WO2022111964A1 - Verfahren zum stoffschlüssigen kontaktieren von komponenten in elektrischen systemen, energiespeichereinheit sowie verwendung der energie einer energiespeichereinheit - Google Patents

Verfahren zum stoffschlüssigen kontaktieren von komponenten in elektrischen systemen, energiespeichereinheit sowie verwendung der energie einer energiespeichereinheit Download PDF

Info

Publication number
WO2022111964A1
WO2022111964A1 PCT/EP2021/080587 EP2021080587W WO2022111964A1 WO 2022111964 A1 WO2022111964 A1 WO 2022111964A1 EP 2021080587 W EP2021080587 W EP 2021080587W WO 2022111964 A1 WO2022111964 A1 WO 2022111964A1
Authority
WO
WIPO (PCT)
Prior art keywords
contacting
contact
current path
energy
contact elements
Prior art date
Application number
PCT/EP2021/080587
Other languages
English (en)
French (fr)
Inventor
Robert Alig
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US18/030,923 priority Critical patent/US20230378618A1/en
Priority to CN202180066835.5A priority patent/CN116235360A/zh
Publication of WO2022111964A1 publication Critical patent/WO2022111964A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for materially connecting components in electrical systems, an energy storage unit and a use of the energy of an energy storage unit.
  • a method for materially bonded contacting of components in electrical/electronic systems comprises the steps:
  • the components for electrical contacting having contact elements; Contacting the components via the contact elements to create a current path;
  • a current flow is generated in the current path in such a way that the contact elements at the contact points connect in a cohesive manner via the heat or thermal energy generated there.
  • the aforementioned "contacting of the components” is therefore to be understood in particular as pre-positioning or pre-contacting of the components.
  • This contacting should be carried out in such a way that the components are sufficiently connected to be able to form a current path at all or to allow a current flow.
  • the pre-positioned or pre-contacted contact points are automatically cohesively connected. This exploits the fact that the contact resistances occurring at the contact points lead to losses, which result in the development of heat, with this heat advantageously being used to produce the material-locking connections.
  • Appropriate means are preferably provided at the contact points, which enable or support the formation of an integral connection.
  • solder material is kept available at the contact points, for example.
  • the energy can be brought in from outside or via a component that is (part of) the electrical system.
  • a resistor for example, is used to control/regulate the current flow.
  • At least one component is an energy storage unit, in particular an electrical energy storage device. Accordingly, the method preferably includes the following steps:
  • the electronic load is a device or assembly that can be used to replace a conventional load resistor.
  • the current flow within the current path can be set to a desired level via the resistor or the electronic load.
  • the energy storage unit or the electrical energy store which is itself a component of the electrical system, is advantageously used to contact the electrical system. The energy for soldering is thus advantageously applied by the electrical energy store itself.
  • the energy can also be introduced into the current path via an external energy source, which is therefore not part of the electrical system to be contacted.
  • an external energy source which is therefore not part of the electrical system to be contacted.
  • the energy store when the energy is introduced via an external energy source, the energy store is charged.
  • the method comprises the steps:
  • the components are in particular battery modules and power cables or module connectors, which are provided for connecting or contacting the battery modules.
  • the module connectors or power cables are typically copper cables or metal and/or copper rails.
  • these can advantageously be dimensioned to be significantly smaller, since the contact resistances at the contact points are lower due to the integral connection. This allows space, weight and costs to be saved.
  • the method comprises the step:
  • the method comprises the step:
  • Such a clamping device can be used, for example, to make contact with one another, in particular temporarily contact two contact elements, that is to say a contact point.
  • the clamping device is expediently removed afterwards or after the material connection has been created.
  • the clamping device is designed in such a way that a large number of contact points can be contacted or pre-contacted, as a result of which the effort can be significantly reduced.
  • the method comprises the step:
  • Suitably designed components are expediently deformed at least in regions, as far as possible, in order to induce, for example, a (pre-)tension which can be used to enable frictional contact between two contact elements or components.
  • a (pre-)tension which can be used to enable frictional contact between two contact elements or components.
  • Such an approach is expedient, for example, when the components are current conductors in the form of tabs or the like.
  • the method comprises the step:
  • soldering material in particular is used for the material connection.
  • the integral connection is to be understood as a soldering process.
  • the melting point of the soldering material is typically between 180° and 260° C. In order to reach these temperatures at the contact points, the current flow in the current path is briefly adjusted accordingly. Appropriately, the material connection is made above the thermal endurance stress of the components, in particular the module connectors or power cables.
  • the method comprises the step:
  • Cohesive contacting of the components in particular by means of adhesive.
  • adhesive is kept available at the contact points in order to pre-contact or pre-position the contact elements.
  • the method comprises the step:
  • a corresponding mixture of materials can be applied to at least one of the components or one of the contact elements.
  • At least one contact element comprises or forms a lotta.
  • the solder pocket is expediently designed to provide a solder depot, ie a certain amount of solder material that is required for subsequent connection.
  • the solder pocket can also be designed in such a way that a congruently designed contact element can be arranged or in particular inserted in a form-fitting and/or force-fitting manner for pre-contacting.
  • the solder pocket is designed as a recess, recess, opening or bore, etc. in the respective component or in the respective contact element.
  • the components are expediently power cables, among other things, with the power cable ends being designed with solder pockets.
  • fastening means such as screws can also be used for form-fitting and/or non-positive pre-contacting, which remain at the contact point or can also be removed again.
  • the method comprises the step:
