WO2022114238A1 - リチウムイオン二次電池用セパレータの検査方法及び製造方法 - Google Patents

リチウムイオン二次電池用セパレータの検査方法及び製造方法 Download PDF

Info

Publication number
WO2022114238A1
WO2022114238A1 PCT/JP2021/043980 JP2021043980W WO2022114238A1 WO 2022114238 A1 WO2022114238 A1 WO 2022114238A1 JP 2021043980 W JP2021043980 W JP 2021043980W WO 2022114238 A1 WO2022114238 A1 WO 2022114238A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
ion secondary
lithium ion
secondary battery
adhesive region
Prior art date
Application number
PCT/JP2021/043980
Other languages
English (en)
French (fr)
Inventor
朋文 山田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020237016900A priority Critical patent/KR20230113740A/ko
Priority to CN202180078467.6A priority patent/CN116472641A/zh
Priority to JP2022565520A priority patent/JPWO2022114238A1/ja
Priority to EP21898209.8A priority patent/EP4254635A1/en
Priority to US18/254,868 priority patent/US20240027330A1/en
Publication of WO2022114238A1 publication Critical patent/WO2022114238A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/213Spectrometric ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for inspecting a separator for a lithium ion secondary battery in which an adhesive region is formed on the surface of a separator base material, and a method for manufacturing a separator for a lithium ion secondary battery using the inspection method.
  • Lithium-ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • a lithium ion secondary battery generally includes a plurality of electrodes (positive electrode, negative electrode) and a separator that separates these electrodes to prevent an internal short circuit.
  • the electrode and the separator before being immersed in the electrolytic solution are adhered to form a laminated body, which is cut into a desired size, laminated, folded, or if necessary. It may be wound. Then, at the time of cutting, laminating, folding or winding, the bonded electrode and the separator may be displaced from each other, which may cause problems such as defects and a decrease in productivity.
  • Patent Document 1 a paint containing a predetermined thermoplastic polymer is applied to a separator, the coating film is dried to remove the solvent in the coating liquid, and an adhesive region made of the thermoplastic polymer is formed on the surface.
  • a separator having is manufactured.
  • the surface of the separator base material on the side where the adhesive region is formed (hereinafter, “formed surface” or “adhesive”).
  • formed surface or “adhesive”.
  • an inspection method for confirming that a desired amount of adhesive region has been formed on the region forming surface has been sought.
  • a method of detecting a functional group such as a carbonyl group contained in the binder by infrared spectroscopy can be considered.
  • the inspection method by infrared spectroscopy can be obtained by the actual formation amount and inspection when the amount of functional groups such as carbonyl groups contained in the binder is small or when the amount of formation of the adhesive region is small. It has been clarified by the present inventor's examination that a large error occurs in the amount of formation.
  • the present invention is an inspection method capable of specifying the amount of the adhesive region formed on the separator base material with high accuracy in the production of a separator for a lithium ion secondary battery, and an inspection method for a lithium ion secondary battery using the inspection method.
  • An object of the present invention is to provide a method for manufacturing a separator.
  • the present inventor has conducted diligent studies for the purpose of solving the above problems. Therefore, the present inventor has newly found that the amount of the adhesive region formed on the separator substrate can be specified with high accuracy by inspection using spectroscopic ellipsometry, and has completed the present invention.
  • the present invention aims to advantageously solve the above problems, and the method for inspecting a separator for a lithium ion secondary battery of the present invention is a binder material on at least one surface of a separator base material.
  • This is a method for inspecting a separator for a lithium ion secondary battery in which an adhesive region is formed, and the surface of the separator base material on which the adhesive region is formed is irradiated with linearly polarized light of white light as incident light and reflected. It is characterized by comprising a step of specifying the amount of formation of the adhesive region by spectroscopic ellipsometry for measuring a change in a deflection state of light.
  • the amount of the adhesive region formed on the separator substrate can be specified with high accuracy.
  • the adhesive region can be made of a particulate binder having an average diameter of 0.1 ⁇ m or more and 5 ⁇ m or less. If the bonding region is composed of the above-mentioned fine particle-like binder having an average diameter, the separator can be well bonded to the electrode and the battery characteristics (output characteristics, cycle characteristics, etc.) of the lithium ion secondary battery can be improved. be able to. Further, according to the inspection method of the present invention, even when the adhesive region is composed of the fine particulate binder having the above-mentioned average diameter, the amount of the adhesive region formed can be specified with sufficiently high accuracy. Can be done.
  • the average diameter of the particulate binder is the average diameter of any 1000 particulate binders in the plan view image of the bonding region forming surface obtained by observation with a scanning electron microscope (SEM). It can be calculated as an average value of the maximum diameter (the maximum length of the length of the line segment connecting two points on the outer edge of one particulate binder).
  • the adhesive region can be composed of one or a plurality of plane-viewing island-shaped regions. If the adhesive region is composed of one or more island-shaped regions in a plan view, the separator can be well adhered to the electrode, the amount of the adhesive region formed can be reduced, and the battery characteristics of the lithium ion secondary battery can be improved. can. Further, according to the inspection method of the present invention, even when the adhesive region is composed of one or a plurality of plane-viewing island-shaped regions, the amount of the adhesive region formed can be specified with sufficiently high accuracy.
  • the amount of the adhesive region formed can be 0.02 g / m 2 or more and 0.6 g / m 2 or less.
  • the amount of the adhesive region formed that is, the mass (g) of the adhesive region per unit area (m 2 ) on the adhesive region forming surface is within the above-mentioned range, the adhesive region is formed while the separator is well adhered to the electrode. The amount can be reduced to improve the battery characteristics of the lithium ion secondary battery. Further, according to the inspection method of the present invention, even when the amount of the adhesive region formed is within the above-mentioned range and the basis weight is small, the amount of the adhesive region formed can be specified with sufficiently high accuracy.
  • the white light can be the light emitted by the xenon lamp. If a xenon lamp is used as the white light source, the amount of the adhesive region formed can be specified with sufficiently high accuracy.
  • the method for inspecting a separator for a lithium ion secondary battery of the present invention it is possible to perform measurement by the spectroscopic ellipsometry while transporting the long separator for a lithium ion secondary battery in the longitudinal direction.
  • the present invention is intended to advantageously solve the above problems, and the method for producing a separator for a lithium ion secondary battery of the present invention is to use a coating liquid containing the binder and a solvent.
  • the step of coating on at least one surface of the separator base material, the step of drying the coating liquid on the coated separator base material to form the adhesive region, and the amount of forming the adhesive region are described. It is characterized by comprising a step of specifying by using any of the above-mentioned methods for inspecting a separator for a lithium ion secondary battery.
  • the method for manufacturing a separator for a lithium ion secondary battery of the present invention which undergoes the above-mentioned inspection by spectroscopic ellipsometry, has various manufacturing conditions (coating liquid) based on the inspection results in order to bring the amount of the adhesive region formed closer to the desired amount. There is an advantage that it is possible to adjust the solid content concentration, coating conditions, etc.).
  • the coating liquid can further contain a dispersion aid. If a coating liquid containing a dispersion aid is used, the coating liquid can be applied uniformly and at high speed to the surface of the separator substrate.
  • the solid content concentration of the coating liquid can be 1% by mass or more and 40% by mass or less. If a coating liquid having a solid content concentration within the above-mentioned range is used, the handleability and drying efficiency of the coating liquid can be improved.
  • the coating speed of the coating liquid can be set to 2 m / min or more and 300 m / min or less, and the coating speed is within the above-mentioned range. Even at high speeds, the method for manufacturing the separator for a lithium ion secondary battery of the present invention uses the above-mentioned inspection method, so that the separator for a lithium ion secondary battery can be efficiently and continuously produced, and the amount of the bonded region formed. Can be specified with sufficiently high accuracy.
  • an inspection method capable of specifying the amount of an adhesive region formed on a separator substrate with high accuracy, and a lithium ion secondary battery using the inspection method.
  • a method for manufacturing a separator can be provided.
  • the inspection method of the present invention is a method for inspecting a separator for a lithium ion secondary battery having a separator base material and an adhesive region formed on the surface of the separator base material.
  • the manufacturing method of the present invention is a method of manufacturing a separator for a lithium ion secondary battery through inspection by the inspection method of the present invention.
  • the amount of the adhesive region formed on the surface of the separator base material is specified by spectroscopic ellipsometry. Since the inspection method of the present invention uses spectroscopic ellipsometry, the amount of the adhesive region formed on the surface of the separator substrate can be specified with high accuracy as compared with the conventional inspection method using infrared spectroscopy or the like. Can be done.
  • the separator base material is not particularly limited, and a known separator base material used in the field of a lithium ion secondary battery can be used.
  • a porous base material having fine pores is used, and examples thereof include a microporous membrane or a non-woven fabric containing a polyolefin resin such as polyethylene and polypropylene, and an aromatic polyamide resin.
  • the separator base material may be provided with a heat-resistant layer on at least one surface.
  • a base material made of only the above-mentioned porous base material may be used, or a base material having a heat-resistant layer on one side or both sides of the above-mentioned porous base material may be used.
  • the heat-resistant layer is not particularly limited, and is a known heat-resistant layer used in the field of lithium ion secondary batteries (for example, non-conductive particles such as alumina are bound by a heat-resistant layer binder. Layer) can be used.
  • the adhesive region formed on the surface of the separator base material described above is a region containing at least a binder.
  • the adhesive region may contain components other than the binder.
