WO2020221094A1 - 磁浮重力补偿装置 - Google Patents

磁浮重力补偿装置 Download PDF

Info

Publication number
WO2020221094A1
WO2020221094A1 PCT/CN2020/086358 CN2020086358W WO2020221094A1 WO 2020221094 A1 WO2020221094 A1 WO 2020221094A1 CN 2020086358 W CN2020086358 W CN 2020086358W WO 2020221094 A1 WO2020221094 A1 WO 2020221094A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
compensation device
gravity compensation
magnetic
magnetic steel
Prior art date
Application number
PCT/CN2020/086358
Other languages
English (en)
French (fr)
Inventor
孟辉
Original Assignee
上海隐冠半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海隐冠半导体技术有限公司 filed Critical 上海隐冠半导体技术有限公司
Priority to KR1020217037308A priority Critical patent/KR102622752B1/ko
Priority to EP20799168.8A priority patent/EP3965285A4/en
Priority to US17/607,388 priority patent/US20220224256A1/en
Priority to JP2021564840A priority patent/JP7329267B2/ja
Publication of WO2020221094A1 publication Critical patent/WO2020221094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70816Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/0021Stands, supports or guiding devices for positioning portable tools or for securing them to the work
    • B25H1/0042Stands
    • B25H1/005Stands attached to a workbench
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the invention relates to the field of integrated circuit equipment manufacturing, and more specifically to a large-stroke magnetic levitation gravity compensation device.
  • the US patent US6337484B1 uses an air flotation device to compensate for gravity, and a stable air buoyancy is output by controlling the airflow in the constant pressure chamber to be constant.
  • a stable air buoyancy is output by controlling the airflow in the constant pressure chamber to be constant.
  • the air flow in the constant pressure chamber must be ensured at all times. Once the air flow fluctuates, it will cause system disturbance.
  • the adjustable magnetic levitation gravity compensation devices proposed in Chinese patents CN201510091980.5 and CN201110299070.8 both make the magnetic field distribution more uniform by changing the strength of the mover's magnetic field, and then output a magnetic levitation force with less fluctuation.
  • these methods not only have a complicated magnetic circuit structure, but also have large fluctuations in the output magnetic levitation force and a small vertical stroke of the mover.
  • the stroke of the patented neutron is only ⁇ 2mm, which is far from meeting application requirements.
  • maglev gravity compensation device is needed at this stage, which can not only overcome the shortcomings of the traditional maglev gravity compensation device of too small stroke and complex structure, but also generate magnetic levitation with small fluctuations and large amplitude.
  • the purpose of the present invention is to provide a magnetic levitation gravity compensation device with large stroke, simple structure, large magnetic levitation force amplitude and small fluctuation.
  • the present invention provides a magnetic levitation gravity compensation device, which includes:
  • the first magnet, the first magnet is cylindrical;
  • a second magnetic steel, the second magnetic steel is cylindrical and arranged in the first magnetic steel and radially spaced apart from the first magnetic steel;
  • At least one end magnet the at least one end magnet is cylindrical and located at least one of the two axial ends of the second magnet, and is connected to the two axes of the second magnet Spaced axially to the end, the center line of the end magnet is arranged to coincide with the center line of the second magnet, and the cylinder wall thickness of the end magnet is smaller than that of the second magnet.
  • the magnetizing direction of the first magnet is radial magnetization
  • the magnetizing direction of the second magnet and the end magnet is axial magnetization
  • the magnetic levitation gravity compensation includes: a first support, the first support is used to fix the first magnetic steel; a second support, the second support is used to fix the The second magnet and the end magnet, wherein the first support and the second support can move axially relative to each other.
  • the first support member is cylindrical, and the first magnetic steel is embedded in the inner peripheral surface of the first support member.
  • the second supporting member is columnar, and the second magnetic steel and the end magnetic steel are embedded in the outer peripheral surface of the second supporting member.
  • the gap between the second magnet and the end magnet is 0.1-1.0mm.
  • the first magnetic steel is composed of an even number of radial magnetic steel blocks radially spaced apart from each other, and the pole arc coefficient of a single radial magnetic steel block ranges from 0.75 to 0.98.
  • each end of the second magnet is provided with an end magnet.
  • At least one end of the second magnet is provided with more than two end magnets.
  • the inner diameter of the end magnet is not smaller than the inner diameter of the second magnet, and the outer diameter of the end magnet is not larger than the outer diameter of the second magnet.
  • the lengths of the first magnet, the second magnet, and the end magnet are La, Lb, and Lc, respectively, where Lb>Lc.
  • the stroke of the axial movement of the first support member and the second support member relative to each other is S, and the value of ⁇ 2 is 1/4 to 3/8.
  • the distance between the first magnet and the second magnet is Rg, and Rg is not less than ten times the gap between the second magnet and the end magnet.
  • the present invention also provides a workbench, which includes a workbench body, and a cavity is provided under the workbench body for accommodating the above-mentioned magnetic levitation gravity compensation device.
  • the cavities are three cavities or four cavities.
  • the magnetic levitation force can be provided with a large value, and the magnetic levitation force fluctuation is small on a large stroke.
  • Fig. 1 is a schematic cross-sectional view of a magnetic levitation gravity compensation device according to the present invention.
  • Fig. 2 is a schematic structural diagram of the first embodiment of the magnetic levitation gravity compensation device according to the present invention.
  • Fig. 3 is a longitudinal sectional view of the magnetizing direction and size of the magnetic steel of the magnetic levitation gravity compensation device according to the present invention.
  • Fig. 4 is a schematic diagram of magnetic lines of force of the magnetic levitation gravity compensation device according to the present invention.
  • Fig. 5 is a magnetic levitation curve of the magnetic levitation gravity compensation device according to the present invention.
  • Fig. 6 is a schematic structural diagram of a second embodiment of a magnetic levitation gravity compensation device according to the present invention.
  • Fig. 7 is a magnetic levitation force fluctuation curve according to the second embodiment of the present invention.
  • Fig. 8 is a third embodiment according to the present invention, in which the cylinder that bisects the cylinder thickness of the mover magnet in the radial direction coincides with the cylinder that bisects the cylinder thickness of the end magnet in the radial direction.
  • Fig. 9 is a fourth embodiment according to the present invention, in which the inner diameters of the mover magnet and the axial end magnet are equal.