  • the aforementioned material is expediently selected to change, in particular to increase, the contact resistance in such a way that heat is generated in a targeted manner in order to form the material connection.
  • the transition resistance can be achieved in a targeted manner by a local/regional material reduction, such as a reduction in the cross section of a conductor.
  • air pockets are specifically provided, which can then be filled with the solder material.
  • the aforementioned adhesive can be designed as a material that increases the contact resistance.
  • Typical (rated) currents to achieve the material connection(s) are, for example, in a range from 1200 to 1600A, with (rated) voltages in a range from 300V to 500V.
  • the rated currents of high-voltage batteries for hybrid vehicles can also be significantly lower.
  • the nominal voltages can, especially in the future, also be higher, for example in a range from 800V to 1000V.
  • the method for materially bonded contact is carried out immediately after the production or manufacture of the electrical system, such as the high-voltage storage device.
  • the soldering process takes place directly after the end of production.
  • the invention also relates to an energy storage unit, in particular a high-voltage storage device, which is contacted or made using the method according to the invention.
  • Such high-voltage storage devices preferably include a large number of battery modules, which are assembled to form the high-voltage storage device.
  • the battery modules expediently each comprise a large number of energy storage cells, in particular accumulators.
  • Preferred types or types of energy storage cells are, for example, lithium ion, lithium sulfur or iron phosphate cells.
  • Typical housing designs of the energy storage cells are round cells and in particular special prismatic cells, ie in particular housings with solid bodies.
  • energy storage cells with soft housings can also be used, also known as pouch cells.
  • Energy storage cells can also be capacitors or supercapacitors.
  • Energy storage units of the type in question are used in particular as energy storage devices in partially and/or fully electrically operated motor vehicles. They are also called traction or drive batteries.
  • the invention also relates to the use of the energy of an energy storage unit, in particular an electrical energy storage unit such as a high-voltage storage unit, in a current path for the integral connection of contact points in the current path.
  • an energy storage unit in particular an electrical energy storage unit such as a high-voltage storage unit
  • the energy required for the integral connection preferably for soldering, is applied by the energy storage unit itself.
  • power cables are used with solder pockets arranged at the ends, the Solder pockets can be used for pre-positioning or pre-contacting of the power cables, as well as for providing the solder material required for soldering.
  • the energy of the energy storage unit is used for post-soldering. This means that during the operation of the energy storage unit, maintenance soldering can be carried out expediently if required.
  • the currents occurring during operation are used for re-soldering or the energy storage unit is operated briefly in such a way that re-soldering can take place at the contact points. This is particularly advantageous since an optimal connection at the contact points can be ensured over the service life of the energy storage unit, or of the electrical system in general.
  • Fig. 1 shows a schematic view of a clamping device 22, which includes two tabs, which are connected via fasteners 30, never outlined here as a dashed line.
  • the fastening means 30 can be screw connections.
  • Two components 10 each, which have contact elements 20 at their ends, can be seen.
  • Mixele Solder material 24 is arranged.
  • the respective contact elements 20 are clamped by the clamping device 22, with the solder material 24 being arranged in between. net is compressed. If a sufficiently high current now flows through the components 10 or contact elements 20, the contact points 21 are automatically soldered.
  • the clamping device 22 can then be removed.
  • Fig. 2 shows a further schematically illustrated embodiment of a contact point 21 in a schematic representation, with a component 10 being embodied here, for example as a power cable or module connector 44, which has a contact element 20 at the end, on which an insulating material 26 is arranged.
  • the insulating material preferably serves to increase or in particular to increase the contact resistance in a targeted manner and in certain areas in order to generate additional heat.
  • the insulating material 26 can also act as an adhesive.
  • a further component 10 is outlined here as an electrical energy store or battery module, which comprises a voltage tap 42 which represents a second contact element 20 in the present case. At this soldering material 24 is seen before. It is indicated schematically that the power cable 44 is deformed.
  • a voltage can be introduced into the component via this deformation, which can be used for the two contact elements 20 to be contacted with one another, in particular to be contacted in a non-positive manner, so that a current path is formed.
  • FIG. 3 shows two schematically illustrated embodiments of components 10, a component 10 being sketched in the left half of the figure, for example as a conductor element, which has a contact element 20 at the end, this comprising an adhesive 26 in which soldering material 24 is embedded.
  • a component 10 is shown schematically, for example a conductor element, which has a contact element 20 at the end, which comprises a Lotta 28 cal.
  • soldering pocket 28 soldering material can be kept or arranged for later soldering.
  • such a lotta can be used to arrange a congruently designed contact element (not shown here) in a form-fitting and/or non-positive manner for pre-positioning or pre-contacting.
  • FIG. 4 shows a further embodiment of a contact point 21 shown schematically, it being possible for two components 10 which have contact elements 20 at their ends to bear against one another at the contact point 21 .
  • the right contacts element 20 includes a solder pocket 28 and an engagement portion 32, which for Cooperation with a fastener 30 is designed.
  • the two components 10 can be pre-contacted to one another via the fastening means 30.
  • the actual material connection is achieved indirectly via the solder, which is held in the solder pocket 28 .
  • Intervention area 40 Electrical energy store, battery module 42 Voltage tap 44 Power cable, module connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Verfahren zum stoffschlüssigen Kontaktieren von Komponenten in elektrischen Systemen, umfassend die Schritte: − Bereitstellen einer Vielzahl von Komponenten, wobei die Komponenten zur elektrischen Kontaktierung Kontaktelemente aufweisen; − Kontaktieren der Komponenten über die Kontaktelemente zum Erzeugen eines Strompfads; − Erzeugen eines Stromflusses in dem Strompfad zum stoffschlüssigen Verbinden der Kontaktelemente über die dort entstehende Wärmeenergie.

