WO2022116050A1 - 雾化器及电子雾化装置 - Google Patents

雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2022116050A1
WO2022116050A1 PCT/CN2020/133396 CN2020133396W WO2022116050A1 WO 2022116050 A1 WO2022116050 A1 WO 2022116050A1 CN 2020133396 W CN2020133396 W CN 2020133396W WO 2022116050 A1 WO2022116050 A1 WO 2022116050A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sleeve
atomizer
air
side wall
Prior art date
Application number
PCT/CN2020/133396
Other languages
English (en)
French (fr)
Inventor
周健光
李远健
谢驹
肖民风
吴红涛
张喆
谭淑娟
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2020/133396 priority Critical patent/WO2022116050A1/zh
Publication of WO2022116050A1 publication Critical patent/WO2022116050A1/zh
Priority to US18/327,327 priority patent/US20230301361A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to the technical field of electronic atomization equipment, in particular to an atomizer and an electronic atomization device.
  • An electronic atomization device is a device that atomizes a liquid (such as e-liquid) into smoke, which is widely used in various fields, such as medical treatment, electronic cigarettes, and the like.
  • the electronic atomization device mainly includes a power supply component and an atomizer connected to the power supply component; wherein, the power supply component is used to supply power to the atomizer, and the atomizer is used to heat and atomize the aerosol to form a substrate when powered on;
  • the existing atomizer mainly includes a heating body, an atomizing sleeve sleeved outside the heating body, and an outer casing sleeved outside the atomizing sleeve; wherein, the heating body is used to generate heat when energized and atomize aerosol to form matrix.
  • the heat generated by the heating element is locally concentrated and transferred to the outer casing of the atomizer through heat conduction, so that the user may experience a hot hand problem when touching the atomizer, resulting in poor user experience.
  • the atomizer and the electronic atomization device provided by the present application can solve the problem of hot hands when the user touches the outer casing.
  • a technical solution adopted in the present application is to provide an atomizer, the atomizer includes an atomization sleeve and a heat conductor, wherein the atomization sleeve has a first end and a first end oppositely arranged. The two ends are provided with an atomizing cavity in the atomizing sleeve; the heat conducting body is connected with the atomizing sleeve for dispersing the heat on part of the atomizing sleeve.
  • the electronic atomization device includes a power supply assembly and an atomizer connected to the power supply assembly;
  • the nebulizer is powered, and the nebulizer is used to heat and atomize the aerosol-forming substrate when it is energized, and the nebulizer is the nebulizer mentioned above.
  • the atomizer is provided with an atomizing sleeve, and a thermal conductor is added at the first end of the atomizing sleeve, so as to disperse part of the atomization sleeve through the thermal conductor. heat, so as to avoid the problem of hot hands caused by local concentration of heat.
  • FIG. 1 is a perspective view of the overall structure of an atomizer provided by an embodiment of the application.
  • Fig. 2 is the disassembled schematic diagram of the structure shown in Fig. 1 before being assembled;
  • Fig. 3 is the cross-sectional view of the A'-A' direction of the atomizer shown in Fig. 1 provided for an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a thermal conductor provided by an embodiment of the application.
  • FIG. 5 is a partial schematic diagram of a second heat conducting portion provided by an embodiment of the present application.
  • FIG. 6 is a partial schematic diagram of a second heat conducting portion provided by another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a heat dissipation sleeve provided by an embodiment of the present application.
  • FIG. 8 is a B-direction view of the abdication part provided by an embodiment of the present application.
  • FIG. 9 is a C-direction view of the abdication part provided by an embodiment of the present application.
  • FIG. 10 is a perspective view of the overall structure of an atomizer provided by another embodiment of the application.
  • Figure 11 is a schematic diagram of disassembly before the structure shown in Figure 10 is assembled
  • FIG. 12 is a cross-sectional view of the atomizer shown in FIG. 10 along the A-A direction provided by an embodiment of the application;
  • FIG. 13 is a schematic structural diagram of a liquid storage chamber housing and a thermal conductor integrally formed according to an embodiment of the application;
  • FIG. 14 is a front view of a thermal conductor provided by another embodiment of the application.
  • FIG. 15 is a cross-sectional view of the atomizer shown in FIG. 10 along A-A according to another embodiment of the application;
  • 16 is a schematic structural diagram of a base provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a heat dissipation sleeve provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of an electronic atomization device according to an embodiment of the present application.
  • first”, “second” and “third” in this application are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second”, “third” may expressly or implicitly include at least one of that feature.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined. All directional indications (such as up, down, left, right, front, rear%) in the embodiments of the present application are only used to explain the relative positional relationship between components under a certain posture (as shown in the accompanying drawings).
  • FIG. 1 is a perspective view of the overall structure of the atomizer provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of disassembly before the structure shown in FIG. 1 is not assembled
  • a cross-sectional view of the atomizer shown in FIG. 1 in the direction of A'-A' provided by an embodiment of the application in this embodiment, an atomizer 20 is provided, and the atomizer 20 can be used to heat and atomize the aerosol Forming a substrate; in a specific embodiment, the atomizer 20 can be applied to an electronic cigarette for heating and atomizing e-liquid to form smoke for the smoker to draw, and the following embodiments take this as an example.
  • the atomizer 20 may include an atomization sleeve 21 and a heat conductor 22 .
  • the atomizer 20 further includes a heating body (not shown in the figure), and the heating body is arranged in the atomizing sleeve 21 and is used for heating and atomizing the e-liquid when power is applied.
  • the atomization sleeve 21 has an atomization cavity, and the heating element is specifically accommodated in the atomization cavity, and when the power is turned on, the e-liquid entering the atomization cavity is heated; it is understandable that the heating element generates heat. The heat will be conducted to the atomizing sleeve 21 by heat conduction.
  • the atomizing sleeve 21 can be a cylindrical body, and has a first end and a second end arranged opposite to each other, and the heat conductor 22 is specifically abutted with the first end of the atomizing sleeve 21, so that the atomizing sleeve 21
  • the heat on the atomizing sleeve 21 is directly conducted to the heat conductor 22, so as to disperse the heat on the atomizing sleeve 21 and avoid the problem of hot hands caused by heat concentration.
  • the atomizer 20 has a mouthpiece, and the second end of the atomizing sleeve 21 is the end facing the mouthpiece, and can be connected to the mouthpiece.
  • the material of the thermal conductor 22 can be metal, such as brass; the thermal conductor 22 made of metal has higher heat conduction efficiency than materials such as plastic or rubber, and can better disperse heat; of course, in other embodiments , the material of the thermal conductor 22 can also be high thermal conductivity ceramics, which is not limited in the present application.
  • the atomizer 20 further includes an outer casing 23 sleeved on the outer side of the atomization sleeve 21 and the heat conductor 22 .
  • the outer housing 23 of the atomizer 20 is in contact.
  • FIG. 4 is a schematic structural diagram of a heat conducting body provided by an embodiment of the application; 221 is a second heat-conducting portion 222 that is axially connected; wherein, the first heat-conducting portion 221 can be a hollow tubular structure, and is used to be sleeved on the outer side wall of the first end of the atomizing sleeve 21 to connect with the atomizing sleeve 21
  • the first end of the atomizing sleeve 21 is in contact with the side surface of the second heat-conducting part 222 facing the first heat-conducting part 221, so as to increase the contact with the atomizing sleeve 21
  • the first end of the atomizing sleeve 21 may not be in contact with the second heat-conducting portion 222 , but only contact with the first heat-conducting portion 221 .
  • both the second heat-conducting portion 222 and the first heat-conducting portion 221 can be hollow cylinders, the second heat-conducting portion 222 and the first heat-conducting portion 221 are axially connected, coaxially arranged and The diameter of the first heat conduction part 221 is smaller than the diameter of the second heat conduction part 222 .
  • a flange 223 is provided on the outer side wall of the second heat-conducting portion 222 , and the side of the flange 223 away from the outer side wall of the second heat-conducting portion 222 is in contact with the inner side wall of the outer casing 23 , and the flange 223 is in contact with the second side wall of the second heat-conducting portion 222 .
  • the outer side wall of the heat-conducting portion 222 cooperates with the outer casing 23 to form a first air passage; wherein, the flange 223 can be integrally formed with the outer side wall of the second heat-conducting portion 222; one end of the first air passage is communicated with the atomization chamber, and the other end It is communicated with the outside air, so that the outside air can enter the atomizing chamber through the first air passage, thereby extending the flow path of the air on the second heat conducting part 222, so that the air passing through the first air passage can be taken away as much as possible
  • the heat on the second heat-conducting part 222 can further reduce the temperature; at the same time, the newly introduced air can be preheated by the temperature on the second heat-conducting part 222, so as to improve the heat utilization rate of the heating body and make the user inhale
  • the air has a certain temperature, so as to avoid inhaling cool air and affecting the user experience.
  • a ventilation hole (not shown) is provided at a position of the second heat conducting portion 222 away from the first heat conducting portion 221 , and at least one air inlet hole is provided at a position where the second heat conducting portion 222 is close to the first heat conducting portion 221 .
