WO2022113507A1 - 撮像ユニット及び撮像システム - Google Patents

撮像ユニット及び撮像システム Download PDF

Info

Publication number
WO2022113507A1
WO2022113507A1 PCT/JP2021/035165 JP2021035165W WO2022113507A1 WO 2022113507 A1 WO2022113507 A1 WO 2022113507A1 JP 2021035165 W JP2021035165 W JP 2021035165W WO 2022113507 A1 WO2022113507 A1 WO 2022113507A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor module
lens
scintillator
scintillation light
radiation
Prior art date
Application number
PCT/JP2021/035165
Other languages
English (en)
French (fr)
Inventor
春樹 鈴木
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to KR1020237015006A priority Critical patent/KR20230109134A/ko
Priority to CN202180078988.1A priority patent/CN116472474A/zh
Priority to JP2022565089A priority patent/JPWO2022113507A1/ja
Priority to EP21897485.5A priority patent/EP4206745A4/en
Priority to US18/032,407 priority patent/US20230400421A1/en
Publication of WO2022113507A1 publication Critical patent/WO2022113507A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20187Position of the scintillator with respect to the photodiode, e.g. photodiode surrounding the crystal, the crystal surrounding the photodiode, shape or size of the scintillator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2964Scanners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • This disclosure relates to an imaging unit and an imaging system.
  • This conventional imaging system includes a first sensor module and a second sensor module that detect scintillation light emitted from a scintillator.
  • the first sensor module and the second sensor module capture images of scintillation light emitted from the front surface and the back surface of the scintillator, respectively.
  • dual energy imaging that acquires radiographic images of objects in different energy bands is realized.
  • the configuration of the image pickup unit constituting the image pickup system becomes complicated. Further, in an imaging system as described above, there may be restrictions on the arrangement of scintillators in optimizing the imaging of an object. In that case, it is required to secure the degree of freedom in adjusting the imaging position in the imaging unit.
  • An object of the present disclosure is to provide an imaging unit and an imaging system that can secure the degree of freedom in adjusting the imaging position with a simple configuration.
  • the image pickup unit includes a first sensor module, a second sensor module, a processing board, a first connection member, and a second connection member.
  • the first sensor module detects the first lens that collects the first scintillation light and the first scintillation light that is collected by the first lens, and outputs the first image signal corresponding to the detection result.
  • the second sensor module detects the second lens that collects the second scintillation light and the second scintillation light that is collected by the second lens, and outputs the second image signal corresponding to the detection result.
  • the processing board executes image processing based on the first image signal and the second image signal.
  • the first connecting member electrically connects the first sensor module and the processing board and has flexibility.
  • the second connecting member electrically connects the second sensor module and the processing board and has flexibility.
  • a processing board for processing the first image signal and the second image signal from the first sensor module and the second sensor module is shared. Therefore, the configuration can be simplified as compared with the configuration in which the processing board is provided for each sensor module. Further, in this image pickup unit, each of the first connecting member and the second connecting member connecting the first sensor module and the second sensor module to the processing board has flexibility when the processing board is standardized. Therefore, the imaging positions of the first sensor module and the second sensor module can be adjusted separately. Therefore, a sufficient degree of freedom in adjusting the imaging position can be ensured.
  • the imaging unit may further include a scintillator that emits scintillation light when radiation is incident. This makes it possible to improve workability when incorporating the image pickup unit into the image pickup system.
  • the scintillator may have a first surface that is an incident surface of radiation and a second surface that faces the first surface.
  • the first sensor module may be arranged on the first surface side of the scintillator in the direction facing the first surface and the second surface.
  • the first sensor module may detect the scintillation light emitted from the first surface due to the incident of radiation as the first scintillation light.
  • the second sensor module may be arranged on the second surface side of the scintillator in the facing direction.
  • the second sensor module may detect the scintillation light emitted from the second surface due to the incident of radiation as the second scintillation light.
  • the first sensor module and the second sensor module may be arranged apart from the scintillator on one side in the in-plane direction of the first surface and the second surface.
  • the distance between the first lens and the first surface of the first sensor module in the facing direction may be smaller than the distance between the second lens and the second surface of the second sensor module in the facing direction.
  • the in-plane position of the second lens may be closer to the scintillator side than the in-plane position of the first lens.
  • the scintillator may have a first surface that is an incident surface of radiation and a second surface that faces the first surface.
  • the first sensor module and the second sensor module may be arranged on the first surface side of the scintillator in the direction facing the first surface and the second surface, and may be arranged in the in-plane direction of the first surface.
  • the first sensor module may detect the scintillation light emitted from the first surface due to the incident of radiation as the first scintillation light.
  • the second sensor module may detect the scintillation light emitted from the first surface due to the incident of radiation as the second scintillation light. In this case, the scintillation light from one side of the scintillator can be accurately detected by the first sensor module and the second sensor module, respectively.
  • the scintillator may have a first surface that is an incident surface of radiation and a second surface that faces the first surface.
  • the first sensor module and the second sensor module may be arranged on the second surface side of the scintillator in the direction facing the first surface and the second surface, and may be arranged in the in-plane direction of the second surface.
  • the first sensor module may detect the scintillation light emitted from the second surface due to the incident of radiation as the first scintillation light.
  • the second sensor module may detect the scintillation light emitted from the second surface due to the incident of radiation as the second scintillation light. In this case, the scintillation light from one side of the scintillator can be accurately detected by the first sensor module and the second sensor module, respectively.
  • a part of the field of view of the first lens of the first sensor module and the second lens of the second sensor module may overlap each other.
  • the scintillation light can be imaged in a wide range without blind spots.
  • the first sensor module and the second sensor module may be arranged apart from the scintillator on one side in the in-plane direction of the first surface and the second surface.
  • the distance between the first lens of the first sensor module and the scintillator in the facing direction may be equal to the distance between the second lens of the second sensor module and the scintillator in the facing direction.
  • the positions of the first lens and the second lens in the in-plane direction with respect to the scintillator may be the same. In this case, the first lens and the second lens can be shared.
  • the imaging system includes a transport device that transports an object, a radiation source that emits radiation toward the object transported by the transport device, and an image signal corresponding to radiation transmitted through the object.
  • the above-mentioned image pickup unit that performs image processing based on the above-mentioned image processing unit is provided. According to this imaging system, as described above, the configuration can be simplified and the degree of freedom in adjusting the imaging position can be sufficiently secured.
  • an imaging unit and an imaging system that can secure the degree of freedom in adjusting the imaging position with a simple configuration.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging system according to the first embodiment.
  • FIG. 2 is a plan view of the image pickup unit shown in FIG.
  • FIG. 3 is a diagram showing a schematic configuration of an imaging unit according to a second embodiment.
  • FIG. 4 is a plan view of the image pickup unit shown in FIG.
  • FIG. 5 is a diagram showing the fields of view of the first lens and the second lens shown in FIG.
  • FIG. 6 is a diagram showing a schematic configuration of an imaging unit according to a third embodiment.
  • FIG. 7 is a plan view of the image pickup unit shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging system according to the first embodiment of the present disclosure.
  • FIG. 2 is a plan view of the image pickup unit shown in FIG.
  • the imaging system 1 of the first embodiment is a device for acquiring a radiographic image of an object A.
  • the imaging system 1 is a scintillator double-sided observation type X-ray imaging system.
  • the imaging system 1 is applied to, for example, in-line X-ray examination.
  • the image pickup system 1 is excellent in the discrimination performance of a substance composed of, for example, a light element.
  • the image pickup system 1 is applied to fields such as food inspection and battery inspection.
  • the object A contains, for example, a substance composed of a light element. In the field of food inspection, for example, the presence or absence of foreign matter being caught is inspected. Examples of such substances include food waste, hair, vinyl, insects, bones in meat and the like.
  • the image pickup system 1 emits radiation L such as white X-rays toward the transport device 20 that transports the object A in a predetermined transport direction D (X-axis direction) and the object A that is transported by the transport device 20. It includes a radiation source 30 and an image pickup unit 3A that executes image processing based on an image signal corresponding to the radiation L transmitted through the object A.
  • the transport device 20 has, for example, a belt conveyor 21 that moves in an orbit.
  • the object A is placed or held on the transport surface 21a of the belt conveyor 21.
  • the belt conveyor 21 is a transfer stage or a transfer unit.
  • the transport device 20 includes a drive source (not shown) that drives the belt conveyor 21.
  • the transport device 20 is configured to transport the object A in the transport direction D at a constant speed. In other words, the object A is transported on the predetermined transport path P by the transport device 20.
  • the transport direction D is the horizontal direction.
  • the transport path P is linear.
  • the direction in which the transport path P extends is parallel to the transport direction D.
  • the transport timing and transport speed of the object A in the transport device 20 are preset and controlled by the control unit.
  • the image pickup system 1 is compatible with all types of transport devices 20.
  • the transport direction D and the transport path P may be horizontal.
  • the transport direction D and the transport path P may be inclined with respect to the horizontal.
  • the transport path P does not have to be linear and may be curved.
  • the transport direction D may be a tangent line in a portion of the transport path P that overlaps the irradiation region of radiation.
  • the transport device 20 does not have to have a physical transport surface 21a.
  • the transport device 20 may transport the object A in a state of being lifted by air.
  • the transport device 20 may transport the object A by discharging the object A into the air.
  • the transport path P may be, for example, a parabolic shape.
  • the transport device 20 may have a roller conveyor including a plurality of rollers.
  • the radiation source 30 emits radiation L.
  • the radiation L is, for example, a cone beam X-ray.
  • the radiation source 30 may be a microfocus X-ray source or a millifocus X-ray source.
  • the radiation L emitted from the radiation source 30 forms a radiation flux.
  • the region where the radiation flux exists is the emission region of the radiation source 30.
  • the image pickup unit 3A is arranged on the side opposite to the radiation source 30 with respect to the transport surface 21a of the belt conveyor 21.
  • the image pickup unit 3A is attached to the transport device 20 so as not to interfere with the circulation of the belt conveyor 21.
  • the image pickup unit 3A is arranged with some space from the transport unit so as not to interfere with the movement of the transport unit such as a belt conveyor or a roller conveyor.
  • the image pickup unit 3A includes a scintillator 4, a first mirror 51, a second mirror 52, a first sensor module 6, a second sensor module 7, a processing board (image processing unit, control unit) 8, and a first. It includes a connecting member 91 and a second connecting member 92.
  • the scintillator 4 is a wavelength conversion member.
  • the scintillator 4 emits scintillation light by incident radiation L transmitted through the object A.
  • the scintillator 4 has a rectangular plate shape extending in the detection width direction (Y-axis direction).
  • the scintillator 4 has a first surface 4a which is an incident surface of the radiation L, and a second surface 4b which faces the first surface 4a in the Z-axis direction.
  • the first surface 4a and the second surface 4b are parallel to the transport surface 21a of the belt conveyor 21.
  • the first surface 4a faces the radiation source 30 side.
  • the scintillator 4 converts the radiation L transmitted through the object A into scintillation light (visible light).
