WO2022113850A1 - 近赤外線吸収材料 - Google Patents

近赤外線吸収材料 Download PDF

Info

Publication number
WO2022113850A1
WO2022113850A1 PCT/JP2021/042260 JP2021042260W WO2022113850A1 WO 2022113850 A1 WO2022113850 A1 WO 2022113850A1 JP 2021042260 W JP2021042260 W JP 2021042260W WO 2022113850 A1 WO2022113850 A1 WO 2022113850A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
ring
compound
group
Prior art date
Application number
PCT/JP2021/042260
Other languages
English (en)
French (fr)
Inventor
淳志 若宮
智也 中村
茂雄 安田
朋之 井上
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to JP2022565267A priority Critical patent/JPWO2022113850A1/ja
Publication of WO2022113850A1 publication Critical patent/WO2022113850A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/335Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a novel compound and a near-infrared absorbing material containing the compound.
  • Wakamiya et al. (2018; see Non-Patent Document 1) describe a near-infrared absorbing material containing the following azafluvendimer.
  • the above compounds are not excellent in solubility, and it is necessary to precisely control the absorption characteristics. Further, since the above compound has a BF 2 portion, it cannot be easily produced.
  • This invention is based on the finding based on an example that a diarylboron compound having a specific structure having a diarylboron structure as a partial structure has excellent solubility and is easy to control near-infrared absorption / absorption characteristics.
  • the first invention relates to a diarylboron compound represented by the following formula I, formula II, formula III-1 or formula III-2, a salt thereof, or a solvate thereof.
  • Ring A 11 , Ring A 12 , Ring A 21 , Ring A 22 , Ring A 31 and Ring A 32 may each independently have a 5-membered ring or a substituent which may have a substituent. Shows a 6-membered ring, Ar 11 to Ar 14 , Ar 21 to Ar 24 , Ar 31 , and Ar 32 are independently expressed by the following equation IV: -Ph- (R 1 ) n ...
  • n represents an integer greater than or equal to 0 and not less than 5
  • Ph represents a phenyl group optionally substituted with n R 1 , where n is 0, Ph represents unsubstituted phenyl.
  • R 01 and R 02 each independently represent a group represented by F, Cl, Br, I, or the above formula IV. )
  • diarylboron compound represented by the formula I, the formula II, the formula III-1, or the formula III-2 are the diarylboron compounds represented by the following formulas Ia, IIa, III-1a, or III-2a, respectively.
  • Is. In the above formulas Ia, IIa, III-1a, and III-2a, Ar 11 to Ar 14 , Ar 21 to Ar 24 , Ar 31 , Ar 32 , R 01 , and R 02 are synonymous with the above.
  • R 11 , R 12 , R 21 , R 22 , R 31 and R 32 are each independently represented by a hydrogen atom, F, Cl, Br, I, -CF 3 , and D (donor site). Shows the group. )
  • R 1 is preferably a hydrogen atom, F or a group represented by -CF 3 .
  • R 11 , R 12 , R 21 , R 22 , R 31 and R 32 are preferably hydrogen atoms or D (donor sites).
  • the second invention relates to a near-infrared absorbing material containing the above compound, a salt thereof, or a solvate.
  • the third invention relates to a compound represented by the following formula V, a salt thereof, or a solvate thereof.
  • This is an intermediate for producing the diarylboron compounds described above.
  • X 1 and X 2 independently represent F, Cl, Br, or I, respectively.
  • the fourth invention comprises a step of coupling a compound represented by the formula V and a compound represented by MD to obtain a compound represented by the following formula VI.
  • a step of reacting the compound represented by the formula VI with the compounds represented by the following formulas VIIa and VIIb is included.
  • D is the same group as the donor moiety in the compound represented by the following formula VI
  • M is an atomic group having a metal atom bonded to the donor moiety.
  • the present invention relates to a method for producing a compound represented by the following formula Ia', a salt thereof, or a solvate thereof.
  • n is an integer of 2 or more and 5 or less
  • a plurality of R 1s may be the same or different.
  • FIG. 1 is a graph instead of a drawing showing the absorption characteristics of the compound 8 described in Example 8.
  • the first invention relates to a diarylboron compound represented by the following formula I, formula II, formula III-1 or formula III-2, a salt thereof, or a solvate thereof.
  • the rings A 11 , the ring A 12 , the ring A 21 , the ring A 22 , the ring A 31 and the ring A 32 are independently substituted.
  • a 5-membered ring which may have a group or a 6-membered ring which may have a substituent is shown.
  • nitrogen-containing complex 5-membered rings examples include a pyrrolidine ring, a pyrrole ring, an imidazolidine ring, a pyrazolidine ring, an imidazole ring, a pyrazole ring, an oxazolidine ring, an isoxazolidine ring, an oxazole ring, an isoxazole ring, a thiazolidine ring, an isothiazole ring, and a thiazole.
  • Examples thereof include a ring, an isothazole ring, a triazole ring, a frazane ring, an oxazolidine ring, a thiathazole ring, a dioxazole ring, a dithiazole ring, and a tetrazole ring, and a ring derived from any of these rings.
  • nitrogen-containing complex 6-membered rings When ring A 11 , ring A 12 , ring A 21 , ring A 22 , ring A 31 , and ring A 32 are 6-membered rings, these are nitrogen-containing complex 6-membered rings.
  • the nitrogen-containing complex 6-membered ring include a piperazine ring, a pyridine ring, a piperazine ring, a diazine ring, a morpholine ring, an oxazine ring, a thiomorpholine ring, a thiazine ring, a hexahydro-1,3,5-triazine ring, and a triazine ring.
  • examples thereof include a tetrazine ring, a pentazine ring, and a ring derived from any of these rings.
  • Ring A 11 , ring A 12 , ring A 21 , ring A 22 , ring A 31 and ring A 32 are preferably 5-membered rings.
  • Preferred examples of ring A 11 , ring A 12 , ring A 21 , ring A 22 , ring A 31 and ring A 32 are a pyrrole ring or a pyrrole ring which may have a substituent.
  • the number of substituents may be 1 or more and 3 or less.
  • substituents are methyl group, ethyl group, methoxy group, hydroxyl group, halogen atom, and amino group.
  • one of the preferable substituents is D (donor site) described later.
  • Ar 11 to Ar 14 , Ar 21 to Ar 24 , Ar 31 , and Ar 32 each independently represent a group represented by the following formula IV. -Ph- (R 1 ) n ... (IV)
  • n indicates an integer of 0 or more and 5 or less.
  • R 1 is preferably located at two meta positions.
  • R 1 is any of hydrogen atom, F, and -CF 3 .
  • Preferred examples of the compounds represented by the formulas I, II, III-1 or III-2 are the compounds represented by the following formulas Ia, IIa, III-1a, or III-2a, respectively.
  • Ar 11 to Ar 14 , Ar 21 to Ar 24 , Ar 31 , and Ar 32 have the same meanings as above (group represented by formula IV).
  • Is. R 11 , R 12 , R 21 , R 22 , R 31 , and R 32 each independently indicate a hydrogen atom, F, Cl, Br, I, -CF 3 , or D (donor site).
  • R 1 are hydrogen atom, F, and -CF 3 .
  • R 11 , R 12 , R 21 , R 22 , R 31 and R 32 are hydrogen atoms.
  • Both R11 and R12 may be the group represented by D (donor site), or one of R11 and R12 may be D (donor site) and the rest may be hydrogen atoms (-H).
  • Both R 21 and R 22 may be the group represented by D (donor site), or one of R 21 and R 22 may be D (donor site) and the rest may be hydrogen atoms (-H).
  • Both R 31 and R 32 may be the group represented by D (donor site), or one of R 31 and R 32 may be D (donor site) and the rest may be hydrogen atoms (-H).
  • D means a donor site in a ⁇ -conjugated compound having an electron donor site and an acceptor site in the molecule.
  • the compounds represented by the formulas I and II are ⁇ -conjugated compounds, and sites other than D (donor site) function as acceptor sites.
  • An example of D (donor site) is a group represented by removing the hydrogen atom at the 2-position of the thiophene ring or pyrrole ring in any of the following compounds.
  • R is a hydrogen atom, a halogen atom, a C1 to C10 alkyl group, a C1 to C10 alkoxy group, a C3 to C12 cycloalkyl group, a C6 to C14 aryl group , and a C2 .
  • ⁇ C 10 alkenyl group or C 2 ⁇ C 10 alkenyloxy group is shown.
  • the carbon of the thienyl group or the pyrrolyl group is connected to the acceptor site.
  • the C 1 to C 10 alkyl groups mean linear or branched saturated hydrocarbon groups having 1 or more and 10 or less carbon atoms.
  • Examples of C 1 to C 10 alkyl groups are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, n-pentyl group, n-. Hexyl group, 1-ethylpropyl group, and 2,2-dimethylpropyl group.
  • the C 1 to C 10 alkoxy groups mean linear or branched alkyloxy groups having 1 or more and 10 or less carbon atoms.
  • Examples of C 1 to C 10 alkoxy groups are the methoxy group, the ethoxy group, the propoxy group, the isopropoxy group, the tert-butoxy group, and the group represented by -OC 6 H 13 .
  • the C 3 to C 12 cycloalkyl groups mean saturated hydrocarbon rings having 3 or more and 12 or less carbon atoms.
  • Examples of C 3 to C 12 cycloalkyl groups are cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group.
  • the C 6 to C 14 aryl group means an aryl group having 6 or more carbon atoms and 14 or less carbon atoms.
  • Examples of C 6 to C 14 aryl groups are phenyl groups, naphthyl groups, anthryl groups, and phenanthryl groups.
  • the C2 - C10 alkenyl group means a straight-chain or branched hydrocarbon group containing at least one carbon-carbon double bond having 2 or more and 10 or less carbon atoms.
  • Examples of C2 - C10 alkenyl groups are vinyl groups, allyl groups and isopropenyl groups.
  • the C2 to C10 alkenyloxy group means a linear or branched alkenyloxy group containing at least one carbon-carbon double bond having 2 or more and 10 or less carbon atoms.
  • Examples of C2 to C10 alkenyloxy groups are vinyloxy group, allyloxy group, isopropenyloxy group, and 2-isobutenyloxy group.
  • the salt means a salt of a compound.