Description

Verfahren zum stoffschlüssigen Kontaktieren von Komponenten in elektrischen Systemen, Energiespeichereinheit sowie Verwendung der Energie einer Energiespeichereinheit
Die vorliegende Erfindung betrifft ein Verfahren zum stoffschlüssigen Kontaktieren von Komponenten in elektrischen Systemen, eine Energiespeichereinheit sowie eine Verwendung der Energie einer Energiespeichereinheit.
Es ist allgemein bekannt, dass beispielsweise zwei elektrische Leiter zur Kontaktie rung miteinander verschraubt werden können. Um den Übergangswiderstand an der Kontaktstelle zu reduzieren, sind zur Kontaktierung bzw. Verbindung stoffschlüssige Verfahren, wie beispielsweise das Löten, zu bevorzugen. Für Hochvoltspeicher, wie sie beispielsweise in teil- oder vollelektrifizierten Kraftfahrzeugen verwendet werden, bedeutet dies, dass die zur Verbindung der einzelnen Batteriemodule verwendeten Kabel bzw. Modulverbinder oftmals überdimensioniert sind, um an deren Kontakt stellen den Übergangswiderstand möglichst gering und die Wärmeentwicklung in Grenzen zu halten. Sämtliche Kontaktstellen stoffschlüssig, beispielsweise mittels Löten, zu verbinden, gestaltet sich in der Serienfertigung allerdings als aufwendig und damit kostenintensiv. So stellt bereits die Zugänglichkeit zu den Löt- bzw. Kon taktstellen ein Problem dar.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren zum stoff schlüssigen Kontaktieren von Komponenten in elektrischen Systemen, eine Ener giespeichereinheit sowie eine Verwendung der Energie einer Energiespeichereinheit anzugeben, wobei die bekannten Verfahren oder Ansätze zum stoffschlüssigen Kontaktieren optimiert und vereinfacht werden sollen.
Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1, durch einen Hochvolt speicher gemäß Anspruch 11 sowie durch eine Verwendung gemäß Anspruch 12 gelöst. Weitere Vorteile und Merkmale ergeben sich aus den Unteransprüchen so wie der Beschreibung und den beigefügten Figuren.
Erfindungsgemäß umfasst ein Verfahren zum stoffschlüssigen Kontaktieren von Komponenten in elektrischen/elektronischen Systemen die Schritte:
Bereitstellen einer Vielzahl von Komponenten, wobei die Komponenten zur elektrischen Kontaktierung Kontaktelemente aufweisen; Kontaktieren der Komponenten über die Kontaktelemente zum Erzeugen ei nes Strompfads;
Erzeugen eines Stromflusses in dem Strompfad zum stoffschlüssigen Ver binden der Kontaktelemente über die dort entstehende Wärmeenergie.
Mit Vorteil wird ein Stromfluss in dem Strompfad derart erzeugt, dass sich die Kon taktelemente an den Kontaktstellen über die dort entstehende Wärme bzw. Wärme energie stoffschlüssig verbinden. Das vorgenannte „Kontaktieren der Komponenten“ ist also insbesondere als ein Vorpositionieren bzw. Vorkontaktieren der Komponen ten zu verstehen. Dieses Kontaktieren soll so ausgeführt werden, dass die Kompo nenten ausreichend verbunden sind, um überhaupt einen Strompfad bilden zu kön nen bzw. einen Stromfluss zuzulassen. Über das Einbringen von Energie in den Strompfad, zum Erzeugen des Stromflusses, werden automatisch die vorpositionier ten bzw. vorkontaktierten Kontaktstellen stoffschlüssig verbunden. Hierbei wird der Umstand ausgenutzt, dass es durch die an den Kontaktstellen auftretenden Über gangswiderstände zu Verlusten kommt, welche in einer Wärmeentwicklung resultie ren, wobei diese Wärme vorteilhafterweise zum Erzeugen der stoffschlüssigen Ver bindungen genutzt wird.
Bevorzugt sind an den Kontaktstellen entsprechende Mittel vorgesehen, welche das Ausbilden einer stoffschlüssigen Verbindung ermöglichen oder unterstützen. Typi scherweise wird beispielsweise an den Kontaktstellen Lotwerkstoff vorgehalten.
Die Energie kann von extern eingebracht werden oder über eine Komponente, wel che (Bestand-)Teil des elektrischen Systems ist. Zum Steuern/Regeln des Strom flusses wird beispielsweise ein Widerstand verwendet.
Gemäß einer bevorzugten Ausführungsform ist zumindest eine Komponente eine Energiespeichereinheit, insbesondere ein elektrischer Energiespeicher. Das Verfah ren umfasst entsprechend bevorzugt die Schritte:
Einbringen eines (Last-)Widerstands, insbesondere einer elektronischen Last, in den Strompfad;
Verwenden des elektrischen Energiespeichers zum Erzeugen des Stromflus ses.
Die elektronische Last ist ein Gerät oder eine Baugruppe, die als Ersatz für einen konventionellen Lastwiderstand eingesetzt werden kann. Über den Widerstand bzw. die elektronische Last kann der Stromfluss innerhalb des Strompfads auf ein ge wünschtes Maß eingestellt werden. Mit Vorteil wird vorliegend die Energiespeichereinheit bzw. der elektrische Energie speicher, welcher selbst Bestandteil des elektrischen Systems ist, dazu verwendet, das elektrische System zu kontaktieren. Mit Vorteil wird also die Energie zum Verlö ten durch den elektrischen Energiespeicher selbst aufgebracht.