  • X-rays having relatively low energy are converted into scintillation light S1 by the first surface 4a of the scintillator 4, and are output from the first surface 4a. Further, X-rays having relatively high energy are converted into scintillation light S2 by the second surface 4b of the scintillator 4, and output from the second surface 4b.
  • the scintillator 4 is, for example, Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, CsI: Tl, CdWO 4 , CaWO 4 , Gd 2SiO 5 : Ce, Lu 0.4 Gd 1.6SiO 5 , Bi 4 Ge 3 O. 12 , Lu 2SiO 5 : Ce, Y 2SiO 5 , YAlO 3 : Ce, Y 2 O 2 S: Tb, YTaO 4 : Tm, YAG: Ce, YAG: Pr, YGAG : Ce, YGAG: Pr, GAGG: It consists of Ce etc.
  • the thickness of the scintillator 4 is set to an appropriate value depending on the energy band of the radiation to be detected in the range of several ⁇ m to several mm.
  • the scintillator 4 may be composed of one scintillator.
  • the scintillator 4 may be a combination of a plurality of scintillators. When combining a plurality of scintillators, the types of scintillators may be the same or different.
  • the first mirror 51 is, for example, a mirror made of aluminum-deposited glass or mirror-processed metal.
  • the first mirror 51 is arranged on the radiation source 30 side with respect to the scintillator 4.
  • the first mirror 51 has a rectangular plate shape extending in the detection width direction (Y-axis direction).
  • the first mirror 51 has a reflecting surface 51a.
  • the reflective surface 51a has an acute angle with respect to the first surface 4a of the scintillator 4.
  • the reflective surface 51a faces diagonally with respect to the first surface 4a and also diagonally with respect to the first sensor module 6.
  • the reflecting surface 51a reflects the scintillation light S1 emitted from the first surface 4a toward the first sensor module 6.
  • the second mirror 52 is, for example, a mirror made of aluminum-deposited glass or mirror-processed metal.
  • the second mirror 52 is arranged on the side opposite to the first mirror 51 with respect to the scintillator 4.
  • the second mirror 52 has a rectangular plate shape extending in the detection width direction (Y-axis direction).
  • the second mirror 52 has a reflecting surface 52a.
  • the reflective surface 52a has an acute angle with respect to the second surface 4b of the scintillator 4.
  • the reflective surface 52a faces obliquely with respect to the second surface 4b and also diagonally with respect to the second sensor module 7.
  • the reflecting surface 52a reflects the scintillation light S2 emitted from the second surface 4b toward the second sensor module 7.
  • the reflecting surface 51a has a sufficient area for reflecting the scintillation light S1 emitted in the normal direction of the first surface 4a.
  • the reflecting surface 52a has a sufficient area for reflecting the scintillation light S2 emitted in the normal direction of the second surface 4b.
  • the angle between the reflecting surface 51a and the first surface 4a and the angle between the reflecting surface 52a and the second surface 4b are each within a range of 40 degrees or more and 50 degrees or less. In this embodiment, these angles are 45 degrees. These angles may be determined based on the arrangement of the radiation source 30 and the position of the slit of the housing described later. The arrangement of the first sensor module 6 and the second sensor module 7 may be appropriately adjusted depending on the magnitude of these angles.
  • the first sensor module 6 is separated from the scintillator 4 on one side (in-plane direction of the first surface 4a and the second surface 4b of the scintillator 4) in the X-axis direction (the wake side of the transport direction D from the scintillator 4). Is arranged.
  • the first sensor module 6 is arranged on the first surface 4a side of the scintillator 4 in the Z-axis direction (the direction opposite to the first surface 4a and the second surface 4b of the scintillator 4).
  • the first sensor module 6 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the first scintillation light.
  • the first scintillation light refers to the scintillation light detected by the first sensor module.
  • the first sensor module 6 performs imaging according to the movement of the object A.
  • the first sensor module 6 is a lens coupling type detector. Specifically, the first sensor module 6 has a first lens 61, a first body 62, and a first sensor 63.
  • the first lens 61 is attached to the first body 62.
  • the first lens 61 faces the reflection surface 51a of the first mirror 51 in the X-axis direction.
  • the optical axis of the first lens 61 is parallel to the X-axis direction.
  • the focus of the first lens 61 is aligned with the reflecting surface 51a.
  • the field of view 61a of the first lens 61 covers a wide range of the reflecting surface 51a in the Y-axis direction.
  • the first lens 61 collects the scintillation light S1 reflected by the reflecting surface 51a.
  • the first sensor 63 is provided in the first body 62. The first sensor 63 detects the scintillation light S1 focused by the first lens 61, and outputs a first image signal corresponding to the detection result.
  • the first sensor 63 is an image sensor.
  • the first sensor 63 is, for example, a general line sensor, a multi-line sensor, or an area image sensor capable of TDI (time delay integration) drive.
  • the first sensor 63 is, for example, a CCD area image sensor or a CMOS image sensor.
  • the first sensor 63 has an element row in which a plurality of light receiving elements are arranged in a row in the pixel direction.
  • the image pitches of the plurality of light receiving elements may be the same or different.
  • a plurality of element trains are arranged in a plurality of stages in the integration direction corresponding to the moving direction of the object A.
  • the first sensor 63 has a scan direction corresponding to the transport direction D of the object A and a line direction orthogonal to the scan direction.
  • This scanning direction is the above-mentioned integration direction and is parallel to the Z-axis direction.
  • the line direction is the pixel direction described above, and is parallel to the Y-axis direction.
  • the scanning direction is the direction converted from the transport direction D via the first mirror 51. In this embodiment, the scanning direction is changed by 90 degrees from the transport direction D.
  • the first sensor 63 is controlled by the control unit to transfer charges in accordance with the movement of the object A. That is, the first sensor 63 transfers charges on the light receiving surface in synchronization with the movement of the object A by the transport device 20. This makes it possible to obtain a radiographic image having a good S / N ratio.
  • the control unit controls the radiation source 30 and the first sensor module 6 to turn on the radiation source 30 in accordance with the imaging timing of the first sensor module 6. There may be.
  • the first sensor module 6 may be controlled by a signal from an encoder provided on the stage.
  • the second sensor module 7 is arranged away from the scintillator 4 on one side in the X-axis direction.
  • the second sensor module 7 is arranged on the second surface 4b side of the scintillator 4 in the Z-axis direction.
  • the second sensor module 7 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the second scintillation light.
  • the second scintillation light refers to the scintillation light detected by the second sensor module.
  • the second sensor module 7 performs imaging according to the movement of the object A.
  • the second sensor module 7 is a lens coupling type detector. Specifically, the second sensor module 7 has a second lens 71, a second body 72, and a second sensor 73.
  • the second lens 71 is attached to the second body 72.
  • the second lens 71 faces the reflection surface 52a of the second mirror 52 in the X-axis direction.
  • the optical axis of the second lens 71 is parallel to the X-axis direction.
  • the focus of the second lens 71 is aligned with the reflecting surface 52a.
  • the field of view 71a of the second lens 71 covers a wide range of the reflecting surface 52a in the Y-axis direction.
  • the second lens 71 collects the scintillation light S2 reflected by the reflecting surface 52a.
  • the second sensor 73 is provided in the second body 72.
  • the second sensor 73 detects the scintillation light S2 focused by the second lens 71, and outputs a second image signal corresponding to the detection result.
  • the second sensor 73 has the same configuration as the first sensor 63, and is controlled in the same manner as the first sensor 63. A detailed description of the second sensor 73 will be omitted.
  • the processing board 8 has a board 81 and a processor (not shown) attached to the board 81.
  • the processing board 8 functions as an image processing unit that executes image processing based on the first image signal output from the first sensor 63 and the second image signal output from the second sensor 73.
  • the processing substrate 8 has magnification correction, luminance value correction, dark correction, shooting correction, affine transformation processing, edge enhancement processing, and noise for at least one of the first image signal and the second image signal. Performs image processing such as removal processing, bilateral filter processing, or angle of view adjustment.
  • the processing board 8 outputs a radiographic image created by executing image processing to a computer.
  • the processing board 8 functions as a control unit that controls the image pickup condition by the first sensor 63 and the image pickup condition by the second sensor 73. Specifically, the processing board 8 sets the exposure time, gain, imaging frequency, imaging timing, and the like for the first sensor 63 and the second sensor 73. Further, the processing board 8 adjusts the image pickup timing of the first sensor 63, the image pickup timing of the second sensor 73, and the image processing timing as an image processing unit or a control unit. This facilitates processing such as matching the detection ranges of the first image signal and the second image signal, and comparing or synthesizing the first image signal and the second image signal. The processing board 8 may control at least one of the first image signal and the second image signal to delay the output within a range exceeding the exposure time.
  • one processing board 8 is provided for the first sensor module 6 and the second sensor module 7. That is, the processing board 8 is shared with the first sensor module 6 and the second sensor module 7.
  • the first connection member 91 electrically connects the first sensor module 6 and the processing board 8. Specifically, the first connection member 91 electrically connects the first sensor 63 and the image processing processor via the wiring provided on the first body 62 and the wiring provided on the substrate 81. There is.
  • the second connection member 92 electrically connects the second sensor module 7 and the processing board 8. Specifically, the second connecting member 92 electrically connects the second sensor 73 and the image processing processor via the wiring provided on the second body 72 and the wiring provided on the substrate 81. There is. As a result, the first image signal and the second image signal can be output to the processing board 8.
  • Each of the first connecting member 91 and the second connecting member 92 has flexibility. Each of the first connecting member 91 and the second connecting member 92 can be easily deformed by receiving a load corresponding to, for example, the force of a worker's finger.
  • Each of the first connecting member 91 and the second connecting member 92 is composed of, for example, a cable, a connector, or the like.
  • Each of the first connecting member 91 and the second connecting member 92 is composed of, for example, a harness, a connector, or the like.
  • Each of the first connecting member 91 and the second connecting member 92 is, for example, a flexible connector.
  • the image pickup unit 3A has, for example, a rectangular parallelepiped housing (not shown).
  • the scintillator 4, the first mirror 51, the second mirror 52, the first sensor module 6, the second sensor module 7, and the processing board 8 are housed in a housing.
  • the scintillator 4, the first mirror 51, the second mirror 52, the first sensor module 6, the second sensor module 7, and the processing board 8 are each held by a housing.
  • a slit is formed in the wall portion on the side of the radiation source 30 in the housing to allow the radiation L emitted from the radiation source 30 to pass through.
  • the slit has a rectangular shape extending in the detection width direction (Y-axis direction), for example.
  • the housing is made of, for example, a material that can shield X-rays.
  • the housing is a so-called dark box.
  • the housing may be made of metal, for example.
  • the housing is made of, for example, aluminum, iron, stainless steel, or the like.
  • the housing may include a protective material.
  • the protective material is, for example, metal. Examples of the protective material include lead, tungsten, copper, iron, stainless steel and the like.
  • the housing has a shape elongated in the transport direction D. The housing may be attached to the transport device 20.
  • the imaging system 1 includes a control unit (not shown).
  • the control unit controls the radiation source 30 based on the values of the tube voltage and tube current of the radiation source 30 stored by the user's input or the like.
  • the control unit controls each of the first sensor module 6 and the second sensor module 7 based on the exposure times of the first sensor module 6 and the second sensor module 7 stored by the user's input or the like.
  • the control unit and the image processing processor of the processing board 8 may be separate processors or the same processor.
  • the distance between the reflection surface 51a in the Z-axis direction and the first surface 4a of the scintillator 4 is smaller than the distance between the reflection surface 52a in the Z-axis direction and the second surface 4b of the scintillator 4. That is, the optical path length of the scintillation light S1 between the reflecting surface 51a and the first surface 4a in the Z-axis direction is larger than the optical path length of the scintillation light S2 between the reflecting surface 52a and the second surface 4b in the Z-axis direction. It's getting smaller.
  • the distance between the first lens 61 and the first surface 4a of the scintillator 4 in the Z-axis direction is smaller than the distance between the second lens 71 and the second surface 4b of the scintillator 4 in the Z-axis direction.