  • salts are salts with alkali metals such as sodium and potassium, inorganic acid salts such as hydrochlorides, sulfates, nitrates, phosphates, carbonates, hydrogen carbonates, perchlorates; eg acetates, propions.
  • Organic acid salts such as acid salt, lactate, maleate, fumarate, tartrate, malate, citrate, ascorbate; eg methanesulfonate, isethionate, benzenesulfonate, toluene
  • a sulfonate such as a sulfonate
  • an acidic amino acid salt such as, for example, asparagate, glutamate, etc.
  • the solvate means a solvate of a compound.
  • An example of a solvate is a hydrate.
  • the second invention relates to a near-infrared absorbing material containing the above-mentioned diarylboron compound, a salt thereof, or a solvate thereof, which is a compound of the present invention.
  • the wavelength range of near infrared rays is, for example, 750 nm to 2500 nm.
  • the azafluvene dimer described by Wakamiya et al. (2016) has an absorption property near 922 nm.
  • the compound of the present invention relates to a compound in which the F atom in the above-mentioned azafluvendimer is replaced with an aryl group or a derivative thereof, a derivative thereof, and the like.
  • the compound of the present invention can change the position of the energy rank of LUMO, it has absorption characteristics on the longer wavelength side. As a result, the compound of the present invention functions as an excellent near-infrared absorbing material. Further, it is demonstrated by Examples that the compound of the present invention has a near-infrared absorbing ability.
  • the third invention relates to a compound represented by the following formula V, a salt thereof, or a solvate thereof. This is an intermediate for producing the diarylboron compound represented by the formula I or the formula II described above.
  • X 1 and X 2 may be the same or different, F, Cl, Br, or I. Among these, Br (bromine atom) is preferable.
  • the fourth invention comprises a step of coupling a compound represented by the formula VI and a compound represented by MD to obtain a compound represented by the formula VI.
  • the step comprising reacting the compound represented by the formula VI with the compounds represented by the formulas VIIa and VIIb.
  • the present invention relates to a method for producing a compound represented by the formula Ia', a salt thereof, or a solvate thereof.
  • D is the same group as the donor site in the compound represented by the following formula VI
  • M is an atomic group having a metal atom bonded to the donor site.
  • D indicates a donor site.
  • the compound represented by MD means a compound containing a metal atom and a donor molecule, and the molar ratio thereof does not have to be 1: 1.
  • metal atoms include tin, zinc, boron, magnesium and the like, and a typical example of a group represented by M is Bu3Sn- (tributylstannyl group). D is synonymous with the group described above.
  • Ar 11 to Ar 16 may be the same or different, and represent a group represented by the formula IV.
  • the group represented by the formula IV is synonymous with the above.
  • Ar 11 to Ar 14 may be the same or different, and have the same meanings as described above.
  • R 11 and R 12 indicate D (donor site).
  • Method for producing a compound represented by the formula I (particularly, a method for producing a compound not containing D)
  • the following scheme relates to the process of producing a compound represented by the formula I, particularly a compound containing no D.
  • rings A 11 and A 12 , Ars 11 to Ar 16 are synonymous with those described above.
  • the compound represented by the formula 1-1 is dissolved in a solvent.
  • An example of a solvent is toluene.
  • the compounds represented by the formulas 1-2 and 1-3 are mixed with the solution in which the compound represented by the formula 1-1 is dissolved.
  • the molar ratio of the compound represented by the formula 1-1 to the compound represented by the formula 1-2 and the compound represented by the formula 1-3 is (formula 1-1) :( formula 1-2 and formula 1-. As 3), it may be 1: 1 to 1:50, 1: 1.1 to 1:30, 1: 5 to 20, or 1: 2 to 1:10.
  • the compound represented by the formula 1-2 and the compound represented by the formula 1-3 may be the same compound.
  • the compounds represented by the formulas 1-2 and 1-3 may be added dropwise while stirring the solution, or the compounds represented by the formulas 1-2 and 1-3 may be added dropwise while heating the solution. ..
  • the solution mixed with the compounds represented by the formulas 1-2 and 1-3 is stirred for a predetermined time to promote the reaction. Examples of the temperature of the solution are 20 ° C. or higher and 150 ° C. or lower, 50 ° C. or higher and 150 ° C. or lower, 90 ° C. or higher and 130 ° C. or lower, or 100 ° C. or higher and 120 ° C. or lower.
  • the reaction time may be 1 hour or more and 2 days or less, 8 hours or more and 1 day or less, 12 hours or more and 1 day or less, or 15 hours or more and 20 hours or less.
  • the stirring speed may be adjusted as appropriate.
  • An example of a separation method is a separation method using chromatography.
  • Method for producing a compound represented by the formula II (particularly, a method for producing a compound containing no D).
  • the following scheme relates to the process of producing a compound represented by the formula II, particularly a compound containing no D.
  • ring A 21 and ring A 22 are synonymous with those described above.
  • Ar 21 to Ar 26 may be the same or different, and represent the groups represented by the formula IV described above.
  • the compound represented by the formula 2-1 is dissolved in a solvent.
  • An example of a solvent is toluene.
  • the compounds represented by the formulas 2-2 and 2-3 are mixed with the solution in which the compound represented by the formula 2-1 is dissolved.
  • the molar ratio of the compound represented by the formula 2-1 to the compound represented by the formula 2-2 and the compound represented by the formula 2-3 is (formula 2-1) :( formula 2-2 and formula 2-. As 3), it may be 1: 1 to 1:50, 1: 1.1 to 1:30, 1: 1.5 to 20, or 1: 2 to 1:10.
  • the compound represented by the formula 2-2 and the compound represented by the formula 2-3 may be the same compound.
  • the compounds represented by the formulas 2-2 and 2-3 may be added dropwise to the solution while stirring the solution, or the compounds represented by the formulas 2-2 and 2-3 may be added dropwise to the solution while cooling the solution. You may.
  • An example of the temperature of the solvent at this time is ⁇ 20 ° C. or higher and 0 ° C. or lower, which may be ⁇ 10 ° C. or higher and 0 ° C. or lower, or ⁇ 10 ° C. or higher and -3 ° C. or lower.
  • the solution mixed with the compounds represented by the formulas 2-2 and 2-3 is stirred for a predetermined time to promote the reaction. Examples of the temperature of the solution are 20 ° C.
  • reaction time 1 hour or more and 2 days or less, 8 hours or more and 1 day or less, 12 hours or more and 1 day or less, or 13 hours or more and 17 hours or less.
  • the stirring speed may be adjusted as appropriate.
  • X is synonymous with X 1 and X 2 in Formula V.
  • the compound represented by the formula 3-2 is reacted with the solution of pyrrole (3-1).
  • the solution is, for example, a tetrahydrofuran solution.
  • the above solution is preferably cooled to ⁇ 100 ° C. or higher and ⁇ 0 ° C. or lower, ⁇ 90 ° C. or higher and ⁇ 50 ° C. or lower.
  • the molar ratio of pyrrole (3-1) to the compound represented by the formula 3-2 may be 1: 1 as (pyrrole (3-1)) :( formula 3-2), or 1: 2 to 1: 2. It may be 2: 1 or 2: 3 to 3: 2.
  • the compound represented by the formula 3-2 may be added dropwise to the solution while stirring the solution, or the compound represented by the formula 3-2 may be added while cooling the solution. It may be added dropwise to the solution.
  • An example of the temperature of the solvent at this time is ⁇ 20 ° C. or higher and 10 ° C. or lower, which may be ⁇ 10 ° C. or higher and 10 ° C. or lower, or ⁇ 10 ° C. or higher and 3 ° C. or lower.
  • the reaction time (stirring time) is 30 minutes or more and 1 day or less, and may be 1 hour or more and 5 hours or less, or 1 hour or more and 3 hours or less.
  • the stirring speed may be adjusted as appropriate. In this way, a solution containing the compound represented by the formula 3-3 is obtained.
  • Pyridine is added dropwise to the solution of oxalyl chloride under stirring to react.
  • the solution is, for example, a tetrahydrofuran solution.
  • the above solution is preferably cooled to ⁇ 100 ° C. or higher and ⁇ 0 ° C. or lower, ⁇ 90 ° C. or higher and ⁇ 50 ° C. or lower.
  • An example of the molar ratio of oxalyl chloride to pyridine is 2: 3 to 1: 3 as oxalyl chloride: pyridine, which may be 1: 2 to 1: 3 or 1: 2 to 2: 5.
  • the reaction time (stirring time) is 10 minutes or more and 2 hours or less, and may be 15 minutes or more and 1 hour or less.
  • the stirring speed may be adjusted as appropriate.
  • the resulting solution is stirred, concentrated and purified to give the compound of formula IV.
  • the temperature at the time of reaction is 0 ° C. or higher and 50 ° C. or lower, and may be 10 ° C. or higher and 30 ° C. or lower.
  • An example of the reaction time (stirring time) is 5 hours or more and 2 days or less, 8 hours or more and 1 day or less, or 12 hours or more and 1 day or less.
  • the stirring speed may be adjusted as appropriate.
  • An example of a purification method is a separation method using chromatography. In this way, the compound represented by the formula V can be obtained.
  • the compound represented by the formula V and the compound represented by the MD are coupled to obtain the compound represented by the formula V.
  • the definition of each group is synonymous with that described above.
  • the compound represented by the formula V is dissolved in an organic solvent such as toluene.