Alternativ kann die Energie in den Strompfad auch über eine externe Energiequelle eingebracht werden, welche also nicht Bestandteil des zu kontaktierenden elektri schen Systems ist. Auch hierbei bleibt einer der Hauptvorteile des Verfahrens beste hen, dass nämlich die einzelnen Kontaktstellen nicht sequenziell stoffschlüssig kon taktiert oder verlötet werden müssen, sondern unmittelbar gleichzeitig in einem Ver fahrensschritt.
Gemäß einer Ausführungsform wird beim Einbringen der Energie über eine externe Energiequelle, der Energiespeicher geladen.
Gemäß einer besonders bevorzugten Ausführungsform umfasst das Verfahren die Schritte:
Bereitstellen einer Vielzahl von Batteriemodulen;
Kontaktieren der Batteriemodule über Leistungskabel zu einem Hochvolt speicher, wobei der Hochvoltspeicher einen Strompfad formt;
Erzeugen eines Stromflusses in dem Strompfad mittels des Hochvoltspei chers derart, dass die Leistungskabel an den Kontaktstellen verlötet werden. Die Komponenten sind also vorliegend insbesondere Batteriemodule und Leistungs kabel bzw. Modulverbinder, welche zur Verbindung bzw. Kontaktierung der Batte riemodule vorgesehen sind. Bei den Modulverbindern bzw. Leistungskabeln handelt es sich typischerweise um Kupferkabel bzw. Metall- und/oder Kupferschienen.
Diese können vorliegend vorteilhafterweise deutlich kleiner dimensioniert werden, da die Übergangswiderstände an den Kontaktstellen aufgrund der stoffschlüssigen Verbindung geringer ausfallen. Damit können Bauraum, Gewicht und Kosten einge spart werden.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Form- und/oder kraftschlüssiges Kontaktieren der Kontaktelemente.
Das form- und/oder kraftschlüssige Kontaktieren ist zweckmäßigerweise derart aus gelegt, dass die Kontaktelemente ausreichend kontaktiert sind, damit überhaupt ein Strompfad gebildet werden kann. Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
- Aufbringen einer Klemmkraft über eine Klemmeinrichtung zum Kontaktieren von zumindest zwei Kontaktelementen.
Über eine derartige Klemmeinrichtung können beispielsweise zwei Kontaktele mente, also eine Kontaktstelle, zueinander kontaktiert werden, insbesondere tempo rär kontaktiert werden. Die Klemmeinrichtung wird zweckmäßigerweise im An schluss bzw. nach dem Erzeugen der stoffschlüssigen Verbindung entfernt. Mit Vor teil ist die Klemmeinrichtung derart ausgebildet, dass eine Vielzahl von Kontaktstel len kontaktiert bzw. vorkontaktiert werden kann, wodurch der Aufwand deutlich re duziert werden kann.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
- Aufbringen einer Vorspannung, insbesondere durch Umformen, auf zumin dest ein Kontaktelement zum kraftschlüssigen Kontaktieren.
Zweckmäßigerweise werden geeignet ausgebildete Komponenten, soweit möglich, zumindest bereichsweise umgeformt, um beispielsweise eine (Vor-)Spannung zu in duzieren, welche dazu genutzt werden kann, ein kraftschlüssiges Kontaktieren zwi schen zwei Kontaktelementen bzw. Komponenten zu ermöglichen. Ein derartiger Ansatz ist beispielsweise dann zielführend, wenn es sich bei den Komponenten um Stromleiter in Form von Laschen oder dergleichen handelt.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Bereitstellen von Lotwerkstoff an den Kontaktelementen.
Wie bereits erwähnt, wird zur stoffschlüssigen Verbindung insbesondere Lotwerk stoff verwendet. Insbesondere ist das stoffschlüssige Verbinden also als ein Lötver fahren zu verstehen. Der Schmelzpunkt des Lotwerkstoffs liegt typischerweise zwi schen 180° und 260° C. Zum Erreichen dieser Temperaturen an den Kontaktstellen wird der Stromfluss in dem Strompfad, kurzzeitig, entsprechend eingestellt. Zweck mäßigerweise erfolgt die stoffschlüssige Verbindung oberhalb der thermischen Dau erhaltbarkeitsbelastung der Komponenten, insbesondere der Modulverbinder bzw. Leistungskabel.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Stoffschlüssiges Kontaktieren der Komponenten, insbesondere mittels Kleb stoff.
Gemäß einer Ausführungsform wird an den Kontaktstellen Klebstoff vorgehalten, um die Kontaktelemente vorzukontaktieren bzw. vorzupositionieren. Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Einbetten des Lotwerkstoffs in den Klebstoff.
Gemäß einer Ausführungsform kann eine entsprechende Materialmischung auf zu mindest eine der Komponenten bzw. eines der Kontaktelemente aufgetragen wer den.