  • the distance between the optical axis of the first lens 61 and the first surface 4a is smaller than the distance between the optical axis of the second lens 71 and the second surface 4b.
  • the position of the second lens 71 in the X-axis direction is closer to the scintillator 4 side than the position of the first lens 61 in the X-axis direction.
  • the optical path length of the scintillation light S2 between the reflection surface 52a and the second lens 71 in the X-axis direction is larger than the optical path length of the scintillation light S1 between the reflection surface 51a and the first lens 61 in the X-axis direction. It's getting smaller.
  • the optical path length of the scintillation light S1 between the first surface 4a of the scintillator 4 and the first lens 61 becomes equal to the optical path length of the scintillation light S2 between the second surface 4b of the scintillator 4 and the second lens 71.
  • the first mirror 51 and the first sensor module 6 are brought close to the scintillator 4 in the Z-axis direction, and the optical path length of the scintillation light S1 and the optical path length of the scintillation light S2 are matched. There is. As a result, the scintillator 4 can be brought close to the object A, and a radiographic image of the object A can be acquired with high accuracy.
  • each of the first connecting member 91 and the second connecting member 92 has flexibility. That is, while the first sensor module 6 and the second sensor module 7 are connected to the processing board 8 by the first connecting member 91 and the second connecting member 92, the positions with respect to the processing board 8 can be adjusted. There is. Thereby, by adjusting the positions of the first sensor module 6 and the second sensor module 7, the positional relationship as described above can be easily adjusted.
  • the object A is transported in the transport direction D by the transport device 20. Further, the radiation source 30 emits the radiation L toward the object A. The radiation L transmitted through the object A is incident on the first surface 4a. Next, the radiation L is converted into scintillation light by the scintillator 4. The scintillation light S1 emitted from the first surface 4a is reflected by the first mirror 51 and is imaged on the first sensor 63 by the first lens 61 of the first sensor module 6. The first sensor 63 captures the scintillation light S1 (scintillation image) imaged by the first lens 61.
  • the first sensor module 6 outputs the radiographic image data (first image signal) obtained by imaging to the processing board 8. Similar to the first sensor module 6, the second sensor module 7 captures the scintillation light S2 and outputs the obtained radiographic image data (second image signal) to the processing substrate 8.
  • the processing substrate 8 inputs radiographic image data, executes predetermined processing such as image processing on the input radiographic image data, and creates a radiographic image.
  • the processing board 8 outputs the created radiographic image to a computer.
  • the computer displays the radiographic image output from the processing board 8. As a result, a radiographic image obtained by observing both sides of the object A can be obtained.
  • the processing substrate 8 for processing the first image signal and the second image signal from the first sensor module 6 and the second sensor module 7 is shared. Therefore, the configuration can be simplified as compared with the configuration in which the processing board is provided for each sensor module. Further, in the image pickup unit 3A, in order to standardize the processing board 8, each of the first connecting member 91 and the second connecting member 92 connecting the first sensor module 6 and the second sensor module 7 to the processing board 8 is flexible. have. Therefore, the imaging positions of the first sensor module 6 and the second sensor module 7 can be adjusted separately, and a sufficient degree of freedom in adjusting the imaging position can be ensured.
  • the image pickup unit 3A includes a scintillator 4 that emits scintillation lights S1 and S2 when radiation L is incident. This makes it possible to improve workability when incorporating the image pickup unit 3A into the image pickup system 1.
  • the scintillator 4 has a first surface 4a which is an incident surface of the radiation L and a second surface 4b which faces the first surface 4a.
  • the first sensor module 6 is arranged on the first surface 4a side of the scintillator 4 in the Z-axis direction.
  • the first sensor module 6 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the first scintillation light.
  • the second sensor module 7 is arranged on the second surface 4b side of the scintillator 4 in the Z-axis direction.
  • the second sensor module 7 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the second scintillation light.
  • the first sensor module 6 and the second sensor module 7 are arranged apart from the scintillator 4 on one side in the X-axis direction.
  • the distance between the first lens 61 of the first sensor module 6 and the first surface 4a in the Z-axis direction is smaller than the distance between the second lens 71 and the second surface 4b of the second sensor module 7 in the Z-axis direction. ing.
  • the position of the second lens 71 in the X-axis direction is closer to the scintillator 4 side than the position of the first lens 61 in the Z-axis direction.
  • the optical path length of the scintillation light S1 (first scintillation light) and the optical path length of the scintillation light S2 (second scintillation light) are matched. Can be done.
  • the configuration can be simplified and the degree of freedom in adjusting the image pickup position can be sufficiently secured.
  • FIG. 3 is a diagram showing a schematic configuration of an imaging unit according to the second embodiment of the present disclosure.
  • FIG. 4 is a plan view of the image pickup unit shown in FIG.
  • the first sensor module 6 and the second sensor module 7 are arranged on the first surface 4a side of the scintillator 4 and in the Y-axis direction. It differs from the image pickup unit 3A of the first embodiment in that it is lined up and does not include the second mirror 52.
  • the imaging system according to the second embodiment is a scintillator surface observation type X-ray imaging system.
  • the first sensor module 6 and the second sensor module 7 are arranged on the first surface 4a side of the scintillator 4 in the Z-axis direction and are arranged in the Y-axis direction (in-plane direction of the first surface 4a). I'm out.
  • the first sensor module 6 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the first scintillation light.
  • the second sensor module 7 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the second scintillation light.
  • the distance between the first lens 61 of the first sensor module 6 and the scintillator 4 in the Z-axis direction is equal to the distance between the second lens 71 of the second sensor module 7 and the scintillator 4 in the Z-axis direction.
  • the distance between the optical axis of the first lens 61 and the first surface 4a is equal to the distance between the optical axis of the second lens 71 and the first surface 4a. That is, the optical path length of the scintillation light S1 (the scintlation light S1 incident on the first lens 61) between the reflection surface 51a and the first surface 4a of the first mirror 51 in the Z-axis direction is the reflection surface 51a and the first surface. It is equal to the optical path length in the Z-axis direction of the scintillation light S1 (the scintillation light S1 incident on the second lens 71) with and from 4a.
  • the positions of the first lens 61 and the second lens 71 in the X-axis direction with respect to the scintillator 4 are the same. That is, the optical path length of the scintillation light S1 between the reflection surface 51a and the first lens 61 in the X-axis direction is equal to the optical path length of the scintillation light S1 between the reflection surface 51a and the second lens 71 in the X-axis direction. It has become. As described above, the optical path length of the scintillation light S1 between the first surface 4a of the scintillator 4 and the first lens 61 is the optical path length of the scintillation light S1 between the first surface 4a of the scintillator 4 and the second lens 71. Is equal to.
  • FIG. 5 is a diagram showing the fields of view of the first lens 61 and the second lens 71 shown in FIG. In FIG. 5, the illustration of the first mirror 51 is omitted. As shown in FIG. 5, a part of the visual field of the first lens 61 and the second lens 71 overlap each other in the Y-axis direction. Specifically, when viewed from the Z-axis direction, the range in the Y-axis direction of the field of view 61a of the first lens 61 with respect to the first surface 4a and the range of the field of view 61a of the second lens 71 with respect to the first surface 4a in the Y-axis direction. Some of them overlap with each other.
  • the width of the overlapping region R in the Y-axis direction can be adjusted by adjusting the positions of the first sensor module 6 and the second sensor module 7 in the Y-axis direction.
  • the image pickup unit 3B by arranging the first sensor module 6 and the second sensor module 7 in the Y-axis direction, the field of view as the image pickup unit 3B in the Y-axis direction is widened, and the overlapping region R is appropriately set.
  • the visual field 61a and the visual field 71a in the Y-axis direction are continuous.
  • the positions of the first sensor module 6 and the second sensor module 7 with respect to the processing board 8 are respectively. Is adjustable. Thereby, by adjusting the positions of the first sensor module 6 and the second sensor module 7, the positional relationship as described above can be easily adjusted.
  • the scintillator 4 has a first surface 4a which is an incident surface of the radiation L and a second surface 4b which faces the first surface 4a.
  • the first sensor module 6 and the second sensor module 7 are arranged on the first surface 4a side of the scintillator 4 in the Z-axis direction and are arranged in the Y-axis direction.
  • the first sensor module 6 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the first scintillation light.
  • the second sensor module 7 detects the scintillation light S1 emitted from the first surface 4a due to the incident of the radiation L as the second scintillation light.
  • the scintillation light S1 from one side of the scintillator 4 can be accurately detected by the first sensor module 6 and the second sensor module 7, respectively.
  • the first sensor module 6 and the second sensor module 7 are arranged apart from the scintillator 4 on one side in the X-axis direction.
  • the distance between the first lens 61 of the first sensor module 6 and the scintillator 4 in the Z-axis direction is equal to the distance between the second lens 71 of the second sensor module 7 and the scintillator 4 in the Z-axis direction.
  • the positions of the first lens 61 and the second lens 71 with respect to the scintillator 4 are the same in the X-axis direction. Thereby, the first lens 61 and the second lens 71 can be shared.
  • the image correction caused by the difference between the optical path length of the scintillation light S1 (first scintillation light) incident on the first lens 61 and the optical path length of the scintillation light S1 (second scintillation light) incident on the second lens 71 is performed. Since it is unnecessary, it is possible to avoid complication of image processing on the processing substrate 8.
  • FIG. 6 is a diagram showing a schematic configuration of an imaging unit according to a third embodiment of the present disclosure.
  • FIG. 7 is a plan view of the image pickup unit shown in FIG.
  • the first sensor module 6 and the second sensor module 7 are arranged on the second surface 4b side of the scintillator 4, and a second. It is different from the image pickup unit 3B of the second embodiment in that the first mirror 51 is not provided and the second mirror 52 is provided.
  • the imaging system according to the third embodiment is a scintillator backside observation type X-ray imaging system.
  • the first sensor module 6 and the second sensor module 7 are arranged on the second surface 4b side of the scintillator 4 in the Z-axis direction.
  • the first sensor module 6 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the first scintillation light.
  • the second sensor module 7 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the second scintillation light.
  • the distance between the optical axis of the first lens 61 and the second surface 4b is the distance between the optical axis of the second lens 71 and the second surface 4b.
  • the positions of the first lens 61 and the second lens 71 in the X-axis direction with respect to the scintillator 4 are the same.
  • a part of the visual field of the first lens 61 and the second lens 71 overlap each other in the Y-axis direction.
  • the scintillator 4 has a first surface 4a which is an incident surface of the radiation L and a second surface 4b which faces the first surface 4a.
  • the first sensor module 6 and the second sensor module 7 are arranged on the second surface 4b side of the scintillator 4 in the Z-axis direction and are arranged in the Y-axis direction.
  • the first sensor module 6 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the first scintillation light.
  • the second sensor module 7 detects the scintillation light S2 emitted from the second surface 4b due to the incident of the radiation L as the second scintillation light.
  • the scintillation light S2 from one side of the scintillator 4 can be accurately detected by the first sensor module 6 and the second sensor module 7, respectively.
  • the present disclosure is not limited to the above embodiment.
  • the image pickup units 3A, 3B, 3C are provided with the scintillator 4, but the image pickup units 3A, 3B, 3C may not be provided with the scintillator 4.
  • the scintillator 4 does not have to be configured as the image pickup unit 3A, 3B, 3C.
  • the scintillator 4 may be configured as an imaging system.
  • Imaging system 3A, 3B, 3C ... Imaging unit, 4 ... Scintillator, 4a ... 1st surface, 4b ... 2nd surface, 6 ... 1st sensor module, 7 ... 2nd sensor module, 8 ... Processing board, 20 ... transport device, 30 ... radiation source, 61 ... first lens, 61a, 71a ... field of view, 63 ... first sensor, 71 ... second lens, 73 ... second sensor, 91 ... first connecting member, 92 ... second Connecting member, A ... object, L ... radiation, S1, S2 ... scintillation light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