  • the components other than the binder contained in the adhesive region are not particularly limited, and examples thereof include a dispersion aid contained in the coating liquid used to form the adhesive region.
  • the binder is not particularly limited as long as it has a binding ability and does not inhibit the battery reaction, and any binder used in the field of lithium ion secondary batteries can be used. Can be used. Above all, as the binder, it is preferable to use a binder made of a polymer. In addition, the binder material constituting the adhesive region may be only one kind, or may be two or more kinds.
  • the polymer that can be used as a binder is not particularly limited, and is a fluoropolymer such as polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer; styrene-butadiene.
  • Conjugate diene polymer such as polymer (SBR), acrylonitrile-butadiene copolymer (NBR); hydride of conjugated diene polymer; polymer containing (meth) acrylic acid alkyl ester monomer unit (acrylic) Polymers); polyvinyl alcohol-based polymers such as polyvinyl alcohol (PVA); and the like.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • the shape of the binder made of the polymer is not particularly limited, and may be particulate, non-particulate, or a combination of particulate and non-particulate. You may.
  • the particulate binder may be particles having a single phase structure formed from a single polymer, or may be particles having a single phase structure. It may be a particle having a heterogeneous structure formed by physically or chemically bonding two or more different polymers.
  • a core-shell structure formed of spherical particles whose central portion (core portion) and outer shell portion (shell portion) are different from each other; two or more polymers.
  • the "core-shell structure” includes a structure in which the shell portion completely covers the outer surface of the core portion and a structure in which the shell portion partially covers the outer surface of the core portion. Further, in the present invention, even if the outer surface of the core portion appears to be completely covered by the shell portion in appearance, the shell is formed as long as the holes communicating the inside and outside of the shell portion are formed.
  • the portion is a shell portion that partially covers the outer surface of the core portion.
  • the polymer having a core-shell structure has a glass transition temperature of, for example, preferably 25 ° C. or higher, more preferably 40 ° C. or higher, further preferably 45 ° C. or higher, and 105 ° C. or lower. It is preferably 85 ° C. or lower, more preferably 65 ° C. or lower, and even more preferably 65 ° C. or lower.
  • the glass transition temperature of the polymer having a core-shell structure is 25 ° C. or higher, the separator can be well adhered to the electrode, and when it is 105 ° C. or lower, the battery characteristics of the lithium ion secondary battery can be improved. can.
  • the glass transition temperature can be measured by using the method described in Examples.
  • the polymer having the core-shell structure described above is not particularly limited, but for example, the polymer described in International Publication No. 2020/040031 can be used.
  • the average diameter of the particulate binder is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and 5 ⁇ m or less. It is preferable to have. If the bonding region is made of the above-mentioned fine particulate binder having an average diameter, the battery characteristics of the lithium ion secondary battery can be improved while the separator is well bonded to the electrode. In addition, according to the inspection method of the present invention, even when the adhesive region is composed of the fine particulate binder having the above-mentioned average diameter, the amount of the adhesive region formed is specified with sufficiently high accuracy. be able to.
  • the adhesive region may be arranged on the entire surface of the separator base material, but it is preferably composed of one or a plurality of plane-viewing island-shaped regions. If the adhesive region is composed of one or more island-shaped regions in a plan view, the separator can be well adhered to the electrode, the amount of the adhesive region formed can be reduced, and the battery characteristics of the lithium ion secondary battery can be improved. can. Further, according to the inspection method of the present invention, even when the adhesive region is composed of one or a plurality of plane-viewing island-shaped regions, the amount of the adhesive region formed can be specified with sufficiently high accuracy.
  • the ratio of the adhesive region to the formed surface of the separator base material is preferably 5 area% or more, with the area of the entire formed surface as 100 area%, preferably 10 area% or more. It is more preferably 20 area% or more, more preferably 80 area% or less, and even more preferably 60 area% or less.
  • the occupied area ratio of the bonded region is 5 area% or more, the separator can be satisfactorily bonded to the electrode while specifying the amount of the bonded region formed with sufficiently high accuracy.
  • the occupied area ratio of the adhesive region is 80 area% or less, the amount of the adhesive region formed can be reduced and the battery characteristics of the lithium ion secondary battery can be improved.
  • the ratio of the occupied area of the adhesive region to the adhesive region forming surface can be calculated from the image by the SEM of the forming surface.
  • FIG. 1 is an SEM image of the adhesive region forming surface of the separator base material.
  • the adhesive is a particulate binder, and the adhesive region is composed of a plurality of plane-viewing island-shaped regions formed by aggregating the particulate binders.
  • the amount of the adhesive region formed is preferably 0.02 g / m 2 or more, more preferably 0.05 g / m 2 or more, and preferably 0.6 g / m 2 or less. It is more preferably 0.4 g / m 2 or less.
  • the amount of the bonded region formed is within the above range, the separator can be well bonded to the electrode, the amount of the bonded region formed can be reduced, and the battery characteristics of the lithium ion secondary battery can be improved. Further, according to the inspection method of the present invention, even when the amount of the adhesive region formed is within the above-mentioned range and the basis weight is small, the amount of the adhesive region formed can be specified with sufficiently high accuracy.
  • spectroscopic ellipsometry is performed by irradiating the adhesive region forming surface of the separator base material with linearly polarized light of white light as incident light and measuring the change in the deflection state of the reflected light. The measurement is carried out by.
  • the incident light used in the measurement by spectroscopic ellipsometry is linearly polarized light having the same amplitude and phase of the p-polarized component and the s-polarized component.
  • this linearly polarized light is applied to the surface forming the adhesive region, the degree of light interference and the refractive index (for example, when the adhesive is an acrylic polymer, the refractive index is about 1.6) from the state of the irradiated portion. ) are different, so in the reflected light, the amplitude and phase of the p-polarized component and the s-polarized component do not match, resulting in elliptically polarized light.
  • the displacement (thickness) with respect to the surface of the separator base material of the irradiated portion is derived, and in detail, the adhesive region is formed by the method described in the examples. The amount can be estimated.
  • the white light is preferably light emitted by a xenon lamp (wavelength is in the range of, for example, 185 nm to 2,000 nm) from the viewpoint of specifying the amount of the adhesive region formed with sufficiently high accuracy.
  • a known spectroscopic ellipsometer can be used for the measurement by the above-mentioned spectroscopic ellipsometry.
  • the inspection method of the present invention in which the amount of the adhesive region formed is specified by spectroscopic ellipsometry, unlike the above-mentioned inspection method by infrared spectroscopy, the adhesive region is not affected by the type and amount of the binder constituting the adhesive region. , Highly accurate inspection is possible.
  • inspection method of the present invention since spectroscopic ellipsometry is adopted, inspection can be performed while transporting a separator for a lithium ion secondary battery. For example, in a continuous manufacturing process of a separator for a lithium ion secondary battery and / or a laminate, it is possible to perform an inspection while transporting a long separator for a lithium ion secondary battery in the longitudinal direction.
  • the method for producing a separator for a lithium ion secondary battery of the present invention comprises a step of applying a coating liquid containing a binder and a solvent to at least one surface of a separator substrate (coating step).
  • the present invention comprises a step of drying the coating liquid on the separator substrate to form an adhesive region (drying step) and a step of specifying the amount of the adhesive region formed (inspection step).
  • the inspection method of the separator for the lithium ion secondary battery is used.
  • the manufacturing method of the present invention is carried out under various manufacturing conditions based on the inspection results in order to bring the formation amount of the adhesive region closer to the desired amount. For example, there is an advantage that it is possible to adjust the solid content concentration of the coating liquid and the coating conditions).
  • the inspection by spectroscopic ellipsometry adopted in the manufacturing method of the present invention can be performed while transporting the separator for the lithium ion secondary battery as described above, so that the coating step, the drying step, and the inspection step are integrated. It is possible to manufacture separators by in-line production carried out on one line. Then, in such a series of processes, the inspection result obtained in the inspection step is immediately fed back, and the solid content concentration of the above-mentioned coating liquid and the coating conditions (such as changing the type of gravure roll) are quickly adjusted. be able to.
  • the coating liquid is a liquid composition in which the binder is dissolved and / or dispersed in a solvent.
  • the coating liquid may contain components other than the binder and the solvent.
  • a dispersion aid is preferable. Since the coating liquid contains a dispersion aid, the coating liquid can be uniformly and quickly applied to the surface of the separator base material.
  • the binder constituting the adhesive region described above in the section "Inspection method for separator for lithium ion secondary battery" is used.
  • the solvent is not particularly limited as long as the binder can be dissolved and / or dispersed, and either water or an organic solvent can be used.
  • the organic solvent is not particularly limited, and cyclic aliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethylmethylketone and cyclohexanone; ethyl acetate.
  • Esters such as butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone; nitriles such as acetonitrile and propionitrile; ethers such as tetrahydrofuran and ethylene glycol diethyl ether: methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether. Alcohols such as; As the solvent, one type may be used alone, or two or more types may be used in combination.
  • Dispersing aids that can be optionally contained in the coating liquid include, for example, anionic surfactants such as sodium dodecylbenzene sulfonate and sodium dodecyl sulfate; nonionic surfactants such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate. Activators; cationic surfactants such as octadecylamine acetate; These dispersion aids may be used alone or in combination of two or more. Among these, anionic surfactant is preferable, and sodium dodecylbenzene sulfonate is more preferable.