Gemäß einer Ausführungsform umfasst zumindest ein Kontaktelement eine Lotta sche bzw. bildet eine solche aus. Zweckmäßigerweise ist die Lottasche ausgebildet, um ein Lotdepot bereitzustellen, also eine gewisse Menge Lotwerkstoff, welche zum späteren Verbinden benötigt wird. Dabei kann die Lottasche auch derart ausgebildet sein, dass ein kongruent ausgebildetes Kontaktelement form- und/oder kraftschlüs sig zur Vorkontaktierung angeordnet bzw. insbesondere eingesteckt werden kann. Die Lottasche ist gemäß einer Ausführungsform als Ausnehmung, Rücksprung, Öff nung oder Bohrung etc. in der jeweiligen Komponente bzw. in dem jeweiligen Kon taktelement ausgebildet. Zweckmäßigerweise handelt es sich bei den Komponenten unter anderem um Leistungskabel, wobei die Leistungskabelenden mit Lottaschen ausgebildet sind.
Weiter alternativ können zur form- und/oder kraftschlüssigen Vorkontaktierung auch Befestigungsmittel, wie Schrauben, verwendet werden, welche an der Kontaktstelle verbleiben oder auch wieder entfernt werden können.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Einstellen, insbesondere Erhöhen, des Übergangswiderstands an einer Kon taktstelle von zumindest zwei Kontaktelementen, insbesondere durch Ein bringen eines entsprechenden Werkstoffs in oder an die Kontaktstelle.
Der vorgenannte Werkstoff ist zweckmäßigerweise dahingehend ausgewählt, den Übergangswiderstand so zu verändern, insbesondere zu erhöhen, dass gezielt eine Wärmeentwicklung erreicht wird, zum Ausbilden der stoffschlüssigen Verbindung. Alternativ kann der Übergangswiderstand gezielt durch eine lokale/bereichsweise Materialrücknahme, wie beispielsweise einer Querschnittsverringerung eines Lei ters, erzielt werden. Gemäß einer Ausführungsform sind gezielt Lufttaschen vorge sehen, welche dann durch den Lotwerkstoff ausgefüllt werden können.
Gemäß einer Ausführungsform kann der vorgenannte Klebstoff als ein Werkstoff ausgebildet sein, über welchen der Übergangswiderstand erhöht wird. Typische (Nenn-)Ströme zum Erreichen der stoffschlüssigen Verbindung(en) liegen beispielsweise in einem Bereich von 1200 bis 1600A, bei (Nenn-)Spannungen in ei nem Bereich von 300V bis 500V. Die Nennströme von Hochvoltbatterien für Hybrid fahrzeuge können auch deutlich niedriger liegen. Die Nennspannungen können, ge rade in der Zukunft, auch durchaus höher liegen, beispielsweise in einem Bereich von 800V bis 1000V.
Gemäß einer bevorzugten Ausführungsform wird das Verfahren zum stoffschlüssi gen Kontaktieren direkt unmittelbar nach der Produktion bzw. Herstellung des elektrischen Systems, wie beispielsweise des Hochvoltspeichers, durchgeführt. Vor teilhafterweise findet der Lötprozess also direkt nach Produktionsende statt.
Die Erfindung betrifft auch eine Energiespeichereinheit, insbesondere einen Hoch voltspeicher, welcher nach dem erfindungsgemäßen Verfahren kontaktiert bzw. her gestellt ist. Derartige Hochvoltspeicher umfassen bevorzugt eine Vielzahl von Batte riemodulen, welche zu dem Hochvoltspeicher assembliert sind. Die Batteriemodule umfassen zweckmäßigerweise jeweils eine Vielzahl von Energiespeicherzellen, ins besondere Akkumulatoren. Bevorzugte Arten oder Typen von Energiespeicherzellen sind beispielsweise Lithiumionen-, Lithiumschwefel oder Eisen-Phosphatzellen. Ty pische Gehäusebauformen der Energiespeicherzellen sind Rundzellen und insbe sondere prismatische Zellen, insbesondere also Gehäuse mit festen Körpern. Dane ben können aber auch Energiespeicherzellen mit weichen Gehäusen verwendet werden, auch bekannt als Pouch-Zellen. Energiespeicherzellen können auch Kon densatoren oder Superkondensatoren sein. Energiespeichereinheiten der in Rede stehenden Art werden insbesondere als Energiespeicher in teil- und/oder voll elektrisch betriebenen Kraftfahrzeugen verwendet. Sie werden auch Traktions- oder Antriebsbatterien genannt.
Die Erfindung betrifft auch die Verwendung der Energie einer Energiespeicherein heit, insbesondere einer elektrischen Energiespeichereinheit wie eines Hochvolt speichers, in einem Strompfad zur stoffschlüssigen Verbindung von Kontaktstellen in dem Strompfad. Zweckmäßigerweise wird also die zum stoffschlüssigen Verbin den, bevorzugt zum Verlöten, notwendige Energie durch die Energiespeichereinheit selbst aufgebracht. Es hat sich als vorteilhaft erwiesen, dass beispielsweise Leis tungskabel mit endseitig angeordneten Lottaschen verwendet werden, wobei die Lottaschen zum einen zur Vorpositionierung bzw. Vorkontaktierung der Leistungska bel verwendet werden können, wie auch zum Bereitstellen des zum Verlöten not wendigen Lotwerkstoffs.
