
  • the outer diameter of one end of the first end magnet 102 a and the second end magnet 102 b adjacent to the inner base magnet 103 is larger than the outer diameter of the inner base magnet 103 .
  • the outer diameter of one end of the first end magnet 102a and the second end magnet 102b adjacent to the inner base magnet 103 may also be equal to or smaller than the outer diameter of the inner base magnet 103, and the first end magnet
  • the size of the outer diameter of the steel 102a and the second end magnetic steel 102b affects the slope of the magnetic levitation force output by the magnetic levitation gravity compensation device within the stroke range.
  • FIG. 4 shows a schematic view of the size of the maglev gravity compensation device 100 .
  • the axial lengths of the outer magnetic ring magnetic steel 101, the first end magnetic steel 102a, the second end magnetic steel 102b, and the inner base magnetic steel 103 are L 1 , L 2 and L 3 , respectively.
  • the radius of one end of the first end magnet 102a and the second end magnet 102b adjacent to the inner base magnet 103 and the radius of the inner base magnet 103 are denoted by R 2 and R 3 respectively, the first end magnet 102a and the second end magnet 102a
  • the radius of the end of the end magnet 102b away from the inner base magnet 103 is denoted by R 21
  • the diameter of the axial through hole of the first end magnet 102a, the second end magnet 102b and the inner base magnet 103 is denoted by D 0
  • the base angle of the first end magnet 102a and the second end magnet 102b is denoted by ⁇ .
  • the relationship between the radius of one end of the first end magnetic steel 102a and the second end magnetic steel 102b adjacent to the inner base magnetic steel 103 and the radius of the inner base magnetic steel 103 depends on the compensation required by the magnetic levitation gravity compensation device at the zero point.
  • the size of the weight that is, the gravity of the workpiece table. In this embodiment, preferably R 2 >R 3 .
  • the axial through hole diameter D 0 is related to the stiffness of the magnetic levitation gravity compensation device.
  • the first end magnetic steel 102a, the second end magnetic steel 102b and the axial through holes of the inner base magnetic steel 103 have the same size.
  • the bottom angle ⁇ of the first end magnet 102a and the second end magnet 102b determines the linearity of the magnetic field, which in turn affects the stiffness of the magnetic levitation gravity compensation device.
  • the value range of the base angle ⁇ is [60°, 88°].
  • the base angle ⁇ can be expressed as In this embodiment, the bottom angle ⁇ of the first end magnet 102a and the second end magnet 102b is preferably 75°.
  • the output force simulation curve of the maglev gravity compensation device 100 is shown in FIG. 5 .
  • the horizontal axis represents the stroke of the maglev gravity compensation device
  • the vertical axis represents the output force amplitude.
  • the two stroke end points and the zero point and their corresponding output forces are marked in the figure.
  • x is the limit displacement in one direction
  • G is the gravity of the workpiece table to be compensated by a single maglev gravity compensation device.
  • the design stiffness of the maglev gravity compensation device is k
  • FIG. 6 shows a maglev gravity compensation device 200 according to another embodiment of the present invention.
  • This embodiment is basically the same as the maglev gravity compensation device 100 , that is, the maglev gravity compensation device 200 includes: an inner base magnet 203 , a first end magnet 202 a and a second end magnet 202 b , and an outer magnetic ring magnet 201 .
  • the inner base magnet 203 is cylindrical, and the first end magnet 202a and the second end magnet 202b are respectively located at two axial ends of the inner base magnet 203 and axially downward from the inner base magnet 203 and extending upwards.
  • the first end magnet 202a is located axially below the inner base magnet 203 and the second end magnet 202b is located axially above the inner base magnet 203 .
  • the first end magnet 202a and the second end magnet 202b are truncated cones, and the outer diameters gradually increase from the two axial ends adjacent to the inner base magnet 203 toward the direction away from the inner base magnet 203 .
  • the first end magnet 202a and the second end magnet 202b are each provided with an axial through hole, and the axial through hole and the axial through hole of the inner base magnet 203 have the same diameter and communicate with each other.
  • the shape and size of the first end magnet 202 a and the second end magnet 202 b are the same as each other, and are mirror-symmetrical with respect to the axial mid-section radial plane of the inner base magnet 203 .
  • the outer ring magnet 201 has a cylindrical shape, and is located outside the inner base magnet 203 coaxially with the inner base magnet 203 and radially spaced from the inner base magnet 203 .
  • the difference between the maglev gravity compensation device 200 and the maglev gravity compensation device 100 is that the outer magnetic ring magnetic steel 201 is composed of a radially magnetized magnetic steel.
  • a maglev gravity compensation device 300 according to a third embodiment of the present invention is shown in FIGS. 7 and 8 .
  • This embodiment is basically the same as the maglev gravity compensation device 100, that is, the maglev gravity compensation device 300 includes: an inner base magnet 303, a first end magnet 302a, a second end magnet 302b, and an outer magnetic ring magnet 301 .
  • the inner base magnet 303 is cylindrical, and the first end magnet 302a and the second end magnet 302b are respectively located at the two axial ends of the inner magnet 303 and axially downward from the inner magnet 303 and extending upwards.
  • the first end magnet 302a is located axially below the inner base magnet 303 and the second end magnet 302b is located axially above the inner base magnet 303 .
  • the first end magnet 302a and the second end magnet 302b are truncated cones, and the outer diameters gradually increase from the two axial ends adjacent to the inner base magnet 303 toward the direction away from the inner base magnet 303 .
  • the first end magnet 302a and the second end magnet 302b are respectively provided with axial through holes, and the axial through holes and the axial through holes of the inner base magnet 303 communicate with each other.
  • the shape and size of the first end magnet 302 a and the second end magnet 302 b are the same as each other, and are mirror-symmetrical with respect to the axial mid-section radial plane of the inner base magnet 303 .
  • the outer ring magnet 301 is cylindrical, and is located outside the inner base magnet 303 coaxially with the inner base magnet 303 and radially spaced from the inner base magnet 303 .
  • the difference between the magnetic levitation gravity compensation device 300 and the magnetic levitation gravity compensation device 100 is that the axial through holes of the first end magnetic steel 302 a and the second end magnetic steel 302 b have different diameters from the axial through holes of the inner base magnetic steel 303 .
  • the axial through hole diameter of the first end magnet 302a and the second end magnet 302b may be smaller ( FIG. 7 ) or larger ( FIG. 8 ) than the axial through hole diameter of the inner base magnet 303 .
  • the diameter relationship between the axial through holes of the first end magnetic steel 302a and the second end magnetic steel 302b and the axial through hole of the inner base magnetic steel 303 is related to the installation method of the magnetic steel, and is related to the output of the magnetic levitation gravity compensation device.
  • the stiffness of the force is independent of the zero point compensation gravity value.
  • the gravity value compensated by the zero position of the magnetic levitation gravity compensation device is related to the magnetic field strength provided by the inner base magnetic steel 303. Under the same condition of the outer magnetic ring magnetic steel 301, the greater the magnetic field strength of the inner base magnetic steel 303, the higher the compensation at the zero position. The larger the gravity value.
  • maglev gravity compensation device 400 illustrates a maglev gravity compensation device 400 according to a fourth embodiment of the present invention.
  • This embodiment is basically the same as the maglev gravity compensation device 100 , that is, the maglev gravity compensation device 400 includes: an inner base magnet 403 , a first end magnet 402 a and a second end magnet 402 b , and an outer magnetic ring magnet 401 .
  • the inner base magnet 403 is cylindrical, and the first end magnet 402a and the second end magnet 402b are respectively located at two axial ends of the inner base magnet 403 and axially downward from the inner base magnet 403 and extending upwards.
  • the first end magnet 402a is positioned axially below the inner base magnet 403 and the second end magnet 402b is positioned axially above the inner base magnet 403 .
  • the first end magnet 402a and the second end magnet 402b are truncated cones, and the outer diameters gradually increase from the two axial ends of the inner base magnet 403 toward the direction away from the inner base magnet 403 .
  • the first end magnet 402a and the second end magnet 402b are each provided with an axial through hole, and the axial through hole and the axial through hole of the inner base magnet 403 communicate with each other.
  • the shape and size of the first end magnet 402a and the second end magnet 402b are the same as each other, and are mirror-symmetrical with respect to the axial midpoint radial plane of the inner base magnet 403.
  • the outer ring magnet 401 has a cylindrical shape, and is located outside the inner base magnet 403 coaxially with the inner base magnet 403 and radially spaced from the inner base magnet 403 .
  • the outer diameter of the end of the first end magnet 102a and the second end magnet 102b adjacent to the inner base magnet 103 is smaller than the outer diameter of the inner base magnet 103, while in the magnetic levitation gravity In the compensation device 400 , the outer diameter of one end of the first end magnet 402 a and the second end magnet 402 b adjacent to the inner base magnet 403 is equal to or smaller than the outer diameter of the inner base magnet 403 .
  • FIG. 11 shows a maglev gravity compensation device 500 according to a fourth embodiment of the present invention.
  • This embodiment is basically the same as the maglev gravity compensation device 100, that is, the maglev gravity compensation device 500 includes: an inner base magnet 503, a first end magnet 502a and a second end magnet 502b, and an outer magnetic ring magnet 501 .