撮像ユニットは、第1センサモジュールと、第2センサモジュールと、処理基板と、第1接続部材と、第2接続部材と、を備える。第1センサモジュールは、第1レンズ及び第1センサを有する。第2センサモジュールは、第2レンズ及び第2センサを有する。処理基板は、第1画像信号及び第2画像信号に基づく画像処理を実行する。第1接続部材は、第1センサモジュールと処理基板とを電気的に接続し、可撓性を有する。第2接続部材は、第2センサモジュールと処理基板とを電気的に接続し、可撓性を有する。

Description

撮像ユニット及び撮像システム
 本開示は、撮像ユニット及び撮像システムに関する。
 従来の撮像システムとして、例えば特許文献1に記載の撮像システムがある。この従来の撮像システムは、シンチレータから出射されるシンチレーション光を検出する第1センサモジュール及び第2センサモジュールを備えている。第1センサモジュール及び第2センサモジュールは、シンチレータの表面及び裏面から出射されるシンチレーション光のそれぞれを撮像する。これにより、異なるエネルギー帯で対象物の放射線画像を取得するデュアルエナジー撮像が実現されている。
特開2012-154733号公報
 上述のような撮像システムでは、複数のセンサモジュールを用いるため、撮像システムを構成する撮像ユニットの構成が複雑になることが考えられる。また、上述のような撮像システムでは、対象物の撮像を最適化するにあたってシンチレータの配置に制約が生じる場合がある。その場合、撮像ユニットにおける撮像位置の調整の自由度の確保が求められる。
 本開示は、簡単な構成で撮像位置の調整の自由度を確保できる撮像ユニット及び撮像システムを提供することを目的とする。
 本開示の一側面に係る撮像ユニットは、第1センサモジュールと、第2センサモジュールと、処理基板と、第1接続部材と、第2接続部材と、を備える。第1センサモジュールは、第1シンチレーション光を集光する第1レンズ、及び第1レンズにより集光された第1シンチレーション光を検出し、検出結果に対応する第1画像信号を出力する第1センサを有する。第2センサモジュールは、第2シンチレーション光を集光する第2レンズ、及び第2レンズにより集光された第2シンチレーション光を検出し、検出結果に対応する第2画像信号を出力する第2センサを有する。処理基板は、第1画像信号及び第2画像信号に基づく画像処理を実行する。第1接続部材は、第1センサモジュールと処理基板とを電気的に接続し、可撓性を有する。第2接続部材は、第2センサモジュールと処理基板とを電気的に接続し、可撓性を有する。
 この撮像ユニットでは、第1センサモジュール及び第2センサモジュールからの第1画像信号及び第2画像信号を処理する処理基板が共通化されている。したがって、センサモジュール毎に処理基板を設ける構成に比べて、構成の簡単化が図られる。また、この撮像ユニットでは、処理基板の共通化にあたって、第1センサモジュール及び第2センサモジュールを処理基板に接続する第1接続部材及び第2接続部材のそれぞれが可撓性を有している。このため、第1センサモジュール及び第2センサモジュールの撮像位置を別個に調整することが可能となる。したがって、撮像位置の調整の自由度を十分に確保できる。
 撮像ユニットは、放射線の入射によってシンチレーション光を出射するシンチレータを更に備えていてもよい。これにより、撮像ユニットを撮像システムに組み込む際の作業性を向上できる。
 シンチレータは、放射線の入射面となる第1面と、第1面と対向する第2面と、を有していてもよい。第1センサモジュールは、第1面と第2面との対向方向においてシンチレータの第1面側に配置されていてもよい。第1センサモジュールは、放射線の入射によって第1面から出射するシンチレーション光を第1シンチレーション光として検出してもよい。第2センサモジュールは、対向方向においてシンチレータの第2面側に配置されていてもよい。第2センサモジュールは、放射線の入射によって第2面から出射するシンチレーション光を第2シンチレーション光として検出してもよい。これにより、例えば低エネルギー帯のシンチレーション光と高エネルギー帯のシンチレーション光とを用いたデュアルエナジー撮像を好適に実現できる。
 第1センサモジュール及び第2センサモジュールは、第1面及び第2面の面内方向の一側においてシンチレータから離間して配置されていてもよい。対向方向における第1センサモジュールの第1レンズと第1面との間隔は、対向方向における第2センサモジュールの第2レンズと第2面との間隔よりも小さくなっていてもよい。第2レンズの面内方向の位置は、第1レンズの面内方向の位置よりもシンチレータ側に近接していてもよい。この場合、撮像ユニットをシステムに組み込むにあたり、シンチレータの第1面を対象物に近接させることができる。また、シンチレータの第1面を対象物に近接させた場合でも第1シンチレーション光の光路長と、第2シンチレーション光の光路長とを一致させることができる。
 シンチレータは、放射線の入射面となる第1面と、第1面と対向する第2面と、を有していてもよい。第1センサモジュール及び第2センサモジュールは、第1面と第2面との対向方向においてシンチレータの第1面側に配置されると共に第1面の面内方向に並んでいてもよい。第1センサモジュールは、放射線の入射によって第1面から出射するシンチレーション光を第1シンチレーション光として検出してもよい。第2センサモジュールは、放射線の入射によって第1面から出射するシンチレーション光を第2シンチレーション光として検出してもよい。この場合、シンチレータの片面からのシンチレーション光を第1センサモジュール及び第2センサモジュールによってそれぞれ精度良く検出できる。
 シンチレータは、放射線の入射面となる第1面と、第1面と対向する第2面と、を有していてもよい。第1センサモジュール及び第2センサモジュールは、第1面と第2面との対向方向においてシンチレータの第2面側に配置されると共に第2面の面内方向に並んでいてもよい。第1センサモジュールは、放射線の入射によって第2面から出射するシンチレーション光を第1シンチレーション光として検出してもよい。第2センサモジュールは、放射線の入射によって第2面から出射するシンチレーション光を第2シンチレーション光として検出してもよい。この場合、シンチレータの片面からのシンチレーション光を第1センサモジュール及び第2センサモジュールによってそれぞれ精度良く検出できる。
 第1面及び第2面の面内方向において、第1センサモジュールの第1レンズと第2センサモジュールの第2レンズとの視野一部同士が重なっていてもよい。この場合、第1レンズの視野と第2レンズの視野とが連続するため、シンチレーション光を死角なく広範囲に撮像できる。
 第1センサモジュール及び第2センサモジュールは、第1面及び第2面の面内方向の一側においてシンチレータから離間して配置されていてもよい。対向方向における第1センサモジュールの第1レンズとシンチレータとの間隔は、対向方向における第2センサモジュールの第2レンズとシンチレータとの間隔と等しくなっていてもよい。シンチレータに対する第1レンズ及び第2レンズの面内方向の位置が一致していてもよい。この場合、第1レンズ及び第2レンズを共通化できる。また、第1レンズに入射する第1シンチレーション光の光路長と第2レンズに入射する第2シンチレーション光の光路長との差に起因する画像補正が不要となるため、処理基板における画像処理の複雑化を回避できる。
 本開示の一側面に係る撮像システムは、対象物を搬送する搬送装置と、搬送装置によって搬送される対象物に向けて放射線を出射する放射線源と、対象物を透過した放射線に対応する画像信号に基づく画像処理を実行する上記の撮像ユニットと、を備える。この撮像システムによれば、上述したように、構成の簡単化が図られると共に、撮像位置の調整の自由度を十分に確保できる。
 本開示によれば、簡単な構成で撮像位置の調整の自由度を確保できる撮像ユニット及び撮像システムを提供することが可能となる。
図1は、第1実施形態に係る撮像システムの概略構成を示す図である。 図2は、図1に示される撮像ユニットの平面図である。 図3は、第2実施形態に係る撮像ユニットの概略構成を示す図である。 図4は、図3に示される撮像ユニットの平面図である。 図5は、図3に示される第1レンズ及び第2レンズの視野を示す図である。 図6は、第3実施形態に係る撮像ユニットの概略構成を示す図である。 図7は、図6に示される撮像ユニットの平面図である。
 以下、本開示の実施形態について、図面を参照しながら説明する。図面の説明において同一要素には同一符号を付し、重複する説明は省略する。また、各図面は、説明用の便宜上、説明の対象部位を強調して描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。
[第1実施形態]
 図1は、本開示の第1実施形態に係る撮像システムの概略構成を示す図である。図2は、図1に示される撮像ユニットの平面図である。図1及び図2に示すように、第1実施形態の撮像システム1は、対象物Aの放射線画像を取得するための装置である。撮像システム1は、シンチレータ両面観察方式のX線撮影システムである。撮像システム1は、たとえばインラインX線検査に適用される。撮像システム1は、たとえば軽元素からなる物質の弁別性能に優れている。撮像システム1は、たとえば、食品検査やバッテリー検査などの分野に適用される。対象物Aは、たとえば、軽元素からなる物質を含有する。食品検査の分野では、たとえば異物の噛み込みの有無が検査される。このような物質としては、たとえば、食品のくず、髪の毛、ビニール、虫、肉の中の骨等が挙げられる。
 撮像システム1は、対象物Aを所定の搬送方向D(X軸方向)に搬送する搬送装置20と、搬送装置20によって搬送される対象物Aに向けて白色X線等の放射線Lを出射する放射線源30と、対象物Aを透過した放射線Lに対応する画像信号に基づく画像処理を実行する撮像ユニット3Aと、を備えている。
 搬送装置20は、たとえば周回軌道を移動するベルトコンベア21を有している。ベルトコンベア21の搬送面21a上には、対象物Aが載置または保持されている。ベルトコンベア21は、搬送ステージ或いは搬送部である。搬送装置20は、ベルトコンベア21を駆動する図示しない駆動源を備えている。搬送装置20は、対象物Aを搬送方向Dに一定の速度で搬送するように構成されている。言い換えれば、対象物Aは、搬送装置20によって所定の搬送経路P上で搬送される。本実施形態において、搬送方向Dは水平方向である。また、搬送経路Pは直線状である。搬送経路Pが延びる方向は搬送方向Dに平行である。搬送装置20における対象物Aの搬送タイミングや搬送速度は、予め設定されており、制御部によって制御される。
