WO2022114172A1 - Heat transfer structure for lsi element and method for manufacturing lsi element having such heat transfer structure - Google Patents

Heat transfer structure for lsi element and method for manufacturing lsi element having such heat transfer structure Download PDF

Info

Publication number
WO2022114172A1
WO2022114172A1 PCT/JP2021/043578 JP2021043578W WO2022114172A1 WO 2022114172 A1 WO2022114172 A1 WO 2022114172A1 JP 2021043578 W JP2021043578 W JP 2021043578W WO 2022114172 A1 WO2022114172 A1 WO 2022114172A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lsi
thin film
heat transfer
transfer structure
Prior art date
Application number
PCT/JP2021/043578
Other languages
French (fr)
Japanese (ja)
Inventor
光治 加藤
兆 嶋田
孝幸 古澤
幹土 砂入
Original Assignee
有限会社Mtec
アスカコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Mtec, アスカコーポレーション株式会社 filed Critical 有限会社Mtec
Publication of WO2022114172A1 publication Critical patent/WO2022114172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon

Definitions

  • the present invention relates to a heat transfer structure of an LSI element and a method of manufacturing an LSI element having the heat transfer structure. More specifically, the present invention relates to a heat transfer structure of an LSI element that transfers heat generated by an LSI by a metal substrate bonded to a Si thin film to the outside, and a method of manufacturing an LSI element having the heat transfer structure.
  • the operating temperature range of the LSI element using Si is approximately 150 ° C. or less at the PN junction temperature of the element. Therefore, how to transmit the heat generated in the LSI formed on the surface layer portion of Si to the outside is important.
  • FIG. 9A shows a mounting example of a conventional typical high-performance LSI.
  • a chip-sized LSI element 300 in which the LSI 100 is formed on the surface layer portion on the main surface (lower surface in the drawing) side of the silicon (Si) substrate 310 is mounted on the printed circuit board 200 by a face-down technique.
  • the heat generated by the LSI 100 is dissipated from the main surface of the face-down mounted LSI element 300 to the printed circuit board 200 via the face-down bonding terminal 120.
  • a first heat spreader 410 or the like having a heat distribution function is provided on the back surface side of the printed circuit board 200, and heat is radiated to the outside.
  • heat is radiated to the outside from the back surface (upper surface in the drawing) of the LSI element 300 by the second heat spreader 430 provided via the heat transfer material 420 such as the heat transfer sheet and the heat transfer gel. .. Since the printed circuit board 200 connected to the main surface side of the LSI element 300 is generally made of resin, the thermal conductivity is not good. By providing a metal hole (thermal via) for heat transfer penetrating the printed circuit board 200, heat conduction is improved, but the effect is limited. As the heat generated by the LSI 100 increases, it becomes important to transfer heat from the back surface side of the LSI element 300 to the second heat spreader 430 via the heat transfer material 420.
  • the second heat spreader 430 also serves as the control system terminal of the LSI 100 and the housing of the case, and has a structure that easily radiates the heat generated by the LSI to the outside.
  • FIG. 9B shows an example of face-down mounting of a high-performance LSI having a fan-out structure.
  • the heat generated by the LSI 100 is transferred to the printed circuit board 200 via the fan-out substrate 320, which is joined to the main surface side of the LSI element 300 to form fan-out wiring, and the face-down bonding terminal provided on the lower surface thereof. Then, it is radiated to the outside by the first heat spreader 410 or the like.
  • the second heat spreader 430 also serves as the control system terminal of the LSI 100 and the housing of the case, and has a structure that easily radiates the heat generated by the LSI to the outside. As the heat generated by the LSI 100 increases, it becomes important to transfer heat from the back surface side of the LSI element 300 to the second heat spreader 430 via the heat transfer material 420.
  • FIG. 10 shows the case where a heat dissipation fan is used.
  • the LSI element 300 is face-down mounted on the printed circuit board 200.
  • the heat generated by the LSI 100 is transferred to the printed circuit board 200 via the face-down bonding terminal and radiated to the outside from the first heat spreader 410 or the like.
  • the heat generated in the LSI 100 is radiated from the back surface side of the LSI element 300 to the outside air by using the heat dissipation fan 440. Since the thermal conductivity of the printed circuit board 200 is generally not good, it is important to transfer heat from the back surface side of the LSI element 300 to the heat dissipation fan 440 as the heat generation of the LSI 100 increases.
  • molybdenum having a high melting point is bonded to a metal at a high temperature of 1000 ° C., and bonding is performed by mutual diffusion of molybdenum and Si at the interface.
  • a method of metallizing the bonded surface of the Si substrate using high melting point solder and bonding it to the copper substrate at about 400 ° C is conceivable, but face-down bonding is performed by soldering at about 220 ° C. Soldering the Si substrate and the copper substrate requires soldering using high melting point solder, which has a higher temperature.
  • the practical temperature of the face-down mounted element is generally-. Since the temperature is about 40 ° C. to + 85 ° C., stress is generated due to the difference between the temperature at the time of joining and the temperature in the practical state, and warpage occurs. Further, due to the stress generated at the bonding interface, it is not preferable for the connection life and the element life of the connection interface.
  • the operating temperature of the LSI element is generally about -40 ° C to + 85 ° C. Therefore, stress is generated at the joining interface due to the difference between the temperature at the time of joining and the temperature in the practical state, and warpage occurs. Further, due to the stress generated at the bonding interface, it is not preferable for the connection life and the element life of the connection interface. In particular, the thinner the Si layer, the greater the effect on the element on the Si surface due to the internal stress generated at the bonding interface.
  • An object of the present invention is to provide a heat transfer structure of an LSI element that transfers heat generated in an LSI by a metal substrate bonded to a Si thin film to the outside, and a method of manufacturing an LSI element having the heat transfer structure.
  • the point of view for solving the above problems is to set the bonding temperature between the Si substrate and the metal substrate to a temperature within the operating temperature range of the LSI element in order to reduce the stress at the bonding interface.
  • the stress generated at the joining interface is small when the LSI element is used, and a good effect can be obtained on the device life and the interface joining life.
  • a temporary substrate is attached to the main surface side of the Si substrate after the LSI is formed, and the Si layer is formed to the limit where the LSI function can be created. Is to be thinly polished and then joined to a metal substrate.
  • the substrate portion should be made of a metal (copper) material having good thermal conductivity. It is in. As a result, the heat generated by the LSI is quickly transmitted to the copper substrate portion, and the heat can be transferred from the copper substrate portion to the external heat spreader.
  • the present invention is as follows. 1. 1. The first joining step of joining the main surface side of the Si substrate on which the LSI is formed on the surface layer and the temporary substrate, and A Si thin film step of forming a Si thin film by removing the back surface side of the Si substrate while leaving a thickness corresponding to the depth of the surface layer portion. A second joining step of joining the back surface of the Si thin film and the metal surface of the second substrate whose surface layer is at least a metal substrate at a temperature not exceeding the upper limit of the operating temperature of the LSI. The peeling step for removing the temporary substrate and A method for manufacturing an LSI element having a heat transfer structure, which comprises. 2. 2.
  • a fan-out mounting step of mounting a fan-out board in which fan-out wiring is formed on the main surface side of the Si board is included.
  • the Si substrate and the temporary substrate are joined via the fan-out substrate.
  • a barrier metal layer forming step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film is included.
  • the Si thin film and the second substrate are joined via the barrier metal layer.
  • the thickness of the Si thin film is 100 ⁇ m or less.
  • the metal substrate is a copper substrate.
  • An LSI is formed on the surface layer portion of the main surface thereof, and a Si thin film having a thickness corresponding to the depth of the surface layer portion is formed.
  • a second substrate whose surface layer is at least a metal substrate bonded to the back surface of the Si thin film is provided.
  • a heat transfer structure of an LSI element, characterized in that heat generated by an LSI is transferred to the outside through the metal substrate. 7.
  • a fan-out wiring is formed, and the fan-out substrate is provided on the main surface side of the Si thin film.
  • the thickness of the Si thin film is 100 ⁇ m or less. Or 7.
  • the metal substrate is a copper substrate. ⁇ 8.
  • the surface layer includes a second joining step of joining the metal surface of the second substrate made of a metal substrate and a peeling step of removing the temporary substrate, the surface layer on the main surface side of the Si substrate on which the LSI is formed is included.
  • a thin Si thin film is formed according to the depth of the portion, and the Si thin film and the metal substrate are joined in a normal temperature range.
  • an LSI is formed on the surface layer portion of the main surface thereof, and a Si thin film having a thickness corresponding to the depth of the surface layer portion is formed.
  • a second substrate having at least a surface layer made of a metal substrate bonded to the back surface of the Si thin film is provided, and heat generated by the LSI is transferred through the metal substrate, so that the heat generated by the LSI is rapidly made of the metal substrate. It is transmitted to the substrate portion, and heat can be transferred from the metal substrate portion to an external heat spreader or the like. By providing the function of the heat pipe to the external heat spreader or the like, the heat from the metal substrate can be transferred to the outside more efficiently.
  • the metal substrate As the metal substrate, a copper substrate having excellent thermal conductivity can be used. Further, since the metal substrate serves as a substrate, an LSI element suitable for face-down mounting can be configured. The generation of warpage is suppressed by the metal substrate, and further, by joining the metal substrate and the Si thin film on which the LSI is formed at a temperature below the upper limit of the temperature at which the element is used, the Si thin film and the metal when using the LSI element are used. Deterioration due to stress generated at the bonding interface with the substrate can be suppressed.
  • the LSI (1) is formed on the surface layer portion of the main surface (11), and the thickness is formed thin corresponding to the depth of the surface layer portion.
  • a second substrate (25) having a formed Si thin film (10) and a second substrate (25) having at least a surface layer bonded to the back surface (12) of the Si thin film (10) made of a metal substrate (20) is provided, and the metal substrate (20) is provided. It is characterized in that the heat generated in the LSI (1) is transferred to the outside through the LSI (1) (see FIG. 1).
  • the type of LSI is not particularly limited.
  • a fan-out wiring is formed, and a fan-out substrate (9) bonded to the main surface (11) side of the Si thin film (10) is further formed. It can be provided (see FIG. 3 (b)).
  • the thickness of the Si thin film (10) corresponds to the depth of the surface layer portion and is made as thin as possible to create an LSI function, and the metal substrate (20) serves as a substrate for the LSI element.
  • the depth of the surface layer portion is set according to the impurity concentration, withstand voltage, and the like of the impurity layer constituting the LSI. Usually, the depth of the impurity layer is several ⁇ m. Therefore, in the present embodiment, the thickness of the Si thin film (10) can be 100 ⁇ m or less (5 to 100 ⁇ m).
  • the thickness of the metal substrate (20) may be appropriately set according to the strength of the material and the thickness of the Si thin film (10). For example, when a copper substrate is used, it can be about 50 to 300 ⁇ m. .. Even when LSI is mounted on the ceramic package, it is effective to use a metal (copper) substrate for the base portion of the Si element as described above in order to improve the heat conduction from the Si element to the ceramic package. ..
  • the method for manufacturing an LSI element (50) having a heat transfer structure is a method of manufacturing a Si substrate (100) having an LSI (1) formed on a surface layer portion on the main surface (11) side and a temporary substrate (5).
  • the back surface (12) of the Si thin film (10) and the metal substrate (20) of the second substrate (25) whose surface layer is at least the metal substrate (20) at a temperature not exceeding the upper limit of the operating temperature of the LSI (1).
  • Another method of manufacturing the heat transfer structure (51) of the LSI element is to mount a fan-out board (9) in which fan-out wiring is formed on the main surface (11) side of the Si board (100).
  • the first joining step which includes an out-mounting step, joins the Si substrate (100) and the temporary substrate (5) via the fan-out substrate (9) (see FIG. 4).
  • the bonding between the metal substrate (20) on the surface layer of the second substrate (25) and the Si thin film (10) is performed at a temperature (normal temperature) that does not exceed the upper limit of the operating temperature of the LSI element, the metal substrate 20 and the Si thin film are bonded.
  • the stress generated at the bonding interface with 10 can be reduced, the warp of the substrate can be significantly reduced, and the stress generated at the bonding interface due to the temperature cycle or the like generated in a practical state can be reduced. It is possible to increase the reliability of joining.
  • FIG. 1A shows a structural example of an LSI element 50 having a heat transfer structure according to the present embodiment.
  • a multi-layer element structure in which a Si thin film 10 having a required thickness on which LSI 1 is formed and a second substrate (25) having a thickness required for mounting and having at least a surface layer made of a metal substrate (20) are joined.
  • the surface layer of the second substrate (25) refers to a portion having a constant plate thickness constituting the joint surface with the Si thin film 10.
  • the entire second substrate (25) is composed of one metal substrate (20).
  • the metal substrate (20) it is preferable to use a copper substrate having excellent thermal conductivity.
  • heat generated by an LSI formed on the surface layer of an LSI element is conducted to the outside from a Si substrate of the same material via a heat spreader.
  • the LSI element 50 of this example uses a metal (copper) substrate instead of a Si substrate in order to more efficiently conduct heat conduction in the substrate portion made of Si.
  • the heat generated by the LSI 1 can be efficiently conducted to the heat spreader provided outside via the metal substrate 20 made of copper.
  • This heat transfer structure can also be applied to a multi-terminal structure of an LSI called a fan-out structure, and a fan-out structure element 51 having a copper substrate can be configured (see FIG. 3 (b)).
  • the second substrate 25 having at least the surface layer made of a metal substrate may be configured by laminating the metal substrate 20 to be the surface layer and the adhesive tape 26.
  • the adhesive tape 26 is effective when the thickness of the metal substrate 20 is kept thin, and in addition, the adhesive tape 26 can also serve as a base adhesive tape when the LSI element is divided into chips.
  • the second substrate 25 may be formed by a metal substrate 20 as a surface layer and a solder layer 27.
  • the solder layer 27 can be used as a connecting means when the LSI element is mounted on the ceramic package.