  • the content of the dispersion aid in the coating liquid is not particularly limited, but from the viewpoint of better performing uniform and high-speed coating of the coating liquid, 0.1 part by mass per 100 parts by mass of the binder.
  • the above is preferable, 0.5 parts by mass or more is more preferable, 3 parts by mass or less is preferable, and 2 parts by mass or less is more preferable.
  • the coating liquid preferably has a solid content concentration of 1% by mass or more, more preferably 2% by mass or more, more preferably 5% by mass or more, and preferably 40% by mass or less. , 30% by mass or less, more preferably 20% by mass or less. If the solid content concentration of the coating liquid is 1% by mass or more, the drying efficiency in the drying step described later can be ensured, and if it is 40% by mass or less, the viscosity of the coating liquid may be excessively increased. It is easy to handle.
  • the method for preparing the coating liquid is not particularly limited, and the coating liquid can be prepared by mixing the binder and the solvent by a known method.
  • the above-mentioned coating liquid is applied to one side or both sides of the separator base material.
  • the method of applying the coating liquid to the surface of the separator base material is not particularly limited, and is performed by using a known method such as an inkjet method, a spray method, a dispenser method, a gravure coating method, or a screen printing method. be able to.
  • the coating speed of the coating liquid is not particularly limited, but can be, for example, within the range of 2 m / min or more and 300 m / min or less.
  • the manufacturing method of the present invention specifies the amount of the bonded region formed with sufficiently high accuracy while efficiently and continuously producing the separator for a lithium ion secondary battery. It is possible to do.
  • the coating liquid coated on the separator base material in the coating step is dried to remove the solvent, and an adhesive region is formed on the separator base material.
  • the method for drying the coating liquid on the separator substrate is not particularly limited, and a known drying method can be used. When drying by air drying, for example, it is preferable to set the wind speed to 0.1 m / min or more and 3 m / min or less and the drying temperature to 30 ° C. or more and 80 ° C. or less.
  • the amount of the adhesive region formed on the separator substrate in the drying step is specified by using the above-described method for manufacturing a separator for a lithium ion secondary battery of the present invention.
  • the separator obtained by the method for manufacturing a separator for a lithium ion secondary battery of the present invention can be continuously adhered to an electrode on the same line to manufacture a laminate.
  • ⁇ Glass transition temperature of binder> The prepared aqueous dispersion containing the binder was dried at a temperature of 25 ° C. for 48 hours, and the obtained powder was used as a measurement sample. Then, 10 mg of the measurement sample is weighed in an aluminum pan, and a differential thermal analysis measuring device (manufactured by SII Nanotechnology, product name "EXSTAR DSC6220") is used in the measurement temperature range of -100 ° C to 200 ° C. Measurements were performed at a heating rate of 20 ° C./min under the conditions specified in JIS Z8703 to obtain a differential scanning calorimetry (DSC) curve. An empty aluminum pan was used as a reference.
  • the temperature at which the differential signal (DDSC) peaks was determined as the glass transition temperature (° C.).
  • the temperature indicated by the peak having the largest displacement was defined as the glass transition temperature of the binder.
  • the amount of adhesion region formed (estimated amount) specified by measurement by spectroscopic ellipsometry is Xg / m 2
  • the amount of formation of adhesion region (actual amount) specified by weight measurement after measurement by spectroscopic ellipsometry is Yg / m.
  • the obtained specific accuracy was evaluated according to the following criteria.
  • Example 1 ⁇ Preparation of binder and coating liquid>
  • 38.5 parts of methyl methacrylate and 28.6 parts of n-butyl acrylate as a (meth) acrylic acid alkyl ester monomer and allyl as a crosslinkable monomer were placed in a 5 MPa pressure-resistant container equipped with a stirrer.
  • a dispersion containing sodium dodecylbenzenesulfonate as a dispersion aid was obtained.
  • the glass transition temperature of the binder was 45 ° C.
  • Ion-exchanged water was added to the obtained dispersion to obtain a coating liquid having a solid content concentration of 5%.
  • a separator base material As a separator base material, a polypropylene (PP) micropore membrane (product name "Celguard 2500”) was prepared.
  • PP polypropylene
  • the surface coated with the coating liquid was air-dried (drying temperature: 60 ° C., wind speed: 1 m / min) to obtain a separator having an adhesive region formed on one side of the separator base material. ..
  • the adhesive region was composed of a particulate binder having an average diameter of 0.5 ⁇ m, and was composed of a plurality of plane-viewing island-shaped regions formed by aggregating the particulate binders. Further, the occupied area ratio of the adhesive region on the formed surface was 40 area%.
  • the amount of the adhesive region formed by the weight measurement was 0.05 g / m 2 , 0.1 g / m 2 , 0.4 g / m 2 , and 0.6 g / m 2 , respectively. .. (2)
  • the thickness of the adhesive region in the obtained four calibration curve preparation samples is plotted on the vertical axis, and the amount of the adhesive region formed by the weight measurement is plotted on the horizontal axis, and the calibration curve showing the relationship between the thickness and the amount of formation is plotted.
  • the thickness of the adhesive region in the obtained four calibration curve preparation samples is plotted on the vertical axis, and the amount of the adhesive region formed by the weight measurement is plotted on the horizontal axis, and the calibration curve showing the relationship between the thickness and the amount of formation is plotted.
  • condition- Measuring device Spectroscopic ellipsometer (manufactured by HORIBA, product name "UVISEL Plus”)
  • White light source Xenon lamp Change in polarization state for measurement: Amplitude difference and phase difference
  • Example 2 In the coating process, the position and area of the area to be coated are not changed, the coating amount of the coating liquid is changed, and the formation amount (Y) of the adhesive region specified by the weight measurement is 0.1 g / m, respectively. 2 (Example 2), 0.4 g / m 2 (Example 3), 0.6 g / m 2 (Example 4) Except for the adjustment, the binder and coating are carried out in the same manner as in Example 1. Liquids were prepared, separator substrates were prepared, and coating, drying and inspection steps were performed and evaluated. The results are shown in Table 1.
  • Example 5 A binder and a coating liquid were prepared in the same manner as in Example 1 except that the separator substrate provided with the heat-resistant layer prepared as described below was used, and the coating step, the drying step and the inspection step were carried out. It was carried out and evaluated. The results are shown in Table 1. The surface of the separator base material on the side provided with the heat-resistant layer was used as the surface for forming the adhesive region.
  • a composition for a heat-resistant layer is obtained by mixing 100 parts of alumina as non-conductive particles and 13.3 parts of the aqueous dispersion of the binder for the heat-resistant layer (6 parts in terms of the amount of the binder for the heat-resistant layer).
  • Got The composition for a heat-resistant layer was applied to the entire surface of one side of a polypropylene (PP) micropore membrane (product name "Cellguard 2500”), and dried at 50 ° C. for 3 minutes. As a result, a separator base material having a heat-resistant layer on one side of the microporous membrane was obtained.
  • PP polypropylene
  • Example 6 In the coating process, the area to be coated was not changed, the coating amount of the coating liquid was changed, and the formation amount (Y) of the adhesive region specified by the weight measurement was 0.1 g / m 2 (implementation). Examples 6), 0.4 g / m 2 (Example 7), 0.6 g / m 2 (Example 8), except that the binder and the coating liquid were prepared in the same manner as in Example 5. Then, the separator base material was prepared, and the coating process, the drying process and the inspection process were carried out and evaluated. The results are shown in Table 1.
  • Example 9 to 12 Except for changing the amount of potassium persulfate as a polymerization initiator to make the average diameter of the particulate binder forming the adhesive region 0.1 ⁇ m, 1 ⁇ m, 2 ⁇ m, and 5 ⁇ m, respectively, when preparing the binder.
  • a binder and a coating liquid were prepared, a separator base material was prepared, and a coating step, a drying step and an inspection step were carried out and evaluated. The results are shown in Table 1.
  • Example 13 to 16 In the coating process, the area of the area to be coated is changed without changing the coating amount of the coating liquid, and the occupied area ratio of the adhesive area on the formed surface is 10 area%, 20 area%, 60 area%, respectively.
  • a binder and a coating liquid were prepared, a separator base material was prepared, and a coating step, a drying step and an inspection step were carried out and evaluated in the same manner as in Example 1 except that the area was adjusted to 100 area%. Was done. The results are shown in Table 1.
  • the above-mentioned formation amount specifying accuracy was evaluated using 2 ) and. The results are shown in Table 1.
  • the amount of the adhesive region formed (Y) specified by the weight measurement was 0.05 g / m 2 (Comparative Example 1) and 0.1 g / m 2 (Comparative Example 2), respectively.
  • Four samples for preparing a calibration curve were prepared in which an adhesive region having a uniform thickness was formed on the entire surface of one side of the separator base material. In these four samples, the amount of the adhesive region formed by the weight measurement was 0.05 g / m 2 , 0.1 g / m 2 , 0.4 g / m 2 , and 0.6 g / m 2 , respectively. ..
  • the absorption peak of the carbonyl group was specified by measuring the vertical axis and weight using a mid-infrared film thickness meter (manufactured by KURABO, product name "RX-410"). The amount of formation of the bonded region was plotted on the horizontal axis, and a calibration curve showing the relationship between the absorption peak of the carbonyl group and the amount of formation was obtained by the least squares method.
  • ⁇ Procedure for specifying the amount of formation X >> The mid-infrared film thickness of each of the separators of Comparative Examples 1 and 2 (adhesive region is formed on one side of the separator base material) obtained through the same coating step and drying step as in Examples 1 and 2.
  • the absorption peak P of the carbonyl group was identified using a meter. With this value of P as the absorption peak (vertical axis) of the calibration curve obtained in the above “preparation”, the corresponding formation amount (horizontal axis) was specified, and this was defined as the formation amount X.
  • an inspection method capable of specifying the amount of an adhesive region formed on a separator substrate with high accuracy, and a lithium ion secondary battery using the inspection method.
  • a method for manufacturing a separator can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、リチウムイオン二次電池用セパレータの製造に際して、セパレータ基材上の接着領域の形成量を高い精度で特定しうる検査方法の提供を目的とする。本発明のリチウムイオン二次電池用セパレータの検査方法は、セパレータ基材の少なくとも一方の表面に、結着材からなる接着領域が形成されたリチウムイオン二次電池用セパレータの検査方法である。当該検査方法は、前記接着領域が形成された前記セパレータ基材の表面に、入射光として白色光の直線偏光を照射して反射光の偏向状態の変化を測定する分光エリプソメトリーにより、前記接着領域の形成量を特定する工程を備える。