 撮像システム1は、あらゆる形態の搬送装置20に対応可能である。搬送方向Dおよび搬送経路Pは、水平であってもよい。搬送方向Dおよび搬送経路Pは、水平に対して傾斜していてもよい。搬送経路Pは、直線状でなくてもよく、曲線状であってもよい。その場合、搬送方向Dは、搬送経路Pのうちの放射線の照射領域に重複する部分における接線であってもよい。搬送装置20は、物理的な搬送面21aを有していなくてもよい。搬送装置20は、エアによって対象物Aを浮き上がらせた状態で搬送してもよい。搬送装置20は、対象物Aを空中に放出することで対象物Aを搬送してもよい。その場合、搬送経路Pは、たとえば放物線状であってもよい。搬送装置20は、複数のローラを含むローラコンベアを有してもよい。
 放射線源30は、放射線Lを出射する。放射線Lは、たとえばコーンビームX線である。放射線源30は、マイクロフォーカスX線源であってもよく、ミリフォーカスX線源であってもよい。放射線源30から出射される放射線Lは放射線束を形成する。放射線束の存在領域は、放射線源30の出射領域である。
 撮像ユニット3Aは、ベルトコンベア21の搬送面21aに対して放射線源30とは反対側に配置されている。撮像ユニット3Aは、ベルトコンベア21の周回に干渉しないように搬送装置20に取り付けられている。搬送装置20がローラコンベアである場合も同様である。撮像ユニット3Aは、ベルトコンベアまたはローラコンベア等の搬送部の移動に干渉しないよう、搬送部から幾らかの空隙をもって配置されている。
 撮像ユニット3Aは、シンチレータ4と、第1ミラー51と、第2ミラー52と、第1センサモジュール6と、第2センサモジュール7と、処理基板(画像処理部、制御部)8と、第1接続部材91と、第2接続部材92と、を備えている。
 シンチレータ4は、波長変換部材である。シンチレータ4は、対象物Aを透過した放射線Lの入射によってシンチレーション光を出射する。シンチレータ4は、検出幅方向(Y軸方向)に延びる長方形板状を呈している。シンチレータ4は、放射線Lの入射面となる第1面4aと、Z軸方向において第1面4aと対向する第2面4bと、を有している。第1面4a及び第2面4bは、ベルトコンベア21の搬送面21aに平行である。第1面4aは、放射線源30側に向いている。シンチレータ4は、対象物Aを透過した放射線Lをシンチレーション光(可視光)に変換する。比較的低いエネルギーのX線は、シンチレータ4の第1面4aでシンチレーション光S1に変換され、第1面4aから出力される。また、比較的高いエネルギーのX線は、シンチレータ4の第2面4bでシンチレーション光S2に変換され、第2面4bから出力される。
 シンチレータ4は、たとえばGd2O2S:Tb、Gd2O2S:Pr、CsI:Tl、CdWO4、CaWO4、Gd2SiO5:Ce、Lu0.4Gd1.6SiO5、Bi4Ge3O12、Lu2SiO5:Ce、Y2SiO5、YAlO3:Ce、Y2O2S:Tb、YTaO4:Tm、YAG:Ce、YAG:Pr、YGAG:Ce、YGAG:Pr、GAGG:Ce等からなる。シンチレータ4の厚さは、数μm~数mmの範囲において、検出する放射線のエネルギー帯によって適切な値に設定されている。シンチレータ4は、1枚のシンチレータから構成されていてもよい。シンチレータ4は、複数のシンチレータを組み合わせたものであってもよい。複数のシンチレータを組み合わせる場合、シンチレータの種類は同じでもよく、異なっていてもよい。
 第1ミラー51は、たとえば、アルミ蒸着したガラス又は鏡面加工した金属からなるミラーである。第1ミラー51は、シンチレータ4に対して放射線源30側に配置されている。第1ミラー51は、検出幅方向(Y軸方向)に延びる長方形板状を呈している。第1ミラー51は、反射面51aを有している。反射面51aは、シンチレータ4の第1面4aに対して鋭角をなしている。反射面51aは、第1面4aに対して斜めに向いていると共に、第1センサモジュール6に対して斜めに向いている。反射面51aは、第1面4aから出射されたシンチレーション光S1を第1センサモジュール6に向けて反射する。
 第2ミラー52は、たとえば、アルミ蒸着したガラス又は鏡面加工した金属からなるミラーである。第2ミラー52は、シンチレータ4に対して第1ミラー51とは反対側に配置されている。第2ミラー52は、検出幅方向(Y軸方向)に延びる長方形板状を呈している。第2ミラー52は、反射面52aを有している。反射面52aは、シンチレータ4の第2面4bに対して鋭角をなしている。反射面52aは、第2面4bに対して斜めに向いている共に、第2センサモジュール7に対して斜めに向いている。反射面52aは、第2面4bから出射されたシンチレーション光S2を第2センサモジュール7に向けて反射する。
 反射面51aは、第1面4aの法線方向に出射されたシンチレーション光S1を反射させるのに十分な面積を有している。反射面52aは、第2面4bの法線方向に出射されたシンチレーション光S2を反射させるのに十分な面積を有している。反射面51aと第1面4aとの角度、及び反射面52aと第2面4bとの角度は、それぞれ、40度以上50度以下の範囲内の角度であることが好ましい。本実施形態では、これらの角度は、45度である。これらの角度は、放射線源30の配置や後述する筐体のスリットの位置に基づいて決定されてもよい。これらの角度の大きさによって、第1センサモジュール6及び第2センサモジュール7の配置が適宜に調整されてもよい。
 第1センサモジュール6は、X軸方向(シンチレータ4の第1面4a及び第2面4bの面内方向)の一側(シンチレータ4よりも搬送方向Dの後流側)においてシンチレータ4から離間して配置されている。第1センサモジュール6は、Z軸方向(シンチレータ4の第1面4aと第2面4bとの対向方向)においてシンチレータ4の第1面4a側に配置されている。第1センサモジュール6は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第1シンチレーション光として検出する。なお、第1シンチレーション光とは、第1センサモジュールによって検出されるシンチレーション光のことをいう。
 第1センサモジュール6は、対象物Aの移動に合わせて撮像を行う。第1センサモジュール6は、レンズカップリング型の検出器である。具体的には、第1センサモジュール6は、第1レンズ61と、第1ボディ62と、第1センサ63と、を有している。第1レンズ61は、第1ボディ62に取付けられている。第1レンズ61は、X軸方向において第1ミラー51の反射面51aに向いている。第1レンズ61の光軸は、X軸方向に平行である。第1レンズ61の焦点は、反射面51aに合わせられている。第1レンズ61の視野61aは、Y軸方向において反射面51aの広範囲に亘っている。第1レンズ61は、反射面51aで反射されたシンチレーション光S1を集光する。第1センサ63は、第1ボディ62内に設けられている。第1センサ63は、第1レンズ61により集光されたシンチレーション光S1を検出し、検出結果に対応する第1画像信号を出力する。
 第1センサ63は、イメージセンサである。第1センサ63は、たとえば、一般的なラインセンサ、マルチラインセンサ、又はTDI(時間遅延積分)駆動が可能なエリアイメージセンサである。第1センサ63は、たとえば、CCDエリアイメージセンサ、又はCMOSイメージセンサである。第1センサ63は、複数の受光素子がピクセル方向に一列に並べられた素子列を有している。複数の受光素子の画像ピッチは、同じであってもよく、異なっていてもよい。第1センサ63では、対象物Aの移動方向に対応して、素子列が積分方向に複数段並べられている。第1センサ63は、対象物Aの搬送方向Dに対応するスキャン方向と、スキャン方向に直交するライン方向とを有する。このスキャン方向が上記の積分方向であり、Z軸方向に平行である。ライン方向が上記のピクセル方向であり、Y軸方向に平行である。スキャン方向は、第1ミラー51を介して搬送方向Dから変換された方向である。本実施形態では、スキャン方向は、搬送方向Dから90度だけ変換されている。
 第1センサ63は、制御部によって、対象物Aの移動に合わせて電荷転送を行うように制御される。すなわち、第1センサ63は、搬送装置20による対象物Aの移動に同期して、受光面における電荷転送を行う。これにより、S/N比のよい放射線画像を得ることができる。第1センサ63がエリアイメージセンサである場合には、制御部が放射線源30及び第1センサモジュール6を制御して、第1センサモジュール6の撮像タイミングに合わせて放射線源30を点灯させる構成であってもよい。第1センサモジュール6は、ステージに設けられたエンコーダからの信号によって制御されてもよい。
 第2センサモジュール7は、X軸方向の一側においてシンチレータ4から離間して配置されている。第2センサモジュール7は、Z軸方向においてシンチレータ4の第2面4b側に配置されている。第2センサモジュール7は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第2シンチレーション光として検出する。なお、第2シンチレーション光とは、第2センサモジュールによって検出されるシンチレーション光のことをいう。
 第2センサモジュール7は、対象物Aの移動に合わせて撮像を行う。第2センサモジュール7は、レンズカップリング型の検出器である。具体的には、第2センサモジュール7は、第2レンズ71と、第2ボディ72と、第2センサ73と、を有している。第2レンズ71は、第2ボディ72に取付けられている。第2レンズ71は、X軸方向において第2ミラー52の反射面52aに向いている。第2レンズ71の光軸は、X軸方向に平行である。第2レンズ71の焦点は、反射面52aに合わせられている。第2レンズ71の視野71aは、Y軸方向において反射面52aの広範囲に亘っている。第2レンズ71は、反射面52aで反射されたシンチレーション光S2を集光する。第2センサ73は、第2ボディ72内に設けられている。第2センサ73は、第2レンズ71により集光されたシンチレーション光S2を検出し、検出結果に対応する第2画像信号を出力する。第2センサ73は、第1センサ63と同様な構成有しており、第1センサ63と同様に制御される。第2センサ73の詳細な説明については、省略する。