  • the second substrate 25 may be formed of a metal substrate 20 as a surface layer and an insulating sheet 28.
  • the insulating sheet 28 can serve as an insulating layer when the metal substrate potential of the LSI element is different from the potential of the heat spreader.
  • various materials can be selected as the base layer of the metal substrate 20 as the surface layer.
  • the base layer constituting the second substrate 25 is omitted, and the entire second substrate 25 is composed of one metal substrate 20.
  • FIG. (A) shows a state in which the LSI 1 is formed on the surface layer portion on the main surface 11 side of the Si substrate 100.
  • the substrate is the same Si substrate as the LSI.
  • a bonding terminal 30 for face-down mounting is formed on the main surface 11 of the Si substrate 100.
  • the standard thickness of the Si substrate (100) is, for example, 725 ⁇ m in the case of an 8-inch wafer.
  • FIG. 2B shows a state in which the main surface 11 side of the Si substrate 100 on which the LSI 1 is formed on the surface layer portion and the temporary substrate 5 are joined by the first joining step.
  • the temporary substrate 5 for example, a transparent glass substrate can be used.
  • the main surface 11 side of the Si substrate 100 and the temporary substrate 5 can be bonded by applying a UV release resin that is peeled off by ultraviolet light as a bonding material to the bonding surface.
  • the flatness of the bonding is required in order to polish the Si substrate 100 thinly, but the flatness can be ensured by applying the UV release resin and then pressurizing it while keeping it parallel.
  • an adhesive resin tape is also possible to use an adhesive resin tape as the temporary substrate 5. Due to the rigidity of the resin tape, the Si substrate 100 can be thinly polished in the subsequent Si thinning step.
  • the Si thin film thinning step is a step of forming the Si thin film 10 by removing the back surface side of the Si substrate 100 while leaving a thickness corresponding to the depth of the surface layer portion.
  • FIG. 2C shows a state in which the Si thin film 10 using the Si substrate 100 as a base material is formed by removing the back surface side of the Si substrate 100 bonded to the temporary substrate 5 by the Si thin film step. ing.
  • the method of removing the back surface side of the Si substrate 100 is not particularly limited, and for example, the thickness can be reduced to about 5 ⁇ m by grinding and polishing the back surface side of the Si substrate 100 with the temporary substrate 5 as a support.
  • the thickness corresponding to the depth of the surface layer portion depends on the withstand voltage required for the element, and is about 5 ⁇ m for the low withstand voltage element. Therefore, the thickness of the Si thin film 10 may be 5 ⁇ m or more. can. Actually, it is selected based on the balance between the ease of thin film processing and the improvement of thermal conductivity, and the thickness of the Si thin film 10 may be 10 ⁇ m or more from the viewpoint of thin film processing technology. Therefore, for example, in the case of an 8-inch wafer, the surface layer portion having a thickness of 10 to 100 ⁇ m on the main surface side of the standard Si substrate 100 having a thickness of 725 ⁇ m is left as a Si thin film (10).
  • the back surface 12 of the Si thin film 10 is polished to a surface roughness Ra of about 0.5 nm for later bonding with the metal substrate 20.
  • the barrier metal layer forming step is a step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film after performing the Si thinning step (not shown).
  • the barrier metal layer 8 may be formed on the back surface 12 of the Si thin film 10 in order to prevent the copper from diffusing into the Si layer after bonding.
  • Ni, Ta, or the like can be used as the barrier metal, and the barrier metal layer 8 having a thickness of about 10 nm can be formed on the back surface 12 of the Si thin film 10 by sputtering.
  • the second joining step is a step of joining the back surface of the Si thin film and the metal substrate of the second substrate at a temperature not exceeding the upper limit of the operating temperature of the target LSI element.
  • FIG. 2D shows a state in which the back surface 12 of the Si thin film 10 and the second substrate 25 whose surface layer is at least the metal substrate 20 are bonded in the second bonding step.
  • the second substrate 25 is a substrate whose surface layer is at least a metal substrate 20, but the illustration is omitted except for the metal substrate 20.
  • the operating temperature of the semiconductor element is about ⁇ 20 ° C. to + 85 ° C. Therefore, the Si thin film 10 and the metal substrate 20 are joined at 85 ° C.
  • the joining can be performed at room temperature.
  • the material of the metal substrate 20 is not particularly limited, but for example, a copper substrate that is inexpensive and has excellent thermal conductivity can be used.
  • the barrier metal layer 8 is formed on the back surface of the Si thin film, the Si thin film 10 and the metal substrate 20 are joined via the barrier metal layer 8.
  • the method of joining at room temperature is not particularly limited, but for example, a method of activating both sides to be joined by an argon beam using a FAB (fast atomic beam) gun can be applied.
  • a FAB fast atomic beam
  • the Si thin film 10 and the metal substrate (copper substrate) 20 can be joined by using a FAB gun.
  • the joining method using a FAB gun has become widespread in room temperature joining of semiconductor substrates.
  • both sides to be joined are activated by irradiating an argon beam obtained from an argon beam source 200, and then pressurized at room temperature for joining.
  • the feature of this joining method is that if the joining surface has a flatness of 0.5 nm level, it can be directly joined at room temperature.
  • the figure is a schematic diagram of the main part of the bonding device.
  • Two substrates to be bonded in a vacuum chamber are arranged so as to face each other at regular intervals, and the FAB gun 200 is placed on both surfaces from the side thereof.
  • the argon beam (201, 202) is scanned and irradiated.
  • the degree of vacuum in the vacuum chamber is about 1 ⁇ 10 -4 to 1 ⁇ 10 -6 Pa.
  • the surface layers (20b, 10b) of both substrates are activated and can be bonded at room temperature. It is also possible to activate and bond with an ion gun regardless of the FAB gun.
  • FIG. 6 shows a TEM (transmission electron microscope) image of the bonding interface between the Si thin film 10 and the copper substrate 20. It can be seen that the Si thin film 10 and the copper substrate 20 are bonded at the atomic level.
  • a method of forming a thin gold thin film with a thickness of about 10 nm on the surface for joining has also been developed.
  • the Si thin film 10 and the metal substrate 20 can also be joined via such a thin gold thin film.
  • FIG. 2 (e) shows a state in which the temporary substrate is removed by the peeling step.
  • the Si thin film 10 is bonded to the metal substrate 20 via the barrier metal layer 8 (not shown).
  • the temporary substrate 5 made of transparent glass and the main surface 11 of the Si thin film 10 are bonded with a UV release resin, the bonding interface can be separated by irradiating ultraviolet rays from the glass substrate side.
  • the LSI element has a multi-layer element structure composed of a thin Si layer on which the LSI is formed and a metal substrate as a support substrate thereof.
  • the transparent glass substrate can be reused.
  • a resin tape having adhesiveness is used as the temporary substrate 5, it can be peeled off from the end face of the resin tape, and the resin tape can be disposable.
  • the LSI element can have a fan-out structure.
  • Fan-out mounting is a mounting method that has been put into practical use as the terminal pitch has become finer due to the increase in the number of pins of LSI.
  • FIG. 3A shows how the conventional LSI element 300 is mounted on the fan-out substrate (Si substrate) 320 and the terminal pitch is widened. Terminals are formed on the LSI element 300 side of the fan-out board 320 at the same pitch as the LSI element 300, mutual wiring is made in the inner layer of the fan-out board, and terminals having a wide pitch on the external mounting surface terminal 13 of the fan-out board. Is formed.
  • the external mounting surface terminal 13 is a terminal having a wide pitch so that it can be face-down mounted on a printed circuit board.
  • the LSI element 300 is face-down mounted on the fan-out substrate 320 in the wafer state, then the resin 14 is filled, and the resin is molded in the wafer state.
  • the Si substrate of the element is exposed on the back surface side of the LSI element 300.
  • a resin substrate may be used in addition to the Si substrate.
  • FIG. 3B shows the LSI element 51 in which the fan-out substrate 9 having the fan-out wiring formed is bonded to the main surface 11 side of the Si thin film 10 in the method of manufacturing the LSI element of the present embodiment. ing.
  • a metal substrate 20 is bonded to the back surface of the Si thin film 10, and the metal substrate 20 is exposed on the back surface side of the LSI element 51.
  • the thickness of the Si thin film 10 is the minimum thickness necessary for the configuration and operation of the LSI, and the thickness of the metal substrate 20 which is the base portion thereof is necessary for face-down mounting of an element having a fan-out structure. It is said to be thick. According to this configuration, the heat generated by the LSI can be quickly conducted to the substrate portion having high thermal conductivity, and efficiently conducted and radiated to the outside via the heat spreader connected to the substrate portion.
  • the fan-out mounting step of mounting the fan-out board (9) in which the fan-out wiring is formed on the main surface (11) side of the Si board (100) is included, and the first joining step includes a fan-out mounting step. It can be configured to join the Si substrate (100) and the temporary substrate (5) via the fan-out substrate (9).
  • FIG. 4 each step in the manufacturing method of the LSI element which can be fan-out mounted will be described. Each manufacturing process is performed in an 8-inch wafer state, and each figure shows a cross section of a portion corresponding to an LSI element in one chip size package.
  • FIG. (A) shows a state in which the LSI 1 is formed on the surface layer portion on the main surface 11 side of the Si substrate 100.
  • the substrate is the same Si substrate as the LSI.
  • a bonding terminal 30 is formed on the main surface 11 of the Si substrate 100, and a fan-out substrate 9 made of Si is bonded to the main surface side of the bonding terminal 30.
  • Mutual wiring is made in the inner layer of the fan-out board 9, and bonding terminals 13 having a wide pitch are formed on the external mounting surface of the fan-out.
  • FIG. 4B shows a state in which the temporary substrate 5 is bonded to the upper surface of the fan-out substrate 9 by the first bonding step.
  • FIG. 3C shows a state in which the back surface side of the Si substrate 100 is removed by polishing or the like by the Si thin film step, and the Si thin film 10 remains. Since the temporary substrate 5 serves as a support, the thickness of the Si thin film 10 can be reduced to about 5 to 10 ⁇ m.
  • FIG. 3D shows a state in which the metal substrate 20 is bonded to the back surface 12 of the Si thin film 10 by the second bonding step. A room temperature joining technique such as using a FAB gun can be applied to this joining. It can also be bonded via a gold thin film having a thickness of about 10 nm.
  • FIG. 3E shows a state in which the temporary substrate 5 is peeled off by the peeling step. As described above, the fan-out structure element 51 having an element structure made of a metal (copper) substrate is completed. The specific contents of each step are the same as those of each step described with reference to FIG.
  • the LSI element 50 manufactured as described above and the LSI element 51 having a fan-out structure can be mounted on a printed circuit board by face-down and used.
  • FIG. 7A shows an example in which the LSI element 50 of the chip size package is face-down mounted on the printed circuit board 200.
  • FIG. 3B shows an example in which an LSI element 51 having a fan-out structure is face-down mounted on a printed circuit board 200.
  • a copper substrate is used as the metal substrate 20, and the thickness thereof is 300 ⁇ m.
  • the thickness of the Si thin film 10 on which the LSI is formed is 10 ⁇ m.
  • the thin Si thin film 10 and the metal substrate 20 can efficiently transfer the heat generated by the LSI.
  • the Si thin film 10 is bonded to the metal substrate 20, there is no warp, and stable soldering is possible even in face-down mounting.
  • the heat generated on the surface of the LSI is dissipated mainly by conduction from the copper substrate 20 which is a substrate to the heat spreader 430 which is a housing.
  • FIG. 8 describes a simulation of heat dissipation by heat conduction from the LSI element 50 mounted as described above to the housing.
  • the thickness of the Si thin film 10 constituting the LSI element 50 is 10 ⁇ m
  • the thickness of the copper substrate as a substrate is 300 ⁇ m.
  • the heat spreader portion D that also serves as a housing has a temperature of 30 ° C.
  • the heat spreader portion C has a temperature of 53 ° C.
  • the temperature is 76 ° C. in the heat conductive resin portion B and 90 ° C. in the LSI portion A.
  • the LSI unit A can be set to 150 ° C.
  • the heat spreader is provided with the function of a heat pipe, the heat conduction from the heat spreader portion D to the outside is further increased, and the temperatures in the heat conductive resin portion B and the LSI portion A are further lowered.
  • the element structure of a general Si substrate see FIG. 9A
  • the heat generation is 20 watts and the ambient temperature is 25 ° C.
  • the temperature is 75 ° C. at the point corresponding to the heat spreader portion C, 98 ° C. at the point corresponding to the heat conductive resin portion B, and 135 ° C. at the point corresponding to the LSI portion A.
  • the above temperature difference in the LSI unit A can be said to be an effect of the element structure according to the present embodiment, and by using the element as a copper substrate, the temperature can be lowered by 45 ° C. as compared with the case of the Si substrate. Conversely, it can be used up to a temperature range of 45 ° C. higher. If the operating temperature is the same, it means that a device with high heat generation of 20 watts or more can be used. This also applies to the LSI element 51 provided with the fan-out substrate.
  • the metal substrate and the Si layer (Si thin film) on which the LSI is formed are bonded at the bonding interface by performing the bonding at a temperature equal to or lower than the upper limit of the temperature at which the device is used.
  • the stress generated can be minimized. That is, the LSI element in which the Si layer is bonded to the metal substrate at room temperature significantly suppresses the influence of stress generated at the bonding interface when the LSI element is used, as compared with the case where the Si layer is bonded to the metal substrate at high temperature. be able to.
  • the thickness of the metal substrate made of copper is 300 ⁇ m
  • the thickness of the Si thin film is 10 ⁇ m
  • the operating temperature of the LSI element is 85 ° C.
  • the coefficient of linear expansion is 16.8 ⁇ 10-6 for copper and 2.4 ⁇ 10-6 for Si, and the difference is 14.4.
  • the Si layer and the copper substrate are bonded at a high temperature. Assuming that the Si layer and the copper substrate are bonded at 400 ° C., a temperature difference of 315 ° C. occurs between the temperature at the time of bonding and the temperature at 85 ° C. when the semiconductor element is used.
  • the Si layer (Si thin film) and the copper substrate are bonded at room temperature (25 ° C.), the temperature difference from the temperature of 85 ° C. when the LSI element is used is only 60 ° C.
  • the present invention is not limited to the embodiment detailed above, and various modifications or changes can be made within the scope shown in the claims of the present invention.
  • the base part of the LSI element may be a metal (copper) substrate. effective.
  • the multi-layered element structure of the present invention makes it possible to apply it to applications with a higher environmental temperature by effectively conducting heat with high heat generation, and it is also possible to mount a larger heat generating element.
  • LSI 5; temporary substrate, 8; barrier metal layer, 9; fan-out substrate, 10; Si thin film, 100; Si substrate, 20; metal substrate (copper substrate), 25; second substrate, 50-54; LSI element, 200; printed circuit board.