  • the inner base magnet 503 is cylindrical, and the first end magnet 502a and the second end magnet 502b are respectively located at the two axial ends of the inner base magnet 503 and axially downward from the inner base magnet 503 and extending upwards.
  • the first end magnet 502a is located axially below the inner base magnet 503 and the second end magnet 502b is located axially above the inner base magnet 503 .
  • the first end magnet 502a and the second end magnet 502b are truncated cones, and the outer diameter gradually increases from the two axial ends adjacent to the inner base magnet 503 toward the direction away from the inner base magnet 503 .
  • the first end magnet 502a and the second end magnet 502b are each provided with an axial through hole, and the axial through hole and the axial through hole of the inner base magnet 503 communicate with each other.
  • the shape and size of the first end magnet 502 a and the second end magnet 502 b are the same as each other, and are mirror-symmetrical with respect to the axial mid-section radial plane of the inner base magnet 503 .
  • the outer ring magnet 501 is cylindrical, and is located outside the inner base magnet 503 coaxially with the inner base magnet 503 and radially spaced from the inner base magnet 503 .
  • the magnetization direction of the inner base magnet 103 is the axial direction
  • the magnetization direction of the inner base magnet 503 is the same as that of the outer magnetic ring magnet 501.
  • the magnetic directions are the same and both are radially outward.
  • the magnetization direction of the first end magnet 502a and the second end magnet 502b can also be set to be from the end away from the inner base magnet 503 toward the inner base magnet. 503, while the magnetization directions of the inner base magnet 503 and the outer ring magnet 501 are the same and both are radially inward.
  • the gravity compensation device does not need to compensate the gravity of the workpiece table at the zero point, therefore, the magnetic levitation gravity compensation device 500 can adopt the above-mentioned magnetization direction.
  • the inner base magnetic steel 504 can be formed by splicing a plurality of radially magnetized segmented magnetic steels (refer to the maglev gravity compensation device 800 of the seventh embodiment).
  • the inner base magnetic steel 504 can also be replaced by a cylinder 505 made of an unmagnetized high-permeability material. As shown in FIG. 13 , when the inner base magnetic steel is not magnetized, the output force stiffness of the magnetic levitation gravity compensation device will be reduced, and the high magnetic permeability material in this embodiment is preferably a permalloy.
  • FIG. 12 shows the output force curve of the maglev gravity compensation device 500 .
  • the horizontal axis is the stroke of the magnetic levitation gravity compensation device
  • the vertical axis is the output force amplitude. It can be seen from the figure that the output force amplitude of the maglev gravity compensation device at the zero point is zero.
  • the output force range of the maglev gravity compensation device can be obtained as [-F, F] .
  • FIG. 14 shows a maglev gravity compensation device 600 according to a fifth embodiment of the present invention.
  • This embodiment is basically the same as the maglev gravity compensation device 100 , that is, the maglev gravity compensation device 600 includes: an inner base magnetic steel 603 , a first end magnetic steel 602 a and a second end magnetic steel 602 b , and an outer magnetic ring magnetic steel 601 .
  • the inner base magnet 603 is cylindrical, and the first end magnet 602a and the second end magnet 602b are located at the two axial ends of the inner base magnet 603 and are axially downward from the inner base magnet 603 and extending upwards.
  • the first end magnet 602a is located axially below the inner base magnet 603 and the second end magnet 602b is located axially above the inner base magnet 603 .
  • the first end magnet 602a and the second end magnet 602b are truncated cones, and the outer diameters gradually increase from the two axial ends of the inner base magnet 603 toward the direction away from the inner base magnet 603 .
  • the first end magnet 602a and the second end magnet 602b are each provided with an axial through hole, and the axial through hole and the axial through hole of the inner base magnet 603 communicate with each other.
  • the shape and size of the first end magnet 602 a and the second end magnet 602 b are the same as each other, and are mirror-symmetrical with respect to the middle radial plane of the inner base magnet 603 .
  • the outer ring magnet 601 has a cylindrical shape, and is located outside the inner base magnet 603 coaxially with the inner base magnet 603 and radially spaced from the inner base magnet 603 .
  • the difference is that in the maglev gravity compensation device 100, the diameters of the axial through holes of the first end magnet 602a and the second end magnet 602b remain constant along the axial direction, while in the maglev gravity compensation device 600, the first end The diameters of the axial through holes of the first magnetic steel 602a and the second end magnetic steel 602b gradually increase from the inner base magnetic steel to the direction away from the inner base magnetic steel, that is, the axial through holes thereof are truncated.
  • the truncated through hole is more difficult to process, but by adjusting the bottom angle ⁇ of the truncated through hole of the first end magnet 602a and the second end magnet 602b and the third
  • the relationship between the bottom angle ⁇ of the magnetic steel at the first end and the second end can fine-tune the output stiffness k of the magnetic levitation gravity compensation device to a certain extent.
  • the relationship of ⁇ can be expressed as: (1) 60° ⁇ 88°, (2) ⁇ 135°.
  • FIG. 15 shows a maglev gravity compensation device 700 according to a sixth embodiment of the present invention.
  • This embodiment is basically the same as the maglev gravity compensation device 100 , that is, the maglev gravity compensation device 700 includes: an inner base magnet 703 , a first end magnet 702 a and a second end magnet 702 b , and an outer magnetic ring magnet 701 .
  • the first end magnet 702a and the second end magnet 702b are located at both axial ends of the inner base magnet 703 and extend axially downward and upward from the inner base magnet 703, respectively.
  • the first end magnet 702a is located axially below the inner base magnet 703 and the second end magnet 702b is located axially above the inner base magnet 703 .
  • the first end magnet 702a and the second end magnet 702b are truncated cones, and the outer diameter gradually increases from the two axial ends of the inner base magnet 703 toward the direction away from the inner base magnet.
  • the shape and size of the first end magnet 702 a and the second end magnet 702 b are the same as each other, and are mirror-symmetrical with respect to the middle radial plane of the inner base magnet 703 .
  • the outer ring magnet 701 is cylindrical, and is located outside the inner base magnet 703 coaxially with the inner base magnet 703 and radially spaced from the inner base magnet 703 .
  • the inner base magnet 703 is cylindrical
  • the first end magnet 702a and the second end magnet 702b are truncated cones
  • the inner base magnet 703 and the first end magnet 702a and the second end magnet 702a The end magnets 702b are not provided with axial through holes.
  • This arrangement increases the difficulty of assembling the magnetic steel to a certain extent, but the outer diameters of the first end magnetic steel 702a, the second end magnetic steel 702b and the inner base magnetic steel 703 are also reduced accordingly, and the magnetic levitation gravity compensation device Under the premise that the design output stiffness k remains unchanged, the volume of the maglev gravity compensation device can be reduced to a certain extent; or the design output stiffness k of the maglev gravity compensation device can be further improved under the premise that the volume of the maglev gravity compensation device remains unchanged.
  • the first end magnetic steel 702a and the second end magnetic steel 702b can also be composed of a plurality of cylindrical shafts stacked up and down to form a stepped magnetic steel.
  • the steel group is formed, wherein the number of axial segments of the magnet steel in the stepped magnet steel group is N t , and the difference between the radial size and the axial size of the axially adjacent magnet steel needs to be obtained through simulation iteration according to the design requirements.
  • the number of blocks N t of the axial magnets in the stepped magnet group is in the range of N t ⁇ 2, N t ⁇ Z, and the radial size difference between the adjacent magnets in the axial direction determines the magnetic levitation gravity compensation device.
  • the output stiffness of the compensating device, the axial dimension value and the difference of the adjacent magnetic steel in the axial direction determine the output displacement of the compensation device.
  • the number of blocks N t of the axial magnetic steel of the stepped magnetic steel group is 3, and the radial dimension difference of the adjacent magnetic steel in the axial direction is both 2.0 mm.
  • FIG. 16 shows a maglev gravity compensation device 800 according to a seventh embodiment of the present invention.
  • the maglev gravity compensation device 800 includes: an inner base magnet 805 , first end magnets 804 a , 803 a and 802 a , second end magnets 804 b , 803 b and 802 b , and an outer magnetic ring magnet 801 .
  • the inner base magnetic steel 805 is cylindrical, and the first end magnets 804a, 803a and 802a and the second end magnets 804b, 803b and 802b are respectively located at the two axial ends of the inner base magnet 805 and sequentially from the inner
  • the base magnet 805 extends axially downward and upward.
  • first end magnets 804a, 803a and 802a are located axially below the inner base magnet 805 and the second end magnets 804b, 803b and 802b are located axially of the inner base magnet 805 above.
  • Each of the first end magnets 804a, 803a, and 802a and each of the second end magnets 804b, 803b, and 802b are cylindrical, and the outer diameter is along the direction from the two ends of the inner base magnet 805 away from the inner base magnet. The direction of 805 increases sequentially.
  • Each of the first end magnets 804a, 803a, and 802a and each of the second end magnets 804b, 803b, and 802b are provided with axial through holes, and the axial through holes are the same as the diameter of the axial through holes of the inner base magnet 805. identical and connected to each other.
  • the shape and size of each of the first end magnets 804a, 803a and 802a and each of the second end magnets 804b, 803b and 802b are respectively the same as each other, and are mirror-symmetrical with respect to the axial mid-section radial plane of the inner base magnet 805 .
  • the outer ring magnet 801 has a cylindrical shape and is located outside the inner base magnet 805 coaxially with the inner base magnet 805 and radially spaced from the inner base magnet 805 .