 処理基板8は、基板81と、基板81に取り付けられたプロセッサ(図示省略)と、を有している。処理基板8は、第1センサ63から出力される第1画像信号及び第2センサ73から出力される第2画像信号に基づく画像処理を実行する画像処理部として機能する。具体的には、処理基板8は、第1画像信号及び第2画像信号の少なくとも一方に対して、拡大率補正、輝度値補正、ダーク補正、シューディング補正、アフィン変換処理、エッジ強調処理、ノイズ除去処理、バイラテラルフィルタ処理、又は画角合わせ等の画像処理を行う。処理基板8は、画像処理の実行により作成した放射線画像をコンピュータに出力する。
 また、処理基板8は、第1センサ63による撮像条件及び第2センサ73による撮像条件を制御する制御部として機能する。具体的には、処理基板8は、第1センサ63及び第2センサ73に対して、露光時間、ゲイン、撮像周波数、撮像タイミング等の設定を行う。また、処理基板8は、画像処理部又は制御部として第1センサ63の撮像タイミング、第2センサ73の撮像タイミング、及び画像処理タイミングを調整する。これにより、第1画像信号と第2画像信号の検出範囲を一致させる処理、及び、第1画像信号と第2画像信号の比較或いは合成などの処理がしやすくなる。処理基板8は、第1画像信号と第2画像信号の少なくとも一方に対して、露光時間を超える範囲で出力を遅延させる制御を行ってもよい。
 ここでは、第1センサモジュール6及び第2センサモジュール7に対して1つの処理基板8が設けられている。すなわち、第1センサモジュール6及び第2センサモジュール7に対して、処理基板8が共通化されている。
 第1接続部材91は、第1センサモジュール6と処理基板8とを電気的に接続している。具体的には、第1接続部材91は、第1ボディ62に設けられた配線、及び基板81に設けられた配線を介して、第1センサ63と画像処理プロセッサとを電気的に接続している。第2接続部材92は、第2センサモジュール7と処理基板8とを電気的に接続している。具体的には、第2接続部材92は、第2ボディ72に設けられた配線、及び基板81に設けられた配線を介して、第2センサ73と画像処理プロセッサとを電気的に接続している。これにより、第1画像信号及び第2画像信号が処理基板8へ出力可能となっている。
 第1接続部材91及び第2接続部材92のそれぞれは、可撓性を有している。第1接続部材91及び第2接続部材92のそれぞれは、たとえば作業者の指の力に相当する荷重を受ける程度で容易に変形可能となっている。第1接続部材91及び第2接続部材92のそれぞれは、たとえば、ケーブル及びコネクタ等によって構成されている。第1接続部材91及び第2接続部材92のそれぞれは、たとえば、ハーネス及びコネクタ等によって構成されている。第1接続部材91及び第2接続部材92のそれぞれは、たとえばフレキシブルコネクタである。
 撮像ユニット3Aは、たとえば直方体状を呈する筐体(図示省略)を有している。シンチレータ4、第1ミラー51、第2ミラー52、第1センサモジュール6、第2センサモジュール7及び処理基板8は、筐体に収容されている。シンチレータ4、第1ミラー51、第2ミラー52、第1センサモジュール6、第2センサモジュール7及び処理基板8は、それぞれ、筐体により保持されている。筐体における放射線源30側の壁部には、放射線源30から出射された放射線Lを通過させるためのスリットが形成されている。スリットは、たとえば検出幅方向(Y軸方向)に延びる長方形状を呈している。
 筐体は、たとえば、X線を遮蔽することができる材質からなる。筐体は、いわゆる暗箱である。筐体は、たとえば金属製であってもよい。筐体は、たとえば、アルミニウム製、鉄製又はステンレス製等である。筐体は、防護材を含んでもよい。防護材は、たとえば金属である。防護材としては、たとえば、鉛、タングステン、銅、鉄、ステンレス等が挙げられる。筐体は、搬送方向Dに長くなった形状を有する。筐体は、搬送装置20に取り付けられていてもよい。
 撮像システム1は、制御部(図示省略)を備えている。制御部は、ユーザの入力等により記憶された放射線源30の管電圧や管電流の値に基づいて、放射線源30を制御する。制御部は、ユーザの入力等により記憶された第1センサモジュール6及び第2センサモジュール7のそれぞれの露光時間等に基づいて、第1センサモジュール6及び第2センサモジュール7のそれぞれを制御する。制御部と処理基板8の画像処理プロセッサとは、別々のプロセッサでもよいし、同じプロセッサでもよい。
 次に、シンチレータ4、第1ミラー51、第2ミラー52、第1センサモジュール6及び第2センサモジュール7の位置関係について説明する。
 Z軸方向における反射面51aとシンチレータ4の第1面4aとの間隔は、Z軸方向における反射面52aとシンチレータ4の第2面4bとの間隔よりも小さくなっている。すなわち、反射面51aと第1面4aとの間におけるシンチレーション光S1のZ軸方向の光路長は、反射面52aと第2面4bとの間におけるシンチレーション光S2のZ軸方向の光路長よりも小さくなっている。
 Z軸方向における第1レンズ61とシンチレータ4の第1面4aとの間隔は、Z軸方向における第2レンズ71とシンチレータ4の第2面4bとの間隔よりも小さくなっている。具体的には、第1レンズ61の光軸と第1面4aとの間隔は、第2レンズ71の光軸と第2面4bとの間隔よりも小さくなっている。第2レンズ71のX軸方向の位置は、第1レンズ61のX軸方向の位置よりもシンチレータ4側に近接している。すなわち、反射面52aと第2レンズ71との間におけるシンチレーション光S2のX軸方向の光路長は、反射面51aと第1レンズ61との間におけるシンチレーション光S1のX軸方向の光路長よりも小さくなっている。
 シンチレータ4の第1面4aと第1レンズ61との間におけるシンチレーション光S1の光路長は、シンチレータ4の第2面4bと第2レンズ71との間におけるシンチレーション光S2の光路長と等しくなっている。具体的には、反射面51aと第1面4aとの間におけるシンチレーション光S1のZ軸方向の光路長及び反射面51aと第1レンズ61との間におけるシンチレーション光S1のX軸方向の光路長の合計は、反射面52aと第2面4bとの間におけるシンチレーション光S2のZ軸方向の光路長及び反射面52aと第2レンズ71との間におけるシンチレーション光S2のX軸方向の光路長の合計と等しくなっている。
 このように、撮像ユニット3では、第1ミラー51及び第1センサモジュール6を、Z軸方向においてシンチレータ4に近接させると共に、シンチレーション光S1の光路長とシンチレーション光S2の光路長とを一致させている。これにより、シンチレータ4を対象物Aに近接させることができ、対象物Aの放射線画像を精度良く取得できる。
 ここで、上述したように、第1接続部材91及び第2接続部材92のそれぞれは、可撓性を有している。すなわち、第1センサモジュール6及び第2センサモジュール7は、第1接続部材91及び第2接続部材92によって、処理基板8に接続されている一方で、処理基板8に対する位置が調整可能となっている。これにより、第1センサモジュール6及び第2センサモジュール7のそれぞれの位置を調整することで、上述したような位置関係を容易に調整できる。
 続いて、撮像システム1の動作すなわち放射線画像の取得方法について説明する。
 まず、対象物Aは、搬送装置20によって搬送方向Dに搬送される。また、放射線源30は、対象物Aに向けて放射線Lを出射する。対象物Aを透過した放射線Lは第1面4aに入射する。次に、放射線Lは、シンチレータ4によってシンチレーション光へ変換される。第1面4aから出射されるシンチレーション光S1は、第1ミラー51によって反射され、第1センサモジュール6の第1レンズ61によって、第1センサ63に結像される。第1センサ63は、第1レンズ61により結像されたシンチレーション光S1(シンチレーション像)を撮像する。
 この撮像工程では、対象物Aの移動に同期して電荷転送(第1センサ63がエリアイメージセンサである場合にはTDI動作)が行われる。第1センサモジュール6は、撮像により得られた放射線画像データ(第1画像信号)を処理基板8に出力する。第2センサモジュール7は、第1センサモジュール6と同様に、シンチレーション光S2を撮像し、得られた放射線画像データ(第2画像信号)を処理基板8に出力する。処理基板8は、放射線画像データを入力し、入力した放射線画像データに対して画像処理等の所定の処理を実行し、放射線画像を作成する。処理基板8は、作成した放射線画像をコンピュータに出力する。コンピュータは、処理基板8から出力された放射線画像を表示する。以上により、対象物Aの両面面観察による放射線画像が得られる。
 以上説明したように、撮像ユニット3Aでは、第1センサモジュール6及び第2センサモジュール7からの第1画像信号及び第2画像信号を処理する処理基板8が共通化されている。したがって、センサモジュール毎に処理基板を設ける構成に比べて、構成の簡単化が図られる。また、撮像ユニット3Aでは、処理基板8の共通化にあたって、第1センサモジュール6及び第2センサモジュール7を処理基板8に接続する第1接続部材91及び第2接続部材92のそれぞれが可撓性を有している。このため、第1センサモジュール6及び第2センサモジュール7の撮像位置を別個に調整することが可能となり、撮像位置の調整の自由度を十分に確保できる。
 撮像ユニット3Aは、放射線Lの入射によってシンチレーション光S1,S2を出射するシンチレータ4を備えている。これにより、撮像ユニット3Aを撮像システム1に組み込む際の作業性を向上できる。
 シンチレータ4は、放射線Lの入射面となる第1面4aと、第1面4aと対向する第2面4bと、を有している。第1センサモジュール6は、Z軸方向においてシンチレータ4の第1面4a側に配置されている。第1センサモジュール6は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第1シンチレーション光として検出している。第2センサモジュール7は、Z軸方向においてシンチレータ4の第2面4b側に配置されている。第2センサモジュール7は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第2シンチレーション光として検出している。これにより、例えば低エネルギー帯のシンチレーション光と高エネルギー帯のシンチレーション光とを用いたデュアルエナジー撮像を好適に実現できる。