Description

リチウムイオン二次電池用セパレータの検査方法及び製造方法
 本発明は、セパレータ基材の表面に接着領域が形成されてなるリチウムイオン二次電池用セパレータの検査方法、及び当該検査方法を用いたリチウムイオン二次電池用セパレータの製造方法に関するものである。
 リチウムイオン二次電池は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そしてリチウムイオン二次電池は、一般に、複数の電極(正極、負極)と、これら電極を隔離して内部短絡を防止するセパレータとを備えている。
 ここで、リチウムイオン二次電池の製造過程においては、電解液に浸漬する前の電極とセパレータとを接着させて積層体とし、必要に応じて所望のサイズに切断したり、積層、折畳又は巻回したりすることがある。そして、当該切断、積層、折畳又は巻回の際には、接着された電極とセパレータとが位置ズレなどを起こし、不良の発生、生産性の低下といった問題を生じることがある。
 そこで近年では、セパレータ基材の表面に結着材からなる接着領域を形成し、得られたセパレータを電極と貼り合わせる技術が検討されている。例えば特許文献1では、所定の熱可塑性ポリマーを含有する塗料をセパレータに塗工し、塗膜を乾燥して塗工液中の溶媒を除去することで、熱可塑性ポリマーからなる接着領域を表面に有するセパレータが作製されている。
特開2018-170281号公報
 ここで、結着材をセパレータ基材の表面に付与して接着領域が形成されたセパレータを作製するに際し、接着領域が形成された側のセパレータ基材表面(以下、「形成面」又は「接着領域形成面」という。)に所期量の接着領域が形成されたことを確認するための検査方法が従来求められていた。このような検査方法としては、結着材が有するカルボニル基などの官能基を赤外分光法により検出する方法が考えられる。
 しかしながら、赤外分光法による検査方法には、結着材に含まれるカルボニル基などの官能基量が少ない場合や、接着領域の形成量が少ない場合などにおいて、実際の形成量と検査により得られる形成量とに大きな誤差が生じることが、本発明者の検討で明らかとなった。
 そこで、本発明は、リチウムイオン二次電池用セパレータの製造に際して、セパレータ基材上の接着領域の形成量を高い精度で特定しうる検査方法、及び当該検査方法を用いたリチウムイオン二次電池用セパレータの製造方法の提供を目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そこで、本発明者は、分光エリプソメトリーを用いた検査により、セパレータ基材上の接着領域の形成量を高い精度で特定できることを新たに見出し、本発明を完成させた。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用セパレータの検査方法は、セパレータ基材の少なくとも一方の表面に、結着材からなる接着領域が形成されたリチウムイオン二次電池用セパレータの検査方法であって、前記接着領域が形成された前記セパレータ基材の表面に、入射光として白色光の直線偏光を照射して反射光の偏向状態の変化を測定する分光エリプソメトリーにより、前記接着領域の形成量を特定する工程を備えることを特徴とする。上述の分光エリプソメトリーを用いれば、セパレータ基材上における接着領域の形成量を高い精度で特定することができる。
 ここで、本発明のリチウムイオン二次電池用セパレータの検査方法において、前記接着領域を、平均径が0.1μm以上5μm以下である粒子状結着材からなるものとすることができる。接着領域を上述した平均径を有する微細な粒子状結着材で構成すれば、セパレータを電極と良好に接着させつつ、リチウムイオン二次電池の電池特性(出力特性、サイクル特性など)を向上させることができる。また本発明の検査方法によれば、接着領域が上述した平均径を有する微細な粒子状結着材で構成される場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
 なお、本発明において、粒子状結着材の平均径は、走査型電子顕微鏡(SEM)による観察で得られた、接着領域形成面の平面視画像における任意の1000個の粒子状結着材の最大径(1つの粒子状結着材の外縁上の2点を結ぶ線分の長さのうち、最大の長さ)の平均値として算出することができる。
 さらに、本発明のリチウムイオン二次電池用セパレータの検査方法において、前記接着領域を一又は複数の平面視島状の領域で構成することができる。接着領域を一又は複数の平面視島状の領域で構成すれば、セパレータを電極と良好に接着させつつ、接着領域の形成量を低減してリチウムイオン二次電池の電池特性を向上させることができる。また本発明の検査方法によれば、接着領域が一又は複数の平面視島状の領域で構成される場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
 また、本発明のリチウムイオン二次電池用セパレータの検査方法において、前記接着領域の形成量を0.02g/m以上0.6g/m以下とすることができる。接着領域の形成量、すなわち接着領域形成面における単位面積(m)当たりの接着領域の質量(g)が上述した範囲内であれば、セパレータを電極と良好に接着させつつ、接着領域の形成量を低減してリチウムイオン二次電池の電池特性を向上させることができる。また本発明の検査方法によれば、接着領域の形成量が上述した範囲内であり目付量が小さい場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
 そして、本発明のリチウムイオン二次電池用セパレータの検査方法において、前記白色光を、キセノンランプが発する光とすることができる。白色光源としてキセノンランプを用いれば、接着領域の形成量を十分に高い精度で特定することができる。
 ここで、本発明のリチウムイオン二次電池用セパレータの検査方法では、長尺の前記リチウムイオン二次電池用セパレータを長手方向に搬送しながら、前記分光エリプソメトリーによる測定を行うことができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用セパレータの製造方法は、前記結着材と溶媒を含む塗工液を前記セパレータ基材の少なくとも一方の表面に塗工する工程と、塗工された前記セパレータ基材上の前記塗工液を乾燥し、前記接着領域を形成する工程と、前記接着領域の形成量を、上述した何れかのリチウムイオン二次電池用セパレータの検査方法を用いて特定する工程と、を備えることを特徴とする。上述の分光エリプソメトリーによる検査を経る本発明のリチウムイオン二次電池用セパレータの製造方法は、接着領域の形成量を所期量に近づけるべく、検査結果を踏まえて各種製造条件(塗工液の固形分濃度や塗工条件など)を調整することが可能という利点がある。
 ここで、本発明のリチウムイオン二次電池用セパレータの製造方法において、前記塗工液が更に分散助剤を含むことができる。分散助剤を含む塗工液を用いれば、当該塗工液を均一に且つ高速でセパレータ基材表面に塗工することができる。
 さらに、本発明のリチウムイオン二次電池用セパレータの製造方法において、前記塗工液の固形分濃度を1質量%以上40質量%以下とすることができる。固形分濃度が上述した範囲内である塗工液を用いれば、当該塗工液の取り扱い性及び乾燥効率を高めることができる。
 そして、本発明のリチウムイオン二次電池用セパレータの製造方法において、前記塗工液の塗工速度を2m/分以上300m/分以下とすることができる、塗工速度が上述した範囲内であり高速であっても、本発明のリチウムイオン二次電池用セパレータの製造方法は上述した検査方法を用いているため、リチウムイオン二次電池用セパレータを効率良く連続生産しつつ、接着領域の形成量を十分に高い精度で特定することが可能である。
 本発明によれば、リチウムイオン二次電池用セパレータの製造に際して、セパレータ基材上の接着領域の形成量を高い精度で特定しうる検査方法、及び当該検査方法を用いたリチウムイオン二次電池用セパレータの製造方法を提供することができる。
セパレータ基材の接着領域形成面のSEM画像である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の検査方法は、セパレータ基材と、当該セパレータ基材の表面に形成された接着領域とを有するリチウムイオン二次電池用セパレータを検査する方法である。また本発明の製造方法は、本発明の検査方法による検査を経てリチウムイオン二次電池用セパレータを製造する方法である。
(リチウムイオン二次電池用セパレータの検査方法)
 本発明の検査方法では、セパレータ基材の表面に存在する接着領域の形成量を、分光エリプソメトリーにより特定する。
 そして本発明の検査方法は、分光エリプソメトリーを用いているため、赤外分光法などを用いた従来の検査方法に比べて、セパレータ基材表面における接着領域の形成量を高い精度で特定することができる。
<セパレータ基材>