  • FIG. 10 is a schematic diagram of a fifth embodiment according to the present invention, which shows that the number of end magnets is divided into two.
  • Fig. 11 is a single point layout according to the sixth embodiment of the present invention.
  • Fig. 12 is a three-point layout according to the sixth embodiment of the present invention.
  • Fig. 13 is a four-point layout according to the sixth embodiment of the present invention.
  • the purpose of the present invention is to overcome the shortcomings of the traditional magnetic levitation gravity compensation device that the stroke is too small and the structure is complicated, and to provide a large-stroke maglev gravity compensation device to provide a magnetic levitation force with small fluctuations and large amplitudes, so as to be applied to the vertical direction requiring high precision Workbench in motion.
  • the magnetic levitation gravity compensation device according to the present invention will be described with reference to the accompanying drawings.
  • Fig. 1 is a schematic cross-sectional view of a magnetic levitation gravity compensation device 100 according to the present invention.
  • the device 100 includes: a first magnet 101, a second magnet 102, and end magnets 103a and 103b.
  • the first magnetic steel 101 is cylindrical
  • the second magnetic steel 102 is also cylindrical and sheathed in the first magnetic steel 101, and is radially spaced apart from the first magnetic steel 101 by a certain distance.
  • the two end magnets 103a and 103b are cylindrical and are respectively located in the two axial ends of the second magnet 102, and the end magnets 103a and 103b and the two axial ends of the second magnet 102 are along the axial direction. Separate a certain distance apart.
  • end magnets 103a and 103b By adding end magnets 103a and 103b at the two axial ends of the second magnet 102, the distribution of magnetic lines of force between the first magnet 101 and the second magnet 102 can be adjusted, so as to realize the connection between the first magnet 101 and the second magnet.
  • the magnetic buoyancy force that fluctuates in a large stroke of the magnetic steel 102 axially moving relative to each other is small.
  • the end magnet 103a or 103b may also be provided at only one axial end of the second magnet 102 without departing from the scope of the present invention.
  • the center lines of the end magnets 103a and 103b coincide with the center line of the second magnet 102, and the cylinder wall thickness of the end magnets 103a and 103b is smaller than the cylinder wall thickness of the second magnet 102.
  • the magnetization direction of the first magnet 101 is radial magnetization, and the magnetization direction of the second magnet 102 and the end magnets 103a and 103b is axial magnetization.
  • the above-mentioned magnetic steel arrangement and magnetizing direction can generate magnetic levitation when the first magnetic steel 101 and the second magnetic steel 102 and the end magnets 103a, 103b move relative to each other.
  • a first support and a second support are provided.
  • the first support is used to fix the first magnet 101; and the second support is used to fix the second magnet 102 and the end magnets 103a and 103a. 103b, wherein the first support and the second support can move axially relative to each other.
  • one of the first support member and the second support member is fixed relative to the workbench, and the other is fixed relative to the support of the workbench, so that when the workbench is driven by the driving device, it moves vertically relative to the support.
  • the workbench and its The weight of the support is compensated, so as to achieve a higher-precision control of the vertical movement of the worktable.
  • the first support is fixed relative to the support of the work table and the second support is fixed relative to the work table as an example to describe the present invention.
  • the embodiment in which the second support member is fixed relative to the support of the work table and the first support member is fixed relative to the work table is also within the scope of the present invention.
  • the first magnet 101 is referred to as the stator magnet 101
  • the second magnet 102 is referred to as the mover magnet 102
  • the first supporting member is the stator base 104 and the second supporting member is the mover shaft 105.
  • the stator base 104 is cylindrical
  • the stator magnet 101 is embedded in the inner peripheral surface of the stator base 104
  • the mover magnet 102 and the end magnets 103a, 103b are embedded in the outer surface of the mover shaft 105
  • the stator shaft 105 can be an integral structure, or it can be assembled from the stator shaft first part 105a and the stator shaft second part 105b as shown in Figure 1, wherein the stator shaft first part 105a has a T-shaped longitudinal section, and the stator shaft The second part 105b is assembled with the first part 105a of the stator shaft by threads.
  • This assembly structure enables the end magnet 103b to be installed or removed as required.
  • the magnetization direction of the stator magnet 101 is radial magnetization, and the magnetization direction of the mover magnet 102 and the axial end magnets 103a, 103b are both axial magnetization.
  • the arrow direction in the figure represents the magnetizing direction of the magnet
  • the magnetizing direction of the stator magnet 101 is radially outward
  • the magnetizing of the mover magnet 102 and the axial end magnets 103a, 103b In the same direction, they are all axially downward; for the same reason, correspondingly, the magnetization direction of the stator magnet 101 can also be set radially inward, and the mover magnet 102 and the axial end magnet 103a,
  • the magnetizing direction of 103b is upward in the axial direction.
  • a certain gap ⁇ is left between the mover magnet 102 and the axial end magnets 103a, 103b, which facilitates the adjustment of the mover magnetic field and the fixation and assembly of the magnet.
  • the selection of the gap value ⁇ depends on the stroke size. Generally, the gap value is preferably between 0.1 mm and 1.0 mm.
  • Fig. 2 shows a schematic structural diagram of the first embodiment of the present invention.
  • the stator magnet 101, the mover magnet 102 and the end magnets 103a and 103b are all cylindrical structures, and the end magnets 103a and 103b have the same shape and size.
  • the lengths of the stator magnet 101, the mover magnet 102, and the end magnets 103a, 103b are La, Lb, and Lc, respectively.
  • the mover magnet outer diameter 1021 and the end magnet outer diameter 1031 are respectively Denoted by Dob and Doc, the inner diameter of the mover magnet 1022 and the end magnet inner diameter 1032 are denoted by Db and Dc, respectively, and the unilateral air gap between the stator magnet 101 and the mover magnet 102 is denoted by Rg.
  • the axial lengths Lb and Lc of the mover magnet 102 and the end magnets 103a, 103b are different, usually Lb>Lc.
  • the radial thickness of the end magnets 103 a and 103 b is smaller than that of the mover magnet 102.
  • the radial position relationship between the end magnets 103a, 103b and the mover magnet 102 is that the outer diameter of the end magnets 103a, 103b can be slightly larger than the outer diameter of the mover magnet 102, and the end magnets 103a, 103b The inner diameter can be slightly smaller than the inner diameter of the mover magnet 102.
  • the outer diameter of the end magnets 103a and 103b is not greater than the outer diameter of the mover magnet 102, and the inner diameters of the end magnets 103a and 103b are no smaller than the inner diameter of the mover magnet 102.
  • the radial position relationship usually has three schemes: (1) The outer diameter of the mover magnet 1021 is equal to the outer diameter of the axial end magnet 1031, and the inner diameter of the mover magnet 1022 and the axial end magnet 1032 are different; 2) The outer diameter of the mover magnet 1021 is different from the outer diameter of the axial end magnet 1031, the inner diameter of the mover magnet 1022 and the end magnet 1032 are equal; (3) the outer diameter of the mover magnet 1021, the inner diameter 1022 and The outer diameters of the end magnets 1031 and 1032 are not equal, but the distance between the inner diameters of the mover magnet 102 and the end magnet 103 is equal to the distance between the mover magnet 102 and the outer diameters of the end magnets 103a, 103b That is, the cylinder that bisects the cylinder thickness of the mover magnet 102 in the radial direction coincides with the cylinder that bisects the cylinder thickness of the end magnet in the radial direction.
  • end magnets 103a, 103b may also be different from each other, for example, one or more of their outer diameter, inner diameter, barrel thickness, or height may be different from each other.
  • the outer diameter of the mover magnet 1021 is equal to the outer diameter of the axial end magnet 1031, and the inner diameter of the mover magnet 1022 and the inner diameter of the axial end magnet 1032 are not equal. .
  • ⁇ 1 La/Lb
  • ⁇ 2 Lc/Lb
  • ⁇ 1 Db/Dc.
  • These size ratios are related to the fluctuation of the magnetic levitation force and also follow the stroke and The amplitude changes.
  • the value range of ⁇ 1 is preferably [1/4,1+2 ⁇ 2-S/Lb]; the value of ⁇ 2 is related to the division of the axial end magnet
  • the number Nt (as described below) is related.
  • the value range of ⁇ 2 is preferably [1/4, 3/8]; generally, the value of ⁇ 1 is related to the fluctuation of the magnetic levitation force, considering the magnetic steel For the difficulty of processing and assembly process, the value range of ⁇ 1 is preferably [1/8, 1].
  • the unilateral air gap Rg between the stator magnet 101 and the mover magnet 102 also affects the strength of the magnetic field to a certain extent, which in turn affects the magnitude and fluctuation of the magnetic buoyancy force.
  • the unilateral air gap Rg The value varies with the amplitude of the magnetic buoyancy, and the value of the unilateral air gap Rg is preferably Rg ⁇ 10 ⁇ .
  • Fig. 4 is a schematic diagram of magnetic field lines of the magnetic levitation gravity compensation device of the above embodiment. According to the distribution trajectory of the magnetic field lines and the principle of repulsion of the magnetic poles, it can be inferred that the gravity of the mover shaft 105 and its load and the mover magnet 102 and the end magnets 103a, 103b are determined by the mover magnet 102 and the end magnets.
  • the magnetic levitation force generated by the magnetic field interaction between 103a, 103b and the stator magnet 101 is compensated, and the radial thrust generated by the stator magnet 101 on the mover magnet 102 and the end magnets 103a, 103b is a set of equal amplitude and direction along
  • the force is evenly distributed on the circumference, so the mover shaft 105 can always float in the center of the stator magnet 101 by magnetic buoyancy.
  • the magnetic levitation curve generated by the interaction between the magnetic field of the mover magnet and the stator magnet can be obtained.
  • the magnetic levitation force in the figure is within the range of 25mm, and the amplitude is 38.13N to 38.97. Between N, the fluctuation is 1.08%, and the fluctuation is very small, which is basically close to the fluctuation degree of the traditional maglev gravity compensation device in the range of ⁇ 2mm.
  • Fig. 6 is a schematic structural diagram of a second embodiment 200 of a magnetic levitation gravity compensation device according to the present invention.
  • the magnetic levitation gravity compensation device 200 includes a stator magnet 201, a mover magnet 202, and end magnets 203a, 203b.
  • This embodiment is basically the same as the first embodiment. Except considering the difficulty of magnetizing and processing the stator magnet 102, the stator magnet 101 can be replaced with a set of circumferentially divided radial magnetized magnets 201a, 201b, 201c and 201d.
  • the pole arc coefficient ⁇ of the radial magnetizing magnets 201a, 201b, 201c, and 201d is the ratio of the pole arc length to the pole pitch of the magnet.
  • the pole arc coefficient ⁇ of the stator magnets 201a, 201b, 201c and 201d It is usually selected between 0.75 and 1.0, and the pole arc coefficient ⁇ of the stator magnet 201a can be equivalently expressed by the spacing angle ⁇ between the stator magnet 201a and the stator magnet 201b.
  • the value range of the pitch angle ⁇ is usually [0°, 30°].
  • FIG. 8 is a schematic structural diagram of a second embodiment 300 of a magnetic levitation gravity compensation device according to the present invention.
  • the magnetic levitation gravity compensation device 300 includes a stator magnet (not shown), a mover magnet 302 and an end magnet 303a.
  • the cylinder that bisects the cylinder thickness of the mover magnet 102 in the radial direction coincides with the cylinder that bisects the cylinder thickness of the end magnet 103 in the radial direction.
  • FIG. 9 is a schematic structural diagram of a second embodiment 400 of a magnetic levitation gravity compensation device according to the present invention.
  • the magnetic levitation gravity compensation device 400 includes a stator magnet (not shown), a mover magnet 402 and an end magnet 403a.
  • the end magnet inner diameter 4032 is equal to the mover magnet inner diameter 4022, and the end magnet outer diameter 4031 is not equal to the mover magnet outer diameter 4021.
  • FIG. 10 is a schematic structural diagram of a second embodiment 500 of a magnetic levitation gravity compensation device according to the present invention.
  • the magnetic levitation gravity compensation device 500 includes a stator magnet (not shown), a mover magnet 502, and end magnets 503a, 503c.
  • the end magnet at one axial end of the mover magnet 502 is divided into blocks along the axial direction.
  • the end magnet inner diameter 5032 and the mover magnet inner diameter 5022 are not equal, and the end magnet outer diameter 5031 and the mover magnet outer diameter 5021 are equal.
  • a single end magnet or an axially divided end magnet may also be provided at the other axial end of the mover magnet 502.
  • the end magnet and the mover magnet 502 can also adopt other radial positional relationships without departing from the scope of the present invention.
  • Figures 11-13 show bottom views of a workbench using the magnetic levitation gravity compensation device according to the present invention.
  • a cavity is provided under the workbench for accommodating the magnetic levitation gravity device according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Machine Tool Units (AREA)