Abstract

The present invention provides a heat transfer structure for an LSI element that transfers heat generated in an LSI to the outside thereof by means of a metal substrate joined to a thin Si layer, and a method for manufacturing an LSI element having such heat transfer structure. A method for manufacturing an LSI element having a heat transfer structure is characterized by comprising: a first joining step for joining a provisional substrate 5 to a main surface 11 side of a Si substrate 100 having an LSI 1 formed in an upper layer portion thereof; a Si film-thinning step for forming a Si thin film 10 by removing a back surface side of the Si substrate while leaving a thickness corresponding to the depth of the upper layer portion; a second joining step for joining, at a temperature not exceeding an upper limit of an LSI operation temperature, the back surface of the Si thin film to a second substrate 25 of which at least an upper layer comprises a metal substrate 20; and a peeling step for removing the provisional substrate 5.

Description

LSI素子の熱伝構造及びその熱伝構造を備えるLSI素子の製造方法A heat transfer structure of an LSI element and a method for manufacturing an LSI element having the heat transfer structure.
 本発明は、LSI素子の熱伝構造及びその熱伝構造を備えるLSI素子の製造方法に関する。詳しくは、Si薄膜と接合された金属基板によりLSIで発生した熱を外部に伝えるLSI素子の熱伝構造、及びその熱伝構造を備えるLSI素子の製造方法に関する。 The present invention relates to a heat transfer structure of an LSI element and a method of manufacturing an LSI element having the heat transfer structure. More specifically, the present invention relates to a heat transfer structure of an LSI element that transfers heat generated by an LSI by a metal substrate bonded to a Si thin film to the outside, and a method of manufacturing an LSI element having the heat transfer structure.
 半導体の微細化技術の進展に伴い、LSIの性能向上が著しい。近年では、AI用途等のLSIにおいて、20ワットの発熱を超えるような高性能LSIが実用化されてきている。Siを用いたLSI素子の使用温度範囲は、素子のPN接合部温度で概ね150℃以下とされている。このため、Siの表層部に形成されたLSIにおいて発生する熱をどのようにして外部へ伝送するのかが重要なこととなっている。 With the progress of semiconductor miniaturization technology, the performance of LSI has improved remarkably. In recent years, high-performance LSIs that generate more than 20 watts of heat have been put into practical use in LSIs for AI applications and the like. The operating temperature range of the LSI element using Si is approximately 150 ° C. or less at the PN junction temperature of the element. Therefore, how to transmit the heat generated in the LSI formed on the surface layer portion of Si to the outside is important.
 図9(a)は、従来の代表的な高性能LSIの実装例を示している。シリコン(Si)基板310の主面(図中の下方の面)側の表層部にLSI100が形成されたチップサイズのLSI素子300が、プリント基板200上にフェースダウン技術で実装されている。LSI100の発熱は、フェースダウン実装されたLSI素子300の主面からフェースダウンボンディング端子120を経由してプリント基板200に放熱される。プリント基板200の裏面側に熱分散機能を持つ第1ヒートスプレッダ410等が設けられ、熱が外部に放射される。一方、LSI素子300の裏面(図中の上方の面)からは、熱伝シートや熱伝ゲル等の熱伝材料420を介して設けられた第2ヒートスプレッダ430により、外部へ熱が放熱される。LSI素子300の主面側に接続されるプリント基板200は一般に樹脂であるため、熱伝導性は良くない。プリント基板200を貫通する伝熱のための金属孔(サーマルビア)を設けることにより熱伝導は改善されるが、効果は限定的である。LSI100の発熱が大きくなるにつれて、LSI素子300の裏面側から熱伝材料420を介して第2ヒートスプレッダ430へ熱を伝達することが重要になる。通常、第2ヒートスプレッダ430はLSI100の制御系端子とケースの筐体を兼ねており、LSIの発熱を外部に放射しやすい構造となっている。
 図9(b)は、ファンアウト構造の高性能LSIをフェースダウン実装する例を示している。LSI100の発熱は、LSI素子300の主面側に接合され、ファンアウト用配線を形成したファンアウト基板320と、その下面に設けられたフェースダウンボンディング端子を経由して、プリント基板200に伝熱され、第1ヒートスプレッダ410等により、外部に放射される。一方、LSI素子300の裏面からは、熱伝材料420を介して第2ヒートスプレッダ430から、外部へ熱が放熱される。プリント基板200は一般に樹脂であるため、熱伝導性は良くない。通常、第2ヒートスプレッダ430はLSI100の制御系端子とケースの筐体を兼ねており、LSIの発熱を外部に放射しやすい構造となっている。LSI100の発熱が大きくなるにつれて、LSI素子300の裏面側から熱伝材料420を介して第2ヒートスプレッダ430へ熱を伝達することが重要になる。
FIG. 9A shows a mounting example of a conventional typical high-performance LSI. A chip-sized LSI element 300 in which the LSI 100 is formed on the surface layer portion on the main surface (lower surface in the drawing) side of the silicon (Si) substrate 310 is mounted on the printed circuit board 200 by a face-down technique. The heat generated by the LSI 100 is dissipated from the main surface of the face-down mounted LSI element 300 to the printed circuit board 200 via the face-down bonding terminal 120. A first heat spreader 410 or the like having a heat distribution function is provided on the back surface side of the printed circuit board 200, and heat is radiated to the outside. On the other hand, heat is radiated to the outside from the back surface (upper surface in the drawing) of the LSI element 300 by the second heat spreader 430 provided via the heat transfer material 420 such as the heat transfer sheet and the heat transfer gel. .. Since the printed circuit board 200 connected to the main surface side of the LSI element 300 is generally made of resin, the thermal conductivity is not good. By providing a metal hole (thermal via) for heat transfer penetrating the printed circuit board 200, heat conduction is improved, but the effect is limited. As the heat generated by the LSI 100 increases, it becomes important to transfer heat from the back surface side of the LSI element 300 to the second heat spreader 430 via the heat transfer material 420. Normally, the second heat spreader 430 also serves as the control system terminal of the LSI 100 and the housing of the case, and has a structure that easily radiates the heat generated by the LSI to the outside.
FIG. 9B shows an example of face-down mounting of a high-performance LSI having a fan-out structure. The heat generated by the LSI 100 is transferred to the printed circuit board 200 via the fan-out substrate 320, which is joined to the main surface side of the LSI element 300 to form fan-out wiring, and the face-down bonding terminal provided on the lower surface thereof. Then, it is radiated to the outside by the first heat spreader 410 or the like. On the other hand, heat is radiated from the back surface of the LSI element 300 to the outside from the second heat spreader 430 via the heat transfer material 420. Since the printed circuit board 200 is generally made of resin, its thermal conductivity is not good. Normally, the second heat spreader 430 also serves as the control system terminal of the LSI 100 and the housing of the case, and has a structure that easily radiates the heat generated by the LSI to the outside. As the heat generated by the LSI 100 increases, it becomes important to transfer heat from the back surface side of the LSI element 300 to the second heat spreader 430 via the heat transfer material 420.
 図10は、放熱ファンを用いる場合を示している。LSI素子300はプリント基板200にフェースダウン実装されている。LSI100の発熱は、フェースダウンボンディング端子を経由してプリント基板200に伝熱され、第1ヒートスプレッダ410等から外部に放射される。一方、LSI100で発生する熱は、LSI素子300の裏面側から放熱ファン440を用いて外気へ放熱される。プリント基板200の熱伝導性は一般に良くないため、LSI100の発熱が大きくなるにつれて、LSI素子300の裏面側から放熱ファン440に熱を伝達することが重要になる。 FIG. 10 shows the case where a heat dissipation fan is used. The LSI element 300 is face-down mounted on the printed circuit board 200. The heat generated by the LSI 100 is transferred to the printed circuit board 200 via the face-down bonding terminal and radiated to the outside from the first heat spreader 410 or the like. On the other hand, the heat generated in the LSI 100 is radiated from the back surface side of the LSI element 300 to the outside air by using the heat dissipation fan 440. Since the thermal conductivity of the printed circuit board 200 is generally not good, it is important to transfer heat from the back surface side of the LSI element 300 to the heat dissipation fan 440 as the heat generation of the LSI 100 increases.
 以上のように、高性能LSIの放熱が課題となっており、とりわけLSI素子の主面側の表層部に形成されているLSIから、その基体部であるSi基板を経由してLSI素子の裏面側に設けられるヒートスプレッダや放熱ファンに至る熱伝導を良くすることが重要である。
 熱伝導性を向上させるため、Si基板に金属基板を貼り合わせる方法がある。例えば、Si半導体素子の基体部に金属を用いる方法が知られている(特許文献1を参照。)。特許文献1では、金属に高融点のモリブデンを用いて1000℃という高温で貼り合わせ、界面のモリブデンとSiの相互拡散により接合が行われている。この他、高融点半田を用いてSi基板の貼り合せ面をメタライズし、銅基板と400℃程度で接合する方法も考えられるが、フェースダウンボンディングは220℃程度の半田付けで行われるために、Si基板と銅基板の半田付けは一層温度が高い高融点半田を用いた半田付けを要する。しかし、モリブデン基板とSi基板とを1000℃で接合するにしても、銅基板とSi基板とを400℃で接合するにしても、フェースダウン実装される素子の実用温度は、一般的には-40℃~+85℃程度であるため、接合時の温度と実用状態における温度の差により応力が発生し、反りが発生してしまう。また、接合界面で発生する応力のために、接続界面の接続寿命や素子寿命のためには好ましくない。
As described above, heat dissipation of a high-performance LSI has become an issue, and in particular, from the LSI formed on the surface layer portion on the main surface side of the LSI element, the back surface of the LSI element via the Si substrate which is the substrate portion thereof. It is important to improve the heat conduction to the heat spreader and heat dissipation fan installed on the side.
In order to improve thermal conductivity, there is a method of bonding a metal substrate to a Si substrate. For example, a method of using a metal for the substrate portion of a Si semiconductor element is known (see Patent Document 1). In Patent Document 1, molybdenum having a high melting point is bonded to a metal at a high temperature of 1000 ° C., and bonding is performed by mutual diffusion of molybdenum and Si at the interface. In addition, a method of metallizing the bonded surface of the Si substrate using high melting point solder and bonding it to the copper substrate at about 400 ° C is conceivable, but face-down bonding is performed by soldering at about 220 ° C. Soldering the Si substrate and the copper substrate requires soldering using high melting point solder, which has a higher temperature. However, regardless of whether the molybdenum substrate and the Si substrate are bonded at 1000 ° C or the copper substrate and the Si substrate are bonded at 400 ° C, the practical temperature of the face-down mounted element is generally-. Since the temperature is about 40 ° C. to + 85 ° C., stress is generated due to the difference between the temperature at the time of joining and the temperature in the practical state, and warpage occurs. Further, due to the stress generated at the bonding interface, it is not preferable for the connection life and the element life of the connection interface.
特開平4-42971号公報Japanese Unexamined Patent Publication No. 4-49271
 前記のとおり、高性能LSI素子の放熱が課題となっている。とりわけLSI素子がフェースダウン実装される場合、LSI素子が形成されているSi基板の主面の表層部から、基体部であるSi基板を経由してLSI素子の裏面側に設けられるヒートスプレッダや放熱ファンに至る熱伝導を向上させる必要がある。また、その場合、Si基板の厚さが薄いことが好ましい。
 しかし、モリブデン基板とSi基板とを1000℃で接合したり、銅基板とSi基板とを400℃で接合したりする従来の技術では、一般にはLSI素子の使用温度は-40℃~+85℃程度とされるため、接合時の温度と実用状態における温度の差により接合界面に応力が発生し、反りが発生してしまう。また、接合界面で発生する応力のために、接続界面の接続寿命や素子寿命のためには好ましくない。特にSi層を薄くすればするほど張り合わせ界面にて発生する内部応力によりSi表面の素子に対する影響は大きい。
As described above, heat dissipation of high-performance LSI elements has become an issue. In particular, when the LSI element is face-down mounted, a heat spreader or a heat dissipation fan provided on the back surface side of the LSI element from the surface layer portion of the main surface of the Si substrate on which the LSI element is formed via the Si substrate which is the substrate portion. It is necessary to improve the heat conduction leading to. Further, in that case, it is preferable that the thickness of the Si substrate is thin.
However, in the conventional technique of joining the molybdenum substrate and the Si substrate at 1000 ° C. or the copper substrate and the Si substrate at 400 ° C., the operating temperature of the LSI element is generally about -40 ° C to + 85 ° C. Therefore, stress is generated at the joining interface due to the difference between the temperature at the time of joining and the temperature in the practical state, and warpage occurs. Further, due to the stress generated at the bonding interface, it is not preferable for the connection life and the element life of the connection interface. In particular, the thinner the Si layer, the greater the effect on the element on the Si surface due to the internal stress generated at the bonding interface.
 本発明は、Si薄膜と接合された金属基板によりLSIで発生した熱を外部に伝えるLSI素子の熱伝構造、及びその熱伝構造を備えるLSI素子の製造方法を提供することを目的とする。 An object of the present invention is to provide a heat transfer structure of an LSI element that transfers heat generated in an LSI by a metal substrate bonded to a Si thin film to the outside, and a method of manufacturing an LSI element having the heat transfer structure.
 上記のような課題を解決するための着眼点は、その接合界面における応力を小さくするために、Si基板と金属基板との接合温度をLSI素子の使用温度範囲の温度とすることにある。この常温に近い接合により、LSI素子の使用状態において接合界面に発生する応力は小さく、素子寿命や界面接合寿命に対して良好な効果を得ることができる。
 また、LSIが形成されているSi層の厚さを最小限とするために、LSIの形成後にSi基板の主面側に仮基板を貼り合わせ、LSI機能を創出することができる極限までSi層を薄く研磨し、その後に金属基板と接合することにある。
The point of view for solving the above problems is to set the bonding temperature between the Si substrate and the metal substrate to a temperature within the operating temperature range of the LSI element in order to reduce the stress at the bonding interface. By this joining near room temperature, the stress generated at the joining interface is small when the LSI element is used, and a good effect can be obtained on the device life and the interface joining life.
Further, in order to minimize the thickness of the Si layer on which the LSI is formed, a temporary substrate is attached to the main surface side of the Si substrate after the LSI is formed, and the Si layer is formed to the limit where the LSI function can be created. Is to be thinly polished and then joined to a metal substrate.
 更に、LSIがSi基板の表層部の数μmの領域に存在し、残りの数百ミクロンは基体としての役割だけであることから、基体部分を熱伝導性の良い金属(銅)材料とすることにある。これにより、LSIの発熱は、速やかに銅基体部に伝達され、銅基体部から外部のヒートスプレッダへ熱を伝えることができるようになる。 Further, since the LSI exists in a region of several μm on the surface layer of the Si substrate and the remaining several hundred microns only serve as a substrate, the substrate portion should be made of a metal (copper) material having good thermal conductivity. It is in. As a result, the heat generated by the LSI is quickly transmitted to the copper substrate portion, and the heat can be transferred from the copper substrate portion to the external heat spreader.
 本発明は、以下の通りである。
1.表層部にLSIが形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、
 前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することによりSi薄膜を形成するSi薄膜化工程と、
 前記LSIの使用温度の上限を超えない温度において前記Si薄膜の裏面と少なくとも表層が金属基板からなる第2基板の金属表面とを接合する第2接合工程と、
 前記仮基板を除去する剥離工程と、
 を含むことを特徴とする熱伝構造を備えるLSI素子の製造方法。
2.前記Si基板の前記主面側にファンアウト用配線が形成されたファンアウト基板を実装するファンアウト実装工程を含み、
 前記第1接合工程は、前記ファンアウト基板を介して前記Si基板と仮基板とを接合する前記1.記載の熱伝構造を備えるLSI素子の製造方法。
3.前記Si薄膜化工程を行った後、前記Si薄膜の裏面にバリアメタルからなるバリアメタル層を形成するバリアメタル層形成工程を含み、
 前記第2接合工程は、前記バリアメタル層を介して前記Si薄膜と前記第2基板とを接合する前記1.又は2.に記載の熱伝構造を備えるLSI素子の製造方法。
4.前記Si薄膜の厚さは100μm以下である前記1.乃至3.のいずれかに記載の熱伝構造を備えるLSI素子の製造方法。
5.前記金属基板は銅基板である前記1.乃至4.のいずれかに記載の熱伝構造を備えるLSI素子の製造方法。
6.その主面の表層部にLSIが形成されており、厚さが前記表層部の深さに対応して薄く形成されたSi薄膜と、
 前記Si薄膜の裏面に接合されている少なくとも表層が金属基板からなる第2基板と、 を備え、
 前記金属基板を介してLSIで発生した熱を外部に伝えることを特徴とするLSI素子の熱伝構造。
7.ファンアウト用配線が形成されており、前記Si薄膜の前記主面側に接合されているファンアウト基板を備える前記6.記載のLSI素子の熱伝構造。
8.前記Si薄膜の厚さは100μm以下である前記6.又は7.に記載のLSI素子の熱伝構造。
9.前記金属基板は銅基板である前記6.乃至8.のいずれかに記載のLSI素子の熱伝構造。
The present invention is as follows.
1. 1. The first joining step of joining the main surface side of the Si substrate on which the LSI is formed on the surface layer and the temporary substrate, and
A Si thin film step of forming a Si thin film by removing the back surface side of the Si substrate while leaving a thickness corresponding to the depth of the surface layer portion.
