WO2022111159A1 - 功率子模块、其制作方法以及转模压接式功率模块 - Google Patents

功率子模块、其制作方法以及转模压接式功率模块 Download PDF

Info

Publication number
WO2022111159A1
WO2022111159A1 PCT/CN2021/125472 CN2021125472W WO2022111159A1 WO 2022111159 A1 WO2022111159 A1 WO 2022111159A1 CN 2021125472 W CN2021125472 W CN 2021125472W WO 2022111159 A1 WO2022111159 A1 WO 2022111159A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
electrode
molybdenum sheet
unit
power module
Prior art date
Application number
PCT/CN2021/125472
Other languages
English (en)
French (fr)
Inventor
李寒
罗海辉
李星峰
石廷昌
常桂钦
彭勇殿
吴义伯
曾雄
张文浩
Original Assignee
株洲中车时代半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代半导体有限公司 filed Critical 株洲中车时代半导体有限公司
Priority to EP21896661.2A priority Critical patent/EP4254482A1/en
Publication of WO2022111159A1 publication Critical patent/WO2022111159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components

Definitions

  • the invention relates to the technical field of power electronics, and in particular, to a power sub-module, a manufacturing method thereof, and a rotary-mold crimping type power module.
  • FIGS. 1 and 2 discloses a press-fit type semiconductor module and a manufacturing method thereof.
  • the packaging structure of the semiconductor module is shown in FIGS. 1 and 2 .
  • the upper molybdenum sheet 2 is arranged on the upper surface of the semiconductor chip 1
  • the lower molybdenum sheet 3 is arranged on the lower surface of the semiconductor chip 1
  • the lower molybdenum sheet 3 adopts a large molybdenum disc structure.
  • the semiconductor chip 1 includes an IGBT chip or a MOSFET chip, the collector/drain of the IGBT chip/MOSFET chip is sintered on the lower molybdenum sheet 3, and serves as the collector/drain of the press-contact semiconductor module; the upper molybdenum sheet 2 is sintered on the IGBT chip On the emitter/source of the MOSFET chip, and as the emitter/source of the press-contact semiconductor module; the PCB7 is arranged on the lower molybdenum sheet 3 sintered with the semiconductor chip 1, and the gate of the IGBT chip/MOSFET chip passes through the lead
  • the bonding method is interconnected to the PCB7, and collected to the gate terminal 6 through the internal circuit of the PCB7; the semiconductor chip 1 with the upper molybdenum sheet 2 and the lower molybdenum sheet 3 sintered respectively is fixed on the boss 15 of the base 4 through the PCB7 , the lower molybdenum sheet 3 sintered with the semiconductor chip 1 is fixed on the base 4 , and the tube
  • the above-mentioned sub-unit 17 has the following disadvantages, and the structure is complex; and the lower molybdenum sheet 3 and the boss 15 on the base 4 and the upper molybdenum sheet 2 and the side frame 18 need to be positioned in multiple places, the packaging reliability is poor, and the insulation effect is poor. , and there are many processes.
  • the present invention provides a power sub-module, a manufacturing method thereof, and a rotary-mold crimping type power module, which are used to solve at least one of the above-mentioned technical problems.
  • the present invention provides a rotary die crimping type power module, including an insulating plastic frame and a chip assembly;
  • the insulating plastic frame is formed by using glue on the chip assembly by direct mold rotation.
  • the chip assembly includes a chip, a first molybdenum sheet disposed on a first side of the chip, and a second molybdenum sheet disposed on a second side of the chip, the first molybdenum sheet and the The first electrode of the chip is connected, and the second molybdenum sheet is connected to the second electrode of the chip;
  • At least a portion of the sidewall of the second molybdenum sheet and/or at least a portion of the sidewall of the first molybdenum sheet is covered by the insulating plastic frame.
  • the upper surface of the second molybdenum sheet and the inner wall of the insulating plastic frame enclose a concave portion.
  • the chip assembly further includes pogo pins, the first surface of the chip further has a third electrode, the third electrode is provided with a third electrode pad, and the third electrode pad A third electrode bottom post is arranged thereon, the third electrode bottom post is engaged with one end of the pogo pin, and the other end of the pogo pin is arranged outside the insulating plastic frame.
  • the pogo pins are made of beryllium copper.
  • the present invention provides a manufacturing method of a power module subunit, which includes the following steps:
  • S110 Connect the first side and the second side of the chip to the first molybdenum sheet and the second molybdenum sheet respectively by welding or sintering, and make the first molybdenum sheet lead out of the first electrode of the chip and the second molybdenum sheet out of the chip the second electrode;