  • a solution of the compound represented by MD may be added to the solution of the compound represented by the formula IV, and the mixture may be stirred for a predetermined time to accelerate the reaction. This reaction may be carried out in the presence of a transition metal catalyst and a phosphine reagent.
  • An example of the molar ratio of the compound represented by the formula V to the compound represented by MD is 1: 1 to 1: 5 as (formula V) :( compound represented by MD), 1: 1.
  • the temperature of the solution are 20 ° C. or higher and 150 ° C. or lower, 50 ° C. or higher and 150 ° C. or lower, 60 ° C. or higher and 100 ° C. or lower, or 70 ° C. or higher and 90 ° C. or lower.
  • An example of the reaction time (stirring time) is 1 hour or more and 2 days or less, 8 hours or more and 1 day or less, or 12 hours or more and 1 day or less.
  • the stirring speed may be adjusted as appropriate.
  • An example of a transition metal catalyst is a palladium catalyst.
  • Examples of palladium catalysts are palladium acetate, palladium chloride, tetrakistriphenylphosphine palladium, palladium carbon, tetrakis (triphenylphosphine) palladium (0), tris (dibenzylideneacetone) palladium, palladium black, dichlorobis (triphenylphosphine) palladium.
  • An example of the molar ratio of the compound represented by the formula V to the transition metal catalyst is (formula V) :( transition metal catalyst) of 100: 1 to 1: 1 and may be 20: 1 to 5: 1. It may be 15: 1 to 8: 1.
  • Examples of phosphine reagents are triphenylphosphine, tributylphosphine, trifurylphosphine.
  • An example of the molar ratio of the compound represented by the formula V to the phosphine reagent may be 10: 1 to 1: 1 or 5: 1 to 3: 2 as (formula V) :( phosphine reagent). It may be 1: 1 to 3: 2.
  • the compound represented by the formula VI is reacted with the compounds represented by the formulas 1-2 and 1-3 to obtain the compound represented by the formula I.
  • rings A 11 and A 12 are pyrrole rings, and one or two Ds are introduced into one molecule to obtain a compound.
  • the compound represented by the formula VI is dissolved in an organic solvent such as toluene.
  • the compounds represented by the formulas 1-2 and 1-3 are mixed with the solution in which the compound represented by the formula VI is dissolved.
  • the molar ratio of the compound represented by the formula 1-1 (particularly the formula VI) to the compound represented by the formula 1-2 and the compound represented by the formula 1-3 is (formula 1-1) :( formula 1-2.
  • the formula 1-3 it may be 1: 1 to 1: 100, 1: 2 to 1:20, or 1: 5 to 1:20.
  • the compound represented by the formula 1-2 and the compound represented by the formula 1-3 may be the same compound.
  • the compounds represented by the formulas 1-2 and 1-3 may be added dropwise while stirring the solution, or the compounds represented by the formulas 1-2 and 1-3 may be added dropwise while heating the solution. ..
  • the solution mixed with the compounds represented by the formulas 1-2 and 1-3 is stirred for a predetermined time to promote the reaction. Examples of the temperature of the solution are 20 ° C. or higher and 150 ° C. or lower, 50 ° C. or higher and 150 ° C. or lower, 90 ° C. or higher and 130 ° C.
  • the reaction time may be 1 hour or more and 2 days or less, 8 hours or more and 1 day or less, 12 hours or more and 1 day or less, or 15 hours or more and 20 hours or less.
  • the stirring speed may be adjusted as appropriate.
  • Method for producing a compound represented by the formula II (particularly, a method for producing a compound in which rings A 21 and A 22 are pyrrole rings and D is contained in the structure).
  • a method for producing the compound represented by the formula II will be described.
  • a method for producing a compound in which rings A 21 and A 22 are pyrrole rings and D is contained in the structure will be described.
  • a compound represented by the formula II, particularly a compound in which the rings A 21 and A 22 are pyrrole rings and contains D in the structure reacts the compound VI with the compounds represented by the formulas 2-2 and 2-3. It can be obtained by letting it.
  • each group is synonymous with that described above.
  • the compound represented by the formula VI is dissolved in a solvent.
  • An example of a solvent is toluene.
  • the compounds represented by the formulas 2-2 and 2-3 are mixed with the solution in which the compound represented by the formula VI is dissolved.
  • the molar ratio of the compound represented by the formula 2-1 (particularly the formula VI) to the compound represented by the formula 2-2 and the compound represented by the formula 2-3 is (formula 2-1) :( formula 2-2).
  • formula 2-3 it may be 1: 1 to 1:50, 1: 1.1 to 1:30, 1: 1.5 to 20, or 1: 2 to 1: It may be 10.
  • the compound represented by the formula 2-2 and the compound represented by the formula 2-3 may be the same compound.
  • the compounds represented by the formulas 2-2 and 2-3 may be added dropwise to the solution while stirring the solution, or the compounds represented by the formulas 2-2 and 2-3 may be added dropwise to the solution while cooling the solution. You may.
  • An example of the temperature of the solvent at this time is ⁇ 20 ° C. or higher and 0 ° C. or lower, which may be ⁇ 10 ° C. or higher and 0 ° C. or lower, or ⁇ 10 ° C. or higher and -3 ° C. or lower.
  • the solution mixed with the compounds represented by the formulas 2-2 and 2-3 is stirred for a predetermined time to promote the reaction. Examples of the temperature of the solution are 20 ° C. or higher and 150 ° C. or lower, 50 ° C. or higher and 150 ° C.
  • reaction time is 1 hour or more and 2 days or less, 8 hours or more and 1 day or less, 12 hours or more and 1 day or less, or 13 hours or more and 17 hours or less.
  • the stirring speed may be adjusted as appropriate.
  • the compound represented by the formula III-1 can be produced by the same method as the compound represented by the formula I. That is, according to the above-mentioned reaction between the compound represented by the formula 1-1, the compound represented by the formula 1-2, and the compound represented by the formula 1-3, the compound represented by the formula I and the compound represented by the formula I are combined with the compound represented by the formula III-. A compound corresponding to the compound represented by 1 is produced as a by-product. In the above reaction for producing the formula III-1, the rings A 11 and A 12 in the compound represented by the formula 1-1 are replaced with the rings A 31 and A 32 , respectively, as the triarylboron compound. Only the compound represented by the following formula 4-1 is used.
  • Ar 31 to Ar 33 may be the same or different, and indicate a group represented by the formula IV.
  • the group represented by the formula IV has the same meaning as described above.
  • the compound represented by the formula III-1 can be obtained by separating the above reaction products by a method such as chromatography.
  • a method for producing a compound represented by the formula III-2 can be produced by reacting the compound represented by the formula III-1 with the compound represented by the following formula 4-2 under heating in the presence of a solvent.
  • a solvent is toluene.
  • the molar ratio of the compound represented by the formula III-1 to the compound represented by the formula 4-2 may be 1: 0.5 to 1:30 as (formula III-1) :( formula 4-2). It may be 1: 1 to 1:15 or 1: 1.1 to 1:10.
  • R 01 , R 02 , and R 03 each independently represent F, Cl, Br, I, or a group represented by the above formula IV.
  • Example 5 ⁇ Synthesis of dibromo intermediate Pyrrole (3) (0.73 mL, 10.5 mmol) and tetrahydrofuran (20 mL) were added to a 100 mL two-necked flask, and the mixture was cooled to ⁇ 78 ° C. using a dry ice / acetone bath. 2-Bromopyrrole (4) was synthesized by adding N-bromosuccinimide (1.87 g, 10.5 mmol) and stirring at 0 ° C. for 2 hours.
  • Oxalyl chloride (0.43 mL, 5.0 mmol) and tetrahydrofuran (10 mL) were added to another 100 mL two-necked flask, and the mixture was cooled to ⁇ 78 ° C.
  • Pyridine (0.88 mL, 11.0 mmol) was added dropwise, the mixture was stirred for 30 minutes, and then a solution of 2-bromopyrrole (4) was added. After stirring at room temperature for 22 hours, the reaction solution was concentrated to obtain a crude product.
  • Example 8 -Ultraviolet-visible near-infrared absorption characteristics of the DAD compound Shimadzu UV-3600Plus was used for the ultraviolet-visible near-infrared absorption measurement.
  • the absorption properties of DAD compound 8 were measured with a dichloromethane solvent.
  • FIG. 1 is a graph that replaces the drawing showing the absorption characteristics of compound 8.
  • the horizontal axis represents wavelength and the vertical axis represents standardized absorption.
  • This compound showed an absorption maximum at a wavelength of 965 nm. It was found that it has high light transmittance in the visible light region as well as strong absorption in the near infrared region.
  • Ultraviolet-visible near-infrared absorption characteristic of compound 9 Shimadzu UV-3600Plus was used for the ultraviolet-visible near-infrared absorption measurement.
  • the absorption properties of compound 9 were measured with a dichloromethane solvent. As a result of the measurement, compound 9 showed an absorption maximum at a wavelength of 876 nm.
  • Example 11 Compound 9 (24 g, 0.16 mmol) and tris (pentafluorophenyl) borane (0.10 g, 0.19 mmol) were dissolved in toluene (10 mL). After stirring at 110 ° C. for 13 hours, the reaction solution was concentrated to obtain a crude product. The following compound 11 obtained was appropriately purified.
  • Ultraviolet-visible near-infrared absorption characteristic of compound 11 Shimadzu UV-3600Plus was used for the ultraviolet-visible near-infrared absorption measurement.
  • the absorption properties of compound 11 were measured with a dichloromethane solvent. As a result of the measurement, the compound 11 showed an absorption maximum at a wavelength of 968 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