  • at least one air intake hole 225 can also be arranged in the position of the atomizing sleeve 21 close to the heat conductor 22; One end of the first air passage is specifically communicated with the ventilation hole to communicate with the outside air, and the other end is communicated with the air intake hole 225 to communicate with the atomizing cavity.
  • the flange 223 includes a plurality of arc-shaped protrusions arranged at intervals, and the plurality of arc-shaped protrusions form a first air channel with the inner side wall of the outer casing 23 and the outer side wall of the heat conductor 22; specifically, The plurality of arc-shaped protrusions may be uniformly distributed on the outer sidewall of the second heat-conducting portion 222 , or randomly distributed on the outer sidewall of the second heat-conducting portion 222 in an irregular state, which is not limited in the present application.
  • the flange 223 may have a helical shape, and is wound from the end of the second heat-conducting portion 222 away from the first heat-conducting portion 221 along the axial direction of the second heat-conducting portion 222 to approaching the first heat-conducting portion. 221; it can be understood that, in this embodiment, the first air passage is spirally wound along the outer side wall of the second heat-conducting part 222 from the end of the second heat-conducting part 222 away from the first heat-conducting part 221 to the end close to the first heat-conducting part One end of 221, that is, the first airway is a spiral airway.
  • the suction resistance that the user suffers during the suction process is relatively large.
  • the suction is smoother; further, a plurality of notches 226 can be provided on the flange 223, and the plurality of notches 226 can be arranged in a staggered position in the axial direction of the second heat-conducting portion 222; it can be understood that in this embodiment, referring to FIG.
  • 5 is a partial schematic diagram of the second heat conducting portion provided by an embodiment of the application;
  • the flange 223 can be divided into a plurality of arc-shaped flanges spaced along the axial direction of the second heat conducting portion 222 by the gap 226, and the arc The flanges are in an inclined state; a first sub-airway is defined between two adjacent arc-shaped flanges; the outside air can enter one of the first sub-airways from the ventilation hole, and can directly enter and The other first sub-airways currently connected to the first sub-airway greatly shorten the air flow path and effectively reduce the suction resistance.
  • FIG. 6 is a partial schematic diagram of the second heat conducting portion provided by another embodiment of the application;
  • the flange 223 may specifically include a plurality of annular protrusions 223a arranged at intervals, and the annular protrusions
  • the plane on which the 223a is located can be perpendicular to the axial direction of the thermal conductor 22, that is, the annular protrusion 223a is arranged along the radial direction parallel to the thermal conductor 22, which can reduce the technological difficulty factor and facilitate the processing by technicians;
  • a first sub-air channel is formed between two annular protrusions 223a adjacently disposed along the axial direction of the second heat conducting portion 222, and each annular protrusion 223a has at least one The two first sub-air passages are in communication, so that the outside air can enter the atomization chamber through each of the first sub-air passages and the air inlet holes 225 .
  • the notches 226 on the two adjacent annular protrusions 223a can be arranged in a dislocation.
  • the plane on which the annular protrusion 223 a is located may also be disposed obliquely toward the direction of the heat conductor 22 .
  • a plurality of notches 226 may be further provided in each annular protrusion 223a, and the notches 226 on two adjacent annular protrusions 223a may be arranged in a staggered position, so as to ensure that the air is trapped in the second heat-conducting portion 222 has a certain length of flow path, while reducing air resistance.
  • the atomizer 20 further includes a liquid storage chamber housing 24 , and the liquid storage chamber housing 24 is specifically sleeved on at least the outer side of the atomizing sleeve 21 , and is connected with the outer side wall of the atomizing sleeve 21 .
  • the outer shell 23 is sleeved on the outer side of the liquid storage cavity shell 24 and is spaced from the liquid storage cavity shell 24 to form a thermal insulation space S, so as to form a liquid storage cavity.
  • the heat conduction between the outer casing 24 of the liquid storage chamber and the outer casing 23 is reduced by the insulating space S, thereby reducing the temperature on the outer casing 23 and preventing the outer casing 23 from being hot. It can be understood that, in a specific embodiment, the temperature on the atomizing sleeve 21 is conducted to the liquid storage chamber shell 24 through the liquid in the liquid storage cavity, and the heat on the liquid storage cavity shell 24 can be further conducted to the outer shell 23 . superior.
  • the liquid storage chamber housing 24 includes a first housing 241 and a second housing 242 that are axially connected; wherein, the first housing 241 is sleeved on the outer side wall of the first heat-conducting portion 221 , and the second housing 242 It cooperates with the outer side wall of the atomizing sleeve 21 to form a liquid storage cavity; and the radial dimension of the first housing 241 is smaller than that of the second housing 242, so that the liquid storage cavity shell 24 corresponds to the first heat conduction part 221.
  • a recessed portion 243 is formed at the position (see FIG. 2).
  • a heat dissipation sleeve 25 is also sleeved on the outer side wall of the liquid storage chamber shell 24 , so as to absorb part of the temperature on the liquid storage chamber shell 24 through the heat dissipation sleeve 25 , thereby reducing the heat conducted to the outer shell 23 .
  • the material of the heat dissipation sleeve 25 may be plastic.
  • FIG. 7 is a schematic structural diagram of a heat dissipation sleeve provided by an embodiment of the present application; 252; wherein, the connecting sleeve 251 can be an annular sleeve, which is used to be embedded in the concave portion 243 of the liquid storage chamber housing 24 and sleeved on the outer side wall of the first housing 241, and in a specific embodiment, the connecting sleeve 251
  • the thickness H11 is the same as the depth H12 of the recessed portion 243; the plurality of connecting bars 252 may be strip-shaped bodies, and the axial length of the connecting bars 252 is greater than the axial length of the connecting sleeve 251, and the connecting bars 252 extend along the second housing.
  • the thickness H 13 in the radial direction of the 242 is the same as the width W 11 of the insulating space S, wherein the width W 11 of the insulating space S is the difference between the outer surface of the second casing 242 and the inner surface of the outer casing 23 .
  • one end of each connecting bar 252 is fixedly arranged on the outer surface of the connecting sleeve 251 , and the other end extends to the outside of the connecting sleeve 251 along the axial direction of the connecting sleeve 251 .
  • the connecting strips 252 are arranged at intervals in the direction, and the extending direction of the connecting strips 252 is the same as the axial direction of the connecting sleeve 251, and two adjacent connecting strips 252 cooperate with the outer side wall of the connecting sleeve 251 to form a first ventilation groove 253; in a specific embodiment , one end of the connecting bar 252 disposed on the outer surface of the connecting sleeve 251 is flush with the end of the connecting sleeve 251 close to the second heat conducting part 222, so that each first ventilation groove 253 is close to the connecting sleeve 251 One end of the second heat-conducting portion 222 extends to the other end; in a specific embodiment, a plurality of connecting bars 252 are used to sleeve on the outer side wall of the second shell 242 and connect with the outer side wall of the second shell 242 and the outer shell 23 cooperate to form a plurality of second ventilation grooves 254 .
  • the second ventilation groove 254 communicates with the first ventilation groove 253 .
  • the radial dimension of the second heat-conducting portion 222 is larger than the radial dimension of the first heat-conducting portion 221 , and the edge of the side surface of the second heat-conducting portion 222 facing the atomizing sleeve 21 is provided with a plurality of vacant portions 227 , at least One air intake hole 225 is correspondingly arranged at the position where the relinquishment portion 227 is located, that is, one air intake hole 225 is provided in one receding portion 227; specifically, refer to FIG. 8 and FIG. 9 , wherein FIG. The view from the direction B of the let-down part provided by the embodiment; FIG.
  • the let-away part 227 defines the third ventilation groove 255 , one end of the third ventilation groove 255 is a closed end, and the other end is joined and communicated with the first ventilation groove 253 through the second ventilation groove 254;
  • 227 has a bottom wall 2271, a first side wall 2272 arranged perpendicular to the bottom wall 2271, a second side wall 2273 arranged adjacent to the first side wall 2272, and a third side wall 2274 arranged adjacent to the second side wall 2273 ;
  • the first side wall 2272 and the third side wall 2274 are arranged oppositely; wherein, the two side walls of the third ventilation groove 255 are formed between the first side wall 2272 and the third side wall 2274, and the second side wall 2273 is formed
  • the groove bottom of the third ventilation groove 255 and the bottom wall 2271 form the closed end of the third ventilation groove 255 , and the
  • the heat conductor 22 is provided with a groove communicating with the first air passage at a position corresponding to the second ventilation groove 254 ; The number is even.
  • the two adjacent first ventilation grooves 253 one is communicated with the first air passage through the groove, and the other is communicated with the air intake hole 225 through the third ventilation groove 255 .
  • the air communicated by the first air passage enters the second ventilation grooves 254 between (inside) two adjacent connecting bars 252 through the first ventilation grooves 253 , and flows to the two second adjacent connecting bars 252 outside the two adjacent connecting bars 252 .
  • the ventilation grooves 254 enter the adjacent two air inlet holes 225 respectively after passing through the two second ventilation grooves 254 outside the two adjacent connecting bars 252 .