Gemäß einer Ausführungsform wird die Energie der Energiespeichereinheit zum Nachlöten verwendet. Dies bedeutet, dass während des Betriebs der Energiespei chereinheit zweckmäßigerweise bei Bedarf Erhaltungslötungen durchgeführt werden können. Die im Betrieb auftretenden Ströme werden zum Nachlöten verwendet bzw. die Energiespeichereinheit wird, kurzzeitig, derart betrieben, dass an den Kontakt stellen ein Nachlöten stattfinden kann. Dies ist besonders vorteilhaft, da damit über die Betriebsdauer der Energiespeichereinheit, bzw. allgemein des elektrischen Sys tems, hinweg, eine optimale Verbindung an den Kontaktstellen sichergestellt werden kann.
Weitere Vorteile und Merkmale ergeben sich aus der nachfolgenden Beschreibung von Ausführungsformen verschiedener Komponenten bzw. Verfahren mit Bezug auf die beigefügten Figuren.
Es zeigen:
Fig. 1 : mehrere Kontaktelemente, welche Kontaktstellen formen, kontaktiert über eine Klemmeinrichtung;
Fig. 2: eine weitere Ausführungsform einer Kontaktstelle;
Fig. 3: zwei Ausführungsformen von Komponenten nebst Kontaktelementen;
Fig. 4: eine weitere Ausführungsform einer Kontaktstelle.
Fig. 1 zeigt in einer schematischen Ansicht eine Klemmeinrichtung 22, welche zwei Laschen umfasst, welche über Befestigungsmittel 30, vorliegend als gestrichelte Li nie skizziert, verbunden sind. Bei den Befestigungsmitteln 30 kann es sich um Schraubverbindungen handeln. Zu erkennen sind jeweils zwei Komponenten 10, welche endseitig Kontaktelemente 20 aufweisen. An jeweils einem der Kontaktele mente 20 ist Lotwerkstoff 24 angeordnet. Durch die Klemmeinrichtung 22 werden die jeweiligen Kontaktelemente 20, wobei dazwischen der Lotwerkstoff 24 angeord- net ist, zusammengedrückt. Fließt nun ein ausreichend hoher Strom über die Kom ponenten 10 bzw. Kontaktelemente 20, erfolgt automatisch ein Verlöten an den Kontaktstellen 21. Die Klemmeinrichtung 22 kann im Anschluss entfernt werden.
Fig. 2 zeigt eine weitere schematisch dargestellte Ausführungsform einer Kontakt stelle 21 in einer schematischen Darstellung, wobei eine Komponente 10 vorliegend beispielsweise als Leistungskabel oder Modulverbinder 44 ausgebildet ist, welcher endseitig ein Kontaktelement 20 aufweist, an welchem ein Isoliermaterial 26 ange ordnet ist. Das Isoliermaterial dient bevorzugt zu einer Erhöhung bzw. insbesondere zu einer gezielten und bereichsweise Erhöhung des Übergangswiderstands, um zu sätzlich Wärme zu erzeugen. Das Isoliermaterial 26 kann gleichzeitig als Klebstoff wirken. Eine weitere Komponente 10 ist vorliegend als elektrischer Energiespeicher bzw. Batteriemodul skizziert, welches einen Spannungsabgriff 42 umfasst, der vor liegend ein zweites Kontaktelement 20 darstellt. An diesem ist Lotwerkstoff 24 vor gesehen. Schematisch angedeutet ist, dass das Leistungskabel 44 verformt ist.
Über dieses Verformen kann eine Spannung in das Bauteil eingebracht werden, welche dazu genutzt werden kann, dass die beiden Kontaktelemente 20 zueinander kontaktiert werden, insbesondere kraftschlüssig kontaktiert werden, sodass ein Strompfad gebildet ist.
Fig. 3 zeigt zwei schematisch dargestellte Ausführungsformen von Komponenten 10, wobei in der linken Bildhälfte eine Komponente 10 skizziert ist, beispielsweise als Leiterelement, welches endseitig ein Kontaktelement 20 aufweist, wobei dieses einen Klebstoff 26 umfasst, in welchen Lotwerkstoff 24 eingebettet ist. In der rechten Bildhälfte ist schematisch eine Komponente 10 dargestellt, beispielsweise ein Lei terelement, welches endseitig ein Kontaktelement 20 aufweist, welches eine Lotta sche 28 umfasst. In einer derartigen Lottasche 28 kann Lotwerkstoff für das spätere Verlöten vorgehalten bzw. angeordnet sein. Zusätzlich kann eine derartige Lotta sche dazu verwendet werden, ein kongruent ausgebildetes (hier nicht dargestelltes) Kontaktelement form- und/oder kraftschlüssig zur Vorpositionierung bzw. Vorkontak tierung anzuordnen.
Fig. 4 zeigt eine weitere schematisch dargestelle Ausführungsform einer Kontakt stelle 21 , wobei an der Kontaktstelle 21 zwei Komponenten 10, welche endseitig Kontaktelemente 20 aufweisen, aneinander anliegen können. Das rechte Kontakte lement 20 umfasst eine Lottasche 28 sowie einen Eingriffsbereich 32, welcher zum Zusammenwirken mit einem Befestigungsmittel 30 ausgelegt ist. Über das Befesti gungsmittel 30 können die beiden Komponenten 10 zueinander vorkontaktiert wer den. Die eigentliche stoffschlüssige Verbindung wird mittelbar über das Lot, welches in der Lottasche 28 vorgehalten wird, erzielt.
Bezugszeichenliste
10 Komponente 20 Kontaktelement 21 Kontaktstelle
22 Klemmeinrichtung 24 Lotwerkstoff 26 Klebstoff, Isoliermaterial 28 Lottasche 30 Befestigungsmittel
32 Eingriffsbereich 40 Elektrischer Energiespeicher, Batteriemodul 42 Spannungsabgriff 44 Leistungskabel, Modulverbinder

Claims

Ansprüche
Verfahren zum stoffschlüssigen Kontaktieren von Komponenten (10) in elektri schen Systemen, umfassend die Schritte:
- Bereitstellen einer Vielzahl von Komponenten (10), wobei die Komponen ten (10) zur elektrischen Kontaktierung Kontaktelemente (20) aufweisen;
- Kontaktieren der Komponenten (10) über die Kontaktelemente (20) zum Erzeugen eines Strompfads;
- Erzeugen eines Stromflusses in dem Strompfad zum stoffschlüssigen Verbinden der Kontaktelemente (20) über die dort entstehende Wärme energie.
Verfahren nach Anspruch 1 , wobei zumindest eine Komponente (10) ein elektrischer Energiespeicher ist, umfassend die Schritte:
- Einbringen eines Widerstands, insbesondere einer elektronischen Last, in den Strompfad und Verwenden des elektrischen Energiespeichers (40) zum Erzeugen des Stromflusses.
Verfahren nach Anspruch 1 oder 2, umfassend die Schritte:
- Bereitstellen einer Vielzahl von Batteriemodulen (40);
- Kontaktieren der Batteriemodule (40) über Leistungskabel (44) zu einem Hochvoltspeicher, wobei der Hochvoltspeicher einen Strompfad formt;
- Erzeugen eines Stromflusses in dem Strompfad mittels des Hochvoltspei chers derart, dass die Leistungskabel (44) verlötet werden.
Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
Form- und/oder kraftschlüssiges Kontaktieren der Kontaktelemente (20).
5. Verfahren nach Anspruch 4, umfassend den Schritt:
- Aufbringen einer Klemmkraft über eine Klemmeinrichtung (22) zum Kon taktieren von zumindest zwei Kontaktelementen (20).
6. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
- Aufbringen einer Vorspannung, insbesondere durch Umformen, auf zu mindest ein Kontaktelement (20) zum kraftschlüssigen Kontaktieren.
7. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
- Bereitstellen von Lotwerkstoff (24) an den Kontaktelementen (20).
8. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
- Stoffschlüssiges Kontaktieren der Komponenten (20), insbesondere mit tels Klebstoff (26).
9. Verfahren nach Anspruch 8, umfassen den Schritt:
- Einbetten des Lotwerkstoffs (24) in den Klebstoff (26).
10. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
- Einstellen, insbesondere Erhöhen, des Übergangswiderstands an einer Kontaktstelle (21) von zumindest zwei Kontaktelementen (20), insbeson dere durch Einbringen eines entsprechenden Werkstoffs (26) in oder an die Kontaktstelle (21).
11. Energiespeichereinheit, insbesondere Hochvoltspeicher, hergestellt nach ei nem Verfahren gemäß einer der vorhergehenden Ansprüche.
12. Verwenden der Energie einer Energiespeichereinheit in einem Strompfad zum stoffschlüssigen Verbinden von Kontaktstellen (21) in dem Strompfad.
13. Verwendung nach Anspruch 12, wobei die Energie zum Nachlöten verwendet wird.
PCT/EP2021/080587 2020-11-30 2021-11-04 Verfahren zum stoffschlüssigen kontaktieren von komponenten in elektrischen systemen, energiespeichereinheit sowie verwendung der energie einer energiespeichereinheit WO2022111964A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/030,923 US20230378618A1 (en) 2020-11-30 2021-11-04 Method for Contacting Components in Electric Systems in a Bonded Manner, Energy Storage Unit, and Use of the Energy of an Energy Storage Unit
CN202180066835.5A CN116235360A (zh) 2020-11-30 2021-11-04 用于材料锁合地触点接通在电气系统中的组件的方法、能量存储单元以及能量存储单元的能量的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020131622.4A DE102020131622A1 (de) 2020-11-30 2020-11-30 Verfahren zum stoffschlüssigen Kontaktieren von Komponenten in elektrischen Systemen, Energiespeichereinheit sowie Verwendung der Energie einer Energiespeichereinheit
DE102020131622.4 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022111964A1 true WO2022111964A1 (de) 2022-06-02

Family

ID=78598996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/080587 WO2022111964A1 (de) 2020-11-30 2021-11-04 Verfahren zum stoffschlüssigen kontaktieren von komponenten in elektrischen systemen, energiespeichereinheit sowie verwendung der energie einer energiespeichereinheit

Country Status (4)

Country Link
US (1) US20230378618A1 (de)
CN (1) CN116235360A (de)
DE (1) DE102020131622A1 (de)
WO (1) WO2022111964A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825435B1 (en) * 2002-03-12 2004-11-30 Lyndon Brown Power supply and control equipment for a resistance welding machine
US20150041200A1 (en) * 2012-02-01 2015-02-12 Isabellenhuette Heusler Gmbh & Co. Kg Soldering method and corresponding soldering device
DE102017125469A1 (de) * 2016-11-02 2018-05-03 GM Global Technology Operations LLC Batteriemodul mit widerstandsgeschweissten abtast-laschen und verfahren zu deren herstellung
EP3576491A1 (de) * 2011-05-10 2019-12-04 Saint-Gobain Glass France Scheibe mit einem elektrischen anschlusselement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109240A1 (de) 2011-08-02 2013-02-07 Daimler Ag Verfahren zum elektischen Verbinden von Kontaktelementen
DE102015005835B4 (de) 2015-05-07 2022-10-13 Audi Ag Energiespeichermodul, Kraftfahrzeug und Verfahren zum Erzeugen einer Fügeverbindung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825435B1 (en) * 2002-03-12 2004-11-30 Lyndon Brown Power supply and control equipment for a resistance welding machine
EP3576491A1 (de) * 2011-05-10 2019-12-04 Saint-Gobain Glass France Scheibe mit einem elektrischen anschlusselement
US20150041200A1 (en) * 2012-02-01 2015-02-12 Isabellenhuette Heusler Gmbh & Co. Kg Soldering method and corresponding soldering device
DE102017125469A1 (de) * 2016-11-02 2018-05-03 GM Global Technology Operations LLC Batteriemodul mit widerstandsgeschweissten abtast-laschen und verfahren zu deren herstellung

Also Published As

Publication number Publication date
US20230378618A1 (en) 2023-11-23
DE102020131622A1 (de) 2022-06-02
CN116235360A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
EP2639857B1 (de) Verbindungssystem für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit dem Verbindungssystem
EP2612392B1 (de) Batteriezelle mit terminals an den seitenflächen, batteriezellenmodul, verfahren zur herstellung eines batteriezellenmoduls und kraftfahrzeug
DE102013213550A1 (de) Batteriezelle mit einem prismatischen oder zylindrischen Gehäuse, Batteriemodul sowie Kraftfahrzeug
DE102011013845A1 (de) Reversible Batterieanordnung und Werkzeug für automatisierte Grossserienproduktion
DE102011076919A1 (de) Batteriezelle, Batterie oder Batteriezellenmodul, Verfahren zur Herstellung einer Batteriezelle und Kraftfahrzeug
DE102012215205A1 (de) Zellenverbinder, Batteriezellenmodul, Batterie, Verfahren zur Herstellung eines Batteriezellenmoduls und Kraftfahrzeug
DE102014212264A1 (de) Zellenverbinder sowie Batteriezelle, Batteriemodul, Batterie, Batteriesystem, Fahrzeug und Verfahren zur Herstellung eines Batteriemoduls
DE102013203102A1 (de) Batterie mit einem eine Spanneinrichtung umfassenden Batteriemodul und elektrischen Kontaktierungen der Batteriezellen und Verfahren zur Montage eines Batteriepacks in einem Batteriemodul
DE102012213673A1 (de) Batteriemodul sowie Batterie und Kraftfahrzeug umfassend ein solches
DE102012223561A1 (de) Batteriezelle mit buchsenartig ausgebildetem Zellterminal und korrespondierender Zellverbinder
WO2011060969A1 (de) Batteriezellenverbinder
DE102016204681A1 (de) Batterie und Verfahren zur Herstellung einer Batterie
DE102020003870A1 (de) Verfahren und Vorrichtung zur Reparatur einer Batterie
DE102008050437B4 (de) Skalierbare Kraftfahrzeugbatterie und Verfahren zur Herstellung dafür
DE102011002673A1 (de) Anordnung und Verfahren zum Betreiben verschalteter Energiespeichersysteme
DE102008016957A1 (de) Akkumulator-Ladevorrichtung
DE102015225406A1 (de) Zellenverbinder
DE102012215080A1 (de) Zellenverbinder, Batteriezellenmodul, Batterie, Verfahren zur Herstellung eines Batteriezellenmoduls und Kraftfahrzeug
WO2015074735A1 (de) Batterie mit einer mehrzahl von batteriezellen wobei die pole mittels verbindungselemente verbunden sind
WO2022111964A1 (de) Verfahren zum stoffschlüssigen kontaktieren von komponenten in elektrischen systemen, energiespeichereinheit sowie verwendung der energie einer energiespeichereinheit
DE102017101274A1 (de) Batteriemodule mit einer Mehrzahl Submodule
DE102016106620A1 (de) Elektrische Hochstrom-Fügestelle, die eine Teilmontage beseitigt
DE102013203094A1 (de) Batteriezelle mit einem prismatischen Gehäuse, Batteriemodul sowie Kraftfahrzeug
DE102020134458A1 (de) Anordnung zur Integration in eine Ladevorrichtung für wenigstens ein Elektrofahrzeug
DE102019206909A1 (de) Batterie eines Kraftfahrzeugs und Verfahren zur Herstellung einer Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21806205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21806205

Country of ref document: EP

Kind code of ref document: A1