 セパレータ基材としては、特に限定されることなく、リチウムイオン二次電池の分野で用いられる既知のセパレータ基材を用いることができる。このようなセパレータ基材としては、微細な孔を有する多孔性基材が用いられ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。
 またセパレータ基材は、少なくとも一方の表面に耐熱層を備えていてもよい。即ち、セパレータ基材としては、上述した多孔性基材のみからなる基材を用いてもよく、上述した多孔性基材の片面又は両面に耐熱層を備えてなる基材を用いてもよい。
 なお耐熱層としては、特に限定されることなく、リチウムイオン二次電池の分野で用いられる既知の耐熱層(例えば、アルミナなどの非導電性粒子が耐熱層用結着材により結着されてなる層)を用いることができる。
<接着領域>
 上述したセパレータ基材の表面に形成される接着領域は、少なくとも結着材を含む領域である。なお接着領域は、結着材以外の成分を含んでいてもよい。接着領域に含まれる結着材以外の成分としては、特に限定されないが、接着領域の形成に用いる塗工液に含まれる分散助剤などが挙げられる。
<<結着材>>
 結着材としては、結着能を有し、且つ、電池反応を阻害しないものであれば、特に限定されることなく、リチウムイオン二次電池の分野において使用されている任意の結着材を用いることができる。中でも、結着材としては、重合体からなる結着材を用いることが好ましい。なお、接着領域を構成する結着材は、1種類のみであってもよいし、2種類以上であってもよい。
 結着材として使用し得る重合体としては、特に限定されることなく、ポリフッ化ビニリデン、ポリビニリデンフルオライド-ヘキサフルオロプロピレン(PVdF-HFP)共重合体等のフッ素系重合体;スチレン-ブタジエン共重合体(SBR)、アクリロニトリル-ブタジエン共重合体(NBR)等の共役ジエン系重合体;共役ジエン系重合体の水素化物;(メタ)アクリル酸アルキルエステル単量体単位を含む重合体(アクリル系重合体);ポリビニルアルコール(PVA)等のポリビニルアルコール系重合体;などが挙げられる。
 なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸及び/又はメタクリル酸を意味する。
 そして、重合体よりなる結着材の形状は、特に限定されることなく、粒子状であってもよいし、非粒子状であってもよいし、粒子状と非粒子状との組み合わせであってもよい。
 なお、重合体よりなる結着材が粒子状結着材である場合、当該粒子状結着材は、単一の重合体から形成された単一相構造の粒子であってもよいし、互いに異なる2つ以上の重合体が物理的又は化学的に結合して形成された異相構造の粒子であってもよい。ここで、異相構造の具体例としては、球状の粒子であって中心部(コア部)と外殻部(シェル部)とが異なる重合体から形成されているコアシェル構造;2つ以上の重合体が並置された構造であるサイドバイサイド構造;などが挙げられる。なお、本発明において、「コアシェル構造」には、コア部の外表面をシェル部が完全に覆う構造の他、コア部の外表面をシェル部が部分的に覆う構造も含まれるものとする。そして、本発明では、外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部とする。
 ここで、コアシェル構造を有する重合体は、ガラス転移温度が、例えば、25℃以上であることが好ましく、40℃以上であることがより好ましく、45℃以上であることが更に好ましく、105℃以下であることが好ましく、85℃以下であることがより好ましく、65℃以下であることが更に好ましい。コアシェル構造を有する重合体のガラス転移温度が25℃以上であれば、セパレータを電極と良好に接着させることができ、105℃以下であれば、リチウムイオン二次電池の電池特性を向上させることができる。
 なお、本発明において、ガラス転移温度は、実施例に記載の方法を用いて測定することができる。
 上述したコアシェル構造を有する重合体としては、特に限定されないが、例えば国際公開第2020/040031号に記載されたものを用いることができる。
<<接着領域の性状>>
 接着領域が結着材として粒子状結着材を含む場合、粒子状結着材の平均径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、5μm以下であることが好ましい。接着領域を上述した平均径を有する微細な粒子状結着材で構成すれば、セパレータを電極と良好に接着させつつ、リチウムイオン二次電池の電池特性を向上させることができる。くわえて本発明の検査方法によれば、接着領域が上述した平均径を有する微細な粒子状結着材で構成される場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
 また、接着領域は、セパレータ基材の形成面全面に配置されていてもよいが、一又は複数の平面視島状の領域で構成されていることが好ましい。接着領域を一又は複数の平面視島状の領域で構成すれば、セパレータを電極と良好に接着させつつ、接着領域の形成量を低減してリチウムイオン二次電池の電池特性を向上させることができる。また本発明の検査方法によれば、接着領域が一又は複数の平面視島状の領域で構成される場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
 そして、接着領域が、セパレータ基材の形成面に占める割合(接着領域の占有面積割合)は、形成面全体の面積を100面積%として、5面積%以上であることが好ましく、10面積%以上であることがより好ましく、20面積%以上であることが更に好ましく、80面積%以下であることが好ましく、60面積%以下であることがより好ましい。接着領域の占有面積割合が5面積%以上であれば、接着領域の形成量を十分に高い精度で特定しつつセパレータを電極と良好に接着させることができる。一方、接着領域の占有面積割合が80面積%以下であれば、接着領域の形成量を低減してリチウムイオン二次電池の電池特性を向上させることができる。
 なお、本発明において、接着領域形成面における接着領域の占有面積割合は、当該形成面のSEMが画像から算出することができる。
 なお、図1は、セパレータ基材の接着領域形成面のSEM画像である。この接着領域形成面では、結着材が粒子状結着材であり、接着領域は、粒子状結着材が集合してなる複数の平面視島状の領域で構成されている
 ここで、接着領域の形成量は、0.02g/m以上であることが好ましく、0.05g/m以上であることがより好ましく、0.6g/m以下であることが好ましく、0.4g/m以下であることがより好ましい。接着領域の形成量が上述した範囲内であれば、セパレータを電極と良好に接着させつつ、接着領域の形成量を低減してリチウムイオン二次電池の電池特性を向上させることができる。また本発明の検査方法によれば、接着領域の形成量が上述した範囲内であり目付量が小さい場合であっても、接着領域の形成量を十分に高い精度で特定することができる。
<分光エリプソメトリーによる測定>
 本発明のリチウムイオン二次電池用セパレータの検査方法では、セパレータ基材の接着領域形成面に、入射光として白色光の直線偏光を照射して反射光の偏向状態の変化を測定する分光エリプソメトリーによる測定を実施する。
 分光エリプソメトリーによる測定において用いる入射光は、p偏光成分とs偏光成分の振幅と位相が一致した直線偏光である。この直線偏光を接着領域形成面に照射すると、照射された部分の状態より光の干渉度合いや屈折率(例えば、接着材がアクリル系重合体である場合、屈折率は約1.6である。)が異なるため、反射光においては、p偏光成分とs偏光成分において振幅と位相が一致せず楕円偏光となる。
 この偏光状態の変化(振幅差及び位相差)から、照射された部分のセパレータ基材表面を基準とした変位(厚み)が導出され、詳細には実施例に記載された手法により接着領域の形成量を見積もることができる。
 白色光は、接着領域の形成量を十分に高い精度で特定する観点から、キセノンランプが発する光(波長は例えば185nm~2,000nmの範囲内)であることが好ましい。
 また、上述した分光エリプソメトリーによる測定には、既知の分光エリプソメーターを用いることができる。
 分光エリプソメトリーにより接着領域の形成量を特定する本発明の検査方法によれば、上述した赤外分光法による検査方法とは異なり、接着領域を構成する結着材の種類や形成量によらず、高い精度での検査が可能となる。
 加えて、本発明の検査方法によれば、分光エリプソメトリーを採用しているため、リチウムイオン二次電池用セパレータを搬送しながらの検査が可能となる。例えば、リチウムイオン二次電池用セパレータ及び/又は積層体の連続した製造過程において、長尺のリチウムイオン二次電池用セパレータを長手方向に搬送しながら、検査を行うことが可能である。
(リチウムイオン二次電池用セパレータの製造方法)