A second joining step of joining the back surface of the Si thin film and the metal surface of the second substrate whose surface layer is at least a metal substrate at a temperature not exceeding the upper limit of the operating temperature of the LSI.
The peeling step for removing the temporary substrate and
A method for manufacturing an LSI element having a heat transfer structure, which comprises.
2. 2. A fan-out mounting step of mounting a fan-out board in which fan-out wiring is formed on the main surface side of the Si board is included.
In the first joining step, the Si substrate and the temporary substrate are joined via the fan-out substrate. A method for manufacturing an LSI element having the heat transfer structure described above.
3. 3. After performing the Si thin film forming step, a barrier metal layer forming step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film is included.
In the second joining step, the Si thin film and the second substrate are joined via the barrier metal layer. Or 2. A method for manufacturing an LSI element having a heat transfer structure according to the above.
4. The thickness of the Si thin film is 100 μm or less. To 3. A method for manufacturing an LSI element having a heat transfer structure according to any one of the above.
5. The metal substrate is a copper substrate. To 4. A method for manufacturing an LSI element having a heat transfer structure according to any one of the above.
6. An LSI is formed on the surface layer portion of the main surface thereof, and a Si thin film having a thickness corresponding to the depth of the surface layer portion is formed.
A second substrate whose surface layer is at least a metal substrate bonded to the back surface of the Si thin film is provided.
A heat transfer structure of an LSI element, characterized in that heat generated by an LSI is transferred to the outside through the metal substrate.
7. 6. A fan-out wiring is formed, and the fan-out substrate is provided on the main surface side of the Si thin film. The heat transfer structure of the LSI element described.
8. The thickness of the Si thin film is 100 μm or less. Or 7. The heat transfer structure of the LSI element described in 1.
9. The metal substrate is a copper substrate. ~ 8. The heat transfer structure of the LSI element according to any one of.
 本発明の熱伝構造を備えるLSI素子の製造方法によれば、表層部にLSIが形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することによりSi薄膜を形成するSi薄膜化工程と、前記LSIの使用温度の上限を超えない温度において前記Si薄膜の裏面と少なくとも表層が金属基板からなる第2基板の金属表面とを接合する第2接合工程と、前記仮基板を除去する剥離工程と、を含むため、LSIが形成されているSi基板の主面側の表層部の深さに応じた薄いSi薄膜を形成し、Si薄膜と金属基板とは常温域において接合される。これにより、接合界面に発生する応力が極めて小さく、また接合時の温度と素子使用時の温度の差が小さいため、接合界面の剥離を防止し、応力によるLSI素子の劣化を最小限に抑制することができる。 According to the method for manufacturing an LSI element having a heat transfer structure of the present invention, a first joining step of joining a temporary substrate and a main surface side of a Si substrate in which an LSI is formed on a surface layer portion and a depth of the surface layer portion. A Si thinning step of forming a Si thin film by removing the back surface side of the Si substrate while leaving a thickness corresponding to the thickness, and at least the back surface of the Si thin film at a temperature not exceeding the upper limit of the operating temperature of the LSI. Since the surface layer includes a second joining step of joining the metal surface of the second substrate made of a metal substrate and a peeling step of removing the temporary substrate, the surface layer on the main surface side of the Si substrate on which the LSI is formed is included. A thin Si thin film is formed according to the depth of the portion, and the Si thin film and the metal substrate are joined in a normal temperature range. As a result, the stress generated at the bonding interface is extremely small, and the difference between the temperature at the time of bonding and the temperature at the time of using the element is small, so that peeling of the bonding interface is prevented and deterioration of the LSI element due to stress is minimized. be able to.
 また、本発明のLSI素子の熱伝構造によれば、その主面の表層部にLSIが形成されており、厚さが前記表層部の深さに対応して薄く形成されたSi薄膜と、前記Si薄膜の裏面に接合されている少なくとも表層が金属基板からなる第2基板と、を備え、前記金属基板を介してLSIで発生した熱を伝えるため、LSIの発熱は速やかに金属基板からなる基体部に伝達され、金属基体部から外部のヒートスプレッダ等へ熱を伝えることができる。外部のヒートスプレッダ等にヒートパイプの機能を設けることにより金属基板からの熱を一層効率的に外部へ伝達することが出来る。金属基板として、熱伝導性に優れた銅基板を使用することができる。また、金属基板が基体となるため、フェースダウン実装に適したLSI素子を構成することができる。金属基板により反りの発生が抑制され、更に、金属基体とLSIが形成されているSi薄膜との接合を素子が使用される温度の上限以下で行うことにより、LSI素子使用時のSi薄膜と金属基板との接合界面に生じる応力による劣化を抑制することができる。 Further, according to the heat transfer structure of the LSI element of the present invention, an LSI is formed on the surface layer portion of the main surface thereof, and a Si thin film having a thickness corresponding to the depth of the surface layer portion is formed. A second substrate having at least a surface layer made of a metal substrate bonded to the back surface of the Si thin film is provided, and heat generated by the LSI is transferred through the metal substrate, so that the heat generated by the LSI is rapidly made of the metal substrate. It is transmitted to the substrate portion, and heat can be transferred from the metal substrate portion to an external heat spreader or the like. By providing the function of the heat pipe to the external heat spreader or the like, the heat from the metal substrate can be transferred to the outside more efficiently. As the metal substrate, a copper substrate having excellent thermal conductivity can be used. Further, since the metal substrate serves as a substrate, an LSI element suitable for face-down mounting can be configured. The generation of warpage is suppressed by the metal substrate, and further, by joining the metal substrate and the Si thin film on which the LSI is formed at a temperature below the upper limit of the temperature at which the element is used, the Si thin film and the metal when using the LSI element are used. Deterioration due to stress generated at the bonding interface with the substrate can be suppressed.
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施形態に係るLSI素子の熱伝構造を表す模式的断面図である。 熱伝構造を備えるLSI素子の製造方法における各工程を説明するための模式的断面図である。 ファンアウト構造を備えるLSI素子の熱伝構造を表す模式的断面図である。 ファンアウト構造とする場合の、熱伝構造を備えるLSI素子の製造方法における各工程を説明するための模式的断面図である。 FABガンを用いた接合方法を説明するための模式図である。 Si薄膜と金属基板との接合部のTEM画像である。 熱伝構造を備えるLSI素子のフェースダウン実装を説明するための模式的断面図である。 熱伝構造を備えるLSI素子のフェースダウン実装における各部の温度を示す図である。 従来のLSI素子のフェースダウン実装を説明するための模式的断面図である。 フェースダウン実装された従来のLSI素子に放熱ファンを使用する例を説明するための模式図である。
The present invention will be further described in the following detailed description with reference to the plurality of references mentioned with reference to non-limiting examples of typical embodiments according to the invention, although similar reference numerals are in the drawings. Similar parts are shown through several figures.
It is a schematic cross-sectional view which shows the heat transfer structure of the LSI element which concerns on embodiment. It is a schematic sectional drawing for demonstrating each process in the manufacturing method of the LSI element provided with a heat transfer structure. It is a schematic cross-sectional view which shows the heat transfer structure of the LSI element which has a fan-out structure. It is a schematic cross-sectional view for demonstrating each process in the manufacturing method of the LSI element which has a heat transfer structure in the case of having a fan-out structure. It is a schematic diagram for demonstrating the joining method using a FAB gun. It is a TEM image of the joint portion of a Si thin film and a metal substrate. It is a schematic cross-sectional view for demonstrating the face-down mounting of an LSI element provided with a heat transfer structure. It is a figure which shows the temperature of each part in the face-down mounting of the LSI element which has a heat transfer structure. It is a schematic cross-sectional view for demonstrating the face-down mounting of the conventional LSI element. It is a schematic diagram for demonstrating the example which uses the heat dissipation fan for the conventional LSI element which was face-down mounted.
 ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。 The matters shown here are for illustrative purposes and embodiments of the present invention, and are the most effective and effortless explanations for understanding the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this regard, it is not intended to show structural details of the invention beyond a certain degree necessary for a fundamental understanding of the invention, and some embodiments of the invention are provided by description in conjunction with the drawings. It is intended to clarify to those skilled in the art how it is actually realized.
 本実施形態に係るLSI素子の熱伝構造(50)は、主面(11)の表層部にLSI(1)が形成されており、厚さが前記表層部の深さに対応して薄く形成されたSi薄膜(10)と、Si薄膜(10)の裏面(12)に接合されている少なくとも表層が金属基板(20)からなる第2基板(25)とを備え、金属基板(20)を介してLSI(1)で発生した熱を外部に伝えることを特徴とする(図1参照)。LSIの種類は特に問わない。
 また、別のLSI素子の熱伝構造(51)は、ファンアウト用配線が形成されており、Si薄膜(10)の主面(11)側に接合されているファンアウト基板(9)を更に備えることができる(図3(b)参照)。
In the heat transfer structure (50) of the LSI element according to the present embodiment, the LSI (1) is formed on the surface layer portion of the main surface (11), and the thickness is formed thin corresponding to the depth of the surface layer portion. A second substrate (25) having a formed Si thin film (10) and a second substrate (25) having at least a surface layer bonded to the back surface (12) of the Si thin film (10) made of a metal substrate (20) is provided, and the metal substrate (20) is provided. It is characterized in that the heat generated in the LSI (1) is transferred to the outside through the LSI (1) (see FIG. 1). The type of LSI is not particularly limited.
Further, in the heat transfer structure (51) of another LSI element, a fan-out wiring is formed, and a fan-out substrate (9) bonded to the main surface (11) side of the Si thin film (10) is further formed. It can be provided (see FIG. 3 (b)).
 前記Si薄膜(10)の厚さは前記表層部の深さに対応し、LSI機能を創出することができる極限まで薄くされており、金属基板(20)がLSI素子の基体となる。前記表層部の深さは、LSIを構成する不純物層の不純物濃度、耐圧等に応じて設定される。通常、不純物層の深さは数μmである。このため、本実施形態においては、Si薄膜(10)の厚さは100μm以下(5~100μm)とすることができる。また、金属基板(20)の厚さは素材の強度とSi薄膜(10)の厚さに応じて適宜設定されればよく、例えば銅基板を用いた場合、50~300μm程度とすることができる。
 尚、セラミックパッケージにLSIを実装する場合においても、Si素子からセラミックパッケージに至る熱伝導を良くするために、上記のようにSi素子の基体部を金属(銅)基板とすることは有効である。
The thickness of the Si thin film (10) corresponds to the depth of the surface layer portion and is made as thin as possible to create an LSI function, and the metal substrate (20) serves as a substrate for the LSI element. The depth of the surface layer portion is set according to the impurity concentration, withstand voltage, and the like of the impurity layer constituting the LSI. Usually, the depth of the impurity layer is several μm. Therefore, in the present embodiment, the thickness of the Si thin film (10) can be 100 μm or less (5 to 100 μm). Further, the thickness of the metal substrate (20) may be appropriately set according to the strength of the material and the thickness of the Si thin film (10). For example, when a copper substrate is used, it can be about 50 to 300 μm. ..
Even when LSI is mounted on the ceramic package, it is effective to use a metal (copper) substrate for the base portion of the Si element as described above in order to improve the heat conduction from the Si element to the ceramic package. ..
 本実施形態に係る熱伝構造を備えるLSI素子(50)の製造方法は、表層部にLSI(1)が形成されているSi基板(100)の主面(11)側と仮基板(5)とを接合する第1接合工程と、前記表層部の深さに対応する厚さを残してSi基板(100)の裏面側を除去することによりSi薄膜(10)を形成するSi薄膜化工程と、LSI(1)の使用温度の上限を超えない温度においてSi薄膜(10)の裏面(12)と少なくとも表層が金属基板(20)からなる第2基板(25)の金属基板(20)とを接合する第2接合工程と、仮基板(5)を除去する剥離工程と、を含むことを特徴とする(図2参照)。
 また、別のLSI素子の熱伝構造(51)の製造方法は、前記Si基板(100)の主面(11)側にファンアウト用配線が形成されたファンアウト基板(9)を実装するファンアウト実装工程を含み、前記第1接合工程は、ファンアウト基板(9)を介してSi基板(100)と仮基板(5)とを接合する(図4参照)。
The method for manufacturing an LSI element (50) having a heat transfer structure according to the present embodiment is a method of manufacturing a Si substrate (100) having an LSI (1) formed on a surface layer portion on the main surface (11) side and a temporary substrate (5). A first joining step of joining and a Si thinning step of forming a Si thin film (10) by removing the back surface side of the Si substrate (100) while leaving a thickness corresponding to the depth of the surface layer portion. , The back surface (12) of the Si thin film (10) and the metal substrate (20) of the second substrate (25) whose surface layer is at least the metal substrate (20) at a temperature not exceeding the upper limit of the operating temperature of the LSI (1). It is characterized by including a second joining step of joining and a peeling step of removing the temporary substrate (5) (see FIG. 2).
Further, another method of manufacturing the heat transfer structure (51) of the LSI element is to mount a fan-out board (9) in which fan-out wiring is formed on the main surface (11) side of the Si board (100). The first joining step, which includes an out-mounting step, joins the Si substrate (100) and the temporary substrate (5) via the fan-out substrate (9) (see FIG. 4).
 第2基板(25)の表層の金属基板(20)とSi薄膜(10)との接合は、LSI素子の使用温度の上限を超えない温度(常温)で行われるため、金属基板20とSi薄膜10との接合界面に発生する応力を小さくすることができ、基板の反りを大幅に小さくすることができ、更に実用状態で生じる温度サイクル等により接合界面に発生する応力を小さくすることができ、接合の信頼性を高めることが可能である。 Since the bonding between the metal substrate (20) on the surface layer of the second substrate (25) and the Si thin film (10) is performed at a temperature (normal temperature) that does not exceed the upper limit of the operating temperature of the LSI element, the metal substrate 20 and the Si thin film are bonded. The stress generated at the bonding interface with 10 can be reduced, the warp of the substrate can be significantly reduced, and the stress generated at the bonding interface due to the temperature cycle or the like generated in a practical state can be reduced. It is possible to increase the reliability of joining.
 図1(a)は、本実施形態に係る熱伝構造を備えるLSI素子50の構造例を表している。LSI1が形成されている必要な厚さのSi薄膜10と、実装に必要な厚さを有する少なくとも表層が金属基板(20)からなる第2基板(25)とが接合された複層素子構造である。第2基板(25)の表層とはSi薄膜10との接合面を構成する一定の板厚の部分をいう。本例では、第2基板(25)の全体が1つの金属基板(20)で構成されている。金属基板(20)としては、熱伝導性に優れた銅基板を用いることが好ましい。
 従来、LSI素子の表層に形成されたLSIで発生する熱は、同じ材料のSiの基体からヒートスプレッダを経て外部に伝導されている。これに対して、本例のLSI素子50は、Siからなる基体部における熱伝導を一層効率的に行うために、Si基体ではなく金属(銅)基体としている。この構造により、LSI1で発生する熱を、銅からなる金属基体20を経て外部に設けられるヒートスプレッダに効率的に伝導することが可能となる。
この熱伝構造は、ファンアウト構造と呼ばれるLSIの多端子対応構造においても適用することができ、銅基体を有するファンアウト構造素子51を構成することができる(図3(b)参照)。