新規化合物やその化合物を含む近赤外線吸収材料を提供する。 式I、式II、式III-1、又は式III-2で示される化合物、その塩、その溶媒和物、又はそれらのいずれか1つ以上を含む近赤外線吸収材料。

Description

近赤外線吸収材料
 この発明は、新規化合物及びその化合物を含む近赤外線吸収材料等に関する。
 Wakamiyaら(2018;非特許文献1参照)には、以下のアザフルベンダイマーを含む近赤外線吸収材料が記載されている。
Figure JPOXMLDOC01-appb-C000007
 上記の化合物は、溶解性に優れず、また吸収特性を精密に制御する必要があった。また、上記の化合物は、BF部分を有しているので、容易に製造できない。
Wakamiya, A. et al., Org. Lett. 2018, 20, 5135.
 この発明は、部分構造としてジアリールホウ素構造を有する新規なジアリールホウ素化合物を提供することを目的とする。また、この発明は、溶解性に優れ、吸収特性を制御しやすい化合物や、その化合物を含む近赤外線吸収材料を提供することを目的とする。
 この発明は、部分構造としてジアリールホウ素構造を有する特定の構造のジアリールホウ素化合物が、溶解性に優れ、近赤外線吸吸収特性を制御しやすいという実施例による知見に基づく。
 第1の発明は、以下の式I、式II、式III-1、又は式III-2で示されるジアリールホウ素化合物、その塩、又はその溶媒和物に関する。
Figure JPOXMLDOC01-appb-C000008
(上記式I、式II、式III-1、及び式III-2において、
環A11、環A12、環A21、環A22、環A31、及び環A32は、それぞれ独立に、置換基を有してもよい5員環又は置換基を有してもよい6員環を示し、
 Ar11~Ar14、Ar21~Ar24、Ar31、及びAr32は、それぞれ独立に、下記式IV:
-Ph-(R・・・(IV)
で示される基を示し、
 式IVにおいて、nは、0以上5以下の整数を示し、Phはn個のRで置換されていてもよいフェニル基を示し、ただし、nが0である場合、Phは無置換のフェニル基を示し、
 Rは、水素原子、F、Cl、Br、I、-CH2Cl、-CH=CHNO、-CF、-CCl、-NO、-CN、-CHO、-COCH、-COOC、-COOH、-SOCH、又は-SOHを示し、nが2以上5以下の整数である場合、複数のRは、同一でも異なってもよく、
 R01、及びR02は、それぞれ独立に、F、Cl、Br、I、又は上記式IVで表される基を示す。)
 式I、式II、式III-1、又は式III-2で示されるジアリールホウ素化合物の好ましい例は、それぞれ、下記式Ia、式IIa、III-1a、又はIII-2aで示されるジアリールホウ素化合物である。
Figure JPOXMLDOC01-appb-C000009
(上記式Ia、式IIa、式III-1a、及び式III-2aにおいて、
Ar11~Ar14、Ar21~Ar24、Ar31、Ar32、R01、及びR02は、上記と同義であり、
11、R12、R21、R22、R31、及びR32は、それぞれ独立に、水素原子、F、Cl、Br、I、-CF、及びD(ドナー部位)で示されるいずれか基を示す。)
 上記式Ia、式IIa、式III-1a、及び式III-2aにおいて、
 Rは、水素原子、F又は-CFで示される基であるのが好ましく、
 R11、R12、R21、R22、R31、及びR32は、水素原子、又はD(ドナー部位)であるのが好ましい。
 第2の発明は、上記の化合物、その塩、又は溶媒和物を含む近赤外線吸収材料に関する。
 第3の発明は、以下の式Vで示される化合物、その塩、又は溶媒和物に関する。これは上記に説明したジアリールホウ素化合物を製造するための中間体である。
Figure JPOXMLDOC01-appb-C000010
(式V中、X及びXは、それぞれ独立に、F、Cl、Br、又はIを示す。)
 第4の発明は、式Vで示される化合物と、M-Dで示される化合物とをカップリングし、下記式VIで示される化合物を得る工程と、
 式VIで示される化合物と、下記式VIIa及び式VIIbで示される化合物とを反応させる工程とを含み、
 ただし、M-Dで示される化合物において、Dは下記式VIで示される化合物におけるドナー部位と同じ基であり、Mは当該ドナー部位に結合する金属原子を有する原子団である、
 下記式Ia’で示される化合物、その塩、又はその溶媒和物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000011
(上記式VIにおいて、Dは、ドナー部位を示す。)
Figure JPOXMLDOC01-appb-C000012
(上記式VIIa及び上記式VIIbにおいて、Ar11~Ar16は、それぞれ独立に、下記式IV:
-Ph-(R・・・(IV)
で示される基を示し、
 式IVにおいて、nは、0以上5以下の整数を示し、Phはn個のRで置換されていてもよいフェニル基を示し、ただし、nが0である場合、Phは無置換のフェニル基を示し、
 Rは、水素原子、F、Cl、Br、I、-CHCl、-CH=CHNO、-CF、-CCl、-NO、-CN、-CHO、-COCH、-COOC、-COOH、-SOCH、又は-SOHを示し、nが2以上5以下の整数である場合、複数のRは、同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000013
(上記式Ia’において、
 Ar11~Ar14は、上記式VIIa、及び上記式VIIbにおけるこれらと同義である。
 Dは、ドナー部位を示す。)
 この発明は、部分構造としてジアリールホウ素構造を有する特定の構造の新規化合物を提供できる。また、この発明は、溶解性に優れ、吸収特性を制御しやすい化合物や、その化合物を含む近赤外線吸収材料を提供することを目的とする。
図1は、実施例8に記載の化合物8の吸収特性を示す図面に代わるグラフである。
 以下、図面を用いて本発明を実施するための形態について説明する。本発明は、以下に説明する形態に限定されるものではなく、以下の形態から当業者が自明な範囲で適宜修正したものも含む。
 第1の発明は、以下の式I、式II、式III-1、又は式III-2で示されるジアリールホウ素化合物、その塩、又はその溶媒和物に関する。
Figure JPOXMLDOC01-appb-C000014
 上記式I、式II、式III-1、及び式III-2において、環A11、環A12、環A21、環A22、環A31、及び環A32は、それぞれ独立に、置換基を有してもよい5員環又は置換基を有してもよい6員環を示す。
 環A11、環A12、環A21、環A22、環A31、及び環A32が5員環の場合、これらは含窒素複素5員環である。含窒素複素5員環としては、例えば、ピロリジン環、ピロール環、イミダゾリジン環、ピラゾリジン環、イミダゾール環、ピラゾール環、オキサゾリジン環、イソキサゾリジン環、オキサゾール環、イソキサゾール環、チアゾリジン環、イソチアゾリジン環、チアゾール環、イソチアゾール環、トリアゾール環、フラザン環、オキサジアゾール環、チアジアゾール環、ジオキサゾール環、ジチアゾール環、及びテトラゾール環、並びにこれらいずれかの環から誘導される環が挙げられる。
 環A11、環A12、環A21、環A22、環A31、及び環A32が6員環の場合、これらは含窒素複素6員環である。含窒素複素6員環としては、例えば、ピペリジン環、ピリジン環、ピペラジン環、ジアジン環、モルホリン環、オキサジン環、チオモルホリン環、チアジン環、ヘキサヒドロ-1,3,5-トリアジン環、トリアジン環、テトラジン環、及びペンタジン環、並びにこれらいずれかの環から誘導される環が挙げられる。
 環A11、環A12、環A21、環A22、環A31、及び環A32は、5員環が好ましい。環A11、環A12、環A21、環A22、環A31、及び環A32の好ましい例は、ピロール環、又は置換基を有してもよいピロール環である。ピロール環が置換基を有する場合、置換基の数は1以上3以下のいずれでもよい。置換基の例は、メチル基、エチル基、メトキシ基、水酸基、ハロゲン原子、及びアミノ基である。また、特に、ピロール環の置換基が1つの場合、好ましい置換基のひとつは、後述するD(ドナー部位)である。
 Ar11~Ar14、Ar21~Ar24、Ar31、及びAr32は、それぞれ独立に、下記式IVで示される基を示す。
-Ph-(R・・・(IV)
 式IVにおいて、
 nは、0以上5以下の整数を示し、
 Rは、水素原子、F、Cl、Br、I、-CH2Cl、-CH=CHNO、-CF、-CCl、-NO、-CN、-CHO、-COCH、-COOC、-COOH、-SOCH、及び-SOHのいずれかを示す。
 nが2の場合、Rは、2つのメタ位に位置することが好ましい。
 Rの好ましい例は、水素原子、F、及び-CFのいずれかである。
 式I、式II、式III-1、又は式III-2で示される化合物の好ましい例は、それぞれ下記式Ia、式IIa、III-1a、又はIII-2aで示される化合物である。
Figure JPOXMLDOC01-appb-C000015
 上記式Ia、式IIa、式III-1a、及び式III-2aにおいて、Ar11~Ar14、Ar21~Ar24、Ar31、及びAr32は、上記と同義(式IVで示される基)である。
 R11、R12、R21、R22、R31、及びR32は、それぞれ独立に、水素原子、F、Cl、Br、I、-CF、又はD(ドナー部位)を示す。
 上記式Ia、式IIa、式III-1a、及び式III-2aにおいて、
 Rの好ましい例は、水素原子、F、及び-CFである。
 R11、R12、R21、R22、R31、及びR32の好ましい例は、水素原子である。
 R11及びR12の両方がD(ドナー部位)で示される基であるか、R11及びR12の一方がD(ドナー部位)であり、残りが水素原子(-H)でもよい。
 R21及びR22の両方がD(ドナー部位)で示される基であるか、R21及びR22の一方がD(ドナー部位)であり、残りが水素原子(-H)でもよい。
 R31及びR32の両方がD(ドナー部位)で示される基であるか、R31及びR32の一方がD(ドナー部位)であり、残りが水素原子(-H)でもよい。
 D(ドナー部位)は、分子内に電子のドナー部位とアクセプター部位とを有するπ共役系化合物におけるドナー部位を意味する。式I及び式IIで示される化合物は、π共役系化合物であり、D(ドナー部位)以外の部位がアクセプター部位として機能する。
 D(ドナー部位)の例は以下のいずれかの化合物におけるチオフェン環又はピロール環の2-位の水素原子を除すことで表される基である。
Figure JPOXMLDOC01-appb-C000016
 上記Dの例において、Rは、水素原子、ハロゲン原子、C~C10アルキル基、C~C10アルコキシ基、C~C12シクロアルキル基、C~C14アリール基、C~C10アルケニル基、又はC~C10アルケニルオキシ基を示す。なお、上記のDにおいて、チエニル基又はピロリル基の炭素でアクセプター部位と接続する。
 C~C10アルキル基とは、炭素原子数1以上10以下の直鎖又は分岐鎖の飽和炭化水素基を意味する。C~C10アルキル基の例は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、1-エチルプロピル基、及び2,2-ジメチルプロピル基である。
 C~C10アルコキシ基とは、炭素原子数1以上10以下の直鎖状又は分岐鎖状のアルキルオキシ基を意味する。C~C10アルコキシ基の例は、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、tert-ブトキシ基、及び-OC13で示される基である。
 C~C12シクロアルキル基とは、炭素原子数3以上12以下の飽和炭化水素環を意味する。C~C12シクロアルキル基の例は、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基である。
 C~C14アリール基とは、炭素原子数6以上14以下のアリール基を意味する。C~C14アリール基の例は、フェニル基、ナフチル基、アントリル基、及びフェナントリル基である。
 C~C10アルケニル基とは、炭素原子数2以上10以下の少なくとも1つの炭素-炭素二重結合を含有する直鎖又は分枝鎖の炭化水素基を意味する。C~C10アルケニル基の例は、ビニル基、アリル基、イソプロペニル基である。
 C~C10アルケニルオキシ基は、炭素原子数2以上10以下の少なくとも1つの炭素-炭素二重結合を含有する直鎖又は分枝鎖のアルケニルオキシ基を意味する。
 C~C10アルケニルオキシ基の例は、ビニルオキシ基、アリルオキシ基、イソプロペニルオキシ基、及び2-イソブテニルオキシ基である。