  • the first ventilation groove 253 , the second ventilation groove 254 and at least a pair of adjacent third ventilation grooves 255 cooperate with the inner side wall of the outer casing 23 to form a second air passage, and the second air passage passes through the concave cavity.
  • the groove is communicated with the first air passage, so that the air passing through the first air passage further enters the air inlet hole 225 through the second air passage, so that the air can further flow through the surface of the liquid storage chamber housing 24 to take away part of the air.
  • the heat on the outer casing 24 of the liquid storage chamber is reduced, thereby further reducing the temperature on the outer casing 24 of the liquid storage chamber.
  • the corresponding arrows in the first airway and the second airway in FIG. 1 refer specifically to the airflow direction.
  • At least part of the outer sidewall of the thermal conductor 22 can also be in contact with the inner sidewall of the outer casing 23 to form a sealed thermal insulation space S; it should be noted that in this embodiment, the thermal conductor The air inlet hole 225 on the 22 is not communicated with the insulating space S.
  • a heat-dissipating medium such as water or oil, can also be arranged in the heat-insulating space S, so as to absorb part of the heat through the heat-dissipating medium, thereby reducing the heat conducted to the outer casing 23 and reducing the heat on the outer casing 23.
  • the heat conducted to the outer casing 23 can be made more uniform through the heat dissipation medium, so as to avoid the problem of hot hands caused by the local high temperature of the outer casing 23 .
  • FIG. 10 is a perspective view of the overall structure of the atomizer provided by an embodiment of the application
  • FIG. 11 is the disassembly of the structure shown in FIG. 10 before it is assembled Schematic diagram
  • FIG. 12 is a cross-sectional view taken along the A-A direction of the atomizer shown in FIG. 10 provided by an embodiment of the application
  • another atomizer 30 is provided, and the atomizer 30 can also avoid the problem that the local temperature of the atomizer 30 is too high to cause hot hands;
  • the liquid storage chamber housing 32 and the heat conductor 33 are examples of the liquid storage chamber housing 32 and the heat conductor 33 .
  • the atomizer 30 further includes a heating body (not shown in the figure), and the heating body is arranged in the atomizing sleeve 31 and is used for heating and atomizing the e-liquid when the electricity is turned on.
  • the atomizing sleeve 31 has an atomizing cavity, and the heating body is specifically accommodated in the atomizing cavity, and heats the e-liquid entering the atomizing cavity when the power is turned on; it can be understood that the heating body generates heat The heat will be conducted to the atomizing sleeve 31 through heat conduction.
  • the atomizing sleeve 31 can be specifically a cylindrical body, and has a first end and a second end arranged oppositely; the liquid storage chamber shell 32 is specifically sleeved on the outer side of the atomizing sleeve 31, and is connected with the atomizing sleeve. 31 are arranged at intervals to cooperate with the outer side wall of the atomizing sleeve 31 to form a liquid storage cavity, wherein the liquid storage cavity is specifically used for storing liquid, such as storing e-liquid; So that the liquid in the liquid storage chamber can enter the atomizing chamber and contact the heating element, so that the heating element can heat and atomize the liquid entering the atomizing chamber when the heating element is energized.
  • the atomizer 30 has a mouthpiece, and the second end of the atomizing sleeve 31 is an end facing the mouthpiece and can be connected to the mouthpiece.
  • the material of the heat conducting body 33 can be metal, such as brass; the heat conducting body 33 made of metal material has higher heat conduction efficiency than materials such as plastic or rubber, and can better disperse heat.
  • the material of the thermal conductor 33 may also be a high thermal conductivity ceramic, which is not limited in the present application.
  • the thermal conductor 33 can be integrally formed with the liquid storage chamber housing 32, so as to reduce the number of parts of the atomizer 30 and facilitate the assembly of the atomizer 30 by technicians;
  • the material of the liquid chamber housing 32 can be all brass; the heat conductor 33 and the liquid storage chamber housing 32 of the same material are easily integrally formed in the production process.
  • the first end of the atomizing sleeve 31 is in contact with the surface of the heat conductor 33 on the side facing the liquid storage chamber shell 32, so that the heat on the atomizing sleeve 31 can be conducted to the heat conductor 33, and then through the heat conduction
  • the body 33 disperses part of the heat on the atomizing sleeve 31, so as to avoid the problem of hot hands due to local concentration of heat.
  • the heat conducting body 33 can be a columnar body, and the heat conducting body 33 is provided with an air intake hole 342, one end of the air intake hole 342 is communicated with the atmosphere, and the other end is communicated with the atomizing chamber, so that the outside air can pass through The air inlet hole 342 enters the atomization chamber.
  • the atomizer 30 further includes an outer casing 34 sleeved on the outer side of the liquid storage chamber casing 32 and the heat conducting body 33 .
  • the user is specifically related to the outer casing 34 of the atomizer 30 .
  • the outer casing 34 and the liquid storage chamber casing 32 are spaced apart, and the inner side wall of the outer casing 34 is in contact with at least part of the outer side wall of the thermal conductor 33 to cooperate with the liquid storage chamber casing 32 and the thermal conductor 33 to form a partition Thermal space S'.
  • FIG. 14 is a front view of a heat conducting body provided by an embodiment of the application; the heat conducting body 33 may specifically include a heat conducting portion 331 and a sealing portion 332 axially connected to the heat conducting portion 331 ; wherein, The heat-conducting portion 331 may specifically be a columnar body, and the outer casing 34 is also spaced apart from the heat-conducting portion 331.
  • the radial dimension of the heat-conducting portion 331 is smaller than the radial dimension of the liquid storage chamber housing 32, that is, a depression is formed at the position of the heat-conducting portion 331.
  • the heat-conducting portion 331 is used to disperse the heat on the atomizing sleeve 31.
  • the end face of the first end of the atomizing sleeve 31 is in contact with the surface of the heat-conducting portion 331 on the side facing away from the sealing portion 332.
  • the contact position of the atomizing sleeve 31 and the heat-conducting part 331 is surface-to-surface contact, thereby greatly increasing the contact area between the atomizing sleeve 31 and the heat-conducting body 33, and effectively improving the heat dissipation efficiency;
  • the sealing part 332 specifically It can be an annular structure, and the outer side wall of the sealing portion 332 is in contact with the inner side wall of the outer casing 34 to form a sealed thermal insulation space S'.
  • a sealing member 333 may also be disposed between the outer side wall of the sealing portion 332 and the inner side wall of the outer casing 34 to ensure the sealing effect.
  • the atomization chamber further includes a base 35 , and the base 35 is specifically arranged at the bottom of the heat-conducting portion 331 and sleeved in the sealing portion 332 ; specifically, the material of the base 35 may be Silica gel.
  • the outer casing 34 is provided with at least one vent hole 341 , and the at least one vent hole 341 corresponds to the end of the atomizing sleeve 31 away from the thermal conductor 33 ;
  • 342 is arranged on the heat-conducting portion 331 and communicated with the thermal insulation space S', the outside air enters from the ventilation hole 341, flows through the thermal insulation space S' and the air inlet hole 342 into the atomization chamber;
  • the space S' re-enters the air intake hole 342, which can extend the flow path of the air, so that the air passing through the insulating space S' can take away as much heat on the surface of the atomizing sleeve 31 as possible, reducing the surface of the atomizing sleeve 31.
  • the temperature on 31 preheats the newly introduced air to improve the heat utilization rate of the heating element, and make the air inhaled by the user to have a certain temperature, so as to avoid the inhalation of cool air affecting the user experience.
  • FIG. 15 is a cross-sectional view taken along the A-A direction of the atomizer shown in FIG. 10 according to another embodiment of the application; the difference from the above-mentioned embodiment is that the outer casing 34 corresponds to the thermal insulation space There is no ventilation hole 341 at the position of S', and the outer casing 34 cooperates with the sealing part 332 and the outer side wall of the atomizing sleeve 31 to form a completely sealed thermal insulation space S'.
  • the ventilation holes 341 are specifically opened on the base 35 , and in a specific embodiment, the ventilation holes 341 extend along the axial direction of the base 35 ; In a specific embodiment, the central axis of the ventilation hole 341 and the air inlet hole 342 are the same, and the diameter of the air hole 341 is smaller than that of the air inlet hole 342 .
  • FIG. 16 is a schematic structural diagram of a base provided by an embodiment of the application; a side surface of the base 35 facing the atomization chamber is provided with a plurality of accommodating grooves 351 , and the accommodating grooves 351 are connected to the atomization chamber.
  • the cavity is connected to collect the condensate or leakage liquid formed in the atomization cavity.
  • the accommodating groove 351 can communicate with the atomization chamber through the air inlet 342; There may be two, and the two accommodating grooves 351 are oppositely disposed on both sides of the ventilation hole 341 .
  • a heat dissipation medium may be arranged in the insulating space S' to absorb or take away part of the heat; specifically, the heat dissipation medium may be
  • the gas for example, can be air; of course, the heat dissipation medium can also be liquid, for example, can be any one or more of water and oil, which is not limited in this embodiment.