  • FIG. 17 shows a schematic diagram of the magnetizing direction of the magnetic steel of the maglev gravity compensation device 800 .
  • the magnetization direction of the outer ring magnet 801 is radial magnetization, while the magnetization direction of the inner base magnet 805 and the first and second end magnets is axial magnetization, wherein the first end magnets are magnetized in the axial direction.
  • the magnetization direction of the magnets 804a, 803a and 802a is axial upward, while the magnetization direction of the second end magnets 804b, 803b and 802b is axial downward, and the magnetization direction of the inner base magnet 805 is Axially upward, the magnetization direction of the outer ring magnetic steel 801 is radially outward.
  • the magnetization direction of the outer magnet ring magnet 801 may be radially inward, the magnetization direction of each of the first end magnets 804a, 803a and 802a is axially downward, and the magnetization direction of each of the second end magnets 804a, 803a and 802a is axially downward.
  • the magnetization directions of the end magnets 804b, 803b and 802b are axially upward, and the magnetization direction of the inner base magnets 805 is axially downward.
  • the magnetization direction of the outer ring magnet 801 may be axial magnetization, and the magnetization direction of the inner base magnet 805 and each of the first and second end magnets may be radial magnetization.
  • FIG. 18 shows a schematic view of the size of the maglev gravity compensation device 800 according to the seventh embodiment of the present invention.
  • the number of blocks N t of the axial magnetic steel of the magnetic steel group is 3.
  • the axial lengths of the outer ring magnet 801, the inner base magnet 805, the first end magnets 804a, 803a and 802a and the second end magnets 804b, 803b and 802b are respectively determined by L 1 , L 5 , L 4.
  • L 3 and L 2 indicate that the axial through holes of the inner base magnet 805 and the first and second end magnets are the same and are indicated by D 0 , the inner base magnet 805 and the ring magnet 802-804
  • the radii of are represented by R 5 and R 4 , R 3 and R 2 respectively.
  • the number of blocks N t of the axial magnetic steel of the stepped magnetic steel group is 3, and the radial dimension difference between the adjacent magnetic steels in the axial direction is both 2.0 mm.
  • the design criteria for the size relationship of the magnetic steel at each end can be deduced.
  • Li is the axial length of each end magnet
  • the axial length of the end magnet farthest from the inner base magnet is set as L 2
  • the end magnet closest to the inner base magnet has the length of L 2 .
  • the axial length is set to L Nt-1 .
  • the diameter R 5 and the axial length L 5 of the inner base magnet are closely related to the weight of the vertical motion mechanism of the workpiece table.
  • the value range of R 5 is R 2 /2 ⁇ R 5 ⁇ R 2
  • the value of L 5 The range L 1 /4 ⁇ L 5 ⁇ L 1 /2. If the weight to be compensated by the maglev gravity compensation device increases or decreases, in order to keep the output stiffness of the compensation device unchanged, it is only necessary to adjust R 5 and L 5 .
  • FIG. 19 shows a maglev gravity compensation device 900 according to an eighth embodiment of the present invention.
  • the magnetic levitation gravity compensation device 900 includes: an inner base magnetic steel 903 , a first end magnetic steel 902 a , a second end magnetic steel 902 b , and an outer magnetic ring magnetic steel 901 .
  • the first end magnet 902a and the second end magnet 902b are respectively located at both axial ends of the inner base magnet 903 and extend axially downward and upward from the inner base magnet 903 .
  • the first end magnet 902a is located axially below the inner base magnet 903 and the second end magnet 902b is located axially above the inner base magnet 903 .
  • the first end magnet 902a and the second end magnet 902b are truncated cones, and the outer diameter gradually increases from the two axial ends of the inner base magnet 903 toward the direction away from the inner base magnet 903 .
  • the shape and size of the first end magnet 902 a and the second end magnet 902 b are the same as each other, and are mirror-symmetrical with respect to the axial mid-section radial plane of the inner base magnet 903 .
  • the outer ring magnet 901 has a cylindrical shape and is located outside the inner base magnet 903 coaxially with the inner base magnet 903 and radially spaced from the inner base magnet 903 . It should be understood that the first end magnetic steel 902a and the second end magnetic steel 902b can also be formed by a group of cylindrical magnetic steels adjoining in sequence in the axial direction.
  • the axial middle section of the inner base magnetic steel 903 of the magnetic levitation gravity compensation device 900 has a diameter reduction section 904, and the axial ends of the diameter reduction section 904 are the first axial section 903a and the second axial section respectively. Segment 903b.
  • the diameter of the diameter-reduced section 904 is smaller than the diameters of the first axial section 903a and the second axial section 903b.
  • the magnetization directions of the first end magnetic steel 902a and the first axial segment 903a are both axially downward, while the magnetization directions of the diameter-reduced segment 904 , the second end magnet 902b and the second axial segment 903b All along the axis upwards.
  • the stiffness of the magnetic levitation gravity compensation device 900 is slightly larger near the zero point, while the stiffness at the end points on both sides is unchanged, which can be applied to the working condition of the large damping force near the zero point.
  • FIG. 20 shows a schematic size diagram of the maglev gravity compensation device 900 .
  • the diameters of the axial through holes of the first end magnetic steel 902a and the second end magnetic steel 902b and the inner base magnetic steel 903 are equal, and both are D 0 .
  • the diameter of the diameter-reduced section 904 is represented by R 4 , where R 4 ⁇ R 3 .
  • the inner base magnet, the first end magnet and the second end magnet have a common central axis, and are rotationally symmetrical about the central axis, so as to ensure that the generated The magnetic force is evenly distributed along the circumference.
  • the present invention also provides a motion table, the motion table includes a workpiece table and a base, and the workpiece table is arranged to be able to rotate and move vertically relative to the base.
  • the workpiece table is used to carry the workpiece to be processed.
  • Figure 21 shows a bottom view of a workpiece table using the maglev gravity compensation device according to the present invention.
  • a concave cavity is provided under the workpiece table for accommodating the magnetic levitation gravity compensation device according to the present invention.
  • the cavity below the workpiece table can be one, two, three or four.
  • the figure shows a schematic diagram of the center point arrangement of a maglev gravity compensation device, two maglev gravity compensation devices arranged side by side, three maglev gravity compensation devices arranged in a regular triangle, for example, and four maglev gravity compensation devices arranged in a square. It is understood that other numbers and other arrangements of maglev gravity compensation devices may also be provided.
  • the shape of the worktable using the maglev gravity compensation device is not limited to the square shown in the figure, but can be set to any shape as required. It should be understood that the vertical line where the equivalent center of gravity of the maglev gravity compensation device is located should be collinear with the vertical line where the center of gravity of the vertical motion mechanism is located.