Abstract

一种磁浮重力补偿装置(100),包括:第一磁钢(101),第一磁钢(101)呈筒状;第二磁钢(102),第二磁钢(102)呈筒状并设置在第一磁钢(101)内且与第一磁钢(101)径向间隔开;至少一个端部磁钢(103a、103b),至少一个端部磁钢(103a、103b)呈筒状并位于第二磁钢(102)的两轴向端中的至少一轴向端,且与第二磁钢(102)的两轴向端轴向间隔开,端部磁钢(103a、103b)的中心线布置成与第二磁钢(102)的中心线重合,且端部磁钢(103a、103b)的筒壁厚小于第二磁钢(102)的筒壁厚;其中第一磁钢(101)的充磁方向为径向充磁,第二磁钢(102)和端部磁钢(103a、103b)的充磁方向为轴向充磁。磁浮重力补偿装置(100)能够提供大幅值的磁浮力,且在大行程上磁浮力波动很小。

Description

磁浮重力补偿装置
相关申请交叉引用
本专利申请要求于2019年04月30日提交的、申请号为201910363230.7、发明名称为“磁浮重力补偿装置”的中国专利申请,以及2019年07月12日提交的、申请号为201910628291.1、发明名称为“磁浮重力补偿装置”的中国专利申请的优先权,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及集成电路装备制造领域,更具体的涉及一种大行程磁浮重力补偿装置。
背景技术
近年来,随着大规模集成电路器件集成度不断提高,工件台的精度需求不断提高,尤其是其垂向模块的运动精度,运动行程随着工件台需求的提高而逐年提升,比如光刻设备,膜厚检测设备等。垂向的重力补偿技术也在不断地迭代更新。现阶段,重力补偿装置普遍采用三种方案:机械弹簧、气浮装置和磁浮重力补偿装置。
美国专利US6337484B1采用气浮装置补偿重力,通过控制恒压室的气流恒定以输出平稳气浮力。但该气浮装置设计制造上有一定难度,此外,必须时刻保证恒压室内气流平稳,一旦气流发生波动,就会引起系统紊乱。
中国专利CN201510091980.5和CN201110299070.8所提出的可调磁浮重力补偿装置,均是通过改变动子磁场的强弱使磁场分布更均匀,进而输出波动较小的磁浮力。但这些方法不仅磁路结构复杂,而且输出磁浮力的波动大、动子的垂向行程小。且专利中动子行程仅为±2mm,远远达不到应用需求。
因此,现阶段需要一种新的磁浮重力补偿装置,既能克服传统磁浮重力补偿装置行程过小、结构复杂的缺点,又能产生波动小、幅值大的磁浮力。
发明内容
本发明的目的是提供一种大行程且结构简单,磁浮力幅值大且波动小的磁浮重力补偿装置。
为实现上述目的,本发明提供了一种磁浮重力补偿装置,所述磁浮重力补偿装置包括:
第一磁钢,所述第一磁钢呈筒状;
第二磁钢,所述第二磁钢呈筒状并设置在所述第一磁钢内且与所述第一磁钢径向间隔开;
至少一个端部磁钢,所述至少一个端部磁钢呈筒状并位于所述第二磁钢的两轴向端中的至少一轴向端,且与所述第二磁钢的两轴向端轴向间隔开,所述端部磁钢的中心线布置成与所述第二磁钢的中心线重合,且所述端部磁钢的筒壁厚小于所述第二磁钢的筒壁厚;
其中所述第一磁钢的充磁方向为径向充磁,所述第二磁钢和所述端部磁钢的充磁方向为轴向充磁。
在一实施例中,所述磁浮重力补偿包括:第一支承件,所述第一支承件用于固定所述第一磁钢;第二支承件,所述第二支承件用于固定所述第二磁钢和端部磁钢,其中所述第一支承件和所述第二支承件能相对于彼此轴向运动。
在一实施例中,所述第一支承件呈筒状,所述第一磁钢嵌设在所述第一支承件的内周表面内。
在一实施例中,所述第二支承件呈柱状,所述第二磁钢和所述端部磁钢嵌设在所述第二支承件的外周表面内。
在一实施例中,所述第二磁钢与所述端部磁钢之间的间隙为0.1-1.0mm.
在一实施例中,所述第一磁钢由偶数个彼此径向间隔开的径向磁钢块组成,单个径向磁钢块的极弧系数的取值范围为0.75至0.98。
在一实施例中,所述第二磁钢的两端各设有一个端部磁钢。
在一实施例中,所述第二磁钢的至少一端设有两个以上端部磁钢。
在一实施例中,所述端部磁钢的内径不小于所述第二磁钢的内径,且所述端部磁钢的外径不大于所述第二磁钢的外径。
在一实施例中,第一磁钢、第二磁钢和端部磁钢的长度分别为La、Lb和Lc,其中Lb>Lc。
在一实施例中,第二磁钢内径和端部磁钢内径分别为Db和Dc,γ1=Db/Dc,γ1的取值为1/8至1。
在一实施例中,所述第一支承件和所述第二支承件相对于彼此轴向运动的行程为S,λ2=Lc/Lb,λ1的取值为1/4至1+2λ2-2S/Lb。
在一实施例中,所述第一支承件和所述第二支承件相对于彼此轴向运动的行程为S,λ2的取值为1/4至3/8。
在一实施例中,所述第一磁钢和所述第二磁钢之间的间距为Rg,Rg不小于所述第二磁钢与所述端部磁钢之间的间隙的十倍。
本发明还提供一种工作台,包括工作台本体,所述工作台本体下方设有凹腔,用于容纳上述磁浮重力补偿装置。
在一实施例中,所述凹腔为三个凹腔或四个凹腔。
根据本发明的磁浮重力补偿装置,与现有技术的磁浮重力补偿装置相比,能够提供大幅值的磁浮力,且在大行程上磁浮力波动很小。
附图说明
图1是根据本发明的磁浮重力补偿装置的截面示意图。
图2是根据本发明的磁浮重力补偿装置的第一实施例的结构示意图。
图3是根据本发明的磁浮重力补偿装置的磁钢充磁方向及尺寸的纵剖示意图。
图4是根据本发明的磁浮重力补偿装置的磁力线示意图。
图5是根据本发明的磁浮重力补偿装置的磁浮力曲线。
图6是根据本发明的磁浮重力补偿装置的第二实施例的结构示意图。
图7是根据本发明的第二实施例的磁浮力波动曲线。
图8是根据本发明的第三实施例,其中将动子磁钢的筒厚度沿径向平分的圆筒与将端部磁钢的筒厚度沿径向平分的圆筒重合。
图9是根据本发明的第四实施例,其中动子磁钢和轴向端部磁钢内径相等。
图10是根据本发明的第五实施例,其中示出端部磁钢分块数为2的示意图。
图11是根据本发明的第六实施例的单点布局。
图12是根据本发明的第六实施例的三点布局。