  • S130 Place the chip assembly in a rotating mold device, and the rotating mold device makes the glue form an insulating plastic frame on the chip assembly by means of direct mold rotating, so as to obtain the power module subunit.
  • the internal air bubbles are extracted by vacuuming
  • the present invention provides a rotary die crimping type power module, comprising:
  • a tube cover unit which is arranged on a side of the circuit board unit away from the power sub-unit;
  • the tube cover unit includes a separable tube cover and a crimping assembly
  • the crimping assembly includes a protruding portion protruding toward the circuit board unit, and the protruding portion is used to make the circuit board unit is in pressure contact with the third electrode of the power subunit.
  • a pad is provided on the circuit board unit, and the pad is used for connecting with the third electrode;
  • the pads, the raised portions and the power sub-units are the same in number and correspond to each other.
  • a tube base unit is further included, the tube base unit includes a tube base and an insulating positioning frame arranged in the tube base, the power sub-unit is arranged in the insulating positioning frame, the tube A conductive terminal is also arranged on the seat, and the conductive terminal is used to lead out the signal of the third electrode.
  • the crimping assembly further includes a buffer layer, the protruding portion is disposed on a side of the buffer layer close to the circuit board unit, a receiving portion is disposed on the buffer layer, and the The accommodating portion is used for accommodating the conductive terminal.
  • the first skirt in the circumferential direction of the tube base is in sealing connection with the second skirt in the circumferential direction of the tube cover.
  • the socket is made of a first metal; the surface of the socket is plated with a second metal layer, and the first metal and the second metal are the same or different; the protrusion is made of a second metal layer. Made of metal.
  • the insulating plastic frame is formed by using colloid on the chip assembly by direct mold rotation, it avoids placing individual chips, upper molybdenum sheets and lower molybdenum sheets into the side one by one in the prior art. It not only simplifies the positioning process, but also because the insulating plastic frame is integrally formed, so there is no assembly gap, and no subsequent glue treatment is required, which also simplifies The glue coating process is not required, so the process of the power sub-unit of the present invention is simple and easy to operate; and the power sub-unit 300 can realize the protection mode of integrated insulation of the power sub-unit 300, thereby ensuring good insulation effect and packaging reliability.
  • the chip assembly is covered by an insulating plastic frame. Since the insulating plastic frame is integrally formed, there is no assembly gap.
  • the insulating plastic frame preferably completely covers the second molybdenum sheet. the side wall of the first molybdenum sheet and at least a part of the side wall of the first molybdenum sheet, so that the creepage distance between the surface of the second molybdenum sheet and the surface of the first molybdenum sheet can be increased, so that the power sub-unit itself has a higher insulation protection capability.
  • the pogo pin is connected to the gate of the chip through the third electrode bottom column, so when the mold is turned to form the insulating plastic frame, the pogo pin has been fixedly connected to the third electrode bottom column, so it is helpful for the insulating plastic frame Rotary molding, and can improve the reliability and manufacturability of interconnection and improve the reliability of electromagnetic connection.
  • the insulating plastic frame is formed by means of a rotating mold, it is avoided to perform multiple positioning processes between the chip, the molybdenum sheet and the side frame separately in the prior art, and the manufacturing process of the power sub-unit can be simplified as With three steps, the process is simplified, the production efficiency is improved, and the production cost is reduced.
  • the tube cover unit As a separable tube cover and a crimping assembly, the difficulty of processing the convex part on the crimping assembly will be greatly reduced, thereby improving the surface accuracy of the convex part and ensuring the pressure transmission
  • the reliability of the turn-molded press-fit power module improves the manufacturability.