  • the ventilation hole 341 can also be opened on the outer side wall of the sealing part 332, and is located at the end of the sealing part 332 away from the heat conduction part 331;
  • a plurality of annular grooves 3321 are formed on the outer side wall, and the annular grooves 3321 cooperate with the outer casing 34 to form a first air passage; wherein, one end of the first air passage is communicated with the air inlet hole 342, and the other end is communicated with the ventilation hole 341, so that the outside The air can enter into the atomizing chamber through the ventilation hole 341, the first air passage and the air inlet hole 342, so that the air flow path on the sealing part 332 is extended through the first air passage, so that the air passing through the first air passage can be as much as possible.
  • the newly introduced air can be preheated by the temperature on the sealing part 332, so as to improve the heat utilization rate of the heating body, and make the user inhale
  • the air has a certain temperature, so as to avoid inhaling cool air and affecting the user experience.
  • the annular groove 3321 is formed by a plurality of arc-shaped protrusions arranged at intervals to cooperate with the outer side wall of the sealing portion 332 , and the plurality of arc-shaped protrusions cooperate with the inner side wall of the outer casing 34 and the outer side wall of the sealing portion 332 . cooperate to form the first airway.
  • the plurality of arc-shaped protrusions may be uniformly distributed on the outer sidewall of the sealing portion 332, or randomly distributed on the outer sidewall of the sealing portion 332 in an irregular state, which is not limited in the present application.
  • the annular groove 3321 includes a helical groove, that is, the groove is helical, and is wound from an end of the sealing portion 332 away from the heat-conducting portion 331 along the axial direction of the sealing portion 332 to a portion close to the heat-conducting portion 331 .
  • the first air passage is spirally wound along the outer side wall of the sealing portion 332 from the end of the sealing portion 332 away from the heat conducting portion 331 to the end close to the heat conducting portion 331, that is, the first air passage For the spiral airway.
  • the suction resistance of the user during the suction process is relatively large.
  • the suction is smoother; further, a plurality of notches 3322 can be provided on the groove wall of the annular groove 3321, and the plurality of notches 3322 can be dislocated in the axial direction of the sealing portion 332; wherein, the groove wall of the annular groove 3321 is equivalent to the above-mentioned embodiment.
  • the annular groove 3321 can be divided into a plurality of grooves 3321 which are spaced along the axial direction of the sealing portion 332 and communicated with each other through the gap 3322.
  • each sub-annular groove is in an inclined state; the outside air can enter one of the sub-annular grooves from the ventilation hole 341, and can directly enter the gap 3322 and the current
  • the sub-annular grooves communicate with other sub-annular grooves, thereby greatly shortening the air flow path and effectively reducing the suction resistance.
  • the annular groove 3321 includes a plurality of annular grooves 3321a, the plurality of annular grooves 3321a are arranged at intervals along the axial direction of the sealing portion 332, and the annular grooves 3321a are located
  • the plane is perpendicular to the axial direction of the sealing portion 332, that is, the annular groove 3321a is arranged along the radial direction parallel to the sealing portion 332, which can reduce the difficulty of the process and facilitate the processing by technicians; specifically, in this embodiment , the groove wall of each annular groove 3321a has at least one gap 3322, so that the two adjacent annular grooves 3321a are communicated, so that the outside air can enter the atomization through each annular groove 3321a and the air inlet hole 342 intracavity.
  • the notches 3322 on the groove walls of the two adjacent annular grooves 3321 a may be arranged in a dislocation.
  • the plane on which the annular groove 3321 a is located may also be inclined toward the direction of the heat conductor 33 .
  • a plurality of notches 3322 can be further provided on the groove wall of each annular groove 3321a, and the individual notches 3322 on the groove walls of two adjacent annular grooves 3321a can be arranged in a staggered position , so as to reduce the air suction resistance while ensuring that the air has a certain length of flow path on the sealing portion 332 .
  • a heat dissipation sleeve 36 can be sleeved on the outer side walls of the liquid storage chamber shell 32 and the heat conduction part 331, so as to absorb part of the temperature on the liquid storage cavity shell 32 and the heat conduction part 331 through the heat dissipation sleeve 36, Thereby, the heat conducted to the outer casing 34 is reduced.
  • the material of the heat dissipation sleeve 36 may specifically be plastic.
  • FIG. 17 is a schematic structural diagram of a heat dissipation sleeve provided by an embodiment of the application; specifically, the heat dissipation sleeve 36 may specifically include a connecting sleeve 361 and a plurality of connecting bars 362 disposed on the outer sidewall of the connecting sleeve 361 ;
  • the connecting sleeve 361 can specifically be an annular sleeve, which is used to embed the concave portion and is sleeved on the outer side wall of the heat conducting portion 331; and in a specific embodiment, the thickness H1 of the connecting sleeve 361 and the depth H2 of the concave portion is the same as the length L 1 ;
  • the plurality of connecting bars 362 can specifically be strip-shaped bodies, and the axial length of the connecting bars 362 is greater than the axial length of the connecting sleeve 361 , and the thickness of the connecting bars 362 along the radi
  • Two adjacent connecting bars 362 cooperate with the outer side wall of the connecting sleeve 361 to form a first ventilation groove 3323;
  • One end of the connecting strips 362 close to the heat-conducting part 331 is flush, so that each first ventilation groove 3323 extends from one end of the connecting sleeve 361 close to the heat-conducting part 331 to the other end;
  • One end is connected together, so that one end of the first ventilation groove 3323 is a closed end; in a specific embodiment, a plurality of connecting bars 362 are used to be sleeved on the outer side wall of the liquid storage chamber housing 32, and are connected with the liquid storage chamber housing 32.
  • the outer sidewall of the first ventilation groove 3323 cooperates to form a plurality of second ventilation grooves; it can be understood that the end of the first ventilation groove 3323 away from the second ventilation groove is a closed end, and the first ventilation groove 3323 communicates with the second ventilation groove.
  • the first ventilation groove 3323 and at least a pair of adjacently arranged second ventilation grooves cooperate with the inner side wall of the outer casing 34 to form a second air passage, and the second air passage communicates with the first air passage, so that the The air passing through the first air passage further enters the air inlet hole 342 through the second air passage, so that the air can further flow through the surface on which the liquid storage chamber shell 32 is located, and then the heat on the liquid storage chamber shell 32 can be taken away, so that the Reduce the temperature on the reservoir housing 32.
  • the air intake holes 342 provided on the heat conducting portion 331 correspond to the positions of the first air vent grooves 3323 formed on the connecting sleeve 361 , and the connecting sleeve 361 is opened at the position corresponding to the air intake holes 342 There is a through hole, the through hole communicates with the air intake hole 342, so that the air enters the air intake hole 342 after passing through the second air channel, so that the air passing through the first air channel can further flow through the second air channel, and then take away Part of the heat on the reservoir housing 32 to further reduce the heat conducted to the outer housing 34 .
  • FIG. 18 is a schematic structural diagram of an electronic atomizing device provided by an embodiment of the application; an electronic atomizing device 100 is provided, and the electronic atomizing device 100 can be specifically an electronic cigarette; Yes, the electronic atomization device 100 may include a power supply assembly 101 and an atomizer 102 connected to the power supply assembly 101 .
  • the atomizer 102 is used to heat and atomize the aerosol-forming substrate when powered on; the aerosol-forming substrate may specifically be e-liquid, and the atomizer 102 may specifically be the atomizer 20 provided in any of the above embodiments. (30), its specific structure and function can refer to the relevant text description of the atomizer 20 (30) in the above-mentioned embodiment, and can achieve the same or similar technical effects, which will not be repeated here; the power supply assembly 101 is used to The atomizer 102 is powered; and in one embodiment, the power component 101 can be a rechargeable lithium-ion battery.
  • the atomizer 102 is arranged to include the atomization sleeve 21 (31), and an atomization sleeve 21 (31) is added at the first end of the atomization sleeve 21 (31).