图13是根据本发明的第六实施例的四点布局。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
除非语境有其它需要,在整个说明书和权利要求中,词语“包括”和其变型,诸如“包含”和“具有”应被理解为开放的、包含的含义,即应解释为“包括,但不限于”。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
如该说明书和所附权利要求中所用的单数形式“一”和“所述”包括复数指代物,除非文中清楚地另外规定。应当指出的是术语“或”通常以其包括“和/或”的含义使用,除非文中清楚地另外规定。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
需要说明的是,在本申请的权利要求和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
本发明的目的是克服传统磁浮重力补偿装置行程过小、结构复杂的缺点, 提供一种大行程的磁浮重力补偿装置以提供波动小且幅值大的磁浮力,从而应用于需要高精度垂向运动的工作台。下文将参照附图,描述根据本发明的磁浮重力补偿装置。
图1是根据本发明的磁浮重力补偿装置100的截面示意图。如图1所示,该装置100包括:第一磁钢101、第二磁钢102、以及端部磁钢103a和103b。其中,第一磁钢101呈筒状,第二磁钢102也呈筒状并套设在第一磁钢101内,且与第一磁钢101径向间隔开一定距离。而两个端部磁钢103a和103b呈筒状并分别位于第二磁钢102的两轴向端中,且端部磁钢103a和103b与第二磁钢102的两轴向端沿轴向分别间隔开一定距离。通过在第二磁钢102的两轴向端增加端部磁钢103a和103b能够调整第一磁钢101与第二磁钢102之间的磁力线分布,从而实现在第一磁钢101和第二磁钢102相对于彼此轴向运动的大行程内波动小的磁浮力。但应理解,也可在第二磁钢102的仅一个轴向端设置端部磁钢103a或103b而不脱离本发明的范围。端部磁钢103a和103b的中心线与第二磁钢102的中心线重合,且端部磁钢103a和103b的筒壁厚小于第二磁钢102的筒壁厚。其中第一磁钢101的充磁方向为径向充磁,而第二磁钢102和端部磁钢103a和103b的充磁方向为轴向充磁。上述磁钢布置和充磁方向能够在第一磁钢101与第二磁钢102和端部磁钢103a、103b之间相对运动时产生磁浮力。
为了实现上述布置,设置第一支承件和第二支承件,其中第一支承件用于固定第一磁钢101;而第二支承件用于固定第二磁钢102和端部磁钢103a和103b,其中第一支承件和第二支承件能相对于彼此轴向运动。在实践中,第一支承件和第二支承件中的一个相对于工作台固定,而另一个相对于工作台的支架固定,从而当工作台在驱动装置的驱动下相对于支架进行垂向运动时,通过在第一磁钢101与第二磁钢102和端部磁钢103a、103b之间,也即第一支承件与第二支承件之间产生的磁浮力,能够对工作台及其支撑物的重量进行补偿,从而实现工作台沿垂向移动的更高精度控制。在下文中,以第一支承件相对于工件台的支架固定,而第二支承件相对于工件台固定为例来描述本发明。但应理解,第二支承件相对于工件台的支架固定,而第一支承件相对于工件台固定的实施例也在本发明的范围内。
在下文中,为了便于描述,将第一磁钢101称为定子磁钢101,将第二磁钢102称为动子磁钢102。在图1所示实施例中,第一支承件为定子基座104,第 二支承件为动子轴105。定子基座104呈筒状,定子磁钢101嵌设在定子基座104的内周表面内,而动子磁钢102和端部磁钢103a、103b嵌设在动子轴105的外表面内,且定子磁钢101和动子磁钢102间无机械连接并彼此间隔开。其中定子轴105可以是一体式结构,也可以是如图1所示由定子轴第一部分105a和定子轴第二部分105b组装而成,其中定子轴第一部分105a纵向截面呈T形,而定子轴第二部分105b通过螺纹与定子轴第一部分105a组装在一起。该组装结构使得能够根据需要安装或移除端部磁钢103b。定子磁钢101充磁方向为径向充磁,而动子磁钢102和轴向端部磁钢103a、103b充磁方向均为轴向充磁。如图3所示,图中箭头方向代表磁钢的充磁方向,定子磁钢101的充磁方向是径向向外,动子磁钢102和轴向端部磁钢103a、103b的充磁方向相同,均是沿轴向向下;同理,相对应地,也可以设置成定子磁钢101的充磁方向径向向内,而动子磁钢102和轴向端部磁钢103a、103b的充磁方向沿轴向向上。
此外,动子磁钢102和轴向端部磁钢103a、103b之间留有一定间隙δ,便于调节动子磁场和磁钢的固定及装配。其中,间隙值δ的选取随行程大小而定,通常情况下,间隙值优选为0.1mm到1.0mm之间。
图2中示出了本发明第一实施例的结构示意图。图中定子磁钢101、动子磁钢102和端部磁钢103a、103b均为圆筒形结构,且端部磁钢103a、103b形状和尺寸相同。如图3所示,定子磁钢101、动子磁钢102和端部磁钢103a、103b的长度分别为La、Lb和Lc,动子磁钢外径1021和端部磁钢外径1031分别由Dob和Doc表示,动子磁钢内径1022和端部磁钢内径1032分别由Db和Dc表示,定子磁钢101和动子磁钢102间的单边气隙由Rg表示。动子磁钢102和端部磁钢103a、103b轴向长度Lb和Lc不等,通常Lb>Lc。
如图3所示,端部磁钢103a、103b的径向厚度小于动子磁钢102。端部磁钢103a、103b与动子磁钢102的径向位置关系为,端部磁钢103a、103b的外径可略大于动子磁钢102的外径,而端部磁钢103a、103b的内径可略小于动子磁钢102的内径。但较佳的是,端部磁钢103a、103b的外径不大于动子磁钢102的外径,而端部磁钢103a、103b的内径不小于动子磁钢102的内径。