 第1センサモジュール6及び第2センサモジュール7は、X軸方向の一側においてシンチレータ4から離間して配置されている。Z軸方向における第1センサモジュール6の第1レンズ61と第1面4aとの間隔は、Z軸方向における第2センサモジュール7の第2レンズ71と第2面4bとの間隔よりも小さくなっている。第2レンズ71のX軸方向の位置は、第1レンズ61のZ軸方向の位置よりもシンチレータ4側に近接している。これにより、撮像ユニット3Aを撮像システム1に組み込むにあたり、シンチレータ4の第1面4aを対象物Aに近接させることができる。また、シンチレータ4の第1面4aを対象物Aに近接させた場合でもシンチレーション光S1(第1シンチレーション光)の光路長と、シンチレーション光S2(第2シンチレーション光)の光路長とを一致させることができる。
 撮像システム1によれば、上述したように、構成の簡単化が図られると共に、撮像位置の調整の自由度を十分に確保できる。
[第2実施形態]
 図3は、本開示の第2実施形態に係る撮像ユニットの概略構成を示す図である。図4は、図3に示される撮像ユニットの平面図である。図3及び図4に示すように、第2実施形態に係る撮像ユニット3Bは、第1センサモジュール6及び第2センサモジュール7がシンチレータ4の第1面4a側に配置されると共にY軸方向に並んでいる点、及び第2ミラー52を備えていない点で第1実施形態の撮像ユニット3Aと異なっている。
 第2実施形態に係る撮像システムは、シンチレータ表面観察方式のX線撮影システムである。撮像ユニット3Bでは、第1センサモジュール6及び第2センサモジュール7が、Z軸方向においてシンチレータ4の第1面4a側に配置されると共にY軸方向(第1面4aの面内方向)に並んでいる。第1センサモジュール6は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第1シンチレーション光として検出する。第2センサモジュール7は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第2シンチレーション光として検出する。
 Z軸方向における第1センサモジュール6の第1レンズ61とシンチレータ4との間隔は、Z軸方向における第2センサモジュール7の第2レンズ71とシンチレータ4との間隔と等しくなっている。具体的には、第1レンズ61の光軸と第1面4aとの間隔は、第2レンズ71の光軸と第1面4aとの間隔と等しくなっている。すなわち、第1ミラー51の反射面51aと第1面4aとの間におけるシンチレーション光S1(第1レンズ61に入射するシンチレーション光S1)のZ軸方向の光路長は、反射面51aと第1面4aとの間におけるシンチレーション光S1(第2レンズ71に入射するシンチレーション光S1)のZ軸方向の光路長と等しくなっている。
 シンチレータ4に対する第1レンズ61及び第2レンズ71のX軸方向の位置は、一致している。すなわち、反射面51aと第1レンズ61との間におけるシンチレーション光S1のX軸方向の光路長は、反射面51aと第2レンズ71との間におけるシンチレーション光S1のX軸方向の光路長と等しくなっている。このように、シンチレータ4の第1面4aと第1レンズ61との間におけるシンチレーション光S1の光路長は、シンチレータ4の第1面4aと第2レンズ71との間におけるシンチレーション光S1の光路長と等しくなっている。
 図5は、図3に示される第1レンズ61及び第2レンズ71の視野を示す図である。図5では、第1ミラー51の図示が省略されている。図5に示すように、Y軸方向において、第1レンズ61と第2レンズ71との視野一部同士が重なっている。具体的には、Z軸方向から見て、第1面4aに対する第1レンズ61の視野61aのY軸方向の範囲と、第1面4aに対する第2レンズ71の視野61aのY軸方向の範囲との一部同士が重なっている。Z軸方向から見て、第1ミラー51の反射面51a(図3参照)において、第1レンズ61の視野61aのY軸方向の範囲と、第2レンズ71の視野71aのY軸方向の範囲との一部同士が重なっている。視野61aと視野71aとの間には、重複領域Rが存在する。重複領域RのY軸方向の幅は、Y軸方向における第1センサモジュール6及び第2センサモジュール7の位置を調整することで調整できる。
 このように、撮像ユニット3Bでは、第1センサモジュール6及び第2センサモジュール7をY軸方向に並ばせることで、Y軸方向における撮像ユニット3Bとしての視野を広げると共に、重複領域Rを適切に設けることで、Y軸方向において視野61aと視野71aとを連続させている。
 ここで、上述したように、第1接続部材91及び第2接続部材92は、可撓性を有しているため、処理基板8に対する第1センサモジュール6及び第2センサモジュール7のそれぞれの位置が調整可能となっている。これにより、第1センサモジュール6及び第2センサモジュール7のそれぞれの位置を調整することで、上述したような位置関係を容易に調整できる。
 以上説明したように、シンチレータ4は、放射線Lの入射面となる第1面4aと、第1面4aと対向する第2面4bと、を有している。第1センサモジュール6及び第2センサモジュール7は、Z軸方向においてシンチレータ4の第1面4a側に配置されると共にY軸方向に並んでいる。第1センサモジュール6は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第1シンチレーション光として検出している。第2センサモジュール7は、放射線Lの入射によって第1面4aから出射するシンチレーション光S1を第2シンチレーション光として検出している。これにより、シンチレータ4の片面からのシンチレーション光S1を第1センサモジュール6及び第2センサモジュール7によってそれぞれ精度良く検出できる。
 Z軸方向において、第1センサモジュール6の第1レンズ61と第2センサモジュール7の第2レンズ71との視野61a,71a一部同士が重なっている。これにより、第1レンズ61の視野61aと第2レンズ71の視野71aとが連続し、シンチレーション光S1を死角なく広範囲に撮像できる。
 第1センサモジュール6及び第2センサモジュール7は、X軸方向の一側においてシンチレータ4から離間して配置されている。Z軸方向における第1センサモジュール6の第1レンズ61とシンチレータ4との間隔は、Z軸方向における第2センサモジュール7の第2レンズ71とシンチレータ4との間隔と等しくなっている。シンチレータ4に対する第1レンズ61及び第2レンズ71のX軸方向の位置が一致している。これにより、第1レンズ61及び第2レンズ71を共通化できる。また、第1レンズ61に入射するシンチレーション光S1(第1シンチレーション光)の光路長と第2レンズ71に入射するシンチレーション光S1(第2シンチレーション光)の光路長との差に起因する画像補正が不要となるため、処理基板8における画像処理の複雑化を回避できる。
[第3実施形態]
 図6は、本開示の第3実施形態に係る撮像ユニットの概略構成を示す図である。図7は、図6に示される撮像ユニットの平面図である。図6及び図7に示すように、第3実施形態に係る撮像ユニット3Cは、第1センサモジュール6及び第2センサモジュール7がシンチレータ4の第2面4b側に配置されている点、及び第1ミラー51を備えず第2ミラー52を備えている点で第2実施形態の撮像ユニット3Bと異なっている。
 第3実施形態に係る撮像システムは、シンチレータ裏面観察方式のX線撮影システムである。撮像ユニット3Cでは、第1センサモジュール6及び第2センサモジュール7が、Z軸方向においてシンチレータ4の第2面4b側に配置されている。第1センサモジュール6は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第1シンチレーション光として検出する。第2センサモジュール7は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第2シンチレーション光として検出する。
 撮像ユニット3Cでは、第2実施形態に係る撮像ユニット3Bと同様に、第1レンズ61の光軸と第2面4bとの間隔は、第2レンズ71の光軸と第2面4bとの間隔と等しくなっており、シンチレータ4に対する第1レンズ61及び第2レンズ71のX軸方向の位置は、一致している。また、撮像ユニット3Cでは、第2実施形態の撮像ユニット3Bと同様に、Y軸方向において、第1レンズ61と第2レンズ71との視野一部同士が重なっている。
 以上説明したように、シンチレータ4は、放射線Lの入射面となる第1面4aと、第1面4aと対向する第2面4bと、を有している。第1センサモジュール6及び第2センサモジュール7は、Z軸方向においてシンチレータ4の第2面4b側に配置されると共にY軸方向に並んでいる。第1センサモジュール6は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第1シンチレーション光として検出している。第2センサモジュール7は、放射線Lの入射によって第2面4bから出射するシンチレーション光S2を第2シンチレーション光として検出している。これにより、シンチレータ4の片面からのシンチレーション光S2を第1センサモジュール6及び第2センサモジュール7によってそれぞれ精度良く検出できる。
[変形例]
 本開示は、上記実施形態に限られるものではない。たとえば、撮像ユニット3A,3B,3Cがシンチレータ4を備えていたが、撮像ユニット3A,3B,3Cは、シンチレータ4を備えていなくてもよい。シンチレータ4は、撮像ユニット3A,3B,3Cの構成ではなくてもよい。シンチレータ4は、撮像システムの構成であってもよい。
 1…撮像システム、3A,3B,3C…撮像ユニット、4…シンチレータ、4a…第1面、4b…第2面、6…第1センサモジュール、7…第2センサモジュール、8…処理基板、20…搬送装置、30…放射線源、61…第1レンズ、61a,71a…視野、63…第1センサ、71…第2レンズ、73…第2センサ、91…第1接続部材、92…第2接続部材、A…対象物、L…放射線、S1,S2…シンチレーション光。