 その塩は、化合物の塩を意味する。塩の例は、ナトリウム、カリウム等のアルカリ金属との塩、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;例えば酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;例えばメタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩等のスルホン酸塩;例えばアスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸塩である。
 その溶媒和物は、化合物の溶媒和物を意味する。溶媒和物の例は水和物である。
 第2の発明は、本発明の化合物である、上記のジアリールホウ素化合物、その塩、又はその溶媒和物を含む近赤外線吸収材料に関する。近赤外線の波長域は、例えば、750nm~2500nmである。
 Wakamiyaら(2018)に記載されたアザフルベンダイマーは、922nm付近に吸収特性を有する。本発明の化合物は、上記のアザフルベンダイマーにおけるF原子をアリール基又はその誘導体に置換した化合物やその誘導体等に関する。本発明の化合物は、LUMOのエネルギー順位の位置を変化させることできるので、より長波長側に吸収特性を有する。この結果、本発明の化合物は、優れた近赤外線吸収材料として機能する。また、本発明の化合物が、近赤外線吸収能を有することは実施例により実証された通りである。
 第3の発明は、以下の式Vで示される化合物、その塩、又はその溶媒和物に関する。これは上記に説明した式I又は式IIで表されるジアリールホウ素化合物を製造するための中間体である。
Figure JPOXMLDOC01-appb-C000017
 式V中、X及びXは、同一でも異なってもよく、F、Cl、Br、又はIである。これらの中では、Br(臭素原子)が好ましい。
 第4の発明は、式VIで示される化合物とM-Dで示される化合物とをカップリングし、式VIで示される化合物を得る工程と、
 式VIで示される化合物と、式VIIa及び式VIIbで示される化合物とを反応させる工程とを含む、
 式Ia’で示される化合物、その塩、又はその溶媒和物の製造方法に関する。
 ただし、M-Dで示される化合物においてDは下記式VIで示される化合物におけるドナー部位と同じ基であり、Mは当該ドナー部位に結合する金属原子を有する原子団である。
Figure JPOXMLDOC01-appb-C000018
 式Vにおいて、Dは、ドナー部位を示す。M-Dで示される化合物は、金属原子とドナー分子とを含む化合物を意味し、そのモル比は1:1でなくてもよい。金属原子の例は、スズ、亜鉛、ホウ素、マグネシウム等が挙げられ、Mで表される基の典型的な例はBu3Sn-(トリブチルスタンニル基)である。Dは、先に説明した基と同義である。
Figure JPOXMLDOC01-appb-C000019
 式VIIa及び式VIIbにおいて、
 Ar11~Ar16は、同一でも異なってもよく、式IVで示される基を示す。式IVで示される基は、上記と同義である。
Figure JPOXMLDOC01-appb-C000020
 式Ia’において、
 Ar11~Ar14は、同一でも異なってもよく、上記と同義である。
 R11及びR12は、D(ドナー部位)を示す。
 式Iで示される化合物の製造方法(特にDを含まない化合物の製造方法)
 以下のスキームは、式Iで示される化合物、特に、Dを含まない化合物を製造する工程に関する。
Figure JPOXMLDOC01-appb-C000021
 上記のスキームにおいて、環A11及び環A12、Ar11~Ar16は、先に説明したこれらと同義である。
 このスキームでは、式1-1で示される化合物を溶媒に溶解させる。溶媒の例は、トルエンである。
 式1-1で示される化合物を溶解させた溶液に、式1-2、式1-3で示される化合物を混合する。式1-1で示される化合物と、式1-2で示される化合物及び式1-3で示される化合物とのモル比は、(式1-1):(式1-2、及び式1-3)として、1:1~1:50でもよいし、1:1.1~1:30でもよいし、1:5~20でもよいし、1:2~1:10でもよい。式1-2で示される化合物と式1-3で示される化合物は、同じ化合物でもよい。溶液を撹拌しつつ式1-2、式1-3で示される化合物を滴下してもよいし、溶液を加熱しつつ式1-2、式1-3で示される化合物を滴下してもよい。
 式1-2、式1-3で示される化合物を混合した溶液を所定時間撹拌し反応促進させる。溶液の温度の例は、20℃以上150℃以下であり、50℃以上150℃以下でもよく、90℃以上130℃以下でもよいし、100℃以上120℃以下でもよい。反応時間(撹拌時間)は、1時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよいし、15時間以上20時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして得られる粗組成物を分離精製することで、式Iで示される化合物を得ることができる。分離方法の例は、クロマトグラフィーを用いた分離方法である。
 式IIで示される化合物の製造方法(特にDを含まない化合物の製造方法)
 以下のスキームは、式IIで示される化合物、特に、Dを含まない化合物を製造する工程に関する。
Figure JPOXMLDOC01-appb-C000022
 上記のスキームにおいて、環A21及び環A22は、先に説明したこれらと同義である。Ar21~Ar26は、同一でも異なってもよく、先に説明した式IVで示される基を示す。
 このスキームでは、式2-1で示される化合物を溶媒に溶解させる。溶媒の例は、トルエンである。
 式2-1で示される化合物を溶解させた溶液に、式2-2、式2-3で示される化合物を混合する。式2-1で示される化合物と、式2-2で示される化合物及び式2-3で示される化合物とのモル比は、(式2-1):(式2-2、及び式2-3)として、1:1~1:50でもよいし、1:1.1~1:30でもよいし、1:1.5~20でもよいし、1:2~1:10でもよい。式2-2で示される化合物と式2-3で示される化合物は、同じ化合物でもよい。溶液を撹拌しつつ式2-2、式2-3で示される化合物を溶液に滴下してもよいし、溶液を冷却しつつ式2-2、式2-3で示される化合物を溶液に滴下してもよい。この際の溶媒の温度の例は、-20℃以上0℃以下であり、-10℃以上0℃以下でもよいし、-10℃以上-3℃以下でもよい。
 式2-2、式2-3で示される化合物を混合した溶液を所定時間撹拌し反応促進させる。溶液の温度の例は、20℃以上150℃以下であり、50℃以上150℃以下でもよく、90℃以上130℃以下でもよいし、100℃以上120℃以下でもよい。反応時間(撹拌時間)の例は、1時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよいし、13時間以上17時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして得られる粗組成物を分離精製することで、式IIで示される化合物を得ることができる。分離方法の例は、クロマトグラフィーを用いた分離方法である。
 式Vで示される化合物の製造方法
 式Vで示される化合物は、以下のスキームにより製造できる。
Figure JPOXMLDOC01-appb-C000023
 上記のスキームにおいてXは、式V中のX及びXと同義である。
 ピロール(3-1)の溶液に、式3-2で示される化合物を反応させる。溶液としては、例えばテトラヒドロフラン溶液である。上記の溶液は、-100℃以上-0℃以下、-90℃以上-50℃以下に冷却することが好ましい。ピロール(3-1)と、式3-2で示される化合物とのモル比は、(ピロール(3-1)):(式3-2)として、1:1でもよいし、1:2~2:1でもよいし、2:3~3:2でもよい。式3-2で示される化合物を反応させる際、溶液を撹拌しつつ式3-2で示される化合物を溶液に滴下してもよいし、溶液を冷却しつつ式3-2で示される化合物を溶液に滴下してもよい。この際の溶媒の温度の例は、-20℃以上10℃以下であり、-10℃以上10℃以下でもよいし、-10℃以上3℃以下でもよい。反応時間(撹拌時間)は、30分以上1日以下であり、1時間以上5時間以下でもよいし、1時間以上3時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして式3-3で示される化合物を含む溶液を得る。
 塩化オキサリルの溶液に、撹拌下、ピリジンを滴下し反応させる。溶液としては、例えばテトラヒドロフラン溶液である。上記の溶液は、-100℃以上-0℃以下、-90℃以上-50℃以下に冷却することが好ましい。塩化オキサリルとピリジンのモル比の例は、塩化オキサリル:ピリジンとして、2:3~1:3であり、1:2~1:3でもよいし、1:2~2:5でもよい。反応時間(撹拌時間)は、10分以上2時間以下であり、15分以上1時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして得られた溶液に、式3-3で示される化合物を含む溶液を加える。得られた溶液を撹拌し、濃縮及び精製することで、式IVで示される化合物を得る。反応時の温度は、0℃以上50℃以下であり、10℃以上30℃以下でもよい。反応時間(撹拌時間)の例は、5時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよい。撹拌速度は、適宜調整すればよい。精製方法の例は、クロマトグラフィーを用いた分離方法である。このようにして式Vで示される化合物を得ることができる。
 式Iで示される化合物の製造方法(特にDを含む化合物の製造方法)
 次に、式Iで示される化合物、特に、Dを含む化合物の製造方法について説明する。
Figure JPOXMLDOC01-appb-C000024
 式Vで示される化合物とM-Dで示される化合物をカップリングし、式Vで示される化合物を得る。各基の定義は、先に説明したと同義である。
 式Vで示される化合物を、例えばトルエン等の有機溶媒に溶解させる。式IVで示される化合物の溶液に、M-Dで示される化合物の溶液を添加し、所定時間撹拌し反応を促進させてもよい。この反応は、遷移金属触媒及びホスフィン試薬の存在下に行ってもよい。式Vで示される化合物とM-Dで示される化合物のモル比の例は、(式V):(M-Dで示される化合物)として、1:1~1:5であり、1:1~1:3でもよいし、1:1.5~2:5でもよい。溶液の温度の例は、20℃以上150℃以下であり、50℃以上150℃以下でもよく、60℃以上100℃以下でもよいし、70℃以上90℃以下でもよい。反応時間(撹拌時間)の例は、1時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよい。撹拌速度は、適宜調整すればよい。
 遷移金属触媒の例は、パラジウム触媒である。パラジウム触媒の例は、酢酸パラジウム、塩化パラジウム、テトラキストリフェニルホスフィンパラジウム、パラジウム炭素、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)パラジウム、パラジウムブラック、ジクロロビス(トリフェニルホスフィン)パラジウムでる。式Vで示される化合物と遷移金属触媒のモル比の例は、(式V):(遷移金属触媒)として、100:1~1:1であり、20:1~5:1でもよいし、15:1~8:1でもよい。
 ホスフィン試薬の例は、トリフェニルホスフィン、トリブチルホスフィン、トリフリルホスフィンである。式Vで示される化合物とホスフィン試薬のモル比の例は、(式V):(ホスフィン試薬)として、10:1~1:1でもよいし、5:1~3:2でもよいし、3:1~3:2でもよい。
 次に、式VIで示される化合物と、式1-2、式1-3で示される化合物を反応させ、式Iで示される化合物を得る。特に環A11及び環A12がピロール環であり、1つの分子内にDが1つ又は2つ導入された化合物を得る。
 式VIで示される化合物を、トルエン等の有機溶媒に溶解させる。式VIで示される化合物を溶解させた溶液に、式1-2、式1-3で示される化合物を混合する。式1-1(特に式VI)で示される化合物と、式1-2で示される化合物及び式1-3で示される化合物とのモル比は、(式1-1):(式1-2、及び式1-3)として、1:1~1:100でもよいし、1:2~1:20でもよいし、1:5~1:20でもよい。式1-2で示される化合物と式1-3で示される化合物は、同じ化合物でもよい。溶液を撹拌しつつ式1-2、式1-3で示される化合物を滴下してもよいし、溶液を加熱しつつ式1-2、式1-3で示される化合物を滴下してもよい。