其径向位置关系通常有三种方案:(1)动子磁钢外径1021与轴向端部磁钢外径1031相等,动子磁钢内径1022和轴向端部磁钢1032不等;(2)动子磁钢外径1021与轴向端部磁钢外径1031不等,动子磁钢内径1022和端部磁钢 1032相等;(3)动子磁钢外径1021、内径1022与端部磁钢外径1031、内径1032均不相等,但动子磁钢102和端部磁钢103的内径之间的距离等于动子磁钢102与端部磁钢103a、103b外径之间的距离,即将动子磁钢102的筒厚度沿径向平分的圆筒与将端部磁钢的筒厚度沿径向平分的圆筒重合。
此外,应理解,端部磁钢103a、103b也可彼此不同,例如其外径、内径、筒厚度或高度中的一项或多项可彼此不同。
需要说明的是,在图3所示实施例中,动子磁钢外径1021与轴向端部磁钢外径1031相等,动子磁钢内径1022和轴向端部磁钢内径1032不相等。
本图3实施例中,定义三组尺寸比值:λ1=La/Lb、λ2=Lc/Lb、γ1=Db/Dc,这些尺寸比值与磁浮力的波动大小有关,也随着磁浮装置的行程和幅值变化。其中,假设磁浮装置总行程为S,则根据行程大小,λ1的取值范围优选为[1/4,1+2λ2-S/Lb];λ2的取值与轴向端部磁钢的分块数Nt(如下文所述)相关,当Nt=1时,λ2的取值范围优选为[1/4,3/8];通常,γ1的取值与磁浮力的波动相关,考虑到磁钢的加工难度和装配工艺,γ1的取值范围优选为[1/8,1]。此外,定子磁钢101和动子磁钢102间的单边气隙Rg也一定程度上影响了磁场强弱,进而影响磁浮力的幅值及波动程度,一般情况下,单边气隙Rg的取值随磁浮力幅值变化而变化,单边气隙Rg的取值优选为Rg≥10δ。
图4是上述实施例的磁浮重力补偿装置的磁力线示意图。根据磁力线的分布轨迹和磁极同性相斥的原理,可推断出动子轴105及其承载物和动子磁钢102以及端部磁钢103a、103b的重力由动子磁钢102及端部磁钢103a、103b和定子磁钢101磁场相互作用产生的磁浮力补偿,且定子磁钢101对动子磁钢102以及端部磁钢103a、103b产生的径向推力为一组等幅值、方向沿圆周均布的力,因此动子轴105可一直通过磁浮力浮在定子磁钢101中央。其中,通过电磁仿真,可得出动子磁钢磁场和定子磁钢磁场相互作用产生的磁浮力曲线,如图5所示,图中磁浮力在25mm的行程范围内,幅值在38.13N至38.97N之间,波动为1.08%,波动很小,基本接近于传统的磁浮重力补偿装置在±2mm行程范围内的波动程度。
图6是根据本发明的磁浮重力补偿装置的第二实施例200的结构示意图。该磁浮重力补偿装置200包括定子磁钢201、动子磁钢202和端部磁钢203a、203b。该实施例与第一实施例基本相同,除了考虑到定子磁钢102的充磁和加 工工艺的难易程度,定子磁钢101可替换成一组周向分块的径向充磁磁钢201a、201b、201c和201d。为消除该实施例的径向不平衡力,定子磁钢的分块数N通常为偶数,本实施例中N=4。需要说明的是,N的取值不限于本实施例中的取值,还可根据定子磁钢的内外径大小扩展至其他偶数,例如6块、8块。
径向充磁磁钢201a、201b、201c和201d的极弧系数α是磁钢的极弧长度与极距的比值,由经验可知,定子磁钢201a、201b、201c和201d的极弧系数α通常选在0.75-1.0之间,定子磁钢201a的极弧系数α可用定子磁钢201a和定子磁钢201b的间距角θ等效表示。当N取不同值时,间距角θ的取值范围通常是[0°,30°]。通过调节周向相邻磁钢间距角θ可调整每块磁钢的极弧系数α,进而增大或减小定子磁钢总体积,调节磁浮力的幅值。
本实施例中,综合考虑磁浮力的幅值和波动大小,推荐一组优选拓扑结构,其中,定子磁钢的周向分块数N=4,磁钢间距角θ=5°,磁钢的极弧系数α=17/18,仿真得到的磁浮力波动曲线如图7所示。由图可知,第二实施例的磁浮力在行程范围内,幅值在36.13N至36.91N间波动,波动率为1.09%,波动很小。
图8是根据本发明的磁浮重力补偿装置的第二实施例300的结构示意图。该磁浮重力补偿装置300包括定子磁钢(未示出)、动子磁钢302和端部磁钢303a。在该实施例中,将动子磁钢102的筒厚度沿径向平分的圆筒与将端部磁钢103的筒厚度沿径向平分的圆筒重合。
图9是根据本发明的磁浮重力补偿装置的第二实施例400的结构示意图。该磁浮重力补偿装置400包括定子磁钢(未示出)、动子磁钢402和端部磁钢403a。其中端部磁钢内径4032与动子磁钢内径4022相等、端部磁钢外径4031与动子磁钢外径4021不相等。
图10是根据本发明的磁浮重力补偿装置的第二实施例500的结构示意图。该磁浮重力补偿装置500包括定子磁钢(未示出)、动子磁钢502和端部磁钢503a、503c。其中动子磁钢502一轴向端的端部磁钢沿轴向分块。可根据磁浮重力补偿装置行程及磁浮力波动大小进行调整单边分块数Nt,在前述各实施例中,Nt=1,但Nt不局限于1,也可大于1。一般情况下,端部磁钢的单边分块数Nt越多,动子磁钢502和端部磁钢所提供磁场的分布越均匀,进而磁浮力的曲线越平稳。在本实施例中,示出轴向端部磁钢的分块数Nt=2的方案。此外,该实 施例中,端部磁钢内径5032与动子磁钢内径5022不相等,端部磁钢外径5031与动子磁钢外径5021相等。但应理解,在动子磁钢502的另一轴向端部也可设置单块端部磁钢或轴向分块的端部磁钢。端部磁钢与动子磁钢502也可采用其他径向位置关系而不偏离本发明的范围。
图11—图13示出了使用根据本发明的磁浮重力补偿装置的工作台的仰视图。在工作台的下方设有凹腔,用于容纳根据本发明的磁浮重力装置。其中工作台下方的凹腔可以是一个,如图11所示,也可以是呈例如正三角形布置的三个以形成三点布局,例如图12所示,或者是呈正方形布置的四个以形成四点布局。
以上已详细描述了本发明的较佳实施例,但应理解到,若需要,能修改实施例的方面来采用各种专利、申请和出版物的方面、特征和构思来提供另外的实施例。
考虑到上文的详细描述,能对实施例做出这些和其它变化。一般而言,在权利要求中,所用的术语不应被认为限制在说明书和权利要求中公开的具体实施例,而是应被理解为包括所有可能的实施例连同这些权利要求所享有的全部等同范围。

Claims (16)

  1. 一种磁浮重力补偿装置,其特征在于,所述磁浮重力补偿装置包括:
    第一磁钢,所述第一磁钢呈筒状;
    第二磁钢,所述第二磁钢呈筒状并设置在所述第一磁钢内且与所述第一磁钢径向间隔开;
    至少一个端部磁钢,所述至少一个端部磁钢呈筒状并位于所述第二磁钢的两轴向端中的至少一轴向端,且与所述第二磁钢的两轴向端轴向间隔开,所述端部磁钢的中心线布置成与所述第二磁钢的中心线重合,且所述端部磁钢的筒壁厚小于所述第二磁钢的筒壁厚;
    其中所述第一磁钢的充磁方向为径向充磁,所述第二磁钢和所述端部磁钢的充磁方向为轴向充磁。
  2. 如权利要求1所述的磁浮重力补偿装置,其特征在于,所述磁浮重力补偿包括:第一支承件,所述第一支承件用于固定所述第一磁钢;第二支承件,所述第二支承件用于固定所述第二磁钢和端部磁钢,其中所述第一支承件和所述第二支承件能相对于彼此轴向运动。
  3. 根据权利要求2所述的磁浮重力补偿装置,其特征在于,所述第一支承件呈筒状,所述第一磁钢嵌设在所述第一支承件的内周表面内。
  4. 根据权利要求2所述的磁浮重力补偿装置,其特征在于,所述第二支承件呈柱状,所述第二磁钢和所述端部磁钢嵌设在所述第二支承件的外周表面内。
  5. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第二磁钢与所述端部磁钢之间的间隙为0.1-1.0mm。
  6. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第一磁钢由偶数个彼此径向间隔开的径向磁钢块组成,单个径向磁钢块的极弧系数的取值范围为0.75至0.98。
  7. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第二磁钢的两端各设有一个端部磁钢。
  8. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第二磁钢的至少一端设有两个以上端部磁钢。
  9. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述端部磁钢的 内径不小于所述第二磁钢的内径,且所述端部磁钢的外径不大于所述第二磁钢的外径。
  10. 根据权利要求2所述的磁浮重力补偿装置,其特征在于,第一磁钢、第二磁钢和端部磁钢的长度分别为La、Lb和Lc,其中Lb>Lc。
  11. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,第二磁钢内径和端部磁钢内径分别为Db和Dc,γ1=Db/Dc,其中γ1的取值为1/8至1。
  12. 根据权利要求10所述的磁浮重力补偿装置,其特征在于,所述第一支承件和所述第二支承件相对于彼此轴向运动的行程为S,λ1=La/Lb,λ2=Lc/Lb,λ1的取值为1/4至1+2λ2-2S/Lb。
  13. 根据权利要求10所述的磁浮重力补偿装置,其特征在于,所述第一支承件和所述第二支承件相对于彼此轴向运动的行程为S,λ2=Lc/Lb,λ2的取值为1/4至3/8。
  14. 根据权利要求1所述的磁浮重力补偿装置,其特征在于,所述第一磁钢和所述第二磁钢之间的间距为Rg,Rg不小于所述第二磁钢与所述端部磁钢之间的间隙的十倍。
  15. 一种工作台,其特征在于,包括工作台本体,所述工作台本体下方设有凹腔,用于容纳根据权利要求1-14中任一项所述的磁浮重力补偿装置。
  16. 根据权利要求15所述的工作台,其特征在于,所述凹腔为三个凹腔或四个凹腔。
PCT/CN2020/086358 2019-04-30 2020-04-23 磁浮重力补偿装置 WO2020221094A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217037308A KR102622752B1 (ko) 2019-04-30 2020-04-23 자기부상 중력 보상 장치
EP20799168.8A EP3965285A4 (en) 2019-04-30 2020-04-23 DEVICE FOR COMPENSATION OF MAGNETIC LEVATION
US17/607,388 US20220224256A1 (en) 2019-04-30 2020-04-23 Magnetic Levitation Gravity Compensation Device
JP2021564840A JP7329267B2 (ja) 2019-04-30 2020-04-23 磁気浮上式重力補償装置及びそれを用いた作業台

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910363230.7 2019-04-30
CN201910363230 2019-04-30
CN201910628291.1A CN110153971B (zh) 2019-04-30 2019-07-12 工作台及其磁浮重力补偿装置
CN201910628291.1 2019-07-12

Publications (1)

Publication Number Publication Date
WO2020221094A1 true WO2020221094A1 (zh) 2020-11-05

Family

ID=67638098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086358 WO2020221094A1 (zh) 2019-04-30 2020-04-23 磁浮重力补偿装置

Country Status (6)

Country Link
US (1) US20220224256A1 (zh)
EP (1) EP3965285A4 (zh)
JP (1) JP7329267B2 (zh)
KR (1) KR102622752B1 (zh)
CN (2) CN210819425U (zh)
WO (1) WO2020221094A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210819425U (zh) * 2019-04-30 2020-06-23 上海隐冠半导体技术有限公司 工作台及其磁浮重力补偿装置
CN110440112A (zh) * 2019-09-04 2019-11-12 上海隐冠半导体技术有限公司 垂向运动装置
CN110939683A (zh) * 2019-12-05 2020-03-31 哈尔滨工业大学 大载荷低功耗磁悬浮隔振平台
CN113965040B (zh) * 2020-12-01 2022-12-30 上海隐冠半导体技术有限公司 音圈电机
CN113965041A (zh) * 2020-12-01 2022-01-21 上海隐冠半导体技术有限公司 音圈电机
CN113048185B (zh) * 2021-03-09 2022-04-19 复旦大学 一种重力补偿器及承载装置
CN113745138B (zh) * 2021-09-03 2024-03-22 上海隐冠半导体技术有限公司 磁浮装置和微动台
CN116159973B (zh) * 2023-04-21 2023-07-04 亿川科技(成都)有限责任公司 一种锭模用自适应承载平台及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337484B1 (en) 1998-07-17 2002-01-08 Asm Lithography, B.V. Positioning device and lithographic projection apparatus comprising such a device
CN102215019A (zh) * 2011-06-01 2011-10-12 哈尔滨工业大学 有源型重力补偿电磁支撑装置
CN106997155A (zh) * 2017-05-24 2017-08-01 华中科技大学 一种低刚度的磁悬浮重力补偿器及微动台结构
DE202017004177U1 (de) * 2017-08-10 2017-10-18 Helmut Biermann Magnetische Dämpfungsfüße für vibrationsempfindliche Geräte nach dem Prinzip der magnetischen Anziehungskraft
CN107387631A (zh) * 2017-08-28 2017-11-24 中国船舶重工集团公司第七〇九研究所 一种自感磁阻式电磁阻尼器
CN107885039A (zh) * 2016-09-30 2018-04-06 上海微电子装备(集团)股份有限公司 可变磁浮力重力补偿器
CN109039004A (zh) * 2018-08-16 2018-12-18 浙江启尔机电技术有限公司 一种基于Halbach阵列的磁悬浮装置
CN109120185A (zh) * 2018-09-18 2019-01-01 哈尔滨工业大学 基于特性相消原理的低刚度磁悬浮重力补偿器
CN110153971A (zh) * 2019-04-30 2019-08-23 上海隐冠半导体技术有限公司 磁浮重力补偿装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2747944A (en) * 1949-09-19 1956-05-29 Baermann Max Bearings for instruments and machines
JPS61258345A (ja) * 1985-05-13 1986-11-15 Toshiba Corp 光ピツクアツプの対物レンズ支持駆動装置
JP4220733B2 (ja) * 2002-07-05 2009-02-04 新日本製鐵株式会社 超伝導磁気軸受
DE102011004607A1 (de) * 2011-02-23 2012-01-12 Carl Zeiss Smt Gmbh Vorrichtung zur Gewichtskraftkompensation eines optischen Bauteils, Aktuator und Lithographievorrichtung
CN102185541A (zh) * 2011-05-19 2011-09-14 清华大学 一种非接触式永磁支承结构
WO2014012729A1 (en) * 2012-07-18 2014-01-23 Asml Netherlands B.V. Magnetic device and lithographic apparatus
US10125814B2 (en) * 2013-10-24 2018-11-13 Raymond James Walsh Passive magnetic bearing
CN103470631B (zh) * 2013-09-18 2016-06-22 北京航空航天大学 一种吸力型组合磁体轴向被动磁轴承
DE102015201255A1 (de) 2015-01-26 2016-03-10 Carl Zeiss Smt Gmbh Anordnung und Lithographieanlage mit Anordnung
CN105988304B (zh) * 2015-02-28 2018-10-16 上海微电子装备(集团)股份有限公司 一种可调磁浮力重力补偿器
GB201518430D0 (en) * 2015-10-19 2015-12-02 Giamag Technologies As Magnet apparatus for generating high gradient magnetic field

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337484B1 (en) 1998-07-17 2002-01-08 Asm Lithography, B.V. Positioning device and lithographic projection apparatus comprising such a device
CN102215019A (zh) * 2011-06-01 2011-10-12 哈尔滨工业大学 有源型重力补偿电磁支撑装置
CN107885039A (zh) * 2016-09-30 2018-04-06 上海微电子装备(集团)股份有限公司 可变磁浮力重力补偿器
CN106997155A (zh) * 2017-05-24 2017-08-01 华中科技大学 一种低刚度的磁悬浮重力补偿器及微动台结构
DE202017004177U1 (de) * 2017-08-10 2017-10-18 Helmut Biermann Magnetische Dämpfungsfüße für vibrationsempfindliche Geräte nach dem Prinzip der magnetischen Anziehungskraft
CN107387631A (zh) * 2017-08-28 2017-11-24 中国船舶重工集团公司第七〇九研究所 一种自感磁阻式电磁阻尼器
CN109039004A (zh) * 2018-08-16 2018-12-18 浙江启尔机电技术有限公司 一种基于Halbach阵列的磁悬浮装置
CN109120185A (zh) * 2018-09-18 2019-01-01 哈尔滨工业大学 基于特性相消原理的低刚度磁悬浮重力补偿器
CN110153971A (zh) * 2019-04-30 2019-08-23 上海隐冠半导体技术有限公司 磁浮重力补偿装置
CN210819425U (zh) * 2019-04-30 2020-06-23 上海隐冠半导体技术有限公司 工作台及其磁浮重力补偿装置

Also Published As

Publication number Publication date
JP2022531349A (ja) 2022-07-06
US20220224256A1 (en) 2022-07-14
EP3965285A4 (en) 2023-05-31
EP3965285A1 (en) 2022-03-09
CN110153971A (zh) 2019-08-23
KR20210152547A (ko) 2021-12-15
JP7329267B2 (ja) 2023-08-18
CN110153971B (zh) 2024-01-30
KR102622752B1 (ko) 2024-01-08
CN210819425U (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2020221094A1 (zh) 磁浮重力补偿装置
WO2022116393A1 (zh) 磁浮重力补偿装置以及包括该装置的运动台
CN109120185B (zh) 基于特性相消原理的低刚度磁悬浮重力补偿器
WO2023284866A1 (zh) 磁浮重力补偿装置和微动台
US20170045107A1 (en) Single-degree-of-freedom magnetic vibration isolation device
CN102866596B (zh) 一种配装波纹管垂向解耦重力补偿器的微动台
CN109039004B (zh) 一种基于Halbach阵列的磁悬浮装置
CN214848581U (zh) 微动台和运动装置
CN113124057A (zh) 基于多环带排气的静压气浮止推轴承
CN112922990B (zh) 一种磁弹簧装置
CN101520606B (zh) 非接触长行程多自由度纳米精密工作台
CN113965040B (zh) 音圈电机
CN115342158A (zh) 一种出力可调节的磁浮重力补偿器及工作方法
CN113745138B (zh) 磁浮装置和微动台
CN113965041A (zh) 音圈电机
CN210121787U (zh) 具有动态力平衡功能的快刀伺服装置
WO2007049084A1 (en) Magnetic bearing for radial and axial load with repulsive permanent magnets
CN105736801B (zh) 滚珠支撑型电动阀门衔铁悬浮结构
CN207819732U (zh) 线性电机
TWI843145B (zh) 磁浮重力補償裝置和微動台
CN114005636B (zh) 一种永磁阵列和双线圈结合的磁驱动系统及方法
CN113991967B (zh) 一种非接触式永磁支撑装置
Tong et al. Analysis on magnetic field characteristics of an electromagnetic actuator for laser beam control
CN117249165A (zh) 一种磁气混合的主动式气浮支撑结构及支撑方法
Zhang et al. A new implementation method of low stiffness for magnetic levitation gravity compensator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799168

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021564840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037308

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799168

Country of ref document: EP

Effective date: 20211130