FIG. 1A shows a structural example of an LSI element 50 having a heat transfer structure according to the present embodiment. A multi-layer element structure in which a Si thin film 10 having a required thickness on which LSI 1 is formed and a second substrate (25) having a thickness required for mounting and having at least a surface layer made of a metal substrate (20) are joined. be. The surface layer of the second substrate (25) refers to a portion having a constant plate thickness constituting the joint surface with the Si thin film 10. In this example, the entire second substrate (25) is composed of one metal substrate (20). As the metal substrate (20), it is preferable to use a copper substrate having excellent thermal conductivity.
Conventionally, heat generated by an LSI formed on the surface layer of an LSI element is conducted to the outside from a Si substrate of the same material via a heat spreader. On the other hand, the LSI element 50 of this example uses a metal (copper) substrate instead of a Si substrate in order to more efficiently conduct heat conduction in the substrate portion made of Si. With this structure, the heat generated by the LSI 1 can be efficiently conducted to the heat spreader provided outside via the metal substrate 20 made of copper.
This heat transfer structure can also be applied to a multi-terminal structure of an LSI called a fan-out structure, and a fan-out structure element 51 having a copper substrate can be configured (see FIG. 3 (b)).
 前記少なくとも表層が金属基板からなる第2基板25は、図1(b)に示すように、表層となる金属基板20と粘着テープ26とが貼り合わされて構成されてもよい。粘着テープ26は、金属基板20の板厚を薄く抑える場合に有効であり、加えてLSI素子をチップに分割する際に下地となる粘着テープを兼ねることができる。
 また、第2基板25は、図1(c)に示すように、表層となる金属基板20と半田層27とにより形成されてもよい。半田層27は、LSI素子がセラミックパッケージに搭載される場合の接続手段として利用することができる。
 また、第2基板25は、図1(d)に示すように、表層となる金属基板20と絶縁シート28とにより形成されてもよい。絶縁シート28は、LSI素子の金属基板電位がヒートスプレッダの電位と異なる場合の絶縁層の役割を果たすことができる。
 その他、表層となる金属基板20の下地層となる材料は種々選択することができる。以下では、第2基板25を構成する下地層は省略して、第2基板25の全体が1つの金属基板20で構成されている例について説明する。
As shown in FIG. 1 (b), the second substrate 25 having at least the surface layer made of a metal substrate may be configured by laminating the metal substrate 20 to be the surface layer and the adhesive tape 26. The adhesive tape 26 is effective when the thickness of the metal substrate 20 is kept thin, and in addition, the adhesive tape 26 can also serve as a base adhesive tape when the LSI element is divided into chips.
Further, as shown in FIG. 1 (c), the second substrate 25 may be formed by a metal substrate 20 as a surface layer and a solder layer 27. The solder layer 27 can be used as a connecting means when the LSI element is mounted on the ceramic package.
Further, as shown in FIG. 1D, the second substrate 25 may be formed of a metal substrate 20 as a surface layer and an insulating sheet 28. The insulating sheet 28 can serve as an insulating layer when the metal substrate potential of the LSI element is different from the potential of the heat spreader.
In addition, various materials can be selected as the base layer of the metal substrate 20 as the surface layer. Hereinafter, an example will be described in which the base layer constituting the second substrate 25 is omitted, and the entire second substrate 25 is composed of one metal substrate 20.
 図2を参照しつつ、本実施形態に係る熱伝構造を備えるLSI素子の製造方法における各工程を説明する。各製造工程はウエーハ(例えば8インチサイズのウエーハ)状態で処理を行うが、各図は1つのチップサイズパッケージのLSI素子に相当する部分の断面を表している。
 同図(a)は、Si基板100の主面11側の表層部にLSI1が形成されている状態を示している。基体はLSIと同じSi基板である。Si基板100の主面11上には、フェースダウン実装のためのボンディング端子30が形成されている。Si基板(100)の厚さは、例えば8インチのウエーハの場合には725μmが標準である。
With reference to FIG. 2, each step in the method of manufacturing an LSI element having a heat transfer structure according to the present embodiment will be described. Each manufacturing process performs processing in a wafer (for example, 8-inch size wafer) state, and each figure shows a cross section of a portion corresponding to an LSI element in one chip size package.
FIG. (A) shows a state in which the LSI 1 is formed on the surface layer portion on the main surface 11 side of the Si substrate 100. The substrate is the same Si substrate as the LSI. A bonding terminal 30 for face-down mounting is formed on the main surface 11 of the Si substrate 100. The standard thickness of the Si substrate (100) is, for example, 725 μm in the case of an 8-inch wafer.
(第1接合工程)
 図2(b)は、第1接合工程により、表層部にLSI1が形成されているSi基板100の主面11側と、仮基板5とが接合された状態を示している。
 仮基板5としては、例えば、透明なガラス基板を用いることができる。Si基板100の主面11側と仮基板5とは、その接合面に接合材として紫外光で剥離するUV剥離樹脂を塗布して貼り合わせることができる。後の工程においてSi基板100を薄く研磨するために貼り合わせの平坦度が必要であるが、UV剥離樹脂を塗布後に平行を保って加圧することにより平坦度を確保することができる。
 また、仮基板5として、粘着性を持った樹脂テープを用いることも可能である。樹脂テープの剛性により、続くSi薄膜化工程においてSi基板100を薄く研磨することができる。
(First joining process)
FIG. 2B shows a state in which the main surface 11 side of the Si substrate 100 on which the LSI 1 is formed on the surface layer portion and the temporary substrate 5 are joined by the first joining step.
As the temporary substrate 5, for example, a transparent glass substrate can be used. The main surface 11 side of the Si substrate 100 and the temporary substrate 5 can be bonded by applying a UV release resin that is peeled off by ultraviolet light as a bonding material to the bonding surface. In a later step, the flatness of the bonding is required in order to polish the Si substrate 100 thinly, but the flatness can be ensured by applying the UV release resin and then pressurizing it while keeping it parallel.
It is also possible to use an adhesive resin tape as the temporary substrate 5. Due to the rigidity of the resin tape, the Si substrate 100 can be thinly polished in the subsequent Si thinning step.
(Si薄膜化工程)
 Si薄膜化工程は、前記表層部の深さに対応する厚さを残してSi基板100の裏面側を除去することによりSi薄膜10を形成する工程である。
 図2(c)は、Si薄膜化工程により、仮基板5と接合されたSi基板100の裏面側を除去することにより、Si基板100を母材とするSi薄膜10が形成された状態を表している。Si基板100の裏面側を除去する方法は特に問わず、例えば、仮基板5を支持体としてSi基板100の裏面側を研削、研磨することにより、厚さを5μm程度にすることができる。前記のとおり、前記表層部の深さに対応する厚さは素子に必要な耐電圧に依存し、低耐電圧素子では5μm程度であるため、Si薄膜10の厚さは5μm以上とすることができる。実際には、薄膜加工の容易性と熱伝導性の向上とのバランスにより選択され、薄膜加工の技術の面から、Si薄膜10の厚さを10μm以上としてもよい。よって、例えば8インチのウエーハの場合、標準的な厚さ725μmのSi基板100から、その主面側の厚さ10~100μmの表層部分をSi薄膜(10)として残すこととなる。
 このように残されたSi基板100の主面11側の一定の厚さの部分がSi薄膜10となる。Si薄膜10の裏面12は、後の金属基板20との接合のために、表面粗さRaが0.5nm程度に研磨される。
(Si thin film process)
The Si thin film thinning step is a step of forming the Si thin film 10 by removing the back surface side of the Si substrate 100 while leaving a thickness corresponding to the depth of the surface layer portion.
FIG. 2C shows a state in which the Si thin film 10 using the Si substrate 100 as a base material is formed by removing the back surface side of the Si substrate 100 bonded to the temporary substrate 5 by the Si thin film step. ing. The method of removing the back surface side of the Si substrate 100 is not particularly limited, and for example, the thickness can be reduced to about 5 μm by grinding and polishing the back surface side of the Si substrate 100 with the temporary substrate 5 as a support. As described above, the thickness corresponding to the depth of the surface layer portion depends on the withstand voltage required for the element, and is about 5 μm for the low withstand voltage element. Therefore, the thickness of the Si thin film 10 may be 5 μm or more. can. Actually, it is selected based on the balance between the ease of thin film processing and the improvement of thermal conductivity, and the thickness of the Si thin film 10 may be 10 μm or more from the viewpoint of thin film processing technology. Therefore, for example, in the case of an 8-inch wafer, the surface layer portion having a thickness of 10 to 100 μm on the main surface side of the standard Si substrate 100 having a thickness of 725 μm is left as a Si thin film (10).
The portion having a certain thickness on the main surface 11 side of the Si substrate 100 left in this way becomes the Si thin film 10. The back surface 12 of the Si thin film 10 is polished to a surface roughness Ra of about 0.5 nm for later bonding with the metal substrate 20.
(バリアメタル層形成工程)
 バリアメタル層形成工程は、Si薄膜化工程を行った後、Si薄膜の裏面にバリアメタルからなるバリアメタル層を形成する工程である(図示せず)。
 Si薄膜10と接合される金属基板20として銅基板を用いる場合、接合後の銅のSi層への拡散を防止するため、Si薄膜10の裏面12にバリアメタル層8を形成しておくことが好ましい。バリアメタルとしてNi、Ta等を使用することができ、Si薄膜10の裏面12にスパッタにより厚さ数10nm程度のバリアメタル層8を形成することができる。
(Barrier metal layer forming process)
The barrier metal layer forming step is a step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film after performing the Si thinning step (not shown).
When a copper substrate is used as the metal substrate 20 to be bonded to the Si thin film 10, the barrier metal layer 8 may be formed on the back surface 12 of the Si thin film 10 in order to prevent the copper from diffusing into the Si layer after bonding. preferable. Ni, Ta, or the like can be used as the barrier metal, and the barrier metal layer 8 having a thickness of about 10 nm can be formed on the back surface 12 of the Si thin film 10 by sputtering.
(第2接合工程)
 第2接合工程は、目的とするLSI素子の使用温度の上限を超えない温度において、Si薄膜の裏面と第2基板の金属基板とを接合する工程である。
 図2(d)は、第2接合工程において、Si薄膜10の裏面12と少なくとも表層が金属基板20からなる第2基板25とが接合された状態を表している。第2基板25は、少なくとも表層が金属基板20からなる基板であるが、金属基板20以外は図示を省略している。
 一般に、半導体素子の使用温度は、-20℃~+85℃程度とされる。このため、Si薄膜10と金属基板20との接合は、その使用温度範囲の上限である85℃以下にて行う。実際上、常温にて接合を行うことができる。金属基板20の素材は特に問わないが、例えば、安価で熱伝導性に優れた銅基板を使用することができる。Si薄膜の裏面にバリアメタル層8が形成されている場合には、Si薄膜10と金属基板20とはバリアメタル層8を介して接合される。
 金属基板20とSi薄膜10との接合のためには、それぞれの接合面の表面粗さが0.5nm程度となるように研磨しておくことが好ましいが、近年の研磨技術では容易である。
(Second joining process)
The second joining step is a step of joining the back surface of the Si thin film and the metal substrate of the second substrate at a temperature not exceeding the upper limit of the operating temperature of the target LSI element.
FIG. 2D shows a state in which the back surface 12 of the Si thin film 10 and the second substrate 25 whose surface layer is at least the metal substrate 20 are bonded in the second bonding step. The second substrate 25 is a substrate whose surface layer is at least a metal substrate 20, but the illustration is omitted except for the metal substrate 20.
Generally, the operating temperature of the semiconductor element is about −20 ° C. to + 85 ° C. Therefore, the Si thin film 10 and the metal substrate 20 are joined at 85 ° C. or lower, which is the upper limit of the operating temperature range. In practice, the joining can be performed at room temperature. The material of the metal substrate 20 is not particularly limited, but for example, a copper substrate that is inexpensive and has excellent thermal conductivity can be used. When the barrier metal layer 8 is formed on the back surface of the Si thin film, the Si thin film 10 and the metal substrate 20 are joined via the barrier metal layer 8.
In order to bond the metal substrate 20 and the Si thin film 10, it is preferable to polish each joint surface so that the surface roughness is about 0.5 nm, but it is easy with recent polishing techniques.
 常温で接合する方法は特に問わないが、例えば、FAB(fast atomic beam)ガンを用いて、アルゴンビームにより接合する両面を活性化して接合する手法を適用することができる。図5に示すように、Si薄膜10と金属基板(銅基板)20とは、FABガンを用いて接合することができる。FABガンを用いる接合手法は、近年半導体基板の常温接合で普及してきている。同図に示すように、接合する両面をアルゴンビーム源200から得られるアルゴンビームを照射して活性化した後、常温で加圧して接合する。この接合手法の特徴は、接合面が0.5nmレベルの平坦度であれば常温で直接接合できる点にある。同図はその貼り合せ装置の要部の模式図であり、真空室内で貼り合わせる2枚の基板を一定の間隔で対向するように配置し、その側方から両表面に対して、FABガン200によりアルゴンビーム(201、202)を走査して照射する。真空室内の真空度は、1×10-4~1×10-6Pa程度である。この照射により、両基板の表層(20b、10b)が活性化され、常温で貼り合わせることができる。FABガンによらず、イオンガンにより活性化して接合することも可能である。
 図6に、Si薄膜10と銅基板20との接合界面のTEM(透過型電子顕微鏡)画像を示す。Si薄膜10と銅基板20とは原子レベルで接合されていることが分かる。
The method of joining at room temperature is not particularly limited, but for example, a method of activating both sides to be joined by an argon beam using a FAB (fast atomic beam) gun can be applied. As shown in FIG. 5, the Si thin film 10 and the metal substrate (copper substrate) 20 can be joined by using a FAB gun. In recent years, the joining method using a FAB gun has become widespread in room temperature joining of semiconductor substrates. As shown in the figure, both sides to be joined are activated by irradiating an argon beam obtained from an argon beam source 200, and then pressurized at room temperature for joining. The feature of this joining method is that if the joining surface has a flatness of 0.5 nm level, it can be directly joined at room temperature. The figure is a schematic diagram of the main part of the bonding device. Two substrates to be bonded in a vacuum chamber are arranged so as to face each other at regular intervals, and the FAB gun 200 is placed on both surfaces from the side thereof. The argon beam (201, 202) is scanned and irradiated. The degree of vacuum in the vacuum chamber is about 1 × 10 -4 to 1 × 10 -6 Pa. By this irradiation, the surface layers (20b, 10b) of both substrates are activated and can be bonded at room temperature. It is also possible to activate and bond with an ion gun regardless of the FAB gun.
FIG. 6 shows a TEM (transmission electron microscope) image of the bonding interface between the Si thin film 10 and the copper substrate 20. It can be seen that the Si thin film 10 and the copper substrate 20 are bonded at the atomic level.
 その他、接合のために、10nm程度の厚さの金薄薄膜を表面に形成する手法も開発されている。Si薄膜10と金属基板20とは、そのような金薄薄膜を介して接合することもできる。 In addition, a method of forming a thin gold thin film with a thickness of about 10 nm on the surface for joining has also been developed. The Si thin film 10 and the metal substrate 20 can also be joined via such a thin gold thin film.
(剥離工程)
 図2(e)は、剥離工程により仮基板が除去された状態を示している。Si薄膜10の裏面12にバリアメタル層8が形成されている場合には、Si薄膜10はバリアメタル層8を介して金属基板20と接合されている(図示せず)。
 透明ガラスからなる仮基板5とSi薄膜10の主面11とがUV剥離樹脂で接合されている場合、その接合界面を、ガラス基板側から紫外線を照射することにより分離させることができる。これにより、LSI素子は、LSIが形成されている薄いSi層と、その支持基板である金属基板とによって構成される複層素子構造となる。透明ガラス基板は再利用が可能である。
 また、仮基板5として粘着性を持った樹脂テープを用いた場合には、樹脂テープの端面からピーリングして剥離することができ、樹脂テープは使い捨てとすることができる。
(Peeling process)
FIG. 2 (e) shows a state in which the temporary substrate is removed by the peeling step. When the barrier metal layer 8 is formed on the back surface 12 of the Si thin film 10, the Si thin film 10 is bonded to the metal substrate 20 via the barrier metal layer 8 (not shown).
When the temporary substrate 5 made of transparent glass and the main surface 11 of the Si thin film 10 are bonded with a UV release resin, the bonding interface can be separated by irradiating ultraviolet rays from the glass substrate side. As a result, the LSI element has a multi-layer element structure composed of a thin Si layer on which the LSI is formed and a metal substrate as a support substrate thereof. The transparent glass substrate can be reused.
Further, when a resin tape having adhesiveness is used as the temporary substrate 5, it can be peeled off from the end face of the resin tape, and the resin tape can be disposable.
(ファンアウト構造のLSI素子)
 LSI素子は、ファンアウト構造とすることができる。ファンアウト実装は、LSIの多ピン化により端子ピッチが微細化されてきたのに伴って実用化されてきた実装方式である。図3(a)は、従来のLSI素子300がファンアウト基板(Si基板)320に実装され、端子ピッチが広くされている様子を示す。ファンアウト基板320のLSI素子300側には、LSI素子300と同じピッチで端子が形成され、ファンアウト基板の内層において相互配線がなされて、ファンアウト基板の外部実装面端子13では広いピッチの端子が形成されている。外部実装面端子13はプリント基板にフェースダウン実装可能なように広いピッチの端子となっている。本例では、ファンアウト基板320にウエーハ状態でLSI素子300がフェースダウン実装され、その後樹脂14が充填され、ウエーハ状態で樹脂成型されている。LSI素子300の裏面側は、素子のSi基板が露出している。ファンアウト基板320としてはSi基板の他、樹脂基板が用いられる場合もある。
(LSI element with fan-out structure)