 式1-2、式1-3で示される化合物を混合した溶液を所定時間撹拌し反応促進させる。溶液の温度の例は、20℃以上150℃以下であり、50℃以上150℃以下でもよく、90℃以上130℃以下でもよいし、100℃以上120℃以下でもよい。反応時間(撹拌時間)は、1時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよいし、15時間以上20時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして得られる粗組成物を分離精製することで、式Iで示される化合物を得ることができる。分離方法の例は、クロマトグラフィーを用いた分離方法である。
 式IIで示される化合物の製造方法(特に環A21及び環A22がピロール環であり、構造中にDを含む化合物の製造方法)
 次に、式IIで示される化合物の製造方法について説明する。特に、環A21及び環A22がピロール環であり、構造中にDを含む化合物の製造方法について説明する。
 式IIで示される化合物、特に、環A21及び環A22がピロール環であり、構造中にDを含む化合物は、化合物VIに、式2-2、式2-3で示される化合物を反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000025
 各基の定義は、先に説明したと同義である。このスキームでは、式VIで示される化合物を溶媒に溶解させる。溶媒の例は、トルエンである。
 式VIで示される化合物を溶解させた溶液に、式2-2、式2-3で示される化合物を混合する。式2-1(特に式VI)で示される化合物と、式2-2で示される化合物及び式2-3で示される化合物とのモル比は、(式2-1):(式2-2、及び式2-3)として、1:1~1:50でもよいし、1:1.1~1:30でもよいし、1:1.5~20でもよいし、1:2~1:10でもよい。式2-2で示される化合物と式2-3で示される化合物は、同じ化合物でもよい。溶液を撹拌しつつ式2-2、式2-3で示される化合物を溶液に滴下してもよいし、溶液を冷却しつつ式2-2、式2-3で示される化合物を溶液に滴下してもよい。この際の溶媒の温度の例は、-20℃以上0℃以下であり、-10℃以上0℃以下でもよいし、-10℃以上-3℃以下でもよい。
 式2-2、式2-3で示される化合物を混合した溶液を所定時間撹拌し反応促進させる。溶液の温度の例は、20℃以上150℃以下であり、50℃以上150℃以下でもよく、90℃以上130℃以下でもよいし、100℃以上120℃以下でもよい。反応時間(撹拌時間)の例は、1時間以上2日以下であり、8時間以上1日以下でもよいし、12時間以上1日以下でもよいし、13時間以上17時間以下でもよい。撹拌速度は、適宜調整すればよい。
 このようにして得られる粗組成物を分離精製することで、式IIで示される化合物を得ることができる。分離方法の例は、クロマトグラフィーを用いた分離方法である。
 式III-1で示される化合物の製造方法
 式III-1で示される化合物は、式Iで示される化合物と同様の方法により製造できる。
 つまり、式1-1で示される化合物と、式1-2で示される化合物、及び式1-3で示される化合物との前述の反応によれば、式Iで示される化合物とともに、式III-1で示される化合物に相当する化合物が副生する。
 なお、式III-1を生成させる上記の反応において、式1-1で示される化合物における環A11及び環A12は、それぞれ環A31及び環A32に読み替えられ、トリアリールホウ素化合物として、下記式4-1で表される化合物のみが使用される。
Figure JPOXMLDOC01-appb-C000026
(式4-1において、Ar31~Ar33は、同一でも異なってもよく、式IVで示される基を示す。式IVで示される基は、上記と同義である。)
 上記の反応生成物を、クロマトグラフィー等の方法により分離することにより、式III-1で示される化合物を得ることができる。
 式III-2で示される化合物の製造方法。
 式III-2で示される化合物は、式III-1で示される化合物と、下記式4-2で示される化合物とを、溶媒の存在下に加熱下に反応させることにより、製造できる。
 反応条件としては、式1-1で示される化合物と、式1-2で示される化合物、及び式1-3で示される化合物との反応の条件と同様の条件を採用できる。溶媒の例は、トルエンである。
 式III-1で示される化合物と、式4-2で示される化合物とのモル比は、(式III-1):(式4-2)として、1:0.5~1:30でもよいし、1:1~1:15でもよいし、1:1.1~1:10でもよい。
Figure JPOXMLDOC01-appb-C000027
(式4-2において、R01、R02、及びR03は、それぞれ独立に、F、Cl、Br、I、又は上記式IVで表される基を示す。)
 以下実施例を用いて本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
〔実施例1〕
・アクセプター骨格へのBAr基の導入(6員環)
Figure JPOXMLDOC01-appb-C000028
 1,2-ジ(2-ピロリル)エタン-1,2-ジオン(1)(100mg、0.53mmol)をトルエン(25mL)に溶解させた。トリフェニルボラン(270mg、1.10mmol)を加え、110℃で16時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ジクロロメタン、R=1.0)によって精製し、化合物2a(160mg、0.31mmol、58%)を得た。
H NMR(400MHz、C):δ7.41-7.39(m,6H),7.25-7.16(m,16H),7.10-6.99(m,2H),5.80(dd,J=1.5,5.0Hz,2H);HRMS(APCI)(m/z):[M] calcd. for C3426,516.2180;found,516.2272.
〔実施例2〕
Figure JPOXMLDOC01-appb-C000029
 1,2-ジ(2-ピロリル)エタン-1,2-ジオン(1)(50mg、0.26mmol)をトルエン(12mL)に溶解させた。トリス(ペンタフルオロフェニル)ボラン(283mg、0.55mmol)を加え、130℃で15時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=1:3、R=0.50)によって精製し、化合物2b(26mg、0.030mmol、12%)を得た。
H NMR(400MHz,C):δ7.43(dd,J=1.2,4.8Hz,2H),7.10-7.09(m,2H),5.88(dd,J=1.2,4.8Hz,2H);HRMS(APCI)(m/z):[M] calcd. for C3420,876.03;found,876.04.
〔実施例3〕
Figure JPOXMLDOC01-appb-C000030
 1,2-ジ(2-ピロリル)エタン-1,2-ジオン(1)(100mg、0.531mmol)をトルエン(25mL)に溶解させた。トリス[3,5-ビス(トリフルオロメチル)フェニル]ボラン(1.4g、2.2mmol)を加え、110℃で19時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ジクロロメタン、R=1.0)によって精製し、化合物2c(110mg、0.104mmol、20%)を得た。
H NMR(400MHz,C):δ7.77(s,4H),7.59(s,8H),6.92(dd,J=1.6,4.8Hz,2H),6.33-6.31(m,2H),5.67(dd,J=1.6,4.8Hz,2H);HRMS(APCI)(m/z):[M] calcd. for C421824,1060.117;found,1060.140.
〔実施例4〕
・アクセプター骨格へのBAr基の導入(5員環)
Figure JPOXMLDOC01-appb-C000031
 1,2-ジ(2-ピロリル)エタン-1,2-ジオン(1)(250mg、1.33mmol)をトルエン(15mL)に溶解させ、-5℃に冷却した。トリス(ペンタフルオロフェニル)ボラン(1.36g、2.66mmol)を加え、110℃で15時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ジクロロメタン、R=1.0)によって精製し、化合物2b’を得た。
H NMR(400MHz,CDCl):δ8.41-8.34(m,2H),7.90(d,J=4.8Hz,2H),7.30(d,J=4.8Hz,2H);HRMS(APCI-TOF)(m/z):[M] calcd. for C3420,876.030;found,876.037
〔実施例5〕
・ジブロモ中間体の合成
Figure JPOXMLDOC01-appb-C000032
 100mL二口フラスコに、ピロール(3)(0.73mL、10.5mmol)、テトラヒドロフラン(20mL)を加え、ドライアイス/アセトンバスを用いて-78℃に冷却した。N-ブロモスクシンイミド(1.87g、10.5mmol)を加え、0℃で2時間撹拌することで、2-ブロモピロール(4)を合成した。別の100mL二口フラスコに塩化オキサリル(0.43mL、5.0mmol)、テトラヒドロフラン(10mL)を加え、-78℃に冷却した。ピリジン(0.88mL、11.0mmol)を滴下し、30分間撹拌した後、2-ブロモピロール(4)の溶液を加えた。室温で22時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=20:1、R=0.40)によって精製することにより、1,2-ジ(5-ブロモ-2-ピロリル)エタン-1,2-ジオン(5)(257mg、15%)を得た。
H NMR(400MHz,DMSO-d6):δ13.12(s,2H),6.89(d,J=4.0Hz,2H),6.36(d,J=4.0Hz,2H);13C NMR(100MHz,DMSO-d6):δ179.57,130.15,122.50,113.59,112.06;HRMS(APCI)(m/z):[M-H] calcd. for C10Br,344.8697;found,344.871
〔実施例6〕
・カップリング反応によるD-A-D化合物の合成
[D-A-D化合物の合成(6員環)]
Figure JPOXMLDOC01-appb-C000033
 シュレンク管に、1,2-ジ(5-ブロモ-2-ピロリル)エタン-1,2-ジオン(5)(150mg、0.43mmol)、Pd(dba)・CHCl(46mg、0.044mmol)、トリ(2-フリル)ホスフィン(42mg、0.18mmol)を加えた。スズ化合物6(738mg、1.00mmol)のテトラヒドロフラン溶液(2.5mL)を加え、80℃で21時間撹拌した後、反応溶液を濃縮することにより化合物7の粗生成物を得た。得られた化合物7を適宜精製した。
Figure JPOXMLDOC01-appb-C000034
 化合物7(10mg、9.2umol)をトルエン(6.0mL)に溶解させた。トリス[3,5-ビス(トリフルオロメチル)フェニル]ボラン(151mg、78.5umol)を加え、110℃で18時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5:1、R=0.60)によって精製し、化合物8(6.8mg、3.5umol、37%)を得た。
H NMR(400MHz,Acetone-d6):δ8.06(s,4H),7.92(s,8H),7.84(d,J=4.8Hz,2H),7.43(d,J=4.8Hz,2H),7.10-7.18(m,10H),6.86(d,J=8.0Hz,8H),6.17(d,J=4.8Hz,2H);HRMS(APCI)(m/z):[M] calcd. for C988824,1959.5982;found,1959.5963.
〔実施例7〕
 化合物7は、以下のスキームによっても得ることができた。
 ビス(4-(ヘキシルオキシ)フェニル)アミンの合成
 4-(ヘキシルオキシ)アニリン(9.91g、51.3ミリモル)、Pd(dba)・CHCl(266mg、0.257mmol)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(290mg、0.523mmol)及びNaOt-Bu(5.20g、54.1mmol)を乾燥トルエン(50mL)に混合した。1-ブロモ-4-(ヘキシルオキシ)ベンゼン(12.0mL、56.6mmol)を追加後、混合物を120℃で1.5時間加熱した。冷却後、反応混合物を水に注ぎ、エタノール抽出した。
 有機相をNaSOで乾燥し、濾過し、減圧した。得られた粗生成物をシリカゲルカラムにより精製した。
 クロマトグラフィー(CHCl:ヘキサン=1:2、R=0.18)により、15.0g(40.6mmol)の淡黄色の固体として79%の収率でビス(4-(ヘキシルオキシ)フェニル)アミンを得た。