  • the thermal conductor 22 (33) is used to disperse the heat on part of the atomizing sleeve 21 (31) through the thermal conductor 22 (33), so as to avoid the problem of hot hands due to local concentration of heat; at the same time, due to the thermal conductor 22 (33) ) is made of metal, which has higher thermal conductivity and better heat dissipation than materials such as plastic or rubber.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种雾化器(20)和电子雾化装置。雾化器(20)包括雾化套管(21)和导热体(22),其中,雾化套管(21)具有相对设置的第一端和第二端,且雾化套管(21)内具有雾化腔;导热体(22)与雾化套管(21)连接,用于分散部分雾化套管(21)上的热量。雾化器(20)能够避免热量局部集中而导致烫手的问题发生。

Description

雾化器及电子雾化装置 【技术领域】
本发明涉及电子雾化设备技术领域,尤其涉及一种雾化器及电子雾化装置。
【背景技术】
电子雾化装置是一种将液体(如烟油)雾化成烟雾的装置,其被广泛应用于各个领域,比如,医疗、电子烟等。
目前,电子雾化装置主要包括电源组件和与电源组件连接的雾化器;其中,电源组件用于向雾化器供电,雾化器用于在通电时加热并雾化气溶胶形成基质;具体的,现有雾化器主要包括发热体、套设在发热体外的雾化套管以及套设在雾化套管外的外壳体;其中,发热体用于在通电时发热并雾化气溶胶形成基质。
然而,发热体在发热过程中,其产生的热量局部集中,并经热传导会传递至雾化器的外壳体上,从而在用户接触该雾化器时会出现烫手问题,导致用户体验较差。
【发明内容】
本申请提供的雾化器及电子雾化装置,该雾化器能够解决用户接触外壳体时会出现烫手的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化器,该雾化器包括雾化套管和导热体,其中,雾化套管具有相对设置的第一端和第二端,且雾化套管内具有雾化腔;导热体与雾化套管连接,用于分散部分雾化套管上的热量。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种电子雾化装置,该电子雾化装置包括电源组件和与电源组件连接的雾化器;其中,电源组件用于向雾化器供电,雾化器用于在通电时加热并雾 化气溶胶形成基质,雾化器为上述所涉及的雾化器。
本申请提供的雾化器及电子雾化装置,该雾化器通过设置雾化套管,并在雾化套管的第一端增设导热体,以通过导热体分散部分雾化套管上的热量,从而避免热量局部集中而导致烫手的问题发生。
【附图说明】
图1为本申请一实施例提供的雾化器的整体结构的透视图;
图2为图1所示结构未装配前的拆解示意图;
图3为本申请一实施例提供的图1所示雾化器的A’-A’向的剖视图;
图4为本申请一实施例提供的导热体的结构示意图;
图5为本申请一实施例提供的第二导热部的部分示意图;
图6为申请另一实施例提供的第二导热部的部分示意图;
图7为本申请一实施例提供的散热套的结构示意图;
图8为本申请一实施例提供的让位部的B向视图;
图9为本申请一实施例提供的让位部的C向视图;
图10为本申请另一实施例提供的雾化器的整体结构的透视图;
图11为图10所示结构未装配前的拆解示意图;
图12为本申请一实施例提供的图10所示雾化器的A-A向的剖视图;
图13为本申请一实施例提供的储液腔外壳与导热体一体成型的结构示意图;
图14为本申请另一实施例提供的导热体的主视图;
图15为本申请另一实施例提供的图10所示雾化器的A-A向的剖视图;
图16为申请一实施例提供的底座的结构示意图;
图17为本申请一实施例提供的散热套的结构示意图;
图18为本申请一实施例提供的电子雾化装置的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1至图3;其中,图1为本申请一实施例提供的雾化器的整体结构的透视图;图2为图1所示结构未装配前的拆解示意图;图3为本申请一实施例提供的图1所示雾化器的A’-A’向的剖视图;在本实施例中,提供一种雾化器20,该雾化器20可用于加热并雾化气溶胶形成基质;在一具体实施例中,该雾化器20可应用于电子烟,用于加热并雾化烟油,以形成烟雾,供抽烟者抽吸,以下实施例均以此为例。
具体的,该雾化器20可包括雾化套管21和导热体22。
在具体实施例中,雾化器20还包括发热体(图未示),发热体设置在雾化套管21内,用于在通电时加热并雾化烟油。具体的,雾化套管21内具有雾化腔,发热体具体容置在雾化腔内,并在通电时对进入雾化腔内的烟油进行加热;可以理解的是,发热体发热产生的热量经热传导会传导至雾化套管21上。
其中,雾化套管21具体可为一柱状体,且具有相对设置的第一端和第二端,导热体22具体与雾化套管21的第一端抵接,使得雾化套管21上的热量直接传导至导热体22,从而分散雾化套管21上的热量,避免热量集中而导致烫手的问题发生。在具体实施例中,雾化器20具有烟嘴,雾化套管21的第二端为朝向烟嘴的一端,并可与烟嘴连接。
具体的,导热体22的材质可为金属,比如黄铜;金属材质的导热体22相比于塑料或橡胶等材质,热传导效率更高,能够更好地分散热量;当然,在其他实施例中,导热体22的材质还可为高导热陶瓷,本申请对此并不加以限制。
需要说明的是,在具体实施例中,参见图3,该雾化器20还包括套设在雾化套管21和导热体22的外侧的外壳体23,在具体使用过程中,用户具体与雾化器20的外壳体23接触。
具体的,参见图4,图4为本申请一实施例提供的导热体的结构示意图;导热体22具体可为柱状体,且导热体22具体可包括第一导热部221和与第一导热部221轴向连接的第二导热部222;其中,第一导热部221具体可为中空管状结构,用于套设在雾化套管21的第一端的外侧壁上以与雾化套管21的第一端接触;在一具体实施例中,雾化套管21的第一端与第二导热部222朝向第一导热部221的一侧表面抵接,以增大与雾化套管21的接触面积,提高散热效率;当然,在其他实施例中,雾化套管21的第一端也可不与第二导热部222抵接,而仅与第一导热部221接触。第一导热部221与第二导热部222可以一体成型。
具体的,参见图4,在一个实施例中,第二导热部222和第一导热部221均可为空心圆柱体,第二导热部222和第一导热部221轴向连接, 同轴设置且第一导热部221的直径小于第二导热部222的直径。具体的,第二导热部222的外侧壁上设置有凸缘223,凸缘223远离第二导热部222的外侧壁的一侧具体与外壳体23的内侧壁抵接,凸缘223与第二导热部222的外侧壁和外壳体23配合形成第一气道;其中,凸缘223具体可与第二导热部222的外侧壁一体成型;第一气道的一端与雾化腔连通,另一端与外界空气连通,以使外界空气能够经由第一气道进入雾化腔内,从而延长空气在第二导热部222上的流经路径,使得经过第一气道的空气能够尽可能多地带走第二导热部222上的热量,以达到进一步降温的目的;同时,可通过第二导热部222上的温度对新进的空气进行预热,以提高发热体的热利用率,且使用户吸入的空气具有一定温度,避免吸入凉气影响用户体验。
具体的,参见图3,第二导热部222远离第一导热部221的位置设置有通气孔(图未示),第二导热部222靠近第一导热部221的位置设置有至少一个进气孔225,当然,在其他实施例中,至少一个进气孔225也可设置在雾化套管21靠近导热体22的位置;具体的,通气孔与外界空气连通,进气孔225与雾化腔连通,第一气道的一端具体与通气孔连通以与外界空气连通,另一端与进气孔225连通,以与雾化腔连通。
在一具体实施例中,凸缘223包括多个间隔设置的弧形凸起,多个弧形凸起与外壳体23的内侧壁、导热体22的外侧壁形成第一气道;具体的,多个弧形凸起可均匀分布在第二导热部222的外侧壁上,或呈不规则状态散乱分布在第二导热部222的外侧壁上,本申请对此并不加以限制。
在另一具体实施例中,凸缘223具体可呈螺旋状,且从第二导热部222远离第一导热部221的一端沿第二导热部222的轴向方向绕设至靠近第一导热部221的位置;可以理解的是,在该实施例中,第一气道从第二导热部222远离第一导热部221的一端沿第二导热部222的外侧壁螺旋盘绕至靠近第一导热部221的一端,即第一气道为螺旋气道。
具体的,在该实施例中,由于第一气道的路径较长,用户在抽吸过程中所受的吸阻较大,为了在延长空气的流经路径的同时,降低吸阻, 使抽吸更加顺畅;进一步可在凸缘223上设置若干缺口226,并使若干缺口226在第二导热部222的轴向方向上错位设置;可以理解的是,在该实施例中,参见图5,图5为本申请一实施例提供的第二导热部的部分示意图;凸缘223具体可通过缺口226分割为多个沿第二导热部222的轴向方向间隔设置的弧形凸缘,且弧形凸缘具体呈倾斜状态;相邻两个弧形凸缘之间限定形成第一子气道;外界空气可从通气孔进入其中一个第一子气道,并在缺口226处可直接进入与当前第一子气道连通的其它第一子气道,大大缩短了空气的流经路径,有效降低了吸阻。