 本発明のリチウムイオン二次電池用セパレータの製造方法は、結着材と溶媒を含む塗工液をセパレータ基材の少なくとも一方の表面に塗工する工程(塗工工程)と、塗工されたセパレータ基材上の塗工液を乾燥し、接着領域を形成する工程(乾燥工程)と、接着領域の形成量を特定する工程(検査工程)とを備え、検査工程において、上述した本発明のリチウムイオン二次電池用セパレータの検査方法を用いる。
 そして、本発明の製造方法は、分光エリプソメトリーを用いた検査を経る本発明の検査方法を実施するため、接着領域の形成量を所期量に近づけるべく、検査結果を踏まえて各種製造条件(例えば、塗工液の固形分濃度や塗工条件)を調整することが可能という利点がある。
 加えて、本発明の製造方法で採用する分光エリプソメトリーによる検査は、上述した通りリチウムイオン二次電池用セパレータを搬送しながら行うことができるため、塗工工程、乾燥工程、及び検査工程を一つのラインで実施するインライン生産によるセパレータの製造が可能となる。そしてこのような一連の過程において、検査工程で得られた検査結果を直ちにフィードバックして、上述した塗工液の固形分濃度や塗工条件(グラビアロールの種類変更など)の調整を迅速に行うことができる。
<塗工液>
 塗工液は、結着材が溶媒に溶解及び/又は分散してなる液状組成物である。ここで塗工液は、結着材及び溶媒以外の成分を含んでいてもよい。結着材及び溶媒以外の成分としては、例えば、分散助剤が好ましい。塗工液が分散助剤を含むことで、当該塗工液を均一に且つ高速でセパレータ基材表面に塗工することができる。
 結着材としては、「リチウムイオン二次電池用セパレータの検査方法」の項で上述した、接着領域を構成する結着材を用いる。
 溶媒としては、結着材を溶解及び/又は分散可能であれば特に限定されることなく、水、有機溶媒の何れも使用することができる。なお、有機溶媒としては、特に限定されることなく、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;などが挙げられる。なお溶媒は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 塗工液が任意に含有しうる分散助剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等のアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ソルビタンモノラウレート等のノニオン性界面活性剤;オクタデシルアミン酢酸塩等のカチオン性界面活性剤;が挙げられる。これらの分散助剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そしてこれらの中でも、アニオン性界面活性剤が好ましく、ドデシルベンゼンスルホン酸ナトリウムがより好ましい。
 また、塗工液中の分散助剤の含有量は、特に限定されないが、塗工液の均一且つ高速な塗工を一層良好に行う観点から、結着材100質量部当たり0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、3質量部以下であることが好ましく、2質量部以下であることがより好ましい。
 塗工液は、固形分濃度が1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがより好ましく、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。塗工液の固形分濃度が1質量%以上であれば、後述する乾燥工程における乾燥効率を確保することができ、40質量%以下であれば、当該塗工液の粘度が過度に高まることもなく、取り扱いが容易となる。
 なお、塗工液の調製方法は特に限定されず、塗工液は、結着材と溶媒を既知の手法で混合することにより調製することができる。
<塗工工程>
 塗工工程では、上述した塗工液をセパレータ基材の片面又は両面に塗工する。塗工液をセパレータ基材の表面に塗工する方法は、特に限定されることなく、例えば、インクジェット法、スプレー法、ディスペンサー法、グラビアコーティング法、スクリーン印刷法などの既知の方法を用いて行うことができる。
 また、塗工液の塗工速度は、特に限定されないが、例えば、2m/分以上300m/分以下の範囲内とすることができる。塗工速度が上述した範囲内であり高速であっても、本発明の製造方法では、リチウムイオン二次電池用セパレータを効率良く連続生産しつつ、接着領域の形成量を十分に高い精度で特定することが可能である。
<乾燥工程>
 乾燥工程では、塗工工程でセパレータ基材上に塗工された塗工液を乾燥して溶媒を除去し、セパレータ基材上に接着領域を形成する。セパレータ基材上の塗工液を乾燥する方法としては、特に限定されることなく、既知の乾燥方法を用いることができる。なお、風乾により乾燥を行う場合は、例えば、風速を0.1m/分以上3m/分以下、乾燥温度を30℃以上80℃以下に設定することが好ましい。
<検査工程>
 検査工程では、乾燥工程でセパレータ基材上に形成された接着領域の形成量を、上述した本発明のリチウムイオン二次電池用セパレータの製造方法を用いて特定する。
 なお、本発明のリチウムイオン二次電池用セパレータの製造方法で得られるセパレータを、同一のラインで連続して電極と接着させ、積層体を製造することもできる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 そして実施例において、結着材のガラス転移温度は下記の方法で測定し、接着領域の形成量特定精度は、下記の方法で評価した。
<結着材のガラス転移温度>
 調製した結着材を含む水分散液を、それぞれ温度25℃で48時間乾燥し、得られた粉末を測定用試料とした。
 そして、測定用試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)にて、測定温度範囲-100℃~200℃の間で、昇温速度20℃/分で、JIS Z8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。リファレンスとしては、空のアルミパンを用いた。この昇温過程で、微分信号(DDSC)がピークを示す温度をガラス転移温度(℃)として求めた。なお、ピークが複数測定された際は、最も変位の大きいピークが示す温度を結着材のガラス転移温度とした。
<接着領域の形成量特定精度>
 分光エリプソメトリーなどによる測定で特定した接着領域の形成量(見積り量)をXg/m、分光エリプソメトリーなどによる測定後に重量測定で特定した接着領域の形成量(実際の量)をYg/mとして、特定精度を式:特定精度(%)=100-|X-Y|/Y×100で算出した。得られた特定精度を下記の基準で評価した。
 A:特定精度が95%以上100%以下
 B:特定精度が90%以上95%未満
 C:特定精度が85%以上90%未満
 D:特定精度が85%未満
(実施例1)
<結着材及び塗工液の調製>
 コア部の形成にあたり、撹拌機付き5MPa耐圧容器に、(メタ)アクリル酸アルキルエステル単量体としてのメチルメタクリレート38.5部およびn-ブチルアクリレート28.6部、架橋性単量体としてのアリルメタクリレート0.1部、酸性基含有単量体としてのメタクリル酸2.8部、乳化剤(分散助剤)としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、並びに重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させることにより、コア部を構成する粒子状の重合体を含む水分散液を得た。次いで、重合転化率が96%になった時点で、シェル部を形成するために、芳香族モノビニル単量体としてのスチレン29.5部、および酸性基含有単量体としてのメタクリル酸0.5部を連続添加して、70℃に加温して重合を継続し、転化率が96%になった時点で、冷却し反応を停止して、結着材(コアシェル構造を有する重合体)と、分散助剤としてのドデシルベンゼンスルホン酸ナトリウムを含む分散液を得た。なお、結着材のガラス転移温度は45℃であった。
 得られた分散液にイオン交換水を加えて、固形分濃度が5%の塗工液を得た。
<セパレータ基材の準備>
 セパレータ基材として、ポリプロピレン(PP)製の微孔膜(製品名「セルガード2500」)を準備した。
<塗工工程及び乾燥工程>
 上記セパレータ基材を搬送しながら、セパレータ基材の一方の表面に対し上記塗工液を塗工した。なお塗工は、グラビアコーティング法を用い、塗工速度5m/分で行った。
 そしてセパレータ基材を搬送しながら、塗工液を塗工した面を風乾(乾燥温度:60℃、風速:1m/分)し、セパレータ基材の片面に接着領域が形成されたセパレータを得た。なお接着領域は、平均径が0.5μmである粒子状結着材からなり、当該粒子状結着材が集合してなる複数の平面視島状の領域で構成されていた。また、形成面における接着領域の占有面積割合は40面積%であった。
<検査工程>
 下記の事前準備を行い、さらには下記手順で接着領域の形成量X(g/m)を特定し、当該形成量Xと、別途重量測定で特定した接着領域の形成量Y(g/m)とを用いて上述した形成量特定精度の評価を行った。結果を表1に示す。なお、重量測定で特定される接着領域の形成量(Y)は0.05g/mであった。
<<事前準備>>
(1)セパレータ基材の片側全面に厚みが均一である接着領域を形成した検量線作成用サンプルを4つ準備した。この4つのサンプルは、重量測定で特定される接着領域の形成量が、それぞれ0.05g/m、0.1g/m、0.4g/m、0.6g/mであった。
(2)得られた4つの検量線作成用サンプルにおける接着領域の厚みを縦軸、重量測定で特定された接着領域の形成量を横軸としてプロットし、厚みと形成量の関係を示す検量線を最小二乗法により得た。
<<形成量Xの特定手順>>
 上記の塗工工程及び乾燥工程を経て得られたセパレータ(セパレータ基材の片面に接着領域が形成されている)について、下記の検査条件で分光エリプソメトリーを実施し、接着領域の形成面における、セパレータ基材表面を基準としたセパレータ表面(即ち、接着領域が形成された箇所は接着領域の表面、接着領域が形成されていない箇所はセパレータ基材の表面)の変位の平均値Hを特定した。この平均値Hを、上記「事前準備」で得られた検量線の厚み(縦軸)として対応する形成量(横軸)を特定し、これを形成量Xとした。
―検査条件-
 測定装置:分光エリプソメーター(堀場製作所製、製品名「UVISEL Plus」)
 白色光源:キセノンランプ
 測定対象とした偏光状態の変化:振幅差及び位相差
(実施例2~4)
 塗工工程に際し、塗工する領域の位置及び面積は変更せず塗工液の塗工量を変更して、重量測定で特定される接着領域の形成量(Y)をそれぞれ0.1g/m(実施例2)、0.4g/m(実施例3)、0.6g/m(実施例4)に調整した以外は、実施例1と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程、乾燥工程及び検査工程を実施し、評価を行った。結果を表1に示す。
(実施例5)
 下記のようにして準備した耐熱層を備えるセパレータ基材を用いた以外は、実施例1と同様にして、結着材及び塗工液を調製し、そして塗工工程、乾燥工程及び検査工程を実施し、評価を行った。結果を表1に示す。なお、セパレータ基材の耐熱層を備える側の面を、接着領域形成面とした。
<セパレータ基材の準備>
<<耐熱層用結着材の調製>>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、「エマール2F」)0.15部、および重合開始剤として過硫酸アンモニウム0.5部を供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器にイオン交換水50部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.8部、そして(メタ)アクリロニトリル単量体としてアクリロニトリル2部、(メタ)アクリル酸エステル単量体としてブチルアクリレート93.8部、酸性基含有単量体としてメタクリル酸2部、架橋性単量体としてアリルグリシジルエーテル1部およびN-メチロールアクリルアミド1.2部、並びにキレート剤としてエチレンジアミン4酢酸ナトリウム4水和物(キレスト社製、「キレスト400G」)0.15部を混合して、単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して、重合を行った。添加中は、60℃で反応を行った。添加の終了後、さらに70℃で3時間撹拌してから反応を終了し、耐熱層用結着材(アクリル系重合体)の水分散液を調製した。
 なお、本発明において、「(メタ)アクリロ」はアクリロ及び/又はメタクリロを意味する。
<<耐熱層の形成>>
 非導電性粒子としてのアルミナ100部と、上記耐熱層用結着材の水分散液を13.3部(耐熱層用結着材の量で6部)とを混合し、耐熱層用組成物を得た。
 ポリプロピレン(PP)製の微孔膜(製品名「セルガード2500」)の片面全面に耐熱層用組成物を塗布し、50℃で3分間乾燥させた。これにより、微多孔膜の片面に耐熱層を備えてなるセパレータ基材を得た。
(実施例6~8)
 塗工工程に際し、塗工する領域の面積は変更せず塗工液の塗工量を変更して、重量測定で特定した接着領域の形成量(Y)をそれぞれ0.1g/m(実施例6)、0.4g/m(実施例7)、0.6g/m(実施例8)に調整した以外は、実施例5と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程、乾燥工程及び検査工程を実施し、評価を行った。結果を表1に示す。
(実施例9~12)
 結着材の調製に際し、重合開始剤としての過硫酸カリウムの量を変更して、接着領域を形成する粒子状結着材の平均径をそれぞれ0.1μm、1μm、2μm、5μmとした以外は、実施例1と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程、乾燥工程及び検査工程を実施し、評価を行った。結果を表1に示す。
(実施例13~16)
 塗工工程に際し、塗工液の塗工量を変更せず塗工する領域の面積を変更して、形成面における接着領域の占有面積割合をそれぞれ10面積%、20面積%、60面積%、100面積%に調整した以外は、実施例1と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程、乾燥工程及び検査工程を実施し、評価を行った。結果を表1に示す。
(比較例1~2)
 分光エリプソメトリーを用いる検査工程に代えて、下記の通りの検査工程(赤外分光法)を実施して接着領域の形成量X(g/m)を特定した以外は、それぞれ実施例1~2と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程及び乾燥工程を実施し、評価を行った。結果を表1に示す。
<検査工程>
 下記の事前準備を行い、さらには下記手順で接着領域の形成量X(g/m)を特定し、当該形成量Xと、別途重量測定で特定した接着領域の形成量Y(g/m)とを用いて上述した形成量特定精度の評価を行った。結果を表1に示す。なお、重量測定で特定される接着領域の形成量(Y)はそれぞれ、0.05g/m(比較例1)、0.1g/m(比較例2)であった。
<<事前準備>>
(1)セパレータ基材の片側全面に厚みが均一である接着領域を形成した検量線作成用サンプルを4つ準備した。この4つのサンプルは、重量測定で特定される接着領域の形成量が、それぞれ0.05g/m、0.1g/m、0.4g/m、0.6g/mであった。
(2)得られた4つの検量線作成用サンプルについて、中間赤外膜厚計(KURABO製、製品名「RX-410」)を用いてカルボニル基の吸収ピークを縦軸、重量測定で特定された接着領域の形成量を横軸としてプロットし、カルボニル基の吸収ピークと形成量の関係を示す検量線を最小二乗法により得た。
<<形成量Xの特定手順>>
 実施例1~2と同様の塗工工程及び乾燥工程を経て得られた比較例1~2のセパレータ(セパレータ基材の片面に接着領域が形成されている)について、それぞれ上記中間赤外膜厚計を用いてカルボニル基の吸収ピークPを特定した。このPの値を、上記「事前準備」で得られた検量線の吸収ピーク(縦軸)として対応する形成量(横軸)を特定し、これを形成量Xとした。
(比較例3~6)
 分光エリプソメトリーを用いる検査工程に代えて、下記の通りの検査工程(光干渉法)を実施して接着領域の形成量X(g/m)を特定した以外は、それぞれ実施例1~4と同様にして、結着材及び塗工液を調製し、セパレータ基材を準備し、そして塗工工程及び乾燥工程を実施し、評価を行った。結果を表1に示す。なお、重量測定で特定される接着領域の形成量(Y)はそれぞれ、0.05g/m(比較例3)、0.1g/m(比較例4)、0.4g/m(比較例5)、0.6g/m(比較例6)であった。
<検査工程>
 実施例1~4と同様の塗工工程及び乾燥工程を経て得られた比較例3~6のセパレータ(セパレータ基材の片面に接着領域が形成されている)について、それぞれ光干渉式膜厚計(FILMETRICS製、製品名「F20 膜厚測定システム」測定波長範囲:190-1100nm)を用いて、接着領域の平均厚みTを測定した。この平均厚みTを、上記実施例1~4のそれぞれと同様にして得られた検量線の厚み(縦軸)として対応する形成量(横軸)を特定し、これを形成量Xとした。
Figure JPOXMLDOC01-appb-T000001
 表1より、分光エリプソメトリーによる検査を行った実施例1~16では、セパレータ基材上の接着領域の形成量を高い精度で特定できていることが分かる。一方、赤外分光法による検査を行った比較例1~2、光干渉法による検査を行った比較例3~6では、セパレータ基材上の接着領域の形成量を高い精度で特定できていないことが分かる。
 本発明によれば、リチウムイオン二次電池用セパレータの製造に際して、セパレータ基材上の接着領域の形成量を高い精度で特定しうる検査方法、及び当該検査方法を用いたリチウムイオン二次電池用セパレータの製造方法を提供することができる。

Claims (10)

  1.  セパレータ基材の少なくとも一方の表面に、結着材からなる接着領域が形成されたリチウムイオン二次電池用セパレータの検査方法であって、
     前記接着領域が形成された前記セパレータ基材の表面に、入射光として白色光の直線偏光を照射して反射光の偏向状態の変化を測定する分光エリプソメトリーにより、前記接着領域の形成量を特定する工程を備える、リチウムイオン二次電池用セパレータの検査方法。
  2.  前記接着領域は、平均径が0.1μm以上5μm以下である粒子状結着材からなる、請求項1に記載のリチウムイオン二次電池用セパレータの検査方法。
  3.  前記接着領域が一又は複数の平面視島状の領域で構成される、請求項1又は2に記載のリチウムイオン二次電池用セパレータの検査方法。
  4.  前記接着領域の形成量が0.02g/m以上0.6g/m以下である、請求項1~3の何れかに記載のリチウムイオン二次電池用セパレータの検査方法。
  5.  前記白色光は、キセノンランプが発する光である、請求項1~4の何れかに記載のリチウムイオン二次電池用セパレータの検査方法。
  6.  長尺の前記リチウムイオン二次電池用セパレータを長手方向に搬送しながら、前記分光エリプソメトリーによる測定を行う、請求項1~5の何れかに記載のリチウムイオン二次電池用セパレータの検査方法。
  7.  リチウムイオン二次電池用セパレータの製造方法であって、
     前記結着材と溶媒を含む塗工液を前記セパレータ基材の少なくとも一方の表面に塗工する工程と、
     塗工された前記セパレータ基材上の前記塗工液を乾燥し、前記接着領域を形成する工程と、
     前記接着領域の形成量を、請求項1~6の何れかに記載のリチウムイオン二次電池用セパレータの検査方法を用いて特定する工程と、
    を備える、リチウムイオン二次電池用セパレータの製造方法。
  8.  前記塗工液が更に分散助剤を含む、請求項7に記載のリチウムイオン二次電池用セパレータの製造方法。
  9.  前記塗工液の固形分濃度が1質量%以上40質量%以下である、請求項7又は8に記載のリチウムイオン二次電池用セパレータの製造方法。
  10.  前記塗工液の塗工速度が2m/分以上300m/分以下である、請求項7~9の何れかに記載のリチウムイオン二次電池用セパレータの製造方法。
PCT/JP2021/043980 2020-11-30 2021-11-30 リチウムイオン二次電池用セパレータの検査方法及び製造方法 WO2022114238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237016900A KR20230113740A (ko) 2020-11-30 2021-11-30 리튬 이온 이차 전지용 세퍼레이터의 검사 방법 및 제조 방법
CN202180078467.6A CN116472641A (zh) 2020-11-30 2021-11-30 锂离子二次电池用间隔件的检查方法及制造方法
JP2022565520A JPWO2022114238A1 (ja) 2020-11-30 2021-11-30
EP21898209.8A EP4254635A1 (en) 2020-11-30 2021-11-30 Inspection method and production method for separator for lithium ion secondary batteries
US18/254,868 US20240027330A1 (en) 2020-11-30 2021-11-30 Method of inspecting lithium ion secondary battery separator and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020199061 2020-11-30
JP2020-199061 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022114238A1 true WO2022114238A1 (ja) 2022-06-02

Family

ID=81755710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043980 WO2022114238A1 (ja) 2020-11-30 2021-11-30 リチウムイオン二次電池用セパレータの検査方法及び製造方法

Country Status (6)

Country Link
US (1) US20240027330A1 (ja)
EP (1) EP4254635A1 (ja)
JP (1) JPWO2022114238A1 (ja)
KR (1) KR20230113740A (ja)
CN (1) CN116472641A (ja)
WO (1) WO2022114238A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511818A (ja) * 2009-11-27 2013-04-04 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子
JP2014203583A (ja) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 二次電池および該電池用のセパレータ
JP2016072117A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016201327A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 非水電解質二次電池用セパレータおよびその製造方法
JP2018063926A (ja) * 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ、電池及び電池用セパレータ塗液
WO2020040031A1 (ja) 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170281A (ja) 2018-05-31 2018-11-01 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511818A (ja) * 2009-11-27 2013-04-04 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子
JP2014203583A (ja) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 二次電池および該電池用のセパレータ
JP2016072117A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016201327A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 非水電解質二次電池用セパレータおよびその製造方法
JP2018063926A (ja) * 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ、電池及び電池用セパレータ塗液
WO2020040031A1 (ja) 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池

Also Published As

Publication number Publication date
EP4254635A1 (en) 2023-10-04
KR20230113740A (ko) 2023-08-01
US20240027330A1 (en) 2024-01-25
CN116472641A (zh) 2023-07-21
JPWO2022114238A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
KR102408245B1 (ko) 비수계 이차 전지 다공막용 조성물, 비수계 이차 전지용 다공막 및 비수계 이차 전지
KR102335587B1 (ko) 이차전지용 세퍼레이터 및 이차전지
JP7363777B2 (ja) 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池
JP6908032B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
JP6908033B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
JP6988808B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池
JP6016929B2 (ja) 非水電解質二次電池用バインダー、非水電解質二次電池用バインダー溶液、非水電解質二次電池用負極合剤およびその用途
JPWO2016031163A1 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
WO2020105673A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2019004011A1 (ja) 電解質組成物、電解質膜、電極、電池及び電解質組成物の評価方法
JP7268675B2 (ja) 非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
JPWO2014046078A1 (ja) 非水電解質二次電池用バインダー、非水電解質二次電池用バインダー溶液、非水電解質二次電池用負極合剤およびその用途
WO2021172143A1 (ja) 検査方法、並びに二次電池用積層体の製造方法及び二次電池の製造方法
WO2022114238A1 (ja) リチウムイオン二次電池用セパレータの検査方法及び製造方法
JP7444062B2 (ja) 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
JP6891392B2 (ja) 非水系二次電池用積層体
JP6874689B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、及び非水系二次電池
WO2023229037A1 (ja) 蓄電デバイス用セパレータ及びこれを含む蓄電デバイス
WO2023165076A1 (zh) 电池隔膜及其制备方法和电池
KR20210060469A (ko) 비수계 이차 전지 접착층용 슬러리 및 접착층 형성 비수계 이차 전지용 전지 부재, 그리고, 비수계 이차 전지용 적층체의 제조 방법 및 비수계 이차 전지의 제조 방법
JP7501363B2 (ja) 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層、非水系二次電池用セパレータ、及び非水系二次電池
CN112242591A (zh) 一种油性功能浆料、锂电隔膜及其制备方法和应用
JP2023040938A (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2024203927A1 (ja) 二次電池用積層体の製造方法
WO2022239547A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565520

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180078467.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18254868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898209

Country of ref document: EP

Effective date: 20230630