mp:78.4-78.9℃;H NMR(500MHz,acetone-d6):δ6.95(d,JHH=9.0Hz,4H),6.81(d,JHH=9.0Hz,4H),6.72(br,1H),3.92(t,JHH=6.5Hz,4H),1.75-71(m,4H),1.48-45(m,4H),1.37-1.30(m,8H),0.90(t,JHH=7.5Hz,6H);13C NMR(125MHz,acetone-d6):δ154.26,139.39,119.64,116.19,68.99,32.46,26.60,23.39,14.40(one aliphatic signal overlaps with signals of acetone-d6);HRMS(APCI-TOF)(m/z):[M+H] calcd. for C2436NO,370.2746;found,370.2750
 2-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェンの合成
 ビス(4-(ヘキシルオキシ)フェニル)アミン(18.5g、50.1mmol)、Pd(dba)・CHCl(260mg、0.251mmol)、P(t-Bu)3(129mg、0.683mmol)及びNaOt-Bu(19.3g、201ミリモル)を乾燥トルエン(100mL)中で混合した。2-ブロモチオフェン(14.5mL、150mmol)を加えた後、混合物を130℃で24時間反応させた。冷却後、反応混合物をNHCl水溶液に注ぎ、トルエンで抽出した。有機相を水及びブラインで洗浄し、NaSOで乾燥させ、ろ過し、減圧下で濃縮した。得られた原油生成物をシリカゲルカラムクロマトグラフィー(CHCl:ヘキサン=1:4、R=0.29)で精製し、20.3g(44.9mmol)の2-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェンを90%の収率で黄色の油として得た。
H NMR(500MHz,CDCl):δ7.02(d,JHH=9.0Hz,4H),6.84-6.81(m,2H),6.79(d,JHH=9.0Hz,4H),6.50(dd,JHH=3.0,2.0Hz,1H),3.91(d,JHH=6.5Hz,4H),1.78-1.72(m,4H),1.46-1.43(m,4H),1.36-1.32(m,8H),0.91(t,JHH=7.0Hz,6H);13C NMR(125MHz,acetone-d6):δ156.42,154.51,142.72,126.78,125.07,119.20,118.52,116.05,68.88,32.42,30.14,26.57,23.37,14.38;HRMS(APCI-TOF)(m/z):[M+H] calcd. for C2838NOS,452.2618;found,452.2601.
 2-(5-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン-2-イル)-1H-ピロールの合成
 n-BuLi(ヘキサン中1.39M、21.1mL、29.3mmol)を-78℃で2-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン(12.0g、26.6ミリモル)のTHF(150mL)溶液に添加した。混合物を室温で1時間徐々に温めた後、ヨウ素(8.11g、32.0ミリモル)を反応混合物に加え-78℃で反応させた。混合物を室温まで温め、1時間撹拌した。その後Na水溶液を加え、混合物をトルエンで抽出した。有機相をNaSOで乾燥し、濾過し、減圧下で濃縮した。得られたヨウ化ジアリールアミノチエニルの粗生成物を、精製せずに次のステップに使用した。別のフラスコで、乾燥THF(200mL)中の塩化ピロリル亜鉛を調製した。ピロリルナトリウム(9.49g、107ミリモル)及び乾燥ZnCl(14.5g、106ミリモル)溶液に、Pd(dba)・CHCl(248mg、0.240mmol)及び2-(ジ-tert-ブチルホスフィノ)ビフェニル(152mg、0.509mmol)を加え、室温で10分間反応させた。次に、混合物を先に得られた溶液に移した。カニューレを介してヨウ化ジアリールアミノチエニル、及びシュレンク管内の混合物を100℃で13時間反応させた。冷却後、反応混合物を水に注いだ。濾過し、トルエンで抽出した。有機相を水とブラインで洗浄し、NaSOで乾燥し、濾過し、減圧下で濃縮した。得られた粗生成物をシリカゲルショートカラムクロマトグラフィー(CHCl:ヘキサン=1:1))により精製した。続いてGPC(JAIGEL-1H及び2Hカラム、10.0mL/min、トルエン、Rt=26)による精製により、7.27g(14.1mmol)の2-(5-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン-2-イル)-1H-ピロールを53%の収率で暗黄色の油として得た。
H NMR(500MHz,CDCl):δ8.32(br,1H),7.06(d,JHH=9.0Hz,4H),6.81(d,JHH=9.0Hz,4H),6.76-6.75(m,1H),6.74(d,JHH=4.0Hz,1H),6.40(d,JHH=4.0Hz,1H),6.24-6.22(m,1H),6.17(dd,JHH=6.0,2.0Hz,1H),3.92(t,JHH=6.5Hz,4H),1.78-1.72(m,4H),1.48-1.42(m,4H),1.37-1.32(m,8H),0.91(t,JHH=7.0Hz,6H);13C NMR(125MHz,CDCl):δ155.85,151.41,141.72,128.43,127.23,124.63,119.47,118.49,118.10,115.41,110.08,106.02,68.73,31.98,29.67,26.08,23.00,14.17;HRMS(APCI-TOF)(m/z):[M+H] calcd. for C3241S,517.2883;found,517.2862.
 D-A-Dタイプの前駆体(化合物7)の合成
 塩化オキサリル(51.5μL、0.600mmol)とピリジン(0.102mL、1.27mmol)を-78℃で乾燥CH2Cl2(12 mL)に加えた。40分間撹拌した後、CHCl(5.0mL)中の2-(5-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン-2-イル)-1H-ピロール(681mg、1.32mmol)を-78℃で反応混合物に加え、混合物をゆっくりと室温まで温め、さらに2時間撹拌した。NaHCO水溶液を混合物に加えた。CHClで抽出した後、有機相を水とブラインをNaSOで乾燥し、ろ過し、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(CHCl、R=0.36)及びGPC(JAIGEL-1H及び2H、3.8mL/min、トルエン、Rt=47分)により、228mg(0.209mmol)の化合物7を35%の収率で暗赤色の固体として得た。
mp:125.6-126.8℃;H NMR(500MHz,acetone-d6):δ11.17(s,2H),7.14(d,JHH=9.0Hz,4H),7.09(d,JHH=4.0Hz,2H),6.92(d,JHH=9.0Hz,4H),6.33(d,JHH=4.0Hz,2H),6.31(d,JHH=4.0Hz,2H),3.98(t,JHH=6.5Hz,8H),1.79-1.73(m,8H),1.49-1.45(m,8H),1.37-1.33(m,16H),0.90(t,JHH=7.0Hz,12H);13C NMR(125MHz,acetone-d6):δ180.16,157.31,156.27,141.66,136.97,130.78,126.46,125.31,123.75,116.25,115.31,109.23,68.93,32.42,30.12,26.57,23.38,14.39;HRMS(APCI-TOF)(m/z):[M+H] calcd. for C6679,1087.5436;found,1087.5403.
〔実施例8〕
・D-A-D化合物の紫外可視近赤外線吸収特性
 紫外可視近赤外線吸収測定には島津製作所UV-3600Plusを用いた。D-A-D化合物8の吸収特性を、ジクロロメタン溶媒で測定した。その結果を図1に示す。図1は、化合物8の吸収特性を示す図面に代わるグラフである。図1において横軸は波長を示し、縦軸は標準化した吸収を示す。本化合物は、波長965nmに吸収極大を示した。近赤外領域の強い吸収とともに、可視光領域では高い光透過性を併せもつことがわかった。
〔実施例9〕
・アクセプター骨格へのBAr基の導入
Figure JPOXMLDOC01-appb-C000035
 1,2-ビス(5-(5-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン-2-イル)-1H-ピロール-2-イル)エタン-1,2-ジオン(7)(90mg、0.083mmol)をトルエン(10mL)に溶解させた。トリス[3,5-ビス(トリフルオロメチル)フェニル]ボラン(1.4g、2.20mmol)を加え、110℃で15時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。ゲル浸透クロマトグラフィー(10.0mL/min、トルエン)によって精製し、化合物8(Rt=19.4min、60mg、0.031mmol、37%)と化合物9(Rt=20.0min、48mg、0.032mmol、38%)を得た。
化合物9:H NMR(400MHz,CDCl):δ7.94(s,4H),7.80(d,JHH=4.8Hz,2H),7.72(s,2H),7.33(d,JHH=4.4Hz,2H),7.19(d,JHH=8.8Hz,8H),6.86-6.80(m,10H),6.22(d,JHH=4.4Hz,2H),3.93(t,JHH=6.4Hz,8H),1.81-1.72(m,8H),1.51-1.41(m,8H),1.39-1.29(m,16H),0.91(t,JHH=7.2Hz,12H);HRMS(APCI-TOF)(m/z):[M-H] calcd. for C8283BF12,1522.5655;found,1522.5707.
 化合物9の紫外可視近赤外線吸収特性
 紫外可視近赤外線吸収測定には島津製作所UV-3600Plusを用いた。化合物9の吸収特性を、ジクロロメタン溶媒で測定した。測定の結果、化合物9は、波長876nmに吸収極大を示した。
〔実施例10〕
・アクセプター骨格へのBAr基の導入
Figure JPOXMLDOC01-appb-C000036
 1,2-ビス(5-(5-(ビス(4-(ヘキシルオキシ)フェニル)アミノ)チオフェン-2-イル)-1H-ピロール-2-イル)エタン-1,2-ジオン(7)(10mg、0.0092mmol)をトルエン(10mL)に溶解させた。トリス(ペンタフルオロフェニル)ボラン(0.10g、0.19mmol)を加え、110℃で21時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。ゲル浸透クロマトグラフィー(10.0mL/min、トルエン)によって精製し、化合物10(Rt=20.0min、8mg、0.0056mmol、61%)を得た。
化合物10:H NMR(400MHz,CDCl):δ16.24(s,1H),7.70(d,JHH=4.8Hz,2H),7.35(d,JHH=4.4Hz,2H),7.19(d,JHH=8.8Hz,8H),6.85-6.83(m,10H),6.22(d,JHH=4.4Hz,2H),3.94(t,JHH=6.4Hz,8H),1.81-1.74(m,8H),1.52-1.46(m,8H),1.36-1.34(m,16H),0.91(t,JHH=8.4Hz,12H);HRMS(APCI-TOF)(m/z):[M] calcd. for C7877BF10,1430.5218;found,1430.5300.
〔実施例11〕
 化合物9(24g、0.16mmol)と、トリス(ペンタフルオロフェニル)ボラン(0.10g、0.19mmol)とを、トルエン(10mL)に溶解させた。110℃で13時間撹拌した後、反応溶液を濃縮することにより粗生成物を得た。得られた下記化合物11を適宜精製した。
Figure JPOXMLDOC01-appb-C000037
 化合物11の紫外可視近赤外線吸収特性
 紫外可視近赤外線吸収測定には島津製作所UV-3600Plusを用いた。化合物11の吸収特性を、ジクロロメタン溶媒で測定した。測定の結果、化合物11は、波長968nmに吸収極大を示した。