The LSI element can have a fan-out structure. Fan-out mounting is a mounting method that has been put into practical use as the terminal pitch has become finer due to the increase in the number of pins of LSI. FIG. 3A shows how the conventional LSI element 300 is mounted on the fan-out substrate (Si substrate) 320 and the terminal pitch is widened. Terminals are formed on the LSI element 300 side of the fan-out board 320 at the same pitch as the LSI element 300, mutual wiring is made in the inner layer of the fan-out board, and terminals having a wide pitch on the external mounting surface terminal 13 of the fan-out board. Is formed. The external mounting surface terminal 13 is a terminal having a wide pitch so that it can be face-down mounted on a printed circuit board. In this example, the LSI element 300 is face-down mounted on the fan-out substrate 320 in the wafer state, then the resin 14 is filled, and the resin is molded in the wafer state. The Si substrate of the element is exposed on the back surface side of the LSI element 300. As the fan-out substrate 320, a resin substrate may be used in addition to the Si substrate.
 図3(b)は、本実施形態のLSI素子の製造方法おいて、Si薄膜10の主面11側に、ファンアウト用配線を形成したファンアウト基板9が接合されているLSI素子51を示している。Si薄膜10の裏面には金属基板20が接合されており、LSI素子51の裏面側には金属基板20が露出している。Si薄膜10の厚さは、LSIの構成・作用に必要な最小限の厚さであり、その基体部である金属基板20の厚さは、ファンアウト構造の素子をフェースダウン実装するのに必要な厚さとされている。この構成によれば、LSIの発熱を素早く熱伝導性の高い基体部に伝導させ、基体部に接続されるヒートスプレッダを経て外部に効率的に伝導・放射することが可能となる。 FIG. 3B shows the LSI element 51 in which the fan-out substrate 9 having the fan-out wiring formed is bonded to the main surface 11 side of the Si thin film 10 in the method of manufacturing the LSI element of the present embodiment. ing. A metal substrate 20 is bonded to the back surface of the Si thin film 10, and the metal substrate 20 is exposed on the back surface side of the LSI element 51. The thickness of the Si thin film 10 is the minimum thickness necessary for the configuration and operation of the LSI, and the thickness of the metal substrate 20 which is the base portion thereof is necessary for face-down mounting of an element having a fan-out structure. It is said to be thick. According to this configuration, the heat generated by the LSI can be quickly conducted to the substrate portion having high thermal conductivity, and efficiently conducted and radiated to the outside via the heat spreader connected to the substrate portion.
 本実施形態においては、Si基板(100)の主面(11)側にファンアウト用配線が形成されたファンアウト基板(9)を実装するファンアウト実装工程を含み、前記第1接合工程は、ファンアウト基板(9)を介してSi基板(100)と仮基板(5)とを接合するように構成することができる。
 図4を参照しつつ、ファンアウト実装可能なLSI素子の製造方法における各工程を説明する。各製造工程は8インチのウエーハ状態で処理を行うが、各図は1つのチップサイズパッケージのLSI素子に相当する部分の断面を表している。
In the present embodiment, the fan-out mounting step of mounting the fan-out board (9) in which the fan-out wiring is formed on the main surface (11) side of the Si board (100) is included, and the first joining step includes a fan-out mounting step. It can be configured to join the Si substrate (100) and the temporary substrate (5) via the fan-out substrate (9).
With reference to FIG. 4, each step in the manufacturing method of the LSI element which can be fan-out mounted will be described. Each manufacturing process is performed in an 8-inch wafer state, and each figure shows a cross section of a portion corresponding to an LSI element in one chip size package.
 同図(a)は、Si基板100の主面11側の表層部にLSI1が形成されている状態を示している。基体はLSIと同じSi基板である。Si基板100の主面11上にはボンディング端子30が形成されており、この主面側にSiからなるファンアウト基板9が接合されている。ファンアウト基板9の内層において相互配線がなされて、ファンアウトの外部実装面には広いピッチのボンディング端子13が形成されている。
 図4(b)は、第1接合工程により、ファンアウト基板9の上面に仮基板5を接合した状態を示している。
 同図(c)は、Si薄膜化工程により、Si基板100の裏面側を研磨等により除去し、Si薄膜10を残した状態を示している。仮基板5が支持体になるため、Si薄膜10の厚さを5~10μm程度まで薄くすることができる。
 同図(d)は、第2接合工程により、Si薄膜10の裏面12に金属基板20を接合した状態を示している。この接合には、FABガンを使用するなど常温接合技術を適用することができる。また10nm程度の厚さの金薄膜を介して接合することもできる。
 同図(e)は、剥離工程により、仮基板5を剥離した状態を示す。
 以上により、金属(銅)基体による素子構造を有するファンアウト構造素子51が完成する。各工程の具体的な内容は、図2により説明した各工程と同様である。
FIG. (A) shows a state in which the LSI 1 is formed on the surface layer portion on the main surface 11 side of the Si substrate 100. The substrate is the same Si substrate as the LSI. A bonding terminal 30 is formed on the main surface 11 of the Si substrate 100, and a fan-out substrate 9 made of Si is bonded to the main surface side of the bonding terminal 30. Mutual wiring is made in the inner layer of the fan-out board 9, and bonding terminals 13 having a wide pitch are formed on the external mounting surface of the fan-out.
FIG. 4B shows a state in which the temporary substrate 5 is bonded to the upper surface of the fan-out substrate 9 by the first bonding step.
FIG. 3C shows a state in which the back surface side of the Si substrate 100 is removed by polishing or the like by the Si thin film step, and the Si thin film 10 remains. Since the temporary substrate 5 serves as a support, the thickness of the Si thin film 10 can be reduced to about 5 to 10 μm.
FIG. 3D shows a state in which the metal substrate 20 is bonded to the back surface 12 of the Si thin film 10 by the second bonding step. A room temperature joining technique such as using a FAB gun can be applied to this joining. It can also be bonded via a gold thin film having a thickness of about 10 nm.
FIG. 3E shows a state in which the temporary substrate 5 is peeled off by the peeling step.
As described above, the fan-out structure element 51 having an element structure made of a metal (copper) substrate is completed. The specific contents of each step are the same as those of each step described with reference to FIG.
 以上のように製造されたLSI素子50及びファンアウト構造のLSI素子51は、フェースダウンによりプリント基板に実装して使用することができる。
 図7(a)は、チップサイズパッケージのLSI素子50を、プリント基板200にフェースダウン実装する例を表している。同図(b)は、ファンアウト構造のLSI素子51をプリント基板200にフェースダウン実装する例を表している。本例では金属基板20として銅基板を使用しており、その厚さは300μmである。またLSIが形成されているSi薄膜10の厚さは10μmである。薄いSi薄膜10と金属基板20により、LSIの発熱を効率良く伝熱することができる。また、Si薄膜10は金属基板20と接合されているため反りはなく、フェースダウン実装においても安定的に半田付けが可能である。
 図7(a)、(b)に示した例において、LSIの表面で発生した熱は、主として基体である銅基板20から筐体であるヒートスプレッダ430への伝導により放熱される。
The LSI element 50 manufactured as described above and the LSI element 51 having a fan-out structure can be mounted on a printed circuit board by face-down and used.
FIG. 7A shows an example in which the LSI element 50 of the chip size package is face-down mounted on the printed circuit board 200. FIG. 3B shows an example in which an LSI element 51 having a fan-out structure is face-down mounted on a printed circuit board 200. In this example, a copper substrate is used as the metal substrate 20, and the thickness thereof is 300 μm. The thickness of the Si thin film 10 on which the LSI is formed is 10 μm. The thin Si thin film 10 and the metal substrate 20 can efficiently transfer the heat generated by the LSI. Further, since the Si thin film 10 is bonded to the metal substrate 20, there is no warp, and stable soldering is possible even in face-down mounting.
In the examples shown in FIGS. 7A and 7B, the heat generated on the surface of the LSI is dissipated mainly by conduction from the copper substrate 20 which is a substrate to the heat spreader 430 which is a housing.
 図8により、上記のように実装されたLSI素子50から筐体への熱伝導による放熱のシミュレーションを説明する。LSI素子50を構成するSi薄膜10の厚さは10μmであり、基体である銅基板の厚さは300μmである。
 本実施形態に係る銅基体の素子構造で、20ワットの発熱があり周囲温度が25℃である場合、筐体を兼ねたヒートスプレッダ部Dの点においては30℃、ヒートスプレッダ部Cの点においては53℃、熱伝導樹脂部Bにおいては76℃、LSI部Aにおいては90℃となる。よって、周囲温度が85℃の条件下でも、LSI部Aを150℃とすることができる。ヒートスプレッダにヒートパイプの機能を設ける場合には、上記ヒートスプレッダ部Dから外部への熱伝導はさらに大きくなり、熱伝導樹脂部B、LSI部Aにおける温度はさらに低くなる。
 一方、一般的なSi基体の素子構造(図9(a)参照)で、20ワットの発熱があり周囲温度が25℃である場合、筐体を兼ねたヒートスプレッダ部Dに当たる点においては30℃、ヒートスプレッダ部Cに当たる点においては75℃、熱伝導樹脂部Bに当たる点においては98℃、LSI部Aに当たる点においては135℃となる。
 LSI部Aにおける上記温度差は本実施形態に係る素子構造の効果ということができ、素子を銅基体とすることによりSi基体の場合に比べて温度を45℃低くすることができる。逆に言えば、温度が45℃高い範囲まで使用することができる。使用温度が同じであれば、20ワット以上の高発熱の素子も使用可能であることを意味する。これはファンアウト基板を備えるLSI素子51の場合も同様である。
FIG. 8 describes a simulation of heat dissipation by heat conduction from the LSI element 50 mounted as described above to the housing. The thickness of the Si thin film 10 constituting the LSI element 50 is 10 μm, and the thickness of the copper substrate as a substrate is 300 μm.
In the element structure of the copper substrate according to the present embodiment, when heat generation of 20 watts and an ambient temperature of 25 ° C., the heat spreader portion D that also serves as a housing has a temperature of 30 ° C., and the heat spreader portion C has a temperature of 53 ° C. The temperature is 76 ° C. in the heat conductive resin portion B and 90 ° C. in the LSI portion A. Therefore, even under the condition that the ambient temperature is 85 ° C., the LSI unit A can be set to 150 ° C. When the heat spreader is provided with the function of a heat pipe, the heat conduction from the heat spreader portion D to the outside is further increased, and the temperatures in the heat conductive resin portion B and the LSI portion A are further lowered.
On the other hand, in the element structure of a general Si substrate (see FIG. 9A), when the heat generation is 20 watts and the ambient temperature is 25 ° C. The temperature is 75 ° C. at the point corresponding to the heat spreader portion C, 98 ° C. at the point corresponding to the heat conductive resin portion B, and 135 ° C. at the point corresponding to the LSI portion A.
The above temperature difference in the LSI unit A can be said to be an effect of the element structure according to the present embodiment, and by using the element as a copper substrate, the temperature can be lowered by 45 ° C. as compared with the case of the Si substrate. Conversely, it can be used up to a temperature range of 45 ° C. higher. If the operating temperature is the same, it means that a device with high heat generation of 20 watts or more can be used. This also applies to the LSI element 51 provided with the fan-out substrate.
 また、本実施形態に係る金属基体の素子構造は、金属基体とLSIが形成されているSi層(Si薄膜)との接合を素子が使用される温度の上限以下で行うことにより、接合界面で発生する応力を最小限に抑えることができる。すなわち、常温において金属基体にSi層が接合されたLSI素子は、高温で金属基板にSi層が接合された場合に比べて、LSI素子の使用時に接合界面に生じる応力の影響を大幅に抑制することができる。
 例えば、銅からなる金属基板の厚さが300μm、Si薄膜の厚さが10μmであり、LSI素子の使用温度が85℃であるとして、常温接合の効果を試算する。線膨張係数は、銅が16.8×10-6、Siが2.4×10-6であり、その差は14.4である。
 従来、銅を素子の基体とする場合、Si層と銅基体とは高温状態で接合されていた。Si層と銅基体とが400℃で接合されたとすると、接合時の温度と半導体素子の使用時の温度85℃とは315℃の温度差が生じる。そうすると、厚い銅基体によりSi層に反りは発生しないものの、接合時と使用時の間で線膨張係数の差は315×14.4×10-6=4.5×10-3となり、この線膨張係数の差により銅とSiとの界面応力が発生し、Si層に応力の影響が発生して素子特性上好ましくない。
 これに対して、Si層(Si薄膜)と銅基体とが常温(25℃)で接合される場合、LSI素子の使用時の温度85℃とは60℃の温度差に止まる。そうすると、厚い銅基体によりSi薄膜に反りは発生せず、接合時と使用時の間で線膨張係数の差は60×14.4×10-6=0.86×10-3となる。よって、接合時の温度が400℃であった場合に比べて線膨張係数の差がはるかに小さく、使用時に銅とSiとの界面に生じる応力は小さく、Si薄膜側に発生する応力の影響は軽微となる。
 このようにして、安価で且つ熱伝導率が金属の中で極めて高い(401W/(m・K))銅材料を用いて、熱伝導性に優れたLSI素子を構成することができ、接合界面で発生する応力を小さくすることができる。
Further, in the element structure of the metal substrate according to the present embodiment, the metal substrate and the Si layer (Si thin film) on which the LSI is formed are bonded at the bonding interface by performing the bonding at a temperature equal to or lower than the upper limit of the temperature at which the device is used. The stress generated can be minimized. That is, the LSI element in which the Si layer is bonded to the metal substrate at room temperature significantly suppresses the influence of stress generated at the bonding interface when the LSI element is used, as compared with the case where the Si layer is bonded to the metal substrate at high temperature. be able to.
For example, assuming that the thickness of the metal substrate made of copper is 300 μm, the thickness of the Si thin film is 10 μm, and the operating temperature of the LSI element is 85 ° C., the effect of normal temperature bonding is calculated. The coefficient of linear expansion is 16.8 × 10-6 for copper and 2.4 × 10-6 for Si, and the difference is 14.4.
Conventionally, when copper is used as the substrate of an element, the Si layer and the copper substrate are bonded at a high temperature. Assuming that the Si layer and the copper substrate are bonded at 400 ° C., a temperature difference of 315 ° C. occurs between the temperature at the time of bonding and the temperature at 85 ° C. when the semiconductor element is used. Then, although the Si layer does not warp due to the thick copper substrate, the difference in the coefficient of linear expansion between the time of joining and the time of use is 315 × 14.4 × 10 -6 = 4.5 × 10 -3 , and this coefficient of linear expansion becomes Interfacial stress between copper and Si is generated due to the difference between the two, and the influence of stress is generated on the Si layer, which is not preferable in terms of element characteristics.
On the other hand, when the Si layer (Si thin film) and the copper substrate are bonded at room temperature (25 ° C.), the temperature difference from the temperature of 85 ° C. when the LSI element is used is only 60 ° C. Then, the thick copper substrate does not warp the Si thin film, and the difference in the coefficient of linear expansion between the time of joining and the time of use is 60 × 14.4 × 10 -6 = 0.86 × 10 -3 . Therefore, the difference in the coefficient of linear expansion is much smaller than when the temperature at the time of joining is 400 ° C., the stress generated at the interface between copper and Si during use is small, and the effect of the stress generated on the Si thin film side is It will be minor.
In this way, it is possible to construct an LSI element having excellent thermal conductivity by using a copper material which is inexpensive and has extremely high thermal conductivity (401 W / (m · K)) among metals, and is a bonding interface. It is possible to reduce the stress generated in.
 尚、本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。樹脂パッケージとする場合に限らず、セラミックパッケージにLSIを実装する場合においても、LSI部からセラミックパッケージに至る熱伝導を良くするために、LSI素子の基体部を金属(銅)基板とすることは効果がある。 The present invention is not limited to the embodiment detailed above, and various modifications or changes can be made within the scope shown in the claims of the present invention. Not only when the resin package is used, but also when the LSI is mounted on the ceramic package, in order to improve the heat conduction from the LSI part to the ceramic package, the base part of the LSI element may be a metal (copper) substrate. effective.
 半導体の微細化技術の進展とともにLSIは高性能化が進み、一方で高発熱となってきた。本発明の複層素子構造により、高発熱を有効に熱伝導することにより、一層環境温度が高い用途にも適用が出来るようになり、また、一層大きな発熱素子の実装も可能となる。 With the progress of semiconductor miniaturization technology, LSIs have become more sophisticated and generate high heat. The multi-layered element structure of the present invention makes it possible to apply it to applications with a higher environmental temperature by effectively conducting heat with high heat generation, and it is also possible to mount a larger heat generating element.
 1;LSI、5;仮基板、8;バリアメタル層、9;ファンアウト基板、
 10;Si薄膜、100;Si基板、20;金属基板(銅基板)、25;第2基板、
 50~54;LSI素子、200;プリント基板。
1; LSI, 5; temporary substrate, 8; barrier metal layer, 9; fan-out substrate,
10; Si thin film, 100; Si substrate, 20; metal substrate (copper substrate), 25; second substrate,
50-54; LSI element, 200; printed circuit board.

Claims (9)

  1.  表層部にLSIが形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、
     前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することによりSi薄膜を形成するSi薄膜化工程と、
     前記LSIの使用温度の上限を超えない温度において前記Si薄膜の裏面と少なくとも表層が金属基板からなる第2基板の金属表面とを接合する第2接合工程と、
     前記仮基板を除去する剥離工程と、
     を含むことを特徴とする熱伝構造を備えるLSI素子の製造方法。
    The first joining step of joining the main surface side of the Si substrate on which the LSI is formed on the surface layer and the temporary substrate, and
    A Si thin film step of forming a Si thin film by removing the back surface side of the Si substrate while leaving a thickness corresponding to the depth of the surface layer portion.
    A second joining step of joining the back surface of the Si thin film and the metal surface of the second substrate whose surface layer is at least a metal substrate at a temperature not exceeding the upper limit of the operating temperature of the LSI.
    The peeling step for removing the temporary substrate and
    A method for manufacturing an LSI element having a heat transfer structure, which comprises.
  2.  前記Si基板の前記主面側にファンアウト用配線が形成されたファンアウト基板を実装するファンアウト実装工程を含み、
     前記第1接合工程は、前記ファンアウト基板を介して前記Si基板と仮基板とを接合する請求項1記載の熱伝構造を備えるLSI素子の製造方法。
    A fan-out mounting step of mounting a fan-out board in which fan-out wiring is formed on the main surface side of the Si board is included.
    The first joining step is the method for manufacturing an LSI element having a heat transfer structure according to claim 1, wherein the Si substrate and the temporary substrate are joined via the fan-out substrate.
  3.  前記Si薄膜化工程を行った後、前記Si薄膜の裏面にバリアメタルからなるバリアメタル層を形成するバリアメタル層形成工程を含み、
     前記第2接合工程は、前記バリアメタル層を介して前記Si薄膜と前記第2基板とを接合する請求項1又は2に記載の熱伝構造を備えるLSI素子の製造方法。
    After performing the Si thin film forming step, a barrier metal layer forming step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film is included.
    The method for manufacturing an LSI element having a heat transfer structure according to claim 1 or 2, wherein the second joining step joins the Si thin film and the second substrate via the barrier metal layer.
  4.  前記Si薄膜の厚さは100μm以下である請求項1乃至3のいずれかに記載の熱伝構造を備えるLSI素子の製造方法。 The method for manufacturing an LSI element having a heat transfer structure according to any one of claims 1 to 3, wherein the thickness of the Si thin film is 100 μm or less.
  5.  前記金属基板は銅基板である請求項1乃至4のいずれかに記載の熱伝構造を備えるLSI素子の製造方法。 The method for manufacturing an LSI element having a heat transfer structure according to any one of claims 1 to 4, wherein the metal substrate is a copper substrate.
  6.  その主面の表層部にLSIが形成されており、厚さが前記表層部の深さに対応して薄く形成されたSi薄膜と、
     前記Si薄膜の裏面に接合されている少なくとも表層が金属基板からなる第2基板と、 を備え、
     前記金属基板を介してLSIで発生した熱を外部に伝えることを特徴とするLSI素子の熱伝構造。
    An LSI is formed on the surface layer portion of the main surface thereof, and a Si thin film having a thickness corresponding to the depth of the surface layer portion is formed.
    A second substrate whose surface layer is at least a metal substrate bonded to the back surface of the Si thin film is provided.
    A heat transfer structure of an LSI element, characterized in that heat generated by an LSI is transferred to the outside through the metal substrate.
  7.  ファンアウト用配線が形成されており、前記Si薄膜の前記主面側に接合されているファンアウト基板を備える請求項6記載のLSI素子の熱伝構造。 The heat transfer structure of the LSI element according to claim 6, wherein the fan-out wiring is formed and the fan-out substrate is joined to the main surface side of the Si thin film.
  8.  前記Si薄膜の厚さは100μm以下である請求項6又は7に記載のLSI素子の熱伝構造。 The heat transfer structure of the LSI element according to claim 6 or 7, wherein the thickness of the Si thin film is 100 μm or less.
  9.  前記金属基板は銅基板である請求項6乃至8のいずれかに記載のLSI素子の熱伝構造。 The heat transfer structure of the LSI element according to any one of claims 6 to 8, wherein the metal substrate is a copper substrate.
PCT/JP2021/043578 2020-11-30 2021-11-29 Heat transfer structure for lsi element and method for manufacturing lsi element having such heat transfer structure WO2022114172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-198964 2020-11-30
JP2020198964A JP2022086775A (en) 2020-11-30 2020-11-30 Heat conduction structure of lsi element, and manufacturing method for lsi element including the heat conduction structure