在另一具体实施例中,参见图6,图6为申请另一实施例提供的第二导热部的部分示意图;凸缘223具体可包括多个间隔设置的环形凸起223a,且环形凸起223a所在的平面可与导热体22的轴向方向垂直,即,环形凸起223a沿平行于导热体22的径向方向设置,这样能够降低工艺难度系数,方便技术人员加工;具体的,在该实施例中,沿第二导热部222的轴向方向相邻设置的两个环形凸起223a之间形成第一子气道,且每个环形凸起223a具有至少一个缺口226,以使相邻两个第一子气道连通,进而使外界空气能够经由各个第一子气道、进气孔225进入雾化腔内。具体的,为了延长空气在通气孔与进气孔225之间的路径,可使相邻两个环形凸起223a上的缺口226错位设置。当然,在其他实施例中,环形凸起223a所在的平面也可朝向导热体22的方向倾斜设置。
具体的,在该实施例中,可进一步在每个环形凸起223a设置多个缺口226,并使相邻两个环形凸起223a上的各个缺口226错位设置,以保证空气在第二导热部222上具有一定长度的流经路径的同时,降低空气吸阻。
在具体实施例中,参见图3,雾化器20还包括储液腔外壳24,储液腔外壳24具体套设在至少雾化套管21的外侧,并与雾化套管21的外侧壁配合形成储液腔,用于储液烟油等;在具体实施例中,外壳体23套设在储液腔外壳24的外侧并与储液腔外壳24间隔设置以形成隔热空间S,以通过隔热空间S减少储液腔外壳24与外壳体23之间的热传导, 从而降低外壳体23上的温度,避免外壳体23烫手。可以理解的是,在具体实施例中,雾化套管21上的温度通过储液腔内的液体传导至储液腔外壳24上,储液腔外壳24上的热量进一步可传导至外壳体23上。
具体的,储液腔外壳24包括轴向连接的第一壳体241和第二壳体242;其中,第一壳体241套设在第一导热部221的外侧壁上,第二壳体242与雾化套管21的外侧壁配合形成储液腔;且第一壳体241的径向尺寸小于第二壳体242的径向尺寸,以使储液腔外壳24对应第一导热部221的位置形成一凹陷部243(见图2)。
在一实施例中,储液腔外壳24的外侧壁上还套设有散热套25,以通过散热套25吸收部分储液腔外壳24上的温度,从而降低传导至外壳体23上的热量。具体的,散热套25的材质可为塑料。
在一具体实施例中,参见图7,图7为本申请一实施例提供的散热套的结构示意图;散热套25具体可包括连接套251和设置在连接套251的外侧壁上的若干连接条252;其中,连接套251具体可为环形套,用于嵌入储液腔外壳24的凹陷部243并套设在第一壳体241的外侧壁上,且在一具体实施例中,连接套251的厚度H 11与凹陷部243的深度H 12相同;若干连接条252具体可为条状体,且连接条252的轴向长度大于连接套251的轴向长度,连接条252沿第二壳体242的径向方向上的厚度H 13与隔热空间S的宽度W 11相同,其中,隔热空间S的宽度W 11即第二壳体242的外表面与外壳体23的内表面之间的距离;具体的,每个连接条252的一端固定设置于连接套251的外表面,另一端沿着连接套251的轴向延伸至连接套251之外,若干连接条252沿连接套251的周向方向间隔设置,且连接条252的延伸方向与连接套251的轴向方向相同,相邻两个连接条252与连接套251的外侧壁配合形成第一通气槽253;在一具体实施例中,连接条252的设置于连接套251的外表面的一个端部,与连接套251的靠近第二导热部222的一端部平齐,以使每个第一通气槽253从连接套251的靠近第二导热部222的一端延伸至另一端;在具体实施例中,若干连接条252用于套设在第二壳体242的外侧壁上,并与第二壳体242的外侧壁和外壳体23配合形成若干第二通 气槽254。第二通气槽254与第一通气槽253连通。具体的,第二导热部222的径向尺寸大于第一导热部221的径向尺寸,且第二导热部222朝向雾化套管21的一侧表面的边缘开设有若干让位部227,至少一个进气孔225分别对应设置在让位部227所在的位置,即,一个让位部227设置有一个进气孔225;具体的,参见图8和图9,其中,图8为本申请一实施例提供的让位部的B向视图;图9为本申请一实施例提供的让位部的C向视图;其中,方向B与方向C垂直;让位部227定义形成第三通气槽255,第三通气槽255的一端为封闭端,另一端通过第二通气槽254与第一通气槽253接合并连通;具体的,让位部227可为一U型槽;具体的,让位部227具有底壁2271,与底壁2271垂直设置的第一侧壁2272、与第一侧壁2272相邻设置的第二侧壁2273,与第二侧壁2273相邻设置的第三侧壁2274;其中,第一侧壁2272与第三侧壁2274相对设置;其中,第一侧壁2272和第三侧壁2274之间形成第三通气槽255的两个侧壁,第二侧壁2273形成第三通气槽255的槽底,底壁2271形成第三通气槽255的封闭端,进气孔225具体开设在第二侧壁2273上。
在一个实施例中,导热体22对应第二通气槽254的位置开设有与第一气道连通的凹槽;具体的,当若干连接条252的数量为偶数,即,第一通气槽253的数量为偶数。相邻两个第一通气槽253中,一个通过凹槽与第一气道连通,另一通过第三通气槽255与进气孔225连通。第一气道连通的空气通过第一通气槽253进入相邻的两个连接条252之间(内侧)的第二通气槽254,并流向相邻的两个连接条252外侧的两个第二通气槽254,在经过相邻的两个连接条252外侧的两个第二通气槽254分别进入相邻的两个进气孔225。
在具体实施例中,第一通气槽253、第二通气槽254和至少一对相邻设置的第三通气槽255与外壳体23的内侧壁配合形成第二气道,第二气道通过凹槽与第一气道连通,以使经过第一气道的空气进一步经过第二气道进入进气孔225内,从而使空气可进一步流经储液腔外壳24所在的表面,以带走部分部储液腔外壳24上的热量,从而进一步降低 储液腔外壳24上的温度。需要说明的是,图1中的第一气道和第二气道内对应的箭头指向具体是指气流流向。
在一具体实施例中,也可使至少部分导热体22的外侧壁与外壳体23的内侧壁抵接,以形成密封的隔热空间S;需要说明的是,在该实施例中,导热体22上的进气孔225没有与隔热空间S连通。在该实施例中,也可在隔热空间S内设置散热介质,比如,设置水或油;以通过散热介质吸收部分热量,从而减少传导至外壳体23上的热量,降低外壳体23上的温度;同时,可通过散热介质使传导至外壳体23上的热量更加均匀,避免外壳体23局部高温导致烫手的问题发生。
在本实施例中,请参阅图10至图13,其中,图10为本申请一实施例提供的雾化器的整体结构的透视图;图11为图10所示结构未装配前的拆解示意图;图12为本申请一实施例提供的图10所示雾化器的A-A向的剖视图;图13为本申请一实施例提供的储液腔外壳与导热体一体成型的结构示意图;在本实施例中,提供另一种雾化器30,该雾化器30同样能够避免雾化器30局部温度过高导致烫手的问题;具体的,该雾化器30可包括雾化套管31、储液腔外壳32和导热体33。
在具体实施例中,雾化器30还包括发热体(图未示),发热体设置在雾化套管31内,用于在通电时加热并雾化烟油。具体的,雾化套管31内具有雾化腔,发热体具体容置在雾化腔内,并在通电时对进入雾化腔内的烟油进行加热;可以理解的是,发热体发热产生的热量经热传导会传导至雾化套管31上。
其中,雾化套管31具体可为一柱状体,且具有相对设置的第一端和第二端;储液腔外壳32具体套设在雾化套管31的外侧,并与雾化套管31间隔设置,以与雾化套管31的外侧壁配合形成储液腔,其中,该储液腔具体用于存储液体,比如存储烟油;具体的,该储液腔与雾化腔连通,以使储液腔内的液体能够进入雾化腔内并与发热体接触,以使发热体在通电时对进入雾化腔内的液体进行加热并雾化。在具体实施例中,雾化器30具有烟嘴,雾化套管31的第二端为朝向烟嘴的一端,并可与烟嘴连接。具体的,导热体33的材质可为金属,比如黄铜;金属 材质的导热体33相比于塑料或橡胶等材质,热传导效率更高,能够更好地分散热量。当然,在其他实施例中,导热体33的材质还可为高导热陶瓷,本申请对此并不加以限制。
具体的,参见图13,导热体33可与储液腔外壳32一体成型,以在减少雾化器30的零部件数量的同时,方便技术人员组装该雾化器30;且导热体33和储液腔外壳32的材质均可为黄铜;相同材质的导热体33和储液腔外壳32,方便在生产过程中一体成型。
具体的,雾化套管31的第一端与导热体33朝向储液腔外壳32的一侧表面抵接,以使雾化套管31上的热量能够传导至导热体33上,进而通过导热体33分散雾化套管31上的部分热量,以避免热量局部集中而导致烫手的问题发生。
在具体实施例中,导热体33可为柱状体,且导热体33上开设有进气孔342,进气孔342的一端与大气连通,另一端与雾化腔连通,以使外界空气能够经由进气孔342进入雾化腔内。
具体的,参见图12,该雾化器30还包括套设在储液腔外壳32和导热体33的外侧的外壳体34,在具体使用过程中,用户具体与雾化器30的外壳体34接触;具体的,外壳体34与储液腔外壳32间隔设置,且外壳体34的内侧壁与至少部分导热体33的外侧壁抵接,以与储液腔外壳32和导热体33配合形成隔热空间S’。
在具体实施例中,参见图14,图14为本申请一实施例提供的导热体的主视图;导热体33具体可包括导热部331和与导热部331轴向连接的密封部332;其中,导热部331具体可为柱状体,且上述外壳体34同时与导热部331间隔设置,导热部331的径向尺寸小于储液腔外壳32的径向尺寸,即,导热部331所在位置形成一凹陷部;具体的,导热部331用于分散雾化套管31上的热量,在具体实施例中,雾化套管31的第一端的端面与导热部331背离密封部332的一侧表面抵接,即,雾化套管31与导热部331接触的位置为面面接触,从而大大增加了雾化套管31与导热体33的接触面积,有效提高了散热效率;其中,密封部332具体可为环状结构,密封部332的外侧壁具体与外壳体34的内侧壁抵 接,以形成密封的隔热空间S’。在一具体实施例中,密封部332的外侧壁与外壳体34的内侧壁之间还可以设置密封件333,以保证密封效果。
具体的,参见图12,在一具体实施例中,雾化腔还包括底座35,底座35具体设置在导热部331的底部并套设在密封部332内;具体的,底座35的材质可为硅胶。
在一实施例中,参见图12,外壳体34上设置有至少一个通气孔341,且至少一个通气孔341对应雾化套管31远离导热体33的一端;在具体实施例中,进气孔342设置在导热部331上并与隔热空间S’连通,外界空气从通气孔341进入,流经隔热空间S’和进气孔342进入雾化腔内;其中,通过使空气经过隔热空间S’再进入进气孔342,能够延长空气的流经路径,使得经过隔热空间S’中的空气能够尽可能多地带走雾化套管31表面的热量,降低雾化套管31表面温度,从而降低传导至外壳体34上的热量,且使传导至外壳体34上的温度的均匀性较好,避免了外壳体34局部高温而出现烫手的问题;同时,可通过雾化套管31上的温度对新进的空气进行预热,以提高发热体的热利用率,且使用户吸入的空气具有一定温度,避免吸入凉气影响用户体验。
在另一实施例中,参见图15,图15为本申请另一实施例提供的图10所示雾化器的A-A向的剖视图;与上述实施例不同的是,外壳体34对应隔热空间S’的位置没有开设通气孔341,外壳体34与密封部332和雾化套管31的外侧壁配合形成一完全密封的隔热空间S’。通气孔341具体开设在底座35上,且在一具体实施例中,通气孔341沿底座35的轴向方向延伸;进气孔342具体开设在导热部331上,并沿导热部331的轴向方向延伸;在一具体实施例中,通气孔341与进气孔342的中心轴相同,且通气孔341的孔径小于进气孔342的孔径。
在一具体实施例中,参见图16,图16为申请一实施例提供的底座的结构示意图;底座35朝向雾化腔的一侧表面开设有若干容置槽351,容置槽351与雾化腔连通,用于收集雾化腔内形成的冷凝液或漏液。具体的,容置槽351可通过进气孔342与雾化腔连通;具体的,容置槽351可位于进气孔342的两侧或周围;在一具体实施例中,容置槽351具体 可为两个,两个容置槽351相对设置在通气孔341的两侧。
在具体实施例中,为进一步降低雾化套管31传导至外壳体34上的热量,可在隔热空间S’内设置散热介质,以吸收或带走部分热量;具体的,散热介质可为气体,比如可为空气;当然,散热介质也可为液体,比如,可为水和油中的任意一种或多种,本实施例对此并不加以限制。
当然,在其他实施例中,通气孔341也可开设在密封部332的外侧壁上,且位于密封部332远离导热部331的一端;具体的,可参见图5和图6,密封部332的外侧壁上形成有若干环形槽3321,环形槽3321与外壳体34配合形成第一气道;其中,第一气道的一端与进气孔342连通,另一端与通气孔341连通,以使外界空气能够经由通气孔341、第一气道和进气孔342进入雾化腔内,从而通过第一气道延长空气在密封部332上的流经路径,使得经过第一气道的空气能够尽可能多地带走密封部332上的热量,以达到进一步降温的目的;同时,可通过密封部332上的温度对新进的空气进行预热,以提高发热体的热利用率,且使用户吸入的空气具有一定温度,避免吸入凉气影响用户体验。可以理解的是,上述环形槽3321的两侧槽壁相当于上述实施例中的凸缘223。
在一具体实施例中,环形槽3321由多个间隔设置的弧形凸起与密封部332的外侧壁配合形成,多个弧形凸起与外壳体34的内侧壁、密封部332的外侧壁配合形成第一气道。具体的,多个弧形凸起可均匀分布在密封部332的外侧壁上,或呈不规则状态散乱分布在密封部332的外侧壁上,本申请对此并不加以限制。
在一具体实施例中,环形槽3321包括一个螺旋槽,即,该槽呈螺旋状,并从密封部332远离导热部331的一端沿密封部332的轴向方向绕设至靠近导热部331的位置;可以理解的是,在该实施例中,第一气道从密封部332远离导热部331的一端沿密封部332的外侧壁螺旋盘绕至靠近导热部331的一端,即,第一气道为螺旋气道。
具体的,在该实施例中,由于第一气道的路径较长,用户的抽吸过程中所受的吸阻较大,为了在延长空气的流经路径的同时,降低吸阻,使抽吸更加顺畅;进一步可在环形槽3321的槽壁上设置若干缺口3322, 并使若干缺口3322在密封部332的轴向方向上错位设置;其中,环形槽3321的槽壁相当于上述实施例中的环形凸起223;可以理解的是,在该实施例中,参见图5,环形槽3321具体可通过缺口3322分割为多个沿密封部332的轴向方向间隔设置且通过缺口3322相互连通的长度较短的子环形槽;具体的,在该实施例中,每个子环形槽具体呈倾斜状态;外界空气可从通气孔341进入其中一个子环形槽,并在缺口3322处可直接进入与当前子环形槽连通的其它子环形槽,从而大大缩短了空气的流经路径,有效降低了吸阻。
在另一具体实施例中,参见图6,环形槽3321包括多个圆环形槽3321a,多个圆环形槽3321a沿密封部332的轴向方向间隔设置,且圆环形槽3321a所在的平面与密封部332的轴向方向垂直,即,圆环形槽3321a沿平行于密封部332的径向方向设置,这样能够降低工艺难度系数,方便技术人员加工;具体的,在该实施例中,每个圆环形槽3321a的槽壁具有至少一个缺口3322,以使相邻两个圆环形槽3321a连通,进而使外界空气能够经由各个圆环形槽3321a、进气孔342进入雾化腔内。具体的,为了延长空气在通气孔341与进气孔342之间的路径,可使相邻两个圆环形槽3321a的槽壁上的缺口3322错位设置。当然,在其他实施例中,圆环形槽3321a所在的平面也可朝向导热体33的方向倾斜设置。
具体的,在该实施例中,可进一步在每个圆环形槽3321a的槽壁上设置多个缺口3322,并使相邻两个圆环形槽3321a的槽壁上的各个缺口3322错位设置,以保证空气在密封部332上具有一定长度的流经路径的同时,降低空气吸阻。
进一步地,在具体实施例中,可在储液腔外壳32和导热部331的外侧壁上套设散热套36,以通过散热套36吸收部分储液腔外壳32和导热部331上的温度,从而降低传导至外壳体34上的热量。其中,散热套36的材质具体可为塑料。
具体的,参见图17,图17为本申请一实施例提供的散热套的结构示意图;具体的,散热套36具体可包括连接套361和设置在连接套361的外侧壁上的若干连接条362;其中,连接套361具体可为环形套,用 于嵌入凹陷部并套设在导热部331的外侧壁上;且在具体实施例中,连接套361的厚度H 1与凹陷部的深度H 2和长度L 1相同;若干连接条362具体可为条状体,且连接条362的轴向长度大于连接套361的轴向长度,连接条362沿储液腔外壳32的径向方向上的厚度H 3与隔热空间S’的宽度W 1相同;具体的,若干连接条362沿连接套361的周向方向间隔设置,且连接条362的延伸方向与连接套361的轴向方向相同,相邻两个连接条362与连接套361的外侧壁配合形成第一通气槽3323;在一具体实施例中,连接条362的设置于连接套361的外表面的其中一个端部,与连接套361的靠近导热部331的一端部平齐,以使每个第一通气槽3323从连接套361的靠近导热部331的一端延伸至另一端;同时,每两个连接条362的靠近连接套361的一端连接在一起,以使第一通气槽3323的一端为封闭端;在具体实施例中,若干连接条362用于套设在储液腔外壳32的外侧壁上,并与储液腔外壳32的外侧壁配合形成若干第二通气槽;可以理解的是,第一通气槽3323远离第二通气槽的一端为封闭端,第一通气槽3323与第二通气槽连通。
在具体实施例中,第一通气槽3323和至少一对相邻设置的第二通气槽与外壳体34的内侧壁配合形成第二气道,第二气道与第一气道连通,以使经过第一气道的空气进一步经过第二气道进入进气孔342内,从而使空气可进一步流经储液腔外壳32所在的表面,进而能够带走储液腔外壳32上的热量,以降低储液腔外壳32上的温度。第二气道与第一气道的连通方式具体可参见上述实施例中相关的连通方式,在此不再赘述。
需要说明的是,在该实施例中,设置在导热部331上的进气孔342与连接套361上形成的第一通气槽3323的位置对应,且连接套361对应进气孔342的位置开设有通孔,该通孔与进气孔342连通,以使空气经由第二气道之后进入进气孔342,从而使经过第一气道的空气能够进一步流经第二气道,进而带走部分储液腔外壳32上的热量,以进一步降低传导至外壳体34上的热量。
在本实施例中,参见图18,图18为本申请一实施例提供的电子雾 化装置的结构示意图;提供一种电子雾化装置100,该电子雾化装置100具体可为电子烟;具体的,该电子雾化装置100可包括电源组件101和与电源组件101连接的雾化器102。
其中,雾化器102用于在通电时加热并雾化气溶胶形成基质;其中,气溶胶形成基质具体可为烟油,雾化器102具体可为上述任一实施例提供的雾化器20(30),其具体结构与功能可参见上述实施例中关于雾化器20(30)的相关文字描述,且可实现相同或相似的技术效果,在此不再赘述;电源组件101用于向雾化器102供电;且在一实施例中,电源组件101具体可为可充电的锂离子电池。
本实施例提供的电子雾化装置100,通过设置雾化器102,将雾化器102设置成包括雾化套管21(31),并在雾化套管21(31)的第一端增设导热体22(33),以通过导热体22(33)分散部分雾化套管21(31)上的热量,从而避免热量局部集中而导致烫手的问题发生;同时,由于该导热体22(33)的材质为金属,相比于塑料或橡胶等材质,热传导效率更高,能够更好地分散热量。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (14)

  1. 一种雾化器,其中,包括:
    雾化套管,具有相对设置的第一端和第二端,且所述雾化套管内具有雾化腔;
    导热体,与所述雾化套管的第一端连接,用于分散部分所述雾化套管上的热量。
  2. 根据权利要求1所述的雾化器,其中,所述导热体包括轴向连接的第一导热部和第二导热部;其中,所述第一导热部呈管状结构,并与所述雾化套管的第一端套接。
  3. 根据权利要求2所述的雾化器,其中,还包括外壳体;所述外壳体套设在所述雾化套管和所述导热体的外侧;
    所述第二导热部的外侧壁上设置有凸缘,所述凸缘与所述外壳体的内侧壁抵接,且所述凸缘与所述第二导热部的外侧壁和所述外壳体的内侧壁配合形成第一气道;其中,所述第一气道的一端与所述雾化腔连通,另一端与外界空气连通。
  4. 根据权利要求3所述的雾化器,其中,所述第二导热部远离所述第一导热部的位置设置有通气孔,所述第二导热部靠近所述第一导热部的位置或所述雾化套管上设置有至少一个进气孔,其中,所述通气孔与外界空气连通,所述进气孔与所述雾化腔连通,所述第一气道的一端与所述通气孔连通,另一端与所述进气孔连通。
  5. 根据权利要求3所述的雾化器,其中,所述凸缘包括多个间隔设置的弧形凸起,所述多个弧形凸起与所述外壳体的内侧壁、所述导热体的外侧壁形成第一气道。
  6. 根据权利要求3所述的雾化器,其中,所述凸缘包括多个间隔设置的环形凸起,相邻两个所述环形凸起之间形成第一子气道,每个所述环形凸起具有缺口,以使相邻两个所述第一子气道连通,且相邻两个所述环形凸起上的缺口错位设置。
  7. 根据权利要求6所述的雾化器,其中,所述环形凸起所在的平 面与所述导热体的轴向方向垂直。
  8. 根据权利要求3所述的雾化器,其中,所述凸缘呈螺旋状,所述第一气道为螺旋气道。
  9. 根据权利要求5所述的雾化器,其中,还包括储液腔外壳,套设在至少所述雾化套管的外侧,并与所述雾化套管的外侧壁配合形成储液腔,所述外壳体套设在所述储液腔外壳的外侧并与所述储液腔外壳间隔设置以形成隔热空间。
  10. 根据权利要求9所述的雾化器,其中,还包括散热套,套设在所述储液腔外壳的外侧,用于吸收所述储液腔外壳上的热量。
  11. 根据权利要求10所述的雾化器,其中,所述散热套包括连接套和设置在所述连接套的外侧壁上的若干连接条;其中,所述若干连接条沿所述连接套的周向方向间隔设置,并与所述连接套的轴向方向垂直。
  12. 根据权利要求11所述的雾化器,其中,所述第二导热部的径向尺寸大于所述第一导热部的径向尺寸,且所述第二导热部朝向所述雾化套管的一侧表面的边缘开设有若干让位部,所述至少一个进气孔分别对应设置在所述让位部所在的位置,且相邻两个所述连接条与所述让位部的侧壁配合形成第二气道,所述第二气道与所述第一气道连通。
  13. 根据权利要求10所述的雾化器,其中,所述导热体的材质为金属,所述散热套的材质为塑料。
  14. 一种电子雾化装置,其中,包括:电源组件和与所述电源组件连接的雾化器;其中,所述电源组件用于向所述雾化器供电,所述雾化器用于在通电时加热并雾化气溶胶形成基质,所述雾化器为如权利要求1所述的雾化器。
PCT/CN2020/133396 2020-12-02 2020-12-02 雾化器及电子雾化装置 WO2022116050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/133396 WO2022116050A1 (zh) 2020-12-02 2020-12-02 雾化器及电子雾化装置
US18/327,327 US20230301361A1 (en) 2020-12-02 2023-06-01 Vaporizer and electronic vaporization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133396 WO2022116050A1 (zh) 2020-12-02 2020-12-02 雾化器及电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,327 Continuation US20230301361A1 (en) 2020-12-02 2023-06-01 Vaporizer and electronic vaporization apparatus

Publications (1)

Publication Number Publication Date
WO2022116050A1 true WO2022116050A1 (zh) 2022-06-09

Family

ID=81853771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133396 WO2022116050A1 (zh) 2020-12-02 2020-12-02 雾化器及电子雾化装置

Country Status (2)

Country Link
US (1) US20230301361A1 (zh)
WO (1) WO2022116050A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104522891A (zh) * 2014-12-19 2015-04-22 深圳市麦克韦尔科技有限公司 电子烟及其雾化装置
CN206565299U (zh) * 2017-03-23 2017-10-20 常州市派腾电子技术服务有限公司 雾化装置及电子烟
CN107455798A (zh) * 2017-07-28 2017-12-12 惠州市新泓威科技有限公司 电子烟雾化器及电子烟
CN107969735A (zh) * 2017-12-27 2018-05-01 深圳瀚星翔科技有限公司 电子雾化器
CN110464054A (zh) * 2019-08-26 2019-11-19 深圳市吉迩科技有限公司 一种利用螺旋气道散热的电子烟具
US20200345074A1 (en) * 2017-05-31 2020-11-05 Jianjun Ding Electronic cigarette atomization core and electronic cigarette atomizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104522891A (zh) * 2014-12-19 2015-04-22 深圳市麦克韦尔科技有限公司 电子烟及其雾化装置
CN206565299U (zh) * 2017-03-23 2017-10-20 常州市派腾电子技术服务有限公司 雾化装置及电子烟
US20200345074A1 (en) * 2017-05-31 2020-11-05 Jianjun Ding Electronic cigarette atomization core and electronic cigarette atomizer
CN107455798A (zh) * 2017-07-28 2017-12-12 惠州市新泓威科技有限公司 电子烟雾化器及电子烟
CN107969735A (zh) * 2017-12-27 2018-05-01 深圳瀚星翔科技有限公司 电子雾化器
CN110464054A (zh) * 2019-08-26 2019-11-19 深圳市吉迩科技有限公司 一种利用螺旋气道散热的电子烟具

Also Published As

Publication number Publication date
US20230301361A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2016154792A1 (zh) 一种电子烟
US10869507B2 (en) Electronic cigarette and atomizer thereof
WO2018218517A1 (zh) 一种电子烟雾化芯和雾化器
WO2021012882A1 (zh) 一种电子雾化装置及发烟组件
WO2023010286A1 (zh) 雾化器及其应用的雾化组件、电子雾化装置
CN107969735A (zh) 电子雾化器
CN115067565A (zh) 气溶胶产生装置及其加热组件
WO2023045473A1 (zh) 电子烟雾化装置及电子烟
CN112617285A (zh) 雾化器及电子雾化装置
WO2022116050A1 (zh) 雾化器及电子雾化装置
WO2024192990A1 (zh) 雾化器及电子雾化装置
WO2023221869A1 (zh) 用于产生气雾的红外加热装置及系统
WO2022236822A1 (zh) 电子雾化装置及其雾化器
WO2018201821A1 (zh) 加热器和加热不燃烧电子烟
WO2022252961A1 (zh) 加热体及加热雾化装置
CN219373808U (zh) 电子雾化装置及其雾化器
CN218104924U (zh) 雾化组件及电子雾化器
WO2021207882A1 (zh) 电子雾化装置及其雾化器和雾化组件
CN218354628U (zh) 雾化装置及电子雾化设备
WO2023109355A1 (zh) 电子雾化装置及其发热组件和发热体
CN217791487U (zh) 分段加热装置及加热不燃烧装置
WO2023019765A1 (zh) 电子烟雾化芯和电子烟
WO2023109356A1 (zh) 电子雾化装置及其发热组件和发热体
CN215124314U (zh) 雾化器及电子雾化装置
CN221104804U (zh) 空气加热器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963898

Country of ref document: EP

Kind code of ref document: A1