Claims (6)

  1.  以下の式I、式II、式III-1、又は式III-2で示されるジアリールホウ素化合物、その塩、又はその溶媒和物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式I、式II、式III-1、及び式III-2において、
     環A11、環A12、環A21、環A22、環A31、及び環A32は、それぞれ独立に、置換基を有してもよい5員環又は置換基を有してもよい6員環を示し、
     Ar11~Ar14、Ar21~Ar24、Ar31、及びAr32は、それぞれ独立に、下記式IV:
    -Ph-(R・・・(IV)
    で示される基を示し、
     式IVにおいて、nは、0以上5以下の整数を示し、Phはn個のRで置換されていてもよいフェニル基を示し、ただし、nが0である場合、Phは無置換のフェニル基を示し、
     Rは、水素原子、F、Cl、Br、I、-CHCl、-CH=CHNO、-CF、-CCl、-NO、-CN、-CHO、-COCH、-COOC、-COOH,-SOCH、又は-SOHを示し、nが2以上5以下の整数である場合、複数のRは、同一でも異なってもよく、
     R01、及びR02は、それぞれ独立に、F、Cl、Br、I、又は上記式IVで表される基を示す。)
  2.  式Iで示される化合物が、下記式Iaで示される化合物であり、
     式IIで示される化合物が、下記式IIaで示される化合物であり、
     式III-1で示される化合物が、下記式III-1aで示される化合物であり、
     式III-2で示される化合物が、下記式III-2aで示される化合物である、
     請求項1に記載のジアリールホウ素化合物、その塩、又はその溶媒和物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式Ia、式IIa、式III-1a、及び式III-2aにおいて、Ar11~Ar14、Ar21~Ar24、Ar31、Ar32、R01、及びR02は、上記式I、式II、式III-1III-1、及び式III-2におけるこれらと同義であり、
    11、R12、R21、R22、R31、及びR32は、それぞれ独立に、水素原子、F、Cl、Br、I、-CF、又はD(ドナー部位)を示す。)
  3.  Rは、水素原子(-H)、-F、又は-CFを示し、
     R11、R12、R21、R22、R31、及びR32は、それぞれ独立に、水素原子(-H)を示す、
     請求項2に記載の、ジアリールホウ素化合物、その塩、又はその溶媒和物。
  4.  請求項1~3のいずれか1項に記載のジアリールホウ素化合物、その塩、又はその溶媒和物を含む近赤外線吸収材料。
  5.  以下の式Vで示される化合物、その塩、又はその溶媒和物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式V中、X及びXは、それぞれ独立に、F、Cl、Br、又はIを示す。)
  6.  請求項5に記載の式Vで示される化合物と、M-Dで示される化合物とをカップリングし、下記式VIで示される化合物を得る工程と、
     下記式VIで示される化合物と、下記式VIIa及び下記式VIIbで示される化合物とを反応させる工程とを含み、
     ただし、M-Dで示される化合物において、Dは下記式VIで示される化合物におけるドナー部位と同じ基であり、Mは当該ドナー部位に結合する金属原子を有する原子団である、
     下記式Ia’で示される化合物、その塩、又はその溶媒和物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (上記式VIにおいて、Dは、ドナー部位を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (上記式VIIa及び上記式VIIbにおいて、Ar11~Ar16は、それぞれ独立に、下記式IV:
    -Ph-(R・・・(IV)
    で示される基を示し、
     式IVにおいて、nは、0以上5以下の整数を示し、Phはn個のRで置換されていてもよいフェニル基を示し、ただし、nが0である場合、Phは無置換のフェニル基を示し、
     Rは、水素原子(-H)、F、Cl、Br、I、-CHCl、-CH=CHNO、-CF、-CCl、-NO、-CN、-CHO、-COCH、-COOC、-COOH、-SOCH、又は-SOHを示し、nが2以上5以下の整数である場合、複数のRは、同一でも異なってもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (上記式Ia’において、
     Ar11~Ar14は、上記式VIIa、及び上記式VIIbにおけるこれらと同義であり、
     Dは、ドナー部位を示す。)
PCT/JP2021/042260 2020-11-24 2021-11-17 近赤外線吸収材料 WO2022113850A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565267A JPWO2022113850A1 (ja) 2020-11-24 2021-11-17

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020194469 2020-11-24
JP2020-194469 2020-11-24
JP2021-119105 2021-07-19
JP2021119105 2021-07-19

Publications (1)

Publication Number Publication Date
WO2022113850A1 true WO2022113850A1 (ja) 2022-06-02

Family

ID=81754582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042260 WO2022113850A1 (ja) 2020-11-24 2021-11-17 近赤外線吸収材料

Country Status (2)

Country Link
JP (1) JPWO2022113850A1 (ja)
WO (1) WO2022113850A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIMOGAWA HIROYUKI, MURATA YASUJIRO, WAKAMIYA ATSUSHI: "NIR-Absorbing Dye Based on BF 2 -Bridged Azafulvene Dimer as a Strong Electron-Accepting Unit", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 20, no. 17, 7 September 2018 (2018-09-07), US , pages 5135 - 5138, XP055933025, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.8b02056 *
ZHANG HAILEI, HONG XIAOZHONG, BA XINWU, YU BEI, WEN XIN, WANG SUJUAN, WANG XUEFEI, LIU LEI, XIAO JINCHONG: "Synthesis, Physical Properties, and Photocurrent Behavior of Strongly Emissive Boron-Chelate Heterochrysene Derivatives", ASIAN JOURNAL OF ORGANIC CHEMISTRY , 1(2), 160-165 CODEN: AJOCC7; ISSN: 2193-5807, WILEY - V C H VERLAG GMBH & CO. KGAA, GERMANY, vol. 3, no. 11, 1 November 2014 (2014-11-01), Germany , pages 1168 - 1172, XP055933015, ISSN: 2193-5807, DOI: 10.1002/ajoc.201402131 *

Also Published As

Publication number Publication date
JPWO2022113850A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
WO2009096202A1 (ja) ハロ多環芳香族化合物及びその製造方法
EP2481742B1 (en) Preparation method of aromatic boronate compounds
JPH0730031B2 (ja) 2―ピラゾリン―5―オン類の製造法
JPH06298731A (ja) 複素環化合物の製造方法
AU2002250962B2 (en) Process for the preparation of mesylates of piperazine derivatives
CN108026054B (zh) 取代的苯并三唑酚
KR102468876B1 (ko) 나프토비스칼코게나디아졸 유도체 및 그 제조 방법
AU2002250962A1 (en) Process for the preparation of mesylates of piperazine derivatives
WO2022113850A1 (ja) 近赤外線吸収材料
JP5288779B2 (ja) 2,3−ジシアノナフタレン誘導体
JP5207516B2 (ja) 2,3−ジシアノナフタレン誘導体の製造方法
JP5408821B2 (ja) ナフタロシアニン化合物及びその製造方法
JP4307108B2 (ja) オルトベンジジン化合物の製造法
JP5408820B2 (ja) 5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノ−ナフタレン誘導体
JP7297066B2 (ja) 蛍光化合物、その製造方法及びその用途
JPS5913750A (ja) ハロゲン化アニリンの製造方法
KR100584483B1 (ko) 히드록시페닐기를 인접하여 갖는 벤족사졸계 이관능성단량체 화합물 및 그의 제조방법
JP7316228B2 (ja) 化合物および化合物の製造方法
US4540786A (en) Preparation of 2-chloro-3-cyano-quinolines
JP6865362B2 (ja) 鉄錯体触媒を用いたヒドロシランの脱水素縮合反応によるポリシランの製造方法
CN115572258A (zh) 一种c2轴手性的联喹啉骨架化合物的制备方法
JP2023032820A (ja) 含窒素縮合多環芳香族化合物、重合体、含窒素グラファイト誘導体、及び重合体の製造方法
WO2007119402A1 (ja) 原子移動ラジカルカップリング反応を用いる1,2-フェニルエタン系化合物の製造方法
CN117430525A (zh) 席夫碱配体及其制备方法和应用
JPH0556350B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897824

Country of ref document: EP

Kind code of ref document: A1