Publications (1)

Publication Number Publication Date
WO2022114172A1 true WO2022114172A1 (en) 2022-06-02

Family

ID=81754522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043578 WO2022114172A1 (en) 2020-11-30 2021-11-29 Heat transfer structure for lsi element and method for manufacturing lsi element having such heat transfer structure

Country Status (2)

Country Link
JP (1) JP2022086775A (en)
WO (1) WO2022114172A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202236570A (en) * 2021-03-12 2022-09-16 華東科技股份有限公司 System in package characterized in that the system in package can achieve the effects of greatly thinning the thickness of the package and lowering the whole cost by not having the printed circuit board in the package structure
TWI791200B (en) * 2021-03-12 2023-02-01 華東科技股份有限公司 Thin System-in-Package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063178A (en) * 2014-09-22 2016-04-25 富士通株式会社 Semiconductor device and manufacturing method of the same
JP2017195300A (en) * 2016-04-21 2017-10-26 富士通株式会社 Semiconductor device and method of manufacturing the same
JP2018056285A (en) * 2016-09-28 2018-04-05 富士通株式会社 Electronic device, manufacturing method for the same, and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063178A (en) * 2014-09-22 2016-04-25 富士通株式会社 Semiconductor device and manufacturing method of the same
JP2017195300A (en) * 2016-04-21 2017-10-26 富士通株式会社 Semiconductor device and method of manufacturing the same
JP2018056285A (en) * 2016-09-28 2018-04-05 富士通株式会社 Electronic device, manufacturing method for the same, and electronic equipment

Also Published As

Publication number Publication date
JP2022086775A (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2022114172A1 (en) Heat transfer structure for lsi element and method for manufacturing lsi element having such heat transfer structure
JP3485390B2 (en) Electrostatic chuck
JP2974552B2 (en) Semiconductor device
US7626251B2 (en) Microelectronic die assembly having thermally conductive element at a backside thereof and method of making same
TW201104808A (en) Diffusion bonding circuit submount directly to vapor chamber
JP2010118373A (en) Method of manufacturing semiconductor device
JP5532744B2 (en) Multi-chip module and method for manufacturing multi-chip module
US20050136640A1 (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
JP2003249620A (en) Method for bonding semiconductor and stacked semiconductor fabricated by this method
JP3813540B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JP6971052B2 (en) Manufacturing method of semiconductor device and semiconductor device
JP4978054B2 (en) Semiconductor device, manufacturing method thereof, and circuit board device
JP2012015225A (en) Semiconductor device
JP2803603B2 (en) Multi-chip package structure
TW567563B (en) Semiconductor package and manufacturing method thereof
JP2014086660A (en) Semiconductor device manufacturing method and semiconductor device
JP3493833B2 (en) Plastic package for mounting semiconductor element and method of manufacturing the same
JP2017152506A (en) Board for power module and power module and manufacturing method of board for power module
JP2004158726A (en) Semiconductor element with heat spreader and semiconductor package
WO2022114171A1 (en) Method for manufacturing semiconductor device, and vertical mosfet device
JP3603725B2 (en) Semiconductor device, method of manufacturing the same, and circuit board
WO2021210047A1 (en) Method for manufacturing semiconductor element
JP3022738B2 (en) Multi-chip module
JP7174046B2 (en) Substrates for mounting electronic elements, electronic devices and electronic modules
WO2022210680A1 (en) Power semiconductor and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898144

Country of ref document: EP

Kind code of ref document: A1