Claims (9)

  1.  第1シンチレーション光を集光する第1レンズ、及び前記第1レンズにより集光された前記第1シンチレーション光を検出し、検出結果に対応する第1画像信号を出力する第1センサを有する第1センサモジュールと、
     第2シンチレーション光を集光する第2レンズ、及び前記第2レンズにより集光された前記第2シンチレーション光を検出し、検出結果に対応する第2画像信号を出力する第2センサを有する第2センサモジュールと、
     前記第1画像信号及び前記第2画像信号に基づく画像処理を実行する処理基板と、
     前記第1センサモジュールと前記処理基板とを電気的に接続する可撓性の第1接続部材と、
     前記第2センサモジュールと前記処理基板とを電気的に接続する可撓性の第2接続部材と、を備える、撮像ユニット。
  2.  放射線の入射によってシンチレーション光を出射するシンチレータを更に備える、請求項1に記載の撮像ユニット。
  3.  前記シンチレータは、前記放射線の入射面となる第1面と、前記第1面と対向する第2面と、を有し、
     前記第1センサモジュールは、前記第1面と前記第2面との対向方向において前記シンチレータの前記第1面側に配置され、前記放射線の入射によって前記第1面から出射する前記シンチレーション光を前記第1シンチレーション光として検出し、
     前記第2センサモジュールは、前記対向方向において前記シンチレータの前記第2面側に配置され、前記放射線の入射によって前記第2面から出射する前記シンチレーション光を前記第2シンチレーション光として検出する、請求項2に記載の撮像ユニット。
  4.  前記第1センサモジュール及び前記第2センサモジュールは、前記第1面及び前記第2面の面内方向の一側において前記シンチレータから離間して配置されており、
     前記対向方向における前記第1センサモジュールの前記第1レンズと前記第1面との間隔は、前記対向方向における前記第2センサモジュールの前記第2レンズと前記第2面との間隔よりも小さくなっており、
     前記第2レンズの前記面内方向の位置は、前記第1レンズの前記面内方向の位置よりも前記シンチレータ側に近接している、請求項3に記載の撮像ユニット。
  5.  前記シンチレータは、前記放射線の入射面となる第1面と、前記1面と対向する第2面と、を有し、
     前記第1センサモジュール及び前記第2センサモジュールは、前記第1面と前記第2面との対向方向において前記シンチレータの前記第1面側に配置されると共に前記第1面の面内方向に並んでおり、
     前記第1センサモジュールは、前記放射線の入射によって前記第1面から出射する前記シンチレーション光を前記第1シンチレーション光として検出し、
     前記第2センサモジュールは、前記放射線の入射によって前記第1面から出射する前記シンチレーション光を前記第2シンチレーション光として検出する、請求項2に記載の撮像ユニット。
  6.  前記シンチレータは、前記放射線の入射面となる第1面と、前記第1面と対向する第2面と、を有し、
     前記第1センサモジュール及び前記第2センサモジュールは、前記第1面と前記第2面との対向方向において前記シンチレータの前記第2面側に配置されると共に前記第2面の面内方向に並んでおり、
     前記第1センサモジュールは、前記放射線の入射によって前記第2面から出射する前記シンチレーション光を前記第1シンチレーション光として検出し、
     前記第2センサモジュールは、前記放射線の入射によって前記第2面から出射する前記シンチレーション光を前記第2シンチレーション光として検出する、請求項2に記載の撮像ユニット。
  7.  前記第1面及び前記第2面の前記面内方向において、前記第1センサモジュールの前記第1レンズと前記第2センサモジュールの前記第2レンズとの視野一部同士が重なっている、請求項5又は6に記載の撮像ユニット。
  8.  前記第1センサモジュール及び前記第2センサモジュールは、前記第1面及び前記第2面の面内方向の一側において前記シンチレータから離間して配置されており、
     前記対向方向における前記第1センサモジュールの前記第1レンズと前記シンチレータとの間隔は、前記対向方向における前記第2センサモジュールの前記第2レンズと前記シンチレータとの間隔と等しくなっており、
     前記シンチレータに対する前記第1レンズ及び前記第2レンズの前記面内方向の位置が一致している、請求項5~7のいずれか一項に記載の撮像ユニット。
  9.  対象物を搬送する搬送装置と、
     前記搬送装置によって搬送される前記対象物に向けて放射線を出射する放射線源と、
     前記対象物を透過した前記放射線に対応する画像信号に基づく画像処理を実行する請求項1~8のいずれか一項に記載の撮像ユニットと、を備える、撮像システム。
PCT/JP2021/035165 2020-11-25 2021-09-24 撮像ユニット及び撮像システム WO2022113507A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237015006A KR20230109134A (ko) 2020-11-25 2021-09-24 촬상 유닛 및 촬상 시스템
CN202180078988.1A CN116472474A (zh) 2020-11-25 2021-09-24 摄像单元及摄像系统
JP2022565089A JPWO2022113507A1 (ja) 2020-11-25 2021-09-24
EP21897485.5A EP4206745A4 (en) 2020-11-25 2021-09-24 IMAGING UNIT AND IMAGING SYSTEM
US18/032,407 US20230400421A1 (en) 2020-11-25 2021-09-24 Imaging unit and imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-195049 2020-11-25
JP2020195049 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113507A1 true WO2022113507A1 (ja) 2022-06-02

Family

ID=81755522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035165 WO2022113507A1 (ja) 2020-11-25 2021-09-24 撮像ユニット及び撮像システム

Country Status (7)

Country Link
US (1) US20230400421A1 (ja)
EP (1) EP4206745A4 (ja)
JP (1) JPWO2022113507A1 (ja)
KR (1) KR20230109134A (ja)
CN (1) CN116472474A (ja)
TW (1) TW202223372A (ja)
WO (1) WO2022113507A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034961A (ja) * 2000-07-31 2002-02-05 Konica Corp 放射線撮影装置及び放射線撮影方法
JP2012154733A (ja) 2011-01-25 2012-08-16 Hamamatsu Photonics Kk 放射線画像取得装置
JP2014179356A (ja) * 2011-07-21 2014-09-25 Fujifilm Corp 放射線画像検出装置、および放射線撮影装置
JP2020139816A (ja) * 2019-02-27 2020-09-03 浜松ホトニクス株式会社 撮像ユニットおよび放射線画像取得システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064633B4 (de) * 2008-02-06 2017-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erfassen eines Bildes
BR112014015663A8 (pt) * 2011-12-27 2017-07-04 Koninklijke Philips Nv módulo do detector de radiação, digitalizador de pet, e método de montagem de uma matriz do detector de radiação

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034961A (ja) * 2000-07-31 2002-02-05 Konica Corp 放射線撮影装置及び放射線撮影方法
JP2012154733A (ja) 2011-01-25 2012-08-16 Hamamatsu Photonics Kk 放射線画像取得装置
JP2014179356A (ja) * 2011-07-21 2014-09-25 Fujifilm Corp 放射線画像検出装置、および放射線撮影装置
JP2020139816A (ja) * 2019-02-27 2020-09-03 浜松ホトニクス株式会社 撮像ユニットおよび放射線画像取得システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206745A4

Also Published As

Publication number Publication date
EP4206745A4 (en) 2024-08-14
KR20230109134A (ko) 2023-07-19
EP4206745A1 (en) 2023-07-05
US20230400421A1 (en) 2023-12-14
JPWO2022113507A1 (ja) 2022-06-02
CN116472474A (zh) 2023-07-21
TW202223372A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
US10746884B2 (en) Radiation image acquisition device
US10234406B2 (en) Radiation image acquisition system
WO2012101879A1 (ja) 放射線画像取得装置
CN106128540B (zh) 闪烁器面板
JP7457187B2 (ja) 撮像ユニット
US12058472B2 (en) Imaging unit and radiation image acquisition system
WO2022113507A1 (ja) 撮像ユニット及び撮像システム
US11693132B2 (en) Scintillator attachment structure in radiation imaging unit
JP6671413B2 (ja) 放射線画像取得装置
JP3204649U (ja) 放射線画像取得装置及び撮像ユニット
JP5973040B2 (ja) 放射線画像取得装置
JP5706387B2 (ja) シンチレータプレート及び画像取得装置
JP6345720B2 (ja) 放射線画像取得装置および放射線画像取得装置の調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021897485

Country of ref document: EP

Effective date: 20230327

WWE Wipo information: entry into national phase

Ref document number: 202180078988.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE