WO2022111207A1 - 打孔作业控制方法、装置和协作机器人 - Google Patents

打孔作业控制方法、装置和协作机器人 Download PDF

Info

Publication number
WO2022111207A1
WO2022111207A1 PCT/CN2021/127304 CN2021127304W WO2022111207A1 WO 2022111207 A1 WO2022111207 A1 WO 2022111207A1 CN 2021127304 W CN2021127304 W CN 2021127304W WO 2022111207 A1 WO2022111207 A1 WO 2022111207A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
force
preset threshold
magnitude
preset
Prior art date
Application number
PCT/CN2021/127304
Other languages
English (en)
French (fr)
Inventor
宋银灏
韩冰
刘大伟
陈志斌
黄永健
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2022111207A1 publication Critical patent/WO2022111207A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups

Definitions

  • the present application relates to the field of automation technology, and in particular, to a drilling operation control method, device and collaborative robot.
  • steel mesh is usually added to concrete to form reinforced concrete to improve the mechanical properties of concrete.
  • the drill bit encounters the steel bar if it is not avoided in time, it will cause damage to the drill bit and even a safety accident. Therefore, it is necessary to detect the reinforcement during the drilling process of concrete.
  • the traditional drilling operation control method relies on the auxiliary detection of the steel bar scanner, and then sets the punching parameters of the punching equipment to perform the drilling operation according to the detection results of the steel bar scanner. Due to the large amount of dust at the concrete drilling site, and the rebar scanner has high environmental requirements, errors are likely to occur when the environment is dusty. During the traditional drilling operation, the on-site operation environment needs to be controlled, and the steel bar scanner needs to be cleaned in a timely manner, and the operation process is complicated. Therefore, the traditional punching operation control method has the disadvantage of low work efficiency.
  • a method for controlling a punching operation including:
  • the force information of the actuator is collected by the force sensor installed on the actuator;
  • the force information of the actuator determine whether the force of the actuator is greater than a first preset threshold
  • the actuator When the force of the actuator is greater than the first preset threshold, the actuator is controlled to exit and translate and then perform the drilling operation again.
  • the method before judging whether the force of the actuator is greater than a first preset threshold according to the force information, the method further includes:
  • the first preset threshold is determined according to the force information of the historical punching operation.
  • the magnitude of the force of the actuator is the magnitude of the resultant force of the actuator, and according to the force information, it is determined whether the magnitude of the force of the actuator is greater than a first preset Thresholds, including:
  • the judging whether the magnitude of the resultant force on the actuator is greater than a first preset threshold includes:
  • the method further includes:
  • the step of judging whether the resultant force on the actuator is greater than the first preset threshold is performed;
  • the method further includes:
  • the actuator When the magnitude of the resultant force on the actuator is greater than the second preset threshold and less than or equal to the first preset threshold, the actuator is controlled to exit the preset displacement and then perform the drilling operation again.
  • the judging whether the magnitude of the resultant force on the actuator is greater than a second preset threshold includes:
  • the method when the magnitude of the resultant force on the actuator is greater than the second preset threshold, before controlling the actuator to exit the preset displacement and restart the drilling operation, the method further includes:
  • the preset displacement is determined.
  • a punching operation control device including:
  • an information acquisition module for acquiring force information of the actuator; the force information of the actuator is acquired by a force sensor; the force sensor is installed on the actuator;
  • a judgment module configured to judge whether the magnitude of the force of the actuator is greater than a first preset threshold according to the force information of the actuator
  • the punching path setting module is configured to control the actuator to exit and translate and then perform the punching operation again when the force of the actuator is greater than the first preset threshold.
  • the punching operation control device further includes: a force threshold range determination module, configured to determine the force threshold range according to the force information of historical punching operations.
  • the judgment module includes a calculation unit and a judgment unit.
  • the calculation unit is used for calculating the resultant force on the actuator according to the force information of the actuator; the judgment unit is used for judging whether the resultant force on the actuator is greater than the first preset threshold.
  • the judging unit is specifically configured to: judge whether the resultant force on the actuator is continuously greater than the first preset threshold within the first preset time.
  • the judging unit is specifically configured to: judge whether the resultant force on the actuator is continuously greater than the first preset threshold within the first preset sampling times.
  • the judging unit is further configured to determine whether the resultant force on the actuator is greater than the second preset threshold; the punching path setting module is also used for when the resultant force on the actuator is greater than the second preset threshold And when the value is less than or equal to the first preset threshold, the control actuator exits the preset displacement and performs the drilling operation again.
  • the judging unit is further configured to: judge whether the resultant force on the actuator is continuously greater than the second preset threshold within the second preset time.
  • the judging unit is further configured to: judge whether the resultant force on the actuator is continuously greater than the second preset threshold within the second preset sampling times.
  • the punching path setting module is further configured to: determine the preset displacement according to the feed amount of the actuator.
  • a collaborative robot comprising: a base, a robotic arm, an actuator, a force sensor and a controller; the robotic arm is mounted on the base; the actuator is mounted on the end of the robotic arm; The force sensor is installed on the actuator, and is used to collect the force information of the actuator and send it to the controller; the controller is connected to the robotic arm, the actuator and the force sensor, and uses For punching control according to the above method.
  • the force sensor is a force control sensor; the force control sensor is installed at the connection position between the end of the robotic arm and the actuator.
  • the controller can obtain the force information of the actuator in real time, and then judge whether the force of the actuator is greater than the first preset threshold according to the force information.
  • the force of the actuator is greater than the first preset threshold, it means that a hard object such as a steel bar has been encountered during the drilling operation.
  • control the actuator to exit and translate and re-do the punching operation, which is beneficial to improve the efficiency of punching.
  • FIG. 1 is a schematic flowchart of a method for controlling a punching job in one embodiment
  • FIG. 2 is a schematic flowchart of a method for controlling a punching job in another embodiment
  • FIG. 3 is a schematic flowchart of a method for controlling a punching job in another embodiment
  • FIG. 4 is a structural block diagram of a punching job control device in one embodiment
  • FIG. 5 is a structural block diagram of a punching operation control device in another embodiment
  • Fig. 6 is the mechanism block diagram of the judging module in one embodiment
  • FIG. 7 is a schematic diagram of punching holes of a collaborative robot in one embodiment.
  • a method for controlling a punching operation is provided. Please refer to FIG. 1 .
  • the method includes steps S200 to S600.
  • Step S200 Acquire the force information of the actuator.
  • the actuator will inevitably be subjected to the reaction force of the punched object.
  • the reaction force is related to the hardness of the punched object: the harder the punched object, the greater the reaction force.
  • the object to be punched may be a wall, furniture, or a structural beam.
  • the specific material of the object to be punched is not limited in this embodiment. For ease of understanding, the following description is given by taking the case where the object to be punched is a concrete wall as an example.
  • the force information of the actuator refers to the information related to the reaction force of the actuator collected by the sensor.
  • the force information of the actuator is collected by a force sensor installed on the actuator.
  • the force sensor is a device that converts the magnitude of the force into a relevant electrical signal.
  • the force sensor is mainly composed of three parts: force sensitive element, conversion element and circuit.
  • force sensors mainly include strain gauge force sensors, diaphragm force sensors, strain beam force sensors, and combined force sensors. This embodiment does not limit the types and force measurement principles of specific force sensors.
  • the method for the controller to obtain the force information of the actuator may be that the force sensor sends the force information to the controller, or the controller actively reads the force information collected by the force sensor. In a word, this embodiment does not limit the specific manner of acquiring the force information of the actuator.
  • Step S400 According to the force information of the actuator, determine whether the force of the actuator is greater than the first preset threshold.
  • the controller can obtain the force of the actuator according to the force information, and compares the force of the actuator with the first preset threshold to determine the actuator Whether the magnitude of the force is greater than the first preset threshold.
  • the actuator will be affected by the forces in the three directions of X, Y, and Z. Since the contact position between the steel bar and the drill bit in the actuator will be different, the magnitude of the force in the three directions will also vary. different.
  • the force of the actuator is greater than the first preset threshold, which may mean that the force in a certain direction is greater than the first preset threshold, or it may mean that the resultant force of the three directions is greater than the first preset threshold.
  • the first preset threshold may be determined according to the specific material of the punched object and punching parameters. For example, when drilling a concrete wall, steel bars may be encountered during the drilling process. According to the hardness of the steel bars and the drilling parameters at this time, it is possible to calculate the corresponding parameters when the actuator of the drilling equipment encounters the steel bars. The magnitude of the force can determine the first preset threshold.
  • Step S600 when the force of the actuator is greater than the first preset threshold, control the actuator to exit and translate and then perform the drilling operation again.
  • the force of the actuator when the force of the actuator is greater than the first preset threshold, it means that the actuator encounters steel bars during the drilling process. At this time, controlling the actuator to exit and translate and then perform the drilling operation again can effectively avoid the steel bars. , to avoid the damage of the actuator caused by the excessive impact, and improve the service life of the punching equipment.
  • the preset displacement can be determined according to the size and arrangement of the reinforcing bars in the wall, and the drilling operation can be performed again after controlling the actuator to exit and translate the preset displacement. It can be understood that during the drilling operation, if the force of the actuator is always less than or equal to the first preset threshold, the controller controls the actuator to exit after completing the current drilling operation.
  • the force information of the actuator can be acquired in real time. Then, according to the force information, it is judged whether the force of the actuator is greater than the first preset threshold.
  • the force of the actuator is greater than the first preset threshold, it means that steel bars or steel bars have been encountered during the drilling operation. Hard objects such as nails.
  • the drilling operation is performed again, which is beneficial to improve the working efficiency of punching.
  • step S300 is further included.
  • Step S300 Determine a first preset threshold value according to the force information of historical punching operations.
  • the punching device records the force information of each operation.
  • the minimum force value when encountering steel bars in historical operations can be used as the first preset threshold, or the average value of force values encountered when steel bars are encountered in historical operations can be used as the first a preset threshold.
  • the force information of the historical punching operation of the model determines the first preset threshold. In a word, this embodiment does not limit the specific way of determining the first preset threshold.
  • the first preset threshold is determined according to the force information of historical punching operations, which is beneficial to improve the accuracy of the first preset threshold and improve the punching efficiency.
  • step S400 includes steps S420 and S440 .
  • Step S420 Calculate the resultant force of the actuator according to the force information of the actuator.
  • the actuator will be subjected to forces in three directions: X, Y, and Z. Since the contact position of the steel bar with the drill bit in the actuator will be different, the magnitude of the force in the three directions will also be different. According to the force information collected by the force sensor, the reasonable size of the actuator can be calculated .
  • the calculation formula of the resultant force value F is:
  • X, Y, Z are the magnitudes of the component forces in the three directions, respectively.
  • Step S440 Determine whether the resultant force on the actuator is greater than the first preset threshold.
  • the controller compares the resultant force with the first preset threshold to determine whether the resultant force on the actuator is greater than the first preset threshold.
  • the resultant force of the actuator is calculated first according to the force information of the actuator, and then it is judged whether the resultant force of the actuator is greater than the first preset threshold, which is equivalent to comprehensively considering the force between the drill bit and the steel bar.
  • the influence of the contact position on the force information facilitates the effective avoidance of the steel bar under various circumstances, which is beneficial to improve the efficiency of the punching operation.
  • step S440 includes: judging whether the resultant force on the actuator is continuously greater than a first preset threshold within a preset time. Specifically, when the actuator performs the drilling operation, after the drill bit encounters the steel bar, it will receive a large reaction force, and the resultant force on the actuator will increase sharply and maintain a large value. At this time, the first preset time can be set according to the feed speed of the actuator. When the magnitude of the resultant force received by the actuator within the first preset time is continuously greater than the first preset threshold, the actuator is controlled to exit and translate and then perform the drilling operation again.
  • the first preset time can be set to 0.5s, and when the force of the actuator is continuously greater than the first preset threshold within 0.5s, it is determined that the force of the actuator is greater than the first preset threshold. It can be understood that the first preset time may also be set to 0.3s, 0.4s, 0.6s, etc., and the specific value of the first preset time is not limited in this embodiment.
  • step S440 includes: judging whether the resultant force on the actuator is continuously greater than the first preset threshold within the preset sampling times.
  • the force sensor continues to collect the force information of the actuator according to the preset sampling period.
  • the first preset sampling times can be set according to the sampling period.
  • the first preset sampling times can be set to 5 times, and when the force of the actuator obtained according to the five consecutive sampling data is greater than the first preset threshold, it is determined that the force of the actuator is greater than the first threshold.
  • a preset threshold It can be understood that the first preset sampling times may also be set to 3 times, 4 times, 6 times, etc., and the specific value of the first preset sampling times is not limited in this embodiment.
  • step S400 further includes step S430 : judging whether the resultant force on the actuator is greater than the second preset threshold. If so, go to step S440 to determine whether the magnitude of the resultant force on the actuator is greater than the first preset threshold; if so, go to step S600; if not, go to step S500.
  • Step S500 when the resultant force on the actuator is greater than the second preset threshold and less than or equal to the first preset threshold, control the actuator to exit the preset displacement and perform the drilling operation again.
  • a second preset threshold is set according to the force information of historical drilling operations, and when the resultant force on the actuator is greater than the second preset threshold and less than or equal to the first preset threshold, the actuator is controlled to exit the preset threshold. After setting the displacement, feed to the drilling depth of the previous operation, and continue the drilling operation until the current drilling operation is completed and then exit.
  • the force of the actuator when the drill bit encounters the stone is smaller than the force of the actuator when the drill bit encounters the steel bar.
  • the second preset threshold is smaller than the first preset threshold. It is equivalent to determining whether hard obstacles such as stones are encountered through the setting of the second preset threshold value during the drilling operation, and then further determining whether the steel bar is encountered through the setting of the first preset threshold value. Punch control for the situation. Further, if the force of the actuator is always less than or equal to the second preset threshold during the punching operation, the controller controls the actuator to exit after completing the current punching operation.
  • the actuator by setting the second preset threshold, when the magnitude of the resultant force on the actuator is greater than the second preset threshold, the actuator is controlled to exit the preset displacement and then perform the drilling operation again.
  • the actuator When encountering hard obstacles such as stones during the drilling operation, it can eliminate the fluctuation of the electric hammer drill and avoid the protective stop action of the drilling equipment, which is conducive to improving the drilling efficiency and prolonging the service life of the drilling equipment.
  • step S430 includes: judging whether the resultant force on the actuator is continuously greater than a second preset threshold within a preset time. Specifically, similar to the situation when encountering steel bars, when the actuator performs drilling operations, when the drill bit encounters stones, it will receive a large reaction force, and the resultant force on the actuator will increase sharply.
  • the second preset time can be set according to the feed speed of the actuator; the second preset time can also be set according to the total time spent in each drilling operation and the percentage of the total time spent.
  • the actuator is controlled to exit and translate and then perform the drilling operation again.
  • the second preset time can be set to 5s, and when the force of the actuator is continuously greater than the second preset threshold within 5s, it is determined that the force of the actuator is greater than the second preset threshold; 80% of the total time spent in a single punch is set as the second preset time. It can be understood that the second preset time can also be set to 3s, 4s, 6s, or 60%, 70%, etc. of the total time spent in a single punching. In a word, this embodiment does not limit the specific calculation method and value of the second preset time.
  • step S430 includes: judging whether the resultant force on the actuator is continuously greater than the second preset threshold within the preset sampling times.
  • the force sensor continues to collect the force information of the actuator according to the preset sampling period.
  • the second preset sampling times can be set according to the sampling period.
  • the second preset sampling times can be set to 5 times, and when the force of the actuator obtained according to the five consecutive sampling data is greater than the second preset threshold, it is determined that the force of the actuator is greater than the second preset threshold.
  • Two preset thresholds It can be understood that the second preset sampling times may also be set to 3 times, 4 times, 6 times, etc., and the specific value of the second preset sampling times is not limited in this embodiment.
  • the method before step S500, further includes: determining the preset displacement according to the feed amount of the actuator.
  • the feed amount of the actuator refers to the displacement of the actuator relative to the initial position during the current drilling operation. It can be understood that the feed amount of the actuator can be used to indicate the current drilling depth. Since the positions of the hard obstacles are different during the actual drilling operation, the drilling depth when the drill bit contacts the hard obstacles is also different. . Specifically, when the resultant force on the actuator is greater than the second preset threshold, the controller reads the current feed of the actuator, determines the preset displacement according to the current feed, and then controls the actuator to exit the preset After the displacement, perform the drilling operation again.
  • determining the preset displacement of exit according to the feeding amount of the actuator is equivalent to controlling the punching of the actuator according to the current punching depth, which is beneficial to improve the scientificity of the drilling control method.
  • steps in the flowcharts involved in the above embodiments are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in the flowcharts involved in the above embodiments may include multiple sub-steps or multiple stages, and these sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. The order of execution of these sub-steps or phases is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the sub-steps or phases of other steps.
  • a second aspect of the present application provides a punching operation control device, please refer to FIG. 4 , the device includes an information acquisition module 200 , a judgment module 400 and a punching path setting module 600 .
  • the information acquisition module 200 is used to acquire the force information of the actuator; the force information of the actuator is collected by the force sensor, and the force sensor is installed in the actuator; the judgment module 400 is used to obtain the force information of the actuator according to the force information of the actuator. Determine whether the force of the actuator is greater than the first preset threshold; the punching path setting module 600 is used to control the actuator to exit and translate and then re-punch when the force of the actuator is greater than the first preset threshold Operation.
  • the punching operation control device further includes: a force threshold range determination module 300 for determining the force threshold range according to the force information of historical punching operations.
  • the determination module 400 includes a calculation unit 420 and a determination unit 440 .
  • the calculation unit 420 is used to calculate the resultant force of the actuator according to the force information of the actuator;
  • the judgment unit 440 is used to determine whether the resultant force of the actuator is greater than the first preset threshold.
  • the judging unit 440 is specifically configured to: judge whether the resultant force on the actuator is continuously greater than the first preset threshold within the first preset time.
  • the judging unit 440 is specifically configured to: judge whether the resultant force on the actuator is continuously greater than the first preset threshold within the first preset sampling times.
  • the judging unit 460 is further configured to determine whether the resultant force on the actuator is greater than the second preset threshold; the punching path setting module 600 is further configured to determine whether the resultant force on the actuator is greater than the second preset threshold.
  • the control actuator exits the preset displacement and performs the drilling operation again.
  • the judging unit 440 is further configured to: judge whether the resultant force on the actuator is continuously greater than the second preset threshold within the second preset time.
  • the judging unit 440 is further configured to: judge whether the resultant force on the actuator is continuously greater than the second preset threshold within the second preset sampling times.
  • the punching path setting module 600 is further configured to: determine the preset displacement according to the feed amount of the actuator.
  • Each module in the above-mentioned punching operation control device can be implemented in whole or in part by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • FIG. 7 provides a collaborative robot, including: a base 10, a robotic arm, an actuator 30, a force sensor and a controller; the robotic arm is mounted on the base 10; the actuator 30 is mounted on the robotic arm the end; the force sensor is installed on the actuator 30 for collecting the force information of the actuator and sending it to the controller; the controller is connected with the robotic arm, the actuator 30 and the force sensor, for performing punching according to the method in any of the above embodiments Hole control.
  • the installation method of the robot base can be changed, for example, it can be installed at an angle of 45°.
  • the robotic arm of the collaborative robot may include multiple robotic arms and multiple joints, one of which is mounted on the base 10 through the J1 joint 21 , and the other robotic arms through the J2 joint 22 and J3 joint 23 respectively.
  • J4 joint 24 , J5 joint 25 and J6 joint 26 are connected and connected with the execution structure 30 .
  • the controller can control the movement of the robotic arm to adapt to different drilling operation scenarios. For example, in FIG. 7 , through the linkage of multiple joints in the robotic arm, the drilling action of the actuator vertical to the concrete wall 40 can be realized.
  • the controller controls the joints in the robotic arm so that the actuator 30 is perpendicular to the concrete wall 40 to perform the drilling operation.
  • the controller obtains the force information of the actuator according to the data collected by the force sensor installed on the actuator 30, and according to the force information, determines whether the force of the actuator 30 is greater than the first Preset threshold, when the force of the actuator 30 is greater than the first preset threshold, it is judged that the actuator 30 encounters the steel bar 41.
  • the controller controls the actuator 30 to exit and translate and then perform the drilling operation again.
  • a force sensor is installed on the actuator, and the controller can obtain the force information of the actuator in real time, and then judge whether the force of the actuator is greater than the first preset threshold according to the force information.
  • the force of the actuator is greater than the first preset threshold, it means that a hard object such as a steel bar has been encountered during the drilling operation.
  • the controller controls the actuator of the collaborative robot to withdraw and translate and then perform the punching operation again, which is beneficial to improve the punching efficiency of the collaborative robot.
  • the force sensor is a force control sensor; the force control sensor is installed at the connection position between the end of the robot arm and the actuator.
  • the force control sensor is a new type of force sensor, a force control sensor can complete the measurement and output of the force and torque on each coordinate (X, Y and Z) in the Cartesian Cartesian coordinate system.
  • a flange is generally installed at the connection position between the end of the robot arm and the actuator, and a force control sensor is installed at the outlet of the flange, which is easy to operate.
  • using the force control sensor as the force sensor is beneficial to reduce the number of force sensors used and reduce the device complexity of the collaborative robot.
  • installing the force control sensor at the connection position between the end of the robot arm and the actuator can facilitate the installation and replacement of the force control sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Mining & Mineral Resources (AREA)
  • Control Of Presses (AREA)
  • Manipulator (AREA)

Abstract

本申请涉及一种打孔作业控制方法、装置和协作机器人。其中,方法包括:获取执行机构的受力信息;执行机构的受力信息由安装于执行机构的力传感器采集得到;根据执行机构的受力信息,判断执行机构的受力大小是否大于第一预设阈值;当执行机构的受力大小大于第一预设阈值时,控制执行机构退出并平移后重新进行打孔作业。上述打孔作业控制方法,通过在执行机构上安装力传感器,实时获取执行机构的受力信息;当该执行机构的受力大小大于第一预设阈值时,则说明在打孔作业过程中遇到了钢筋或钉子等坚硬物体。此时,控制执行机构退出并平移后重新进行打孔作业,有利于提高打孔工作效率。

Description

打孔作业控制方法、装置和协作机器人 技术领域
本申请涉及自动化技术领域,特别是涉及一种打孔作业控制方法、装置和协作机器人。
背景技术
众所周知,在建筑行业,通常会在混凝土中加入钢筋网构成钢筋混凝土以改善混凝土的力学性能。在后续对混凝土的打孔作业过程中,钻头遇到钢筋如果不及时避让的话,将会导致钻头的损伤,甚至发生安全事故。因此有必要在混凝土的打孔过程中对钢筋进行检测。
传统的打孔作业控制方法,借助钢筋扫描仪辅助检测,再根据钢筋扫描仪的检测结果设置打孔设备的打孔参数进行打孔作业。由于混凝土打孔作业现场,环境灰尘较大,而钢筋扫描仪对环境要求较高,环境灰尘大时容易产生误差。传统的打孔作业过程中,需要对现场作业环境进行控制,还需及时进行钢筋扫描仪的清洁工作,作业过程繁杂。因此,传统的打孔作业控制方法,具有工作效率低的缺点。
发明内容
基于此,有必要针对上述技术问题,提供一种工作效率高的打孔作业控制方法、装置和协作机器人。
本申请第一方面,提供了一种打孔作业控制方法,包括:
获取执行机构的受力信息;所述执行机构的受力信息由安装于所述执行机构的力传感器采集得到;
根据所述执行机构的受力信息,判断所述执行机构的受力大小是否大于第一预设阈值;
当所述执行机构的受力大小大于第一预设阈值时,控制所述执行机构退出并平移后重新进行打孔作业。
在其中一个实施例中,所述根据所述受力信息,判断所述执行机构的受力大小是否大于第一预设阈值之前,还包括:
根据历史打孔作业的受力信息,确定第一预设阈值。
在其中一个实施例中,所述执行机构的受力大小为所述执行机构所受的合力大小,所述根据所述受力信息,判断所述执行机构的受力大小是否大于第一预设阈值,包括:
根据所述受力信息,计算所述执行机构所受的合力大小;
判断所述执行机构所受的合力大小是否大于第一预设阈值。
在其中一个实施例中,所述判断所述执行机构所受的合力大小是否大于第一预设阈值,包括:
判断所述执行机构所受的合力大小,在预设采样次数内是否持续大于第一预设阈值。
在其中一个实施例中,根据所述受力信息,计算所述执行机构所受的合力大小之后,所述判断所述执行机构所受的合力大小是否大于第一预设阈值之前,还包括:
判断所述执行机构所受的合力大小是否大于第二预设阈值;所述第二预设阈值小于所述第一预设阈值;
若所述执行机构所受的合力大小大于所述第二预设阈值,则进行所述判断所述执行机构所受的合力大小是否大于第一预设阈值的步骤;
判断所述执行机构所受的合力大小是否大于第一预设阈值之后,还包括:
当所述执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制所述执行机构退出预设位移后重新进行打孔作业。
在其中一个实施例中,所述判断所述执行机构所受的合力大小是否大于第二预设阈值,包括:
判断所述执行机构所受的合力大小,在预设时间内是否持续大于第二预设阈值。
在其中一个实施例中,所述当所述执行机构所受的合力大小大于第二预设阈值时,控制所述执行机构退出预设位移后重新进行打孔作业之前,还包括:
根据所述执行机构的进给量,确定预设位移。
第二方面,提供了一种打孔作业控制装置,包括:
信息获取模块,用于获取执行机构的受力信息;所述执行机构的受力信息由力传感器采集得到;所述力传感器安装于所述执行机构;
判断模块,用于根据所述执行机构的受力信息,判断所述执行机构的受力大小是否大于第一预设阈值;
打孔路径设置模块,用于当所述执行机构的受力大小大于第一预设阈值时,控制所述执行机构退出并平移后重新进行打孔作业。
在一个实施例中,该打孔作业控制装置还包括:受力阈值范围确定模块,用于根据历史打孔作业的受力信息,确定受力阈值范围。
在一个实施例中,判断模块包括计算单元和判断单元。其中,计算单元用于根据执行机构的受力信息,计算该执行机构所受的合力大小;判断单元用于判断执行机构所受的合力大小是否大于第一预设阈值。
在一个实施例中,判断单元具体用于:判断执行机构所受的合力大小,在第一预设时间内是否持续大于第一预设阈值。
在一个实施例中,判断单元具体用于:判断执行机构所受的合力大小,在第 一预设采样次数内是否持续大于第一预设阈值。
在一个实施例中,判断单元还用于判断执行机构所受的合力大小是否大于第二预设阈值;打孔路径设置模块,还用于当执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制执行机构退出预设位移后重新进行打孔作业。
在一个实施例中,判断单元还用于:判断执行机构所受的合力大小,在第二预设时间内是否持续大于第二预设阈值。
在一个实施例中,判断单元还用于:判断执行机构所受的合力大小,在第二预设采样次数内是否持续大于第二预设阈值。
在一个实施例中,打孔路径设置模块还用于:根据执行机构的进给量,确定预设位移。
第三方面,提供了一种协作机器人,包括:底座、机械手臂、执行机构、力传感器和控制器;所述机械手臂安装于所述底座;所述执行机构安装于所述机械手臂末端;所述力传感器安装于所述执行机构,用于采集所述执行机构的受力信息并发送至所述控制器;所述控制器连接所述机械手臂、所述执行机构和所述力传感器,用于根据上述方法进行打孔控制。
在其中一个实施例中,所述力传感器为力控传感器;所述力控传感器安装于所述机械手臂末端与所述执行机构的连接位置。
上述打孔作业控制方法,通过在执行机构上安装力传感器,控制器可以实时获取执行机构的受力信息,再根据该受力信息判断该执行机构的受力大小是否大于第一预设阈值。当该执行机构的受力大小大于第一预设阈值时,则说明在打孔作业过程中遇到了钢筋等坚硬物体。此时,控制执行机构退出并平移后重新进 行打孔作业,有利于提高打孔的工作效率。
附图说明
图1为一个实施例中打孔作业控制方法的流程示意图;
图2为另一个实施例中打孔作业控制方法的流程示意图;
图3为又一个实施例中打孔作业控制方法的流程示意图;
图4为一个实施例中打孔作业控制装置的结构框图;
图5为另一个实施例中打孔作业控制装置的结构框图;
图6为一个实施例中判断模块的机构框图;
图7为一个实施例中协作机器人的打孔示意图。
附图标记说明:10-底座,21-J1关节,22-J2关节,23-J3关节,24-J4关节,25-J5关节,26-J6关节,30-执行机构,40-混凝土墙面,41-钢筋。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请第一方面,提供了一种打孔作业控制方法,请参考图1,该方法包括步骤S200至步骤S600。
步骤S200:获取执行机构的受力信息。
进行打孔作业时,执行机构必然会受到被打孔物体的反作用力。该反作用力与被打孔物体的硬度有关:被打孔物体越硬,该反所用力就越大。可以理解,该被打孔物体,可以是墙面,也可以是家具,还可以是结构梁,总之本实施例对被 打孔物体的具体材料不做限定。为便于理解,以下均以被打孔物体为混凝土墙面的情况为例进行说明。
执行机构的受力信息,是指通过传感器采集到的与执行机构所受反作用力相关的信息。具体的,执行机构的受力信息由安装于该执行机构力的传感器采集得到。其中,力传感器是将力的量值转换为相关电信号的器件。力传感器主要由力敏元件、转换元件和电路三部分构成。根据力敏元件的不同,力传感器主要包括应变片式力传感器、膜片式力传感器、应变梁式力传感器和组合式力传感器,本实施例对具体力传感器的种类和测力原理并不作限定。进一步的,控制器获取执行机构的受力信息的方式,可以是由力传感器将受力信息发送给控制器,也可以是由控制器主动读取力传感器采集得到的受力信息。总之,本实施例对获取执行机构的受力信息的具体方式不作限定。
步骤S400:根据执行机构的受力信息,判断该执行机构的受力大小是否大于第一预设阈值。
具体的,控制器获取执行机构的受力信息后,根据该受力信息,可以得到执行机构的受力大小,并将执行机构的受力大小与第一预设阈值进行对比,判断该执行机构的受力大小是否大于第一预设阈值。在打孔作业中,执行机构会受到X、Y、Z三个方向的力的作用,由于钢筋与执行机构中钻头的接触位置会有所不同,因此三个方向的力的大小也会有所不同。执行机构的受力大小大于第一预设阈值,可以是指某一个方向的力大于第一预设阈值,也可以是指三个方向的合力大于第一预设阈值。
进一步的,该第一预设阈值,可以根据被打孔物体的具体材料以及打孔参数确定。例如,在进行混凝土墙面钻孔时,打孔过程中可能遇到钢筋,根据钢筋的硬度以及此时的打孔参数,就可以计算得出对应参数下打孔设备执行机构遇到钢筋时的受力大小,即可确定第一预设阈值。
步骤S600:当执行机构的受力大小大于第一预设阈值时,控制执行机构退出并平移后重新进行打孔作业。
具体的,当执行机构的受力大小大于第一预设阈值时,说明在打孔过程中执行机构遇到了钢筋,此时,控制执行机构退出并平移后重新进行打孔作业,可以有效避让钢筋,避免因受到的冲击过大而引起执行机构的损伤,提高打孔设备的使用寿命。进一步的,可以根据墙面中钢筋的尺寸和排列方式确定预设位移,并控制执行机构退出并平移预设位移后重新进行打孔作业。可以理解,在打孔作业过程中,若执行机构的受力大小始终小于或等于第一预设阈值,则由控制器控制执行机构完成当前打孔作业后退出。
上述打孔作业控制方法,通过在执行机构上安装力传感器,可以实时获取执行机构的受力信息。再根据该受力信息判断该执行机构的受力大小是否大于第一预设阈值,当该执行机构的受力大小大于第一预设阈值时,则说明在打孔作业过程中遇到了钢筋或钉子等坚硬物体。此时,控制执行机构退出并平移后重新进行打孔作业,有利于提高打孔的工作效率。
在一个实施例中,请参考图2,步骤S400之前,还包括步骤S300。
步骤S300:根据历史打孔作业的受力信息,确定第一预设阈值。
当被打孔物体为混凝土墙面时,根据历史打孔作业的受力信息,可以得到遇到钢筋时的受力大小,进而确定第一预设阈值。具体的,在进行打孔作业时,打孔设备会记录每一次作业的受力信息。根据历史打孔作业的受力信息,可以将历史作业中遇到钢筋时的最小受力值作为第一预设阈值,也可以将历史作业中遇到钢筋时的受力值的平均值作为第一预设阈值。还可以在打孔作业中,记录钢筋型号,并将钢筋型号与执行机构在打孔作业中遇到该型号钢筋时的受力信息对应存储,在进行新的打孔作业时,直接根据对应钢筋型号的历史打孔作业的受力信息确定第一预设阈值。总之,本实施例对第一预设阈值的具体确定方式不作限 定。
上述实施例中,根据历史打孔作业的受力信息,确定第一预设阈值,有利于提高第一预设阈值的准确性,提升打孔效率。
在一个实施例中,执行机构的受力大小为该执行机构所受的合力大小,请参考图3,步骤S400包括步骤S420和步骤S440。
步骤S420:根据执行机构的受力信息,计算该执行机构所受的合力大小。
如上文所述,在打孔作业中,执行机构会受到X、Y、Z三个方向的力的作用。由于钢筋与执行机构中钻头的接触位置会有所不同,因此三个方向的力的大小也会有所不同。根据力传感器采集得到的受力信息,可以计算得到执行机构所受的合理大小,该合力值F 的计算公式为:
Figure PCTCN2021127304-appb-000001
其中,X、Y、Z分别为三个方向的分力大小。
步骤S440:判断执行机构所受的合力大小是否大于第一预设阈值。
具体的,控制器计算得到执行机构所受的合力大小后,将该合力与第一预设阈值进行对比,判断该执行机构所受的合力大小是否大于第一预设阈值。
上述实施例中,先根据执行机构的受力信息,计算执行机构所受的合力大小,再判断该执行机构所受的合力大小是否大于第一预设阈值,相当于综合考虑了钻头与钢筋的接触位置对受力信息的影响,便于在各种情况下都能实现钢筋的有效避让,有利于提高打孔作业的效率。
在一个实施例中,步骤S440包括:判断执行机构所受的合力大小,在预设时间内是否持续大于第一预设阈值。具体的,执行机构进行打孔作业时,钻头遇到钢筋后,将受到较大的反作用力,执行机构所受的合力大小将急剧增大,并维持在一个较大的数值。此时,可以根据执行机构的进给速度,设置第一预设时间。当执行机构在第一预设时间内所受的合力大小持续大于第一预设阈值时,控制 执行机构退出并平移后重新进行打孔作业。例如,可以将第一预设时间设置为0.5s,当执行机构的受力大小在0.5s内持续大于第一预设阈值时,确定该执行机构的受力大小大于第一预设阈值。可以理解,第一预设时间,也可以设置为0.3s、0.4s、0.6s等,本实施例对第一预设时间的具体数值不作限定。
在一个实施例中,步骤S440包括:判断执行机构所受的合力大小,在预设采样次数内是否持续大于第一预设阈值。如上文所述,执行机构进行打孔作业时,钻头遇到钢筋后,将受到较大的反作用力,执行机构所受的合力大小将急剧增大,并维持在一个较大的数值。此时,力传感器继续根据预设的采样周期采集执行机构的受力信息。此时,可根据采样周期,设置第一预设采样次数,当执行机构在第一预设采样次数内所受的合力大小持续大于第一预设阈值时,控制执行机构退出并平移后重新进行打孔作业。例如,可以将第一预设采样次数设置为5次,当根据连续5次采样数据得到的执行机构的受力大小,均大于第一预设阈值时,确定该执行机构的受力大小大于第一预设阈值。可以理解,第一预设采样次数,也可以设置为3次、4次、6次等,本实施例对第一预设采样次数的具体数值不作限定。
上述实施例中,提供了多种用于判断执行机构的受力大小是否大于第一预设阈值的标准,有利于提高打孔作业控制方法的灵活性。
在一个实施例中,请继续参考图3,步骤S420之后,步骤S440之前,步骤S400还包括步骤S430:判断执行机构所受的合力大小是否大于第二预设阈值。若是,则进行步骤S440,判断执行机构所受合力的大小是否大于第一预设阈值;若是,则执行步骤S600,若否,执行步骤S500。
步骤S500:当执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制执行机构退出预设位移后重新进行打孔作业。
具体的,在混凝土墙面的打孔作业过程中,除了钢筋,也可能会遇到石子等 坚硬障碍物。当钻头遇到坚硬障碍物时,会受到较大的反作用力,电锤钻自身会产生较大幅度的波动,该波动不会对打孔设备造成损伤。然而若不及时消除,该反作用力引起的电锤钻的波动会持续,这将导致打孔设备的保护性停止,不仅会降低作业效率,也会对机器人的寿命造成影响。此时,根据历史打孔作业的受力信息,设置第二预设阈值,当执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制执行机构退出预设位移后,再进给至上一次作业的打孔深度,继续进行打孔作业,直至当前打孔作业完成后退出。
可以理解,钻头遇到石子时执行机构的受力大小,小于钻头遇到钢筋时执行机构的受力大小,基于此,第二预设阈值小于第一预设阈值。相当于在打孔作业的过程中,先通过第二预设阈值的设定判断是否遇到石子等坚硬障碍物,再进一步通过第一预设阈值的设定判断是否遇到了钢筋,并根据具体情况进行打孔控制。进一步的,若打孔作业过程中,执行机构的受力大小始终小于或等于第二预设阈值,则由控制器控制执行机构完成当前打孔作业后退出。
上述实施例中,通过设置第二预设阈值,在执行机构所受的合力大小大于第二预设阈值时,控制执行机构退出预设位移后重新进行打孔作业。可以在打孔作业过程中遇到石子等坚硬障碍物时,消除电锤钻的波动,避免打孔设备的保护性停止动作,有利于提高打孔效率,增长打孔设备的使用寿命。
在一个实施例中,步骤S430包括:判断执行机构所受的合力大小,在预设时间内是否持续大于第二预设阈值。具体的,与遇到钢筋的情况类似,执行机构进行打孔作业时,钻头遇到石子后,将受到较大的反作用力,执行机构所受的合力大小将急剧增大。此时,可以根据执行机构的进给速度,设置第二预设时间;也可以根据每次打孔作业的总耗费时间,按照总耗费时间的百分比,设置第二预设时间。当执行机构在第二预设时间内所受的合力大小持续大于第二预设阈值时,控制执行机构退出并平移后重新进行打孔作业。例如,可以将第二预设时间 设置为5s,当执行机构的受力大小在5s内持续大于第二预设阈值时,确定该执行机构的受力大小大于第二预设阈值;也可以将单次打孔总耗费时间的80%设置为第二预设时间。可以理解,第二预设时间,也可以设置为3s、4s、6s,或者单次打孔总耗费时间的60%、70%等。总之,本实施例对第二预设时间的具体计算方式和数值均不作限定。
在一个实施例中,步骤S430包括:判断执行机构所受的合力大小,在预设采样次数内是否持续大于第二预设阈值。如上文所述,执行机构进行打孔作业时,钻头遇到钢筋后,将受到较大的反作用力,执行机构所受的合力大小将急剧增大。此时,力传感器继续根据预设的采样周期采集执行机构的受力信息。此时,可根据采样周期,设置第二预设采样次数,当执行机构在第二预设采样次数内所受的合力大小持续大于第二预设阈值时,控制执行机构退出并平移后重新进行打孔作业。例如,可以将第二预设采样次数设置为5次,当根据连续5次采样数据得到的执行机构的受力大小,均大于第二预设阈值时,确定该执行机构的受力大小大于第二预设阈值。可以理解,第二预设采样次数,也可以设置为3次、4次、6次等,本实施例对第二预设采样次数的具体数值不作限定。
上述实施例中,提供了多种用于判断执行机构的受力大小是否大于第二预设阈值的标准,有利于提高打孔作业控制方法的灵活性。
在一个实施例中,步骤S500之前还包括:根据执行机构的进给量,确定预设位移。
其中,执行机构的进给量,是指当次打孔作业过程中,执行机构相对于初始位置的位移量。可以理解,执行机构的进给量可以用来表示当前的打孔深度,由于实际打孔作业过程中,坚硬障碍物的位置有所不同,因此钻头接触坚硬障碍物时的打孔深度也是不同的。具体的,当执行机构所受的合力大小大于第二预设阈值时,控制器读取执行机构的当前进给量,并根据当前进给量,确定预设位移, 再控制执行机构退出预设位移后重新进行打孔作业。
上述实施例中,根据执行机构的进给量,确定退出的预设位移,相当于根据当前的打孔深度对执行机构进行打孔控制,有利于提高打孔作业控制方法的科学性。
应该理解的是,虽然上述实施例中涉及的各流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述实施例中涉及的各流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本申请第二方面,提供了一种打孔作业控制装置,请参考图4,该装置包括信息获取模块200、判断模块400和打孔路径设置模块600。其中,信息获取模块200,用于获取执行机构的受力信息;执行机构的受力信息由力传感器采集得到,力传感器安装于执行机构;判断模块400,用于根据执行机构的受力信息,判断执行机构的受力大小是否大于第一预设阈值;打孔路径设置模块600,用于当执行机构的受力大小大于第一预设阈值时,控制执行机构退出并平移后重新进行打孔作业。
在一个实施例中,请参考图5,该打孔作业控制装置还包括:受力阈值范围确定模块300,用于根据历史打孔作业的受力信息,确定受力阈值范围。
在一个实施例中,请参考图6,判断模块400包括计算单元420和判断单元440。其中,计算单元420用于根据执行机构的受力信息,计算该执行机构所受 的合力大小;判断单元440用于判断执行机构所受的合力大小是否大于第一预设阈值。
在一个实施例中,判断单元440具体用于:判断执行机构所受的合力大小,在第一预设时间内是否持续大于第一预设阈值。
在一个实施例中,判断单元440具体用于:判断执行机构所受的合力大小,在第一预设采样次数内是否持续大于第一预设阈值。
在一个实施例中,判断单元460还用于判断执行机构所受的合力大小是否大于第二预设阈值;打孔路径设置模块600,还用于当执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制执行机构退出预设位移后重新进行打孔作业。
在一个实施例中,判断单元440还用于:判断执行机构所受的合力大小,在第二预设时间内是否持续大于第二预设阈值。
在一个实施例中,判断单元440还用于:判断执行机构所受的合力大小,在第二预设采样次数内是否持续大于第二预设阈值。
在一个实施例中,打孔路径设置模块600还用于:根据执行机构的进给量,确定预设位移。
关于打孔作业控制装置的具体限定可以参见上文中对于打孔作业控制方法的限定,在此不再赘述。上述打孔作业控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请第三方面,请参考图7,提供了一种协作机器人,包括:底座10、机械手臂、执行机构30、力传感器和控制器;机械手臂安装于底座10;执行机构 30安装于机械手臂末端;力传感器安装于执行机构30,用于采集执行机构的受力信息并发送至控制器;控制器连接机械手臂、执行机构30和力传感器,用于根据上述任意实施例中的方法进行打孔控制。
可以理解,根据不同的应用场景,可以更换机器人底座安装方式,例如可以斜45°安装。此外,如图7所示,协作机器人的机械手臂可以包括多个机械臂和多个关节,其中一个机械臂通过J1关节21安装于底座10上,其他机械臂分别通过J2关节22、J3关节23、J4关节24、J5关节25以及J6关节26连接并与执行结构30连接。控制器可以控制机械手臂运动以适应不同的打孔作业场景。例如,图7中,通过机械手臂中的多个关节联动,可以实现执行机构垂直混凝土墙面40的打孔动作。
具体的,根据当前的打孔作业场景,控制器控制机械手臂中的关节,使执行机构30垂直于混凝土墙面40进行打孔作业。在打孔作业过程中,控制器根据安装于执行机构30的力传感器采集得到的数据,得到执行机构的受力信息,并根据该受力信息,判断执行机构30的受力大小是否大于第一预设阈值,当执行机构30的受力大小是否大于第一预设阈值时,判断执行机构30遇到钢筋41,此时,由控制器控制执行机构30退出并平移后重新进行打孔作业。
上述协作机器人,在执行机构上安装有力传感器,控制器可以实时获取执行机构的受力信息,再根据该受力信息判断该执行机构的受力大小是否大于第一预设阈值。当该执行机构的受力大小大于第一预设阈值时,则说明在打孔作业过程中遇到了钢筋等坚硬物体。此时,由控制器控制协作机器人的执行机构退出并平移后重新进行打孔作业,有利于提高协作机器人的打孔工作效率。
在一个实施例中,力传感器为力控传感器;力控传感器安装于机械手臂末端与执行机构的连接位置。其中,力控传感器是一种新型的力传感器,一个力控传感器,便可以完成笛卡尔直角坐标系中各个坐标(X,Y和Z)上的力和力矩的 测量和输出工作。另外,在机械手臂末端与执行机构的连接位置,一般会安装有法兰,在法兰出线位置安装力控传感器,操作简便。
上述实施例中,使用力控传感器作为力传感器,有利于减少力传感器的使用数量,降低协作机器人的装置复杂度。此外,将力控传感器安装于机械手臂末端与执行机构的连接位置,可以便于力控传感器的安装和更换。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上该实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种打孔作业控制方法,其特征在于,包括:
    获取打孔执行机构的受力信息;所述执行机构的受力信息由安装于所述执行机构的力传感器采集得到;
    根据所述执行机构的受力信息,判断所述执行机构的受力大小是否大于第一预设阈值;
    当所述执行机构的受力大小大于第一预设阈值时,控制所述执行机构退出并平移后重新进行打孔作业。
  2. 根据权利要求1所述的打孔作业控制方法,其特征在于,所述根据所述受力信息,判断所述执行机构的受力大小是否大于第一预设阈值之前,还包括:
    根据历史打孔作业的受力信息,确定第一预设阈值。
  3. 根据权利要求2所述的打孔作业控制方法,其特征在于,所述执行机构的受力大小为所述执行机构所受的合力大小,所述根据所述受力信息,判断所述执行机构的受力大小是否大于第一预设阈值,包括:
    根据所述受力信息,计算所述执行机构所受的合力大小;
    判断所述执行机构所受的合力大小是否大于第一预设阈值。
  4. 根据权利要求3所述的打孔作业控制方法,其特征在于,所述判断所述执行机构所受的合力大小是否大于第一预设阈值,包括:
    判断所述执行机构所受的合力大小,在预设采样次数内是否持续大于第一预设阈值。
  5. 根据权利要求3所述的打孔作业控制方法,其特征在于,根据所述受力信息,计算所述执行机构所受的合力大小之后,所述判断所述执行机构所受的合力大小是否大于第一预设阈值之前,还包括:
    判断所述执行机构所受的合力大小是否大于第二预设阈值;所述第二预设阈值小于所述第一预设阈值;
    若所述执行机构所受的合力大小大于所述第二预设阈值,则进行所述判断所述执行机构所受的合力大小是否大于第一预设阈值的步骤;
    判断所述执行机构所受的合力大小是否大于第一预设阈值之后,还包括:
    当所述执行机构所受的合力大小大于第二预设阈值且小于或等于第一预设阈值时,控制所述执行机构退出预设位移后重新进行打孔作业。
  6. 根据权利要求5所述的打孔作业控制方法,其特征在于,所述判断所述执行机构所受的合力大小是否大于第二预设阈值,包括:
    判断所述执行机构所受的合力大小,在预设时间内是否持续大于第二预设阈值。
  7. 根据权利要求5所述的打孔作业控制方法,其特征在于,所述当所述执行机构所受的合力大小大于第二预设阈值时,控制所述执行机构退出预设位移后重新进行打孔作业之前,还包括:
    根据所述执行机构的进给量,确定所述预设位移。
  8. 一种打孔作业控制装置,其特征在于,包括:
    信息获取模块,用于获取执行机构的受力信息;所述执行机构的受力信息由力传感器采集得到;所述力传感器安装于所述执行机构;
    判断模块,用于根据所述执行机构的受力信息,判断所述执行机构的受力大小是否大于第一预设阈值;
    打孔路径设置模块,用于当所述执行机构的受力大小大于第一预设阈值时,控制所述执行机构退出并平移后重新进行打孔作业。
  9. 一种协作机器人,其特征在于,包括:底座、机械手臂、执行机构、力传感器和控制器;所述机械手臂安装于所述底座;所述执行机构安装于所述机械手臂末端;所述力传感器安装于所述执行机构,用于采集所述执行机构的受力信息并发送至所述控制器;所述控制器连接所述机械手臂、所述执行机构和所述力 传感器,用于根据权利要求1至7中任意一项所述的方法进行打孔控制。
  10. 根据权利要求9所述的协作机器人,其特征在于,所述力传感器为力控传感器;所述力控传感器安装于所述机械手臂末端与所述执行机构的连接位置。
PCT/CN2021/127304 2020-11-27 2021-10-29 打孔作业控制方法、装置和协作机器人 WO2022111207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011355095.0A CN114559560A (zh) 2020-11-27 2020-11-27 打孔作业控制方法、装置和协作机器人
CN202011355095.0 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022111207A1 true WO2022111207A1 (zh) 2022-06-02

Family

ID=81712562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127304 WO2022111207A1 (zh) 2020-11-27 2021-10-29 打孔作业控制方法、装置和协作机器人

Country Status (2)

Country Link
CN (1) CN114559560A (zh)
WO (1) WO2022111207A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303670A (zh) * 2016-04-19 2017-10-31 上海技美科技股份有限公司 通用协作机器人、机器人系统及通用协作机器人执行操作任务的控制方法
CN108625777A (zh) * 2018-05-14 2018-10-09 广东和立土木工程有限公司 用于植筋钻孔的移动式自动化钻孔机及其施工方法
CN109519123A (zh) * 2019-01-09 2019-03-26 西安增材制造国家研究院有限公司 一种隧道钻孔机器人及其施工钻孔方法
JP2019151015A (ja) * 2018-03-02 2019-09-12 株式会社シブヤ コアドリル装置
CN111037556A (zh) * 2019-12-19 2020-04-21 上海新时达机器人有限公司 一种打孔控制方法及打孔控制设备
CN112065275A (zh) * 2020-10-12 2020-12-11 中国铁建重工集团股份有限公司 一种隧道钻孔机器人系统及其控制方法、隧道掘进机
CN113482528A (zh) * 2021-08-18 2021-10-08 中建安装集团有限公司 一种基于隧道轨行式全向内壁钻孔机器人的施工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003204B1 (ko) * 1990-02-27 1994-04-16 가부시끼가이샤 도시바 제어로봇
EP1455051A1 (de) * 2003-03-05 2004-09-08 Illinois Tool Works Inc. Verfahren zum Einbringen eines Bohrloches
CN101994507A (zh) * 2010-11-12 2011-03-30 铜陵精盛微特机电有限责任公司 智能柔性钢筋混凝土钻孔机
CN106593438B (zh) * 2017-01-25 2017-12-29 中国地质大学(武汉) 钻孔水力采矿井下采掘机器人
WO2019052971A1 (de) * 2017-09-15 2019-03-21 Inventio Ag Vorrichtung und verfahren zum automatisierten durchführen eines montageschritts in einem aufzugschacht
CN110625593B (zh) * 2019-10-18 2024-04-26 北京石油化工学院 一种智能制孔机器人的末端执行器
CN110725648A (zh) * 2019-11-19 2020-01-24 中交机电工程局有限公司 一种双钻头隧道自动钻孔机及方法
CN111677457B (zh) * 2020-06-28 2022-01-14 中铁九局集团电务工程有限公司 一种钻孔臂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303670A (zh) * 2016-04-19 2017-10-31 上海技美科技股份有限公司 通用协作机器人、机器人系统及通用协作机器人执行操作任务的控制方法
JP2019151015A (ja) * 2018-03-02 2019-09-12 株式会社シブヤ コアドリル装置
CN108625777A (zh) * 2018-05-14 2018-10-09 广东和立土木工程有限公司 用于植筋钻孔的移动式自动化钻孔机及其施工方法
CN109519123A (zh) * 2019-01-09 2019-03-26 西安增材制造国家研究院有限公司 一种隧道钻孔机器人及其施工钻孔方法
CN111037556A (zh) * 2019-12-19 2020-04-21 上海新时达机器人有限公司 一种打孔控制方法及打孔控制设备
CN112065275A (zh) * 2020-10-12 2020-12-11 中国铁建重工集团股份有限公司 一种隧道钻孔机器人系统及其控制方法、隧道掘进机
CN113482528A (zh) * 2021-08-18 2021-10-08 中建安装集团有限公司 一种基于隧道轨行式全向内壁钻孔机器人的施工方法

Also Published As

Publication number Publication date
CN114559560A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN108858183B (zh) 机器人、机器人的控制方法、工件的制造方法
CN102328312B (zh) 机械手装置以及机械手装置的控制方法
JP6706741B2 (ja) ロボットの衝突検出方法
EP2939797A2 (en) Motion limiting device and motion limiting method
US11531319B2 (en) Failure prediction device and machine learning device
JP5496129B2 (ja) ロボットのねじ締め作業異常検知方法
JP2005103681A (ja) ロボットシステム
CN111438687A (zh) 判定装置
JP6977686B2 (ja) 制御システムおよび制御装置
JP2019012392A (ja) 制御装置及び機械学習装置
JP6568167B2 (ja) 異常検知装置及び機械学習装置
CN115057245B (zh) 一种基于总线控制器与伺服系统的拆码垛系统
WO2023000946A1 (zh) 一种机器人系统的控制单元、机器人系统及机器人系统的控制方法
US10747197B2 (en) Abnormally factor identification apparatus
WO2022111207A1 (zh) 打孔作业控制方法、装置和协作机器人
JP2021015573A (ja) 異常判定装置及び異常判定システム
CN108724180B (zh) 机器人系统
CN104044147A (zh) 机器人系统及被加工物的制造方法
CN111633600B (zh) 电批及其控制方法
CN110405729B (zh) 机器人控制装置
CN209408499U (zh) 一种具有柔性腕关节机器人的控制系统
JP6940820B2 (ja) ロボット制御装置、保守管理方法、及び保守管理プログラム
CN112041125A (zh) 机器人的控制方法
CN113021411B (zh) 机器人故障预测装置及系统、以及机器人故障预测方法
Samtani et al. Learning to Break Rocks With Deep Reinforcement Learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896709

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21896709

Country of ref document: EP

Kind code of ref document: A1