  • the magnetic levitation gravity compensation device can provide a magnetic buoyancy force that changes linearly with the stroke, that is, it can compensate the gravity of the workpiece table and the elastic force generated by the elastic connecting device with constant stiffness, and can satisfy the gravity compensation of the motion table in some cases. demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明公开了一种磁浮重力补偿装置,包括:内基磁钢,所述内基磁钢沿轴向延伸;第一端部磁钢和第二端部磁钢,第一端部磁钢和第二端部磁钢分别位于内基磁钢的两个轴向端并沿轴向延伸,且第一端部磁钢和第二端部磁钢的外径分别沿远离内基磁钢的两个轴向端方向逐渐增大;外磁环磁钢,外磁环磁钢呈筒状,与内基磁钢同轴地位于内基磁钢外且与内基磁钢径向间隔开。本发明实现了磁浮输出力沿行程呈线性的特性,且在零位点处输出力可抵消垂向结构重力。发明既能够补偿垂向运动机构的重力,又能以磁场线性化为基础实现恒刚度补偿,在行程范围内平衡了柔性机构的弹性变形反作用力,降低了垂向执行器的负荷,大大提高了微动台的垂向性能。

Description

磁浮重力补偿装置以及包括该装置的运动台
相关申请交叉引用
本专利申请要求于2020年12月01日提交的、申请号为202011379009.X、发明名称为“磁浮重力补偿装置以及包括该装置的运动台”的中国专利申请的优先权,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及集成电路装备制造领域,更具体地涉及一种恒刚度磁浮重力补偿装置以及包括该装置的运动台。
背景技术
在半导体硅片制造或者检测领域,要求工件台可以和硅片传输系统完成硅片的交接,同时需要承载着硅片完成硅片的精密定位,最终完成硅片的制造或者检测。所以对于应用制造或者检测的工件台装置中,微动台是其核心部件,可完成硅片在Z/Rx/Ry垂向三轴的精确定位。常规的垂向三轴微动台中,通常采用三个执行器进行三点布局,再通过柔性机构进行垂向导向和运动解耦,保证垂向性能。但随着对晶圆制造或者晶圆检测产率要求的不断提高,制造或检测精度的不断提升,工件台的运行速度、加速度和性能也随之提高,对微动台部件的运动精度,加速度及速度要求越来越高。为此业界提出了重力补偿技术,来提高微动台的性能。但对于带柔性机构的微动台,在小行程范围内,其柔性机构的弹簧刚度为恒定值,作用在垂向执行器上的反力是随着垂向位移线性增加或者减小的,常规的恒力重力补偿装置难以满足垂向台的高性能要求。
为此,在美国专利US9172291B2中,提出一种采用磁浮装置和机械弹簧补偿垂向重力、音圈电机补偿柔性机构的反作用力,由于柔性机构的作用力随位移变化而变化,该装置的线圈匝数也随垂向位移变化而变化以补偿柔性机构的作用力。但该装置结构复杂、线圈的加工制造上存在一定难度,且机械弹簧与磁浮装置的耦合力也存在一定的非线性,不利于实现高控制精度。
美国专利US2009066168A1所提出的磁浮音圈电机装置,通过磁浮重力补偿装置的磁阻力补偿垂向运动模块的重力,通过调节线圈输入电流的幅值与方 向补偿柔性机构的作用力。但该磁浮音圈电机不仅磁路结构复杂,而且输出磁浮力的刚度接近于零,因而必须要通过控制算法实现控制精度。
因此,现阶段需要一种结构简单,小行程范围内刚度恒定,且和柔性机构的刚度相反的重力补偿装置,即零位点处补偿装置可输出与垂向运动模块重力幅值相同、方向相反的作用力,且补偿装置的输出刚度保证恒定。业界常用的气浮重力补偿装置,可通过比例阀来实时调节压缩气体的压力可实现恒刚度的重力补偿,但气浮重力补偿装置结构非常复杂,且气动的控制存在滞后性,对提高垂向性能有影响。
发明内容
本发明的目的是提供一种结构和控制简单,且控制不存在滞后性的恒刚度磁浮重力补偿装置,以解决上述现有技术中存在的问题。
具体地,本发明提供了一种磁浮重力补偿装置,包括:
内基磁钢,所述内基磁钢沿轴向延伸;
第一端部磁钢和第二端部磁钢,所述第一端部磁钢和所述第二端部磁钢分别位于所述内基磁钢的两个轴向端并沿轴向延伸,且所述第一端部磁钢和第二端部磁钢的外径分别沿远离所述内基磁钢的所述两个轴向端方向逐渐增大;
外磁环磁钢,所述外磁环磁钢呈筒状,与所述内基磁钢同轴地位于所述内基磁钢外且与所述内基磁钢径向间隔开。
在一实施例中,所述第一端部磁钢和所述第二端部磁钢的充磁方向为从所述内基磁钢沿轴向向外,所述外磁环磁钢的充磁方向为径向向外。
在一实施例中,所述第一端部磁钢和所述第二端部磁钢相对于所述内基磁钢的轴向平分面镜像对称。
在一实施例中,所述内基磁钢、所述第一端部磁钢和所述第二端部磁钢中心轴线彼此重合且关于所述中心轴线旋转对称。
在一实施例中,所述内基磁钢具有轴向通孔,所述第一端部磁钢和第二端部磁钢具有轴向通孔。
在一实施例中,所述内基磁钢呈圆筒状,所述第一端部磁钢由沿轴向彼此邻接的多段筒状磁钢组成,所述第二端部磁钢由沿轴向彼此邻接的多段筒状磁钢组成,所述多段筒状磁钢的内径相同,而各外径从远离所述内基磁钢的筒状磁钢朝向靠近所述内基磁钢的筒状磁钢依次减小。
在一实施例中,所述第一端部磁钢的多段筒状磁钢中各相邻筒状磁钢的外径之差相等,且轴向长度相等;以及
所述第二端部磁钢的多段筒状磁钢中各相邻筒状磁钢的外径之差相等,且轴向长度相等。
在一实施例中,所述第一端部磁钢由沿轴向彼此邻接的三段筒状磁钢组成,所述第二端部磁钢由沿轴向彼此邻接的三段筒状磁钢组成。
在一实施例中,所述第一端部磁钢和所述第二端部磁钢中最远离所述内基磁钢的筒状磁钢的外径为R 5,轴向长度为L 5,内基磁钢的外径为R 2,外磁环磁钢的轴向长度为L 1,其中R 2/2≤R 5≤R 2,L 1/4≤L 5≤L 1/2。
在一实施例中,所述内基磁钢的所述轴向通孔的径向尺寸与所述第一端部磁钢和第二端部磁钢的轴向通孔的径向尺寸相同。
在一实施例中,所述第一端部磁钢和第二端部磁钢的所述轴向通孔的径向尺寸自远离所述内基磁钢的端部朝向所述内基磁钢减小。
在一实施例中,所述第一端部磁钢和第二端部磁钢的所述轴向通孔的内周面与径向方向的夹角β与所述第一端部磁钢和第二端部磁钢的外周面与径向方向的夹角α的关系为α≤β≤135°。
在一实施例中,所述外磁环磁钢由沿周向彼此邻接的多个弧形板组成。
在一实施例中,所述内基磁钢包括径缩段,所述径缩段位于内基磁钢的轴向中段且外径小于其余部分的外径。
在一实施例中,所述外磁环磁钢的轴向长度为L 1,端部磁钢的轴向长度为L 2,内基磁钢的轴向长度为L 3,所述端部磁钢和所述内基磁钢相对于所述外磁环磁钢沿轴向移动行程为S,机械行程与有效行程的差值为ΔS,则L 3+2L 2-L 1=S+ΔS,其中ΔS/S的取值范围为[0.1,3.0]。
在一实施例中,所述端部磁钢的底角为α为60°至88°。
在一实施例中,所述端部磁钢的底角为α为75°。
本发明还提供一种运动台,包括工件台和底座,所述工件台设置成能够相对于所述底座旋转和垂向移动,所述工件台下方设有上述磁浮重力补偿装置。本发明的磁浮重力补偿装置解决了现有技术气动恒刚度重力补偿装置结构复杂,控制复杂,控制存在滞后性等问题;解决了现有重力补偿装置刚度为零或非线性的问题。本发明实现了磁浮输出力沿行程呈线性的特性,且在零位点处输出力可抵消垂向结构重力。发明既能够补偿垂向运动机构的重力,又能以磁场线性化为基础实现 恒刚度补偿,在行程范围内平衡了柔性机构的弹性变形反作用力,降低了垂向执行器的负荷,大大提高了微动台的垂向性能。
附图说明
图1是根据本发明第一实施例的磁浮重力补偿装置的结构示意图。
图2是图1所示实施例的纵剖示意图。
图3是图1所示实施例的磁钢充磁方向示意图。
图4是图1所示实施例的磁钢尺寸示意图。
图5是图1所示实施例的行程范围内输出力曲线。
图6是根据本发明第二实施例的磁浮重力补偿装置的结构示意图。
图7是根据本发明第三实施例的磁浮重力补偿装置的磁钢尺寸示意图(D 2>D 3)。
图8是根据本发明第三实施例的磁浮重力补偿装置的磁钢尺寸示意图(D 2<D 3)。
图9是根据本发明第三实施例的磁浮重力补偿装置的磁钢尺寸示意图(R 3=R 2)。
图10是根据本发明第三实施例的磁浮重力补偿装置的磁钢尺寸示意图(R 3>R 2)。
图11是根据本发明第四实施例的磁浮重力补偿装置的磁钢充磁方向示意图。
图12是根据本发明第四实施例的磁浮重力补偿装置的输出力曲线。
图13是根据本发明第四实施例的磁浮重力补偿装置的结构及磁钢充磁方向示意图。
图14是根据本发明第五实施例的磁浮重力补偿装置的楔形孔结构示意图。
图15是根据本发明第六实施例的磁浮重力补偿装置的结构示意图。
图16是根据本发明第七实施例的阶梯磁钢组结构示意图。
图17是根据本发明第七实施例的阶梯磁钢组充磁方向示意图。
图18是根据本发明第七实施例的阶梯磁钢组磁钢尺寸示意图。
图19是根据本发明第八实施例的圆台磁钢及圆环磁钢方案结构示意图。
图20是根据本发明第八实施例的圆台磁钢及圆环磁钢方案尺寸示意图。
图21是根据本发明的磁浮重力补偿装置在运动台中的布局形式。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制, 而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况下来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。本文中“X向”、“X方向”和“Y向”、“Y方向”表示沿水平方向彼此相交的方向,“Z向”和“Z方向”表示垂直方向。
半导体硅片制造或者检测领域,要求工件台能够实现其上所承载硅片绕Z向的旋转和垂向升降。工件台可通过音圈电机进行驱动实现其升降,为了降低音圈电机的负载以及提高垂向运动精度,通常设置例如磁浮重力补偿装置的重力补偿装置。为了实现工件台相对于底座的倾斜,在工件台与底座之间可设置弹性连接件,随着工件台沿垂向方向的升降,弹性连接件会产生弹力,该弹力随工件台的行程线性变化。本发明提供一种随行程线性变化的磁浮重力补偿装置,以实现对工件台重力以及弹性连接件弹力的补偿。
现参照附图描述根据本发明的各实施例。
参见图1和2,根据本发明一实施例的磁浮重力补偿装置100包括:内基磁钢103、第一端部磁钢102a和第二端部磁钢102b、以及外磁环磁钢101。其中内基磁钢103呈圆筒状,第一端部磁钢102a和第二端部磁钢102b分别位于内基磁钢103的两轴向端并沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢102a位于内基磁钢103的轴向下方,而第二端部磁钢102b位于内基磁钢103的轴向上方。
在图示实施例中,第一端部磁钢102a和第二端部磁钢102b呈圆台形,且 外径尺寸分别从靠近内基磁钢103的两轴向端朝下和朝上逐渐增大。第一端部磁钢102a和第二端部磁钢102b各设有轴向通孔,其轴向通孔与内基磁钢103的轴向通孔具有相同的直径且彼此连通。第一端部磁钢102a和第二端部磁钢102b的形状和尺寸彼此相同,且关于内基磁钢103的中分径向面镜像对称。外磁环磁钢101呈圆筒状,且与内基磁钢103同轴地位于内基磁钢103外,并与内基磁钢103径向间隔开。在所示实施例中,第一端部磁钢102a和第二端部磁钢102b与内基磁钢103邻接,但应理解,其间也可设置一定的气隙,该气隙通常不大于1mm。
在该实施例中,外磁环磁钢101为重力补偿装置定子磁钢,而内基磁钢103以及第一端部磁钢102a和第二端部磁钢102b为重力补偿装置动子磁钢。但应理解,也可设置成外磁环磁钢101为重力补偿装置动子磁钢,而内基磁钢103以及第一端部磁钢102a和第二端部磁钢102b为重力补偿装置定子磁钢。
如图2中的剖视图所示,磁浮重力补偿装置100的定子磁钢和动子磁钢之间无机械连接,在行程范围内,定子磁场与动子磁钢间相互作用可产生刚度不变的垂向作用力,本发明中该垂向作用力即可理解为装置的磁浮力,其中当外磁环磁钢101和内基磁钢103相对于彼此轴向居中时即为装置零位点,由于装置在零位点时需补偿工件台的重力,因而其输出磁浮力幅值需与工件台重力相等,弹性连接件弹力为零,此时磁浮重力补偿装置的输出磁浮力方向垂向向上。由于在工件台与底座之间所设置的弹性连接件的输出力随工件台垂向运动而线性变化,因而,只有当装置的输出磁浮力也随工件台垂向运动而线性变化、且两者变化斜率相等时,磁浮重力补偿装置才能完全实现工件台重力和弹性连接件弹力的补偿作用。以此为基础,装置中第一端部磁钢102a和第二端部磁钢102b的外径尺寸需从靠近内基磁钢103的两端分别朝下和朝上逐渐增大,需要说明的是,当第一端部磁钢102a和第二端部磁钢102b的外径尺寸变化梯度与弹性连接件输出弹力的变化梯度一致时,在垂向任意位置,该装置输出磁浮力与弹性连接件的输出弹力幅值均相等。
图3中示出了磁浮重力补偿装置100中各磁钢的充磁方向。其中内基磁钢103和第二端部磁钢102b的充磁方向相同且均为轴向向上,而第一端部磁钢102a的充磁方向为轴向向下,外磁环磁钢101的充磁方向为径向向外。同理,也可设置成外磁环磁钢101的充磁方向为径向向内,而第一端部磁钢102a的充磁方向为沿轴向向上,第二端部磁钢102b和内基磁钢103的充磁方向相同且均 为沿轴向向下。
还如图1所示,外磁环磁钢101由8块分块磁钢拼接而成。其中8块分块磁钢为由一圆筒以45°等角间隔沿径向平分的弧形板磁钢。但应理解,外磁环磁钢101也可其他数量的分块磁钢拼接而成,为了消除外磁环磁钢101产生的径向不平衡力,其分块数N设为偶数,例如2块、4块、6块等。外磁环磁钢101由分块磁钢拼接而成便于磁钢进行充磁和加工。在外磁环磁钢101采用多块磁钢拼接而成的情况下,磁钢的极弧系数a取值与磁浮重力补偿装置的输出刚度正相关,磁钢的极弧系数a是磁钢的极弧长度与极距的比值,极弧系数a的取值较佳地为[0.7,0.95]。
如图2所示,第一端部磁钢102a和第二端部磁钢102b邻接内基磁钢103的一端的外径大于内基磁钢103的外径。但应理解,第一端部磁钢102a和第二端部磁钢102b邻接内基磁钢103的一端的外径也可等于或小于内基磁钢103的外径,且第一端部磁钢102a和第二端部磁钢102b的该外径尺寸大小影响磁浮重力补偿装置在行程范围内输出磁浮力的斜率。
图4中示出了磁浮重力补偿装置100的尺寸示意图。如图4所示,外磁环磁钢101、第一端部磁钢102a和第二端部磁钢102b、以及内基磁钢103的轴向长度分别为L 1、L 2和L 3,第一端部磁钢102a和第二端部磁钢102b邻接内基磁钢103一端的半径和内基磁钢103半径分别用R 2和R 3表示,第一端部磁钢102a和第二端部磁钢102b远离内基磁钢103一端的半径用R 21表示,第一端部磁钢102a和第二端部磁钢102b以及内基磁钢103的轴向通孔的直径用D 0表示,第一端部磁钢102a和第二端部磁钢102b的底角用α表示。假设磁浮重力补偿装置的总行程为S,机械行程与有效行程的差值为ΔS,则外磁环磁钢101、第一端部磁钢102a和第二端部磁钢102b和内基磁钢103的轴向长度之间的关系为L 3+2L 2-L 1=S+ΔS,式中ΔS的取值主要与补偿装置总行程S相关,通常ΔS/S的取值范围为[0.1,3.0]。第一端部磁钢102a和第二端部磁钢102b邻接内基磁钢103一端的半径和内基磁钢103的半径之间的关系取决于零位点处磁浮重力补偿装置所需补偿的重量大小,即工件台的重力。本实施例中,较佳地为R 2>R 3。在第一端部磁钢102a和第二端部磁钢102b和内基磁钢103外径确定的情况下,其轴向通孔直径D 0大小与磁浮重力补偿装置刚度相关。本实施例中,考虑磁浮 重力补偿装置的集成和装配工艺的难易程度,第一端部磁钢102a和第二端部磁钢102b以及内基磁钢103轴向通孔的尺寸相同。第一端部磁钢102a和第二端部磁钢102b底角α决定磁场线性度,进而影响了磁浮重力补偿装置的刚度大小,在轴向通孔直径和有效气隙长度确定的前提下,第一端部磁钢102a和第二端部磁钢102b底角α越大,磁浮重力补偿装置的刚度越大,底角α的取值范围为[60°,88°],通常,底角α可表示为
Figure PCTCN2021076424-appb-000001
本实施例中第一端部磁钢102a和第二端部磁钢102b底角α较佳地选取为75°。
图5中示出了磁浮重力补偿装置100的输出力仿真曲线。图中横轴表示磁浮重力补偿装置的行程、纵轴表示输出力幅值。图中标注了两行程端点和零位点及其对应的输出力。图中x为单向的极限位移、G为单个磁浮重力补偿装置需补偿的工件台重力,假设磁浮重力补偿装置的设计刚度为k,则正向行程端点x处磁浮重力补偿装置的输出力幅值为G+F=G+kx,由此可知磁浮重力补偿装置的输出力范围为[-F+G,F+G]。从图中可以看出,该磁浮重力补偿装置的输出力随行程线性变化,从而能够补偿工件台的重力以及弹性连接件产生的线性变化的弹力。
图6中示出根据本发明另一实施例的磁浮重力补偿装置200。该实施例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置200包括:内基磁钢203、第一端部磁钢202a和第二端部磁钢202b、以及外磁环磁钢201。其中内基磁钢203呈圆筒状,第一端部磁钢202a和第二端部磁钢202b分别位于内基磁钢203的两轴向端并从内基磁钢203沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢202a位于内基磁钢203的轴向下方,而第二端部磁钢202b位于内基磁钢203的轴向上方。第一端部磁钢202a和第二端部磁钢202b呈圆台形,且外径尺寸均从邻近内基磁钢203的两轴向端朝向远离内基磁钢203的方向逐渐增大。第一端部磁钢202a和第二端部磁钢202b各设有轴向通孔,其轴向通孔与内基磁钢203的轴向通孔具有相同的直径且彼此连通。第一端部磁钢202a和第二端部磁钢202b的形状和尺寸彼此相同,且关于内基磁钢203的轴向中分径向面镜像对称。外磁环磁钢201呈圆筒状,且与内基磁钢203同轴地位于内基磁钢203外,并与内基磁钢203径向间隔开。磁浮重力补偿装置200与磁浮重力补偿装置100的区别在于外磁环磁钢201由一块径向充磁磁钢构成。
图7和8中示出了根据本发明第三实施例的磁浮重力补偿装置300。该实施 例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置300包括:内基磁钢303、第一端部磁钢302a和第二端部磁钢302b、以及外磁环磁钢301。其中内基磁钢303呈圆筒状,第一端部磁钢302a和第二端部磁钢302b分别位于内基磁钢303的两轴向端并从内基磁钢303沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢302a位于内基磁钢303的轴向下方,而第二端部磁钢302b位于内基磁钢303的轴向上方。第一端部磁钢302a和第二端部磁钢302b呈圆台形,且外径尺寸均从邻近内基磁钢303的两轴向端朝向远离内基磁钢303的方向逐渐增大。第一端部磁钢302a和第二端部磁钢302b各设有轴向通孔,其轴向通孔与内基磁钢303的轴向通孔彼此连通。第一端部磁钢302a和第二端部磁钢302b的形状和尺寸彼此相同,且关于内基磁钢303的轴向中分径向面镜像对称。外磁环磁钢301呈圆筒状,且与内基磁钢303同轴地位于内基磁钢303外,并与内基磁钢303径向间隔开。
磁浮重力补偿装置300与磁浮重力补偿装置100的区别在于第一端部磁钢302a和第二端部磁钢302b的轴向通孔与内基磁钢303的轴向通孔直径不同。第一端部磁钢302a和第二端部磁钢302b的轴向通孔直径可小于(图7)或大于(图8)内基磁钢303的轴向通孔直径。应理解,第一端部磁钢302a和第二端部磁钢302b的轴向通孔与内基磁钢303的轴向通孔直径关系与磁钢的安装方式相关,与磁浮重力补偿装置输出力的刚度与零位点补偿重力值无关。磁浮重力补偿装置零位点所补偿重力值与内基磁钢303所提供的磁场强度相关,在外磁环磁钢301相同情况下,内基磁钢303的磁场强度越大,零位点所补偿重力值越大。
图9和图10示出根据本发明第四实施例的磁浮重力补偿装置400。该实施例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置400包括:内基磁钢403、第一端部磁钢402a和第二端部磁钢402b、以及外磁环磁钢401。其中内基磁钢403呈圆筒状,第一端部磁钢402a和第二端部磁钢402b分别位于内基磁钢403的两轴向端并从内基磁钢403沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢402a位于内基磁钢403的轴向下方,而第二端部磁钢402b位于内基磁钢403的轴向上方。第一端部磁钢402a和第二端部磁钢402b呈圆台形,且外径尺寸沿从内基磁钢403的两轴向端朝向远离内基磁钢403的方向逐渐增大。第一端部磁钢402a和第二端部磁钢402b各设有轴向通孔,其轴向通孔与内基磁钢403的轴向通孔彼此连通。第一端部磁钢402a和第二端部磁钢 402b的形状和尺寸彼此相同,且关于内基磁钢403的轴向中分径向面镜像对称。外磁环磁钢401呈圆筒状,且与内基磁钢403同轴地位于内基磁钢403外,并与内基磁钢403径向间隔开。
区别在于,磁浮重力补偿装置100中,第一端部磁钢102a和第二端部磁钢102b邻接内基磁钢103的一端的外径小于内基磁钢103的外径,而在磁浮重力补偿装置400中,第一端部磁钢402a和第二端部磁钢402b邻接内基磁钢403的一端的外径等于或小于内基磁钢403的外径。
图11中示出了根据本发明第四实施例的磁浮重力补偿装置500。该实施例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置500包括:内基磁钢503、第一端部磁钢502a和第二端部磁钢502b、以及外磁环磁钢501。其中内基磁钢503呈圆筒状,第一端部磁钢502a和第二端部磁钢502b分别位于内基磁钢503的两轴向端并从内基磁钢503沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢502a位于内基磁钢503的轴向下方,而第二端部磁钢502b位于内基磁钢503的轴向上方。第一端部磁钢502a和第二端部磁钢502b呈圆台形,且外径尺寸沿从邻近内基磁钢503的两轴向端朝向远离内基磁钢503的方向逐渐增大。第一端部磁钢502a和第二端部磁钢502b各设有轴向通孔,其轴向通孔与内基磁钢503的轴向通孔彼此连通。第一端部磁钢502a和第二端部磁钢502b的形状和尺寸彼此相同,且关于内基磁钢503的轴向中分径向面镜像对称。外磁环磁钢501呈圆筒状,且与内基磁钢503同轴地位于内基磁钢503外,并与内基磁钢503径向间隔开。
区别在于,磁浮重力补偿装置100中,内基磁钢103的充磁方向为轴向,而在磁浮重力补偿装置500中,内基磁钢503的充磁方向与外磁环磁钢501的充磁方向相同且均为径向向外。但应理解,在磁浮重力补偿装置500中,也可设置成第一端部磁钢502a和第二端部磁钢502b的充磁方向为从远离内基磁钢503的一端朝向内基磁钢503的方向,而内基磁钢503和外磁环磁钢501的充磁方向相同且均为径向向内。在某些应用环境中,重力补偿装置在零位点处不需要补偿工件台的重力,因此,磁浮重力补偿装置500可采用上述充磁方向。在该情况下,还可替代地设置成内基磁钢504可由多块径向充磁的分块磁钢拼接而成(参见第七实施例的磁浮重力补偿装置800)。
此外,内基磁钢504还可由未充磁的高磁导率材料加工而成的圆筒505替代,如图13所示,内基磁钢未充磁时,磁浮重力补偿装置的输出力刚度会有所 降低,本实施例中所述高磁导率材料优选为坡莫合金。
图12示出了磁浮重力补偿装置500的输出力曲线。图中横轴为磁浮重力补偿装置的行程、纵轴为输出力幅值,图中标注了两行程端点和零位点及其对应的输出力。由图可知,零位点处磁浮重力补偿装置的输出力幅值为零。假设磁浮重力补偿装置的设计刚度为k,则正向行程端点处磁浮重力补偿装置的输出力幅值为F=kx,由此可得磁浮重力补偿装置的输出力范围为[-F,F]。
图14中示出了根据本发明第五实施例的磁浮重力补偿装置600。该实施例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置600包括:内基磁钢603、第一端部磁钢602a和第二端部磁钢602b、以及外磁环磁钢601。其中内基磁钢603呈圆筒状,第一端部磁钢602a和第二端部磁钢602b分别位于内基磁钢603的两轴向端并从内基磁钢603沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢602a位于内基磁钢603的轴向下方,而第二端部磁钢602b位于内基磁钢603的轴向上方。第一端部磁钢602a和第二端部磁钢602b呈圆台形,且外径尺寸沿从内基磁钢603的两轴向端朝向远离内基磁钢603的方向逐渐增大。第一端部磁钢602a和第二端部磁钢602b各设有轴向通孔,其轴向通孔与内基磁钢603的轴向通孔彼此连通。第一端部磁钢602a和第二端部磁钢602b的形状和尺寸彼此相同,且关于内基磁钢603的中分径向面镜像对称。外磁环磁钢601呈圆筒状,且与内基磁钢603同轴地位于内基磁钢603外,并与内基磁钢603径向间隔开。
区别在于,磁浮重力补偿装置100中,第一端部磁钢602a和第二端部磁钢602b的轴向通孔的直径沿轴向保持恒定,而在磁浮重力补偿装置600中,第一端部磁钢602a和第二端部磁钢602b的轴向通孔的直径沿从内基磁钢朝向远离内基磁钢的方向逐渐增大,即其轴向通孔呈圆台形。与轴向通孔直径保持恒定相比,圆台形通孔的加工难度更大,但通过调整第一端部磁钢602a和第二端部磁钢602b的圆台形通孔的底角β与第一和第二端部磁钢底角α的大小关系,可一定程度地微调磁浮重力补偿装置的输出刚度k,其中圆台形通孔的底角β与第一和第二端部磁钢底角α的关系可表示为:(1)60°≤α≤88°,(2)α≤β≤135°。本实施例中,α与β的取值优选为α=75°、β=82°。
图15中示出了根据本发明第六实施例的磁浮重力补偿装置700。该实施例与磁浮重力补偿装置100基本上相同,即磁浮重力补偿装置700包括:内基磁钢703、第一端部磁钢702a和第二端部磁钢702b、以及外磁环磁钢701。第一 端部磁钢702a和第二端部磁钢702b分别位于内基磁钢703的两轴向端并从内基磁钢703沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢702a位于内基磁钢703的轴向下方,而第二端部磁钢702b位于内基磁钢703的轴向上方。第一端部磁钢702a和第二端部磁钢702b呈圆台形,且外径尺寸沿从内基磁钢703的两轴向端朝向远离内基磁钢的方向逐渐增大。第一端部磁钢702a和第二端部磁钢702b的形状和尺寸彼此相同,且关于内基磁钢703的中分径向面镜像对称。外磁环磁钢701呈圆筒状,且与内基磁钢703同轴地位于内基磁钢703外,并与内基磁钢703径向间隔开。
区别在于该实施例中内基磁钢703呈圆柱形,第一端部磁钢702a和第二端部磁钢702b呈圆台形,内基磁钢703和第一端部磁钢702a和第二端部磁钢702b均不设轴向通孔。该设置在一定程度上增加了磁钢装配难度,但第一端部磁钢702a和第二端部磁钢702b和内基磁钢703的外径也相应程度地缩小,进而在磁浮重力补偿装置设计输出刚度k不变的前提下,可一定程度上缩小磁浮重力补偿装置体积;或在磁浮重力补偿装置体积不变的前提下,进一步提升磁浮重力补偿装置的设计输出刚度k。
为了便于第一端部磁钢702a和第二端部磁钢702b的加工,第一端部磁钢702a和第二端部磁钢702b也可由多个圆柱形轴向上下叠加组成的阶梯状磁钢组形成,其中阶梯状磁钢组中磁钢的轴向分块数为N t、轴向相邻磁钢的径向尺寸和轴向尺寸的差值需依照设计需求通过仿真迭代得出。通常,阶梯状磁钢组中轴向磁钢的分块数N t取值范围为N t≥2、N t∈Z,轴向相邻磁钢的径向尺寸差值决定了磁浮重力补偿装置的输出刚度,轴向相邻磁钢的轴向尺寸值及差值决定了补偿装置的输出位移大小。较佳地,阶梯状磁钢组轴向磁钢的分块数N t为3、轴向相邻磁钢的径向尺寸差值均为2.0mm。
图16中示出了根据本发发明第七实施例的磁浮重力补偿装置800。磁浮重力补偿装置800包括:内基磁钢805、第一端部磁钢804a、803a和802a以及第二端部磁钢804b、803b和802b以及外磁环磁钢801。其中内基磁钢805呈圆筒状,第一端部磁钢804a、803a和802a以及第二端部磁钢804b、803b和802b分别位于内基磁钢805的两轴向端并依次从内基磁钢805沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢804a、803a和802a位于内基磁钢805的轴向下方,而第二端部磁钢804b、803b和802b位于内基磁钢805的轴向上方。各第一端部磁钢804a、803a和802a和各第二端部磁钢804b、803b和802b呈圆 筒形,且外径尺寸沿从内基磁钢805的两端朝向远离内基磁钢805的方向依次增大。各第一端部磁钢804a、803a和802a和各第二端部磁钢804b、803b和802b均设有轴向通孔,其轴向通孔与内基磁钢805的轴向通孔直径相同且彼此连通。各第一端部磁钢804a、803a和802a和各第二端部磁钢804b、803b和802b的形状和尺寸分别彼此相同,且关于内基磁钢805的轴向中分径向面镜像对称。外磁环磁钢801呈圆筒状,且与内基磁钢805同轴地位于内基磁钢805外,并与内基磁钢805径向间隔开。
图17中示出了磁浮重力补偿装置800的磁钢充磁方向示意图。其中外磁环磁钢801的充磁方向为径向充磁,而内基磁钢805和各第一和第二端部磁钢的充磁方向为轴向充磁,其中各第一端部磁钢804a、803a和802a的充磁方向为轴向向上,而各第二端部磁钢804b、803b和802b的充磁方向为轴向向下,而内基磁钢805的充磁方向为轴向向上,外磁环磁钢801的充磁方向为径向向外。但应理解,也可设置成外磁环磁钢801的充磁方向径向向内,而各第一端部磁钢804a、803a和802a的充磁方向为轴向向下,而各第二端部磁钢804b、803b和802b的充磁方向为轴向向上,而内基磁钢805的充磁方向为轴向向下。还应理解,可设置成外磁环磁钢801的充磁方向为轴向充磁,而内基磁钢805和各第一和第二端部磁钢的充磁方向为径向充磁。
图18示出了根据本发明第七实施例的磁浮重力补偿装置800的尺寸示意图,图中磁钢组轴向磁钢的分块数N t为3。其中外磁环磁钢801、内基磁钢805、第一端部磁钢804a、803a和802a和第二端部磁钢804b、803b和802b的轴向长度分别由L 1、L 5、L 4、L 3、L 2表示,内基磁钢805和各第一和第二端部磁钢的轴向通孔相同且用D 0表示,内基磁钢805和圆环磁钢802~804的半径分别用R 5和R 4、R 3、R 2表示。为了便于磁钢的装配,本实施例中轴向通孔的直径及各磁钢的尺寸关系为L 2+L 4=2L 3,R 2+R 4=2R 3,L 2+L 3+L 4≥L 1。在上述较佳实施例中,阶梯状磁钢组轴向磁钢的分块数N t为3、轴向相邻磁钢的径向尺寸差值均为2.0mm。根据实施例中磁钢组轴向磁钢分块数N t,可推导出各端部磁钢尺寸关系的设计准则,参考实施例1中端部磁钢底角α的取值,有
Figure PCTCN2021076424-appb-000002
成立,式中L i为各端部磁钢的轴向长度,其中最远离内基磁钢的端部磁钢的轴向长度设为L 2,最接近内基磁钢的端部磁钢的轴向长度设为L Nt-1。当N t的取值趋于无限大且各L i 彼此相等时,端部磁钢底角的取值与实施例1一致。
为了保证补偿装置输出刚度的一致性,优选地是轴向相邻磁钢的径向尺寸差值和轴向尺寸差值均相等,即R 5-R 4=R 4-R 3=R 3-R 2;L 2-L 3=L 3-L 4=L 4-L 5。但应理解,其径向尺寸差值和轴向尺寸差值也可彼此不同。还应理解,内基磁钢805和各第一和第二端部磁钢的的轴向通孔的直径D 0也可彼此不同、或者其中的一个或多个设置成无轴向通孔。
内基磁钢的直径R 5和轴向长度L 5与工件台垂向运动机构的重量密切相关,通常,R 5的取值范围R 2/2≤R 5≤R 2,L 5的取值范围L 1/4≤L 5≤L 1/2。如果磁浮重力补偿装置所需补偿的重量增大或减小,为保证补偿装置的输出刚度不变,则只需调整R 5和L 5
图19中示出了根据本发明第八实施例的磁浮重力补偿装置900。磁浮重力补偿装置900包括:内基磁钢903、第一端部磁钢902a和第二端部磁钢902b、以及外磁环磁钢901。第一端部磁钢902a和第二端部磁钢902b分别位于内基磁钢903的两轴向端并从内基磁钢903沿轴向向下和向上延伸。在所示实施例中,第一端部磁钢902a位于内基磁钢903的轴向下方,而第二端部磁钢902b位于内基磁钢903的轴向上方。第一端部磁钢902a和第二端部磁钢902b呈圆台形,且外径尺寸沿从内基磁钢903的两轴向端朝向远离内基磁钢903的方向逐渐增大。第一端部磁钢902a和第二端部磁钢902b的形状和尺寸彼此相同,且关于内基磁钢903的轴向中分径向面镜像对称。外磁环磁钢901呈圆筒状,且与内基磁钢903同轴地位于内基磁钢903外,并与内基磁钢903径向间隔开。应理解,第一端部磁钢902a和第二端部磁钢902b也可由一组圆筒状磁钢轴向依次邻接而组成。
区别在于该实施例中磁浮重力补偿装置900的内基磁钢903的轴向中间段具有径缩段904,径缩段904的轴向两端分别为第一轴向段903a和第二轴向段903b。径缩段904的直径小于第一轴向段903a和第二轴向段903b的直径。其中第一端部磁钢902a和第一轴向段903a的充磁方向均沿轴向向下,而径缩段904、第二端部磁钢902b与第二轴向段903b的充磁方向均沿轴向向上。该磁浮重力补偿装置900在零位点附近的刚度稍大,而两侧端点处刚度不变,可应用在零位点附近阻尼力较大的工况。
图20中示出了磁浮重力补偿装置900的尺寸示意图。其中第一端部磁钢902a和第二端部磁钢902b与内基磁钢903的轴向通孔直径相等,均为D 0。第一 端部磁钢902a和第二端部磁钢902b邻接内基磁钢903一端的外径、内基磁钢903的第一轴向段903a和第二轴向段903b的外径分别用R 2和R 3表示,优选地R 2=R 3,此时磁浮重力补偿装置900的线性度可达到最优。而径缩段904的直径用R 4表示,其中R 4<R 3
在以上所示各实施例中,较佳地是,内基磁钢、第一端部磁钢和第二端部磁钢具有共同的中心轴线,且关于该中心轴线旋转对称,从而确保产生的磁力沿周向均匀分布。
本发明还提供一种运动台,该运动台包括工件台和底座,工件台设置呈能够相对于底座旋转和垂向移动。其中工件台用于承载所要加工的工件。
图21中示出了使用根据本发明的磁浮重力补偿装置的工件台的仰视图。在工件台的下方设有凹腔,用于容纳根据本发明的磁浮重力补偿装置。其中工件台下方的凹腔可以是一个、两个、三个或四个。图中示出了一个磁浮重力补偿装置中心点布置、两个磁浮重力补偿装置并排布置、三个磁浮重力补偿装置呈例如正三角形布置以及四个磁浮重力补偿装置是呈正方形布置的示意图,但应理解,也可设置其他数量和其他布置的磁浮重力补偿装置。使用磁浮重力补偿装置的工作台的形状也不限于图示正方形,而是可以根据需要设置成任何形状。应理解,磁浮重力补偿装置的等效重心所在垂线需与垂向运动机构重心所在垂线共线。
根据本发明的磁浮重力补偿装置能够提供随行程线性变化的磁浮力,即能够补偿工件台的重力,又能够补偿恒刚度的弹性连接装置产生的弹力,能够满足某些情况下运动台对于重力补偿的需求。
以上已详细描述了本发明的较佳实施例,但应理解到,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (18)

  1. 一种磁浮重力补偿装置,其特征在于,包括:
    内基磁钢,所述内基磁钢沿轴向延伸;
    第一端部磁钢和第二端部磁钢,所述第一端部磁钢和所述第二端部磁钢分别位于所述内基磁钢的两个轴向端并沿轴向延伸,且所述第一端部磁钢和第二端部磁钢的外径分别沿远离所述内基磁钢的所述两个轴向端方向逐渐增大;
    外磁环磁钢,所述外磁环磁钢呈筒状,与所述内基磁钢同轴地位于所述内基磁钢外且与所述内基磁钢径向间隔开。
  2. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第一端部磁钢和所述第二端部磁钢的充磁方向为从所述内基磁钢沿轴向向外,所述外磁环磁钢的充磁方向为径向向外。
  3. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第一端部磁钢和所述第二端部磁钢相对于所述内基磁钢的轴向平分面镜像对称。
  4. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述内基磁钢、所述第一端部磁钢和所述第二端部磁钢中心轴线彼此重合且关于所述中心轴线旋转对称。
  5. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,
    所述内基磁钢具有轴向通孔,所述第一端部磁钢和第二端部磁钢具有轴向通孔。
  6. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,
    所述内基磁钢呈圆筒状,所述第一端部磁钢由沿轴向彼此邻接的多段筒状磁钢组成,所述第二端部磁钢由沿轴向彼此邻接的多段筒状磁钢组成,所述多段筒状磁钢的内径相同,而各外径从远离所述内基磁钢的筒状磁钢朝向靠近所述内基磁钢的筒状磁钢依次减小。
  7. 根据权利要求1或6所述的磁浮重力补偿装置,其特征在于,
    所述第一端部磁钢的多段筒状磁钢中各相邻筒状磁钢的外径之差相等,且轴向长度相等;以及
    所述第二端部磁钢的多段筒状磁钢中各相邻筒状磁钢的外径之差相等,且轴向长度相等。
  8. 根据权利要求6所述的磁浮重力补偿装置,其特征在于,所述第一端部磁钢由沿轴向彼此邻接的三段筒状磁钢组成,所述第二端部磁钢由沿轴向彼此邻接的三段筒状磁钢组成。
  9. 根据权利要求1或6所述的磁浮重力补偿装置,其特征在于,所述第一端部磁钢和所述第二端部磁钢中最远离所述内基磁钢的筒状磁钢的外径为R 5,轴向长度为L 5,内基磁钢的外径为R 2,外磁环磁钢的轴向长度为L 1,其中R 2/2≤R 5≤R 2,L 1/4≤L 5≤L 1/2。
  10. 根据权利要求6所述的磁浮重力补偿装置,其特征在于,
    所述内基磁钢的轴向通孔的径向尺寸与所述第一端部磁钢和第二端部磁钢的轴向通孔的径向尺寸相同。
  11. 根据权利要求6所述的磁浮重力补偿装置,其特征在于,
    所述第一端部磁钢和第二端部磁钢的轴向通孔的径向尺寸自远离所述内基磁钢的端部朝向所述内基磁钢减小。
  12. 根据权利要求11所述的磁浮重力补偿装置,其特征在于,
    所述第一端部磁钢和第二端部磁钢的所述轴向通孔的内周面与径向方向的夹角β与所述第一端部磁钢和第二端部磁钢的外周面与径向方向的夹角α的关系为α≤β≤135°。
  13. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,
    所述外磁环磁钢由沿周向彼此邻接的多个弧形板组成。
  14. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,
    所述内基磁钢包括径缩段,所述径缩段位于内基磁钢的轴向中段且外径小于其余部分的外径。
  15. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述外磁环磁钢的轴向长度为L 1,端部磁钢的轴向长度为L 2,内基磁钢的轴向长度为L 3,所述端部磁钢和所述内基磁钢相对于所述外磁环磁钢沿轴向移动行程为S,则L 3+2L 2-L 1=S+ΔS,其中ΔS/S的取值范围为[0.1,3.0]。
  16. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述端部磁钢的底角为α为60°至88°。
  17. 根据权利要求16所述的磁浮重力补偿装置,其特征在于,所述端部磁钢的底角为α为75°。
  18. 一种运动台,其特征在于,包括工件台和底座,所述工件台设置成能够相对于所述底座旋转和垂向移动,所述工件台下方设有根据权利要求1-16中任一项所述的磁浮重力补偿装置。
PCT/CN2021/076424 2020-12-01 2021-02-10 磁浮重力补偿装置以及包括该装置的运动台 WO2022116393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237015977A KR20230079455A (ko) 2020-12-01 2021-02-10 자기 부상 중력 보상 장치 및 이를 포함하는 무빙 테이블
JP2023528446A JP2023549227A (ja) 2020-12-01 2021-02-10 磁気浮上式重力補償装置及び該装置を含む移動ステージ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011379009.X 2020-12-01
CN202011379009.XA CN112201611B (zh) 2020-12-01 2020-12-01 磁浮重力补偿装置以及包括该装置的运动台

Publications (1)

Publication Number Publication Date
WO2022116393A1 true WO2022116393A1 (zh) 2022-06-09

Family

ID=74034339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076424 WO2022116393A1 (zh) 2020-12-01 2021-02-10 磁浮重力补偿装置以及包括该装置的运动台

Country Status (4)

Country Link
JP (1) JP2023549227A (zh)
KR (1) KR20230079455A (zh)
CN (1) CN112201611B (zh)
WO (1) WO2022116393A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201611B (zh) * 2020-12-01 2021-03-02 上海隐冠半导体技术有限公司 磁浮重力补偿装置以及包括该装置的运动台
CN113048185B (zh) * 2021-03-09 2022-04-19 复旦大学 一种重力补偿器及承载装置
CN112994526B (zh) * 2021-04-23 2022-05-24 上海隐冠半导体技术有限公司 一种磁浮重力补偿器
CN113471112B (zh) * 2021-07-16 2024-02-20 上海隐冠半导体技术有限公司 磁浮重力补偿装置和微动台
CN113745138B (zh) * 2021-09-03 2024-03-22 上海隐冠半导体技术有限公司 磁浮装置和微动台
CN117307647B (zh) * 2023-11-27 2024-03-01 上海隐冠半导体技术有限公司 一种磁弹簧装置及磁弹簧设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026431A1 (en) * 2008-07-29 2010-02-04 Thales Magnetically suspended gyroscopic actuator device
CN102859215A (zh) * 2010-04-20 2013-01-02 约翰尼斯海登海恩博士股份有限公司 具有无源的重力补偿功能的引导装置和能垂直运动地被支承的平台
CN105988304A (zh) * 2015-02-28 2016-10-05 上海微电子装备有限公司 一种可调磁浮力重力补偿器
CN112201611A (zh) * 2020-12-01 2021-01-08 上海隐冠半导体技术有限公司 磁浮重力补偿装置以及包括该装置的运动台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596836B2 (ja) * 1989-08-28 1997-04-02 信越化学工業株式会社 磁場発生装置
JP5808659B2 (ja) * 2011-12-12 2015-11-10 株式会社日立メディコ 磁気共鳴イメージング装置及びT1ρイメージング法
CN105281531B (zh) * 2014-07-11 2018-06-01 上海微电子装备(集团)股份有限公司 具有重力补偿功能的音圈电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026431A1 (en) * 2008-07-29 2010-02-04 Thales Magnetically suspended gyroscopic actuator device
CN102859215A (zh) * 2010-04-20 2013-01-02 约翰尼斯海登海恩博士股份有限公司 具有无源的重力补偿功能的引导装置和能垂直运动地被支承的平台
CN105988304A (zh) * 2015-02-28 2016-10-05 上海微电子装备有限公司 一种可调磁浮力重力补偿器
CN112201611A (zh) * 2020-12-01 2021-01-08 上海隐冠半导体技术有限公司 磁浮重力补偿装置以及包括该装置的运动台

Also Published As

Publication number Publication date
JP2023549227A (ja) 2023-11-22
CN112201611B (zh) 2021-03-02
KR20230079455A (ko) 2023-06-07
CN112201611A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022116393A1 (zh) 磁浮重力补偿装置以及包括该装置的运动台
WO2020221094A1 (zh) 磁浮重力补偿装置
CN214848581U (zh) 微动台和运动装置
WO2023284866A1 (zh) 磁浮重力补偿装置和微动台
US9429208B2 (en) Vibration isolator with zero stiffness whose angle degree of freedom is decoupled with spherical air bearing
US10170972B2 (en) Halbach array and magnetic suspension damper using same
US20150260255A1 (en) Magnetically suspended vibration isolator with zero stiffness whose angle degree of freedom is decoupled with a joint ball bearing
CN109120185B (zh) 基于特性相消原理的低刚度磁悬浮重力补偿器
CN102215019B (zh) 有源型重力补偿电磁支撑装置
CN102880013B (zh) 一种掩模台工作台
CN102866596B (zh) 一种配装波纹管垂向解耦重力补偿器的微动台
WO2005026573A1 (ja) 除振方法およびその装置
CN107378527A (zh) 一种压电驱动式两自由度解耦微摆动平台
US6247889B1 (en) Multiple-shaft power transmission apparatus and wafer transport arm link
CN113700788A (zh) 一种包含组合型磁负刚度机构的近零刚度隔振系统
CN101520606B (zh) 非接触长行程多自由度纳米精密工作台
CN111687828A (zh) 一种气电集成驱动装置、末端执行器及机器人
CN107306098A (zh) 磁悬浮导向装置及其控制系统和控制方法
CN116467844A (zh) 一种三正交磁阻力平动磁轴承动力学建模方法
TWI843145B (zh) 磁浮重力補償裝置和微動台
CN113745138B (zh) 磁浮装置和微动台
CN113212801A (zh) 内嵌应变传感的正应力电磁式二维偏转调节装置及方法
CN113126444B (zh) 一种垂向支撑组件、垂向支撑装置以及光刻机
CN212265844U (zh) 一种气电集成驱动装置、末端执行器及机器人
CN114389429B (zh) 多自由度磁悬浮微动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528446

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237015977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21899437

Country of ref document: EP

Kind code of ref document: A1