  • the crimping assembly further includes a buffer layer, it can help to release residual stress, thereby reducing the deformation of the tube cover and the power sub-module.
  • FIG. 1 is an exploded view of a crimping type module packaging structure in the prior art
  • Fig. 2 is the exploded view of the subunit of Fig. 1;
  • FIG. 3 is an exploded view of a power subunit in an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a power subunit in an embodiment of the present invention.
  • FIG. 5 is a circuit topology diagram of a power subunit in an embodiment of the present invention.
  • 6-8 are schematic diagrams of a manufacturing process of a power subunit in an embodiment of the present invention.
  • FIG. 9 is an exploded view of a rotary die crimping type power module according to an embodiment of the present invention.
  • FIG. 10 is a schematic three-dimensional structure diagram of the crimping assembly shown in FIG. 9;
  • FIG. 11 is a schematic three-dimensional structure diagram of the circuit board unit shown in FIG. 9;
  • FIG. 12 is a cross-sectional view of a rotary die crimping type power module according to an embodiment of the present invention.
  • the present invention provides a power sub-unit 300 , which includes an insulating plastic frame 370 and a chip assembly.
  • the insulating plastic frame 370 of the present invention is formed by using glue (preferably insulating protective glue) on the chip assembly by direct mold transfer, avoiding the need for a single chip in the prior art.
  • glue preferably insulating protective glue
  • the multi-step process of placing components such as the upper molybdenum sheet and the lower molybdenum sheet into the side frame one by one and positioning them one by one not only simplifies the production process, but also enables the power sub-unit 300 to realize the integrated insulation of the power sub-unit 300.
  • the protection method to ensure good insulation effect and packaging reliability.
  • the insulating protective adhesive is transparent, defects such as air bubbles in the colloid can be observed, so that the internal air bubbles can be extracted by vacuuming before it is cured, so as to improve the manufacturability of the process.
  • the present invention will be described in detail below by taking the power subunit 300 as an IGBT subunit as an example.
  • the chip assembly includes a chip 330 and a first molybdenum sheet (lower molybdenum sheet) 310 and a second molybdenum sheet respectively disposed on the first side (bottom side) and the second side (top side) of the chip 330 (Upper molybdenum sheet) 320, the first molybdenum sheet 310 is connected to the first electrode (collector) of the chip 330, and the second molybdenum sheet 320 is connected to the second electrode (emitter) of the chip 330, that is, the first molybdenum sheet 310 leads out The collector of the IGBT subunit, and the second molybdenum sheet leads out the emitter of the IGBT subunit.
  • a first molybdenum sheet accommodating portion for example, a first molybdenum sheet accommodating portion for matching with the first molybdenum sheet 310 may be integrally formed in the molded insulating rubber frame 370 (for example, it may be grooves and/or bosses) and a second molybdenum sheet accommodating portion (for example, a groove and/or a boss) for mating with the second molybdenum sheet 320, so that at least a part of the side of the second molybdenum sheet 320 The wall/or at least a part of the sidewall of the first molybdenum sheet 310 is covered by the insulating plastic frame 370 to ensure its insulating performance.
  • the insulating plastic frame 370 completely covers the side wall of the second molybdenum sheet 320 and at least covers a part of the side wall of the first molybdenum sheet 310 , the purpose of which is to increase the size of the second molybdenum sheet
  • the creepage distance between the surface of the first molybdenum sheet 320 and the surface of the first molybdenum sheet 310 enables the IGBT subunit to have higher insulation protection capability.
  • the insulating plastic frame 370 is formed by rotating the mold, so the insulating plastic frame 370 can be integrally formed with the above-mentioned chip accommodating portion, the first molybdenum sheet accommodating portion and the second molybdenum sheet accommodating portion, so as to be self-contained. With positioning function, and can improve the insulation effect.
  • the upper surface of the second molybdenum sheet 320 and the inner wall of the insulating plastic frame 370 form a recessed portion capable of accommodating the protruding portion 122 ; the recessed portion will form a clearance fit with the protruding portion 122 described below.
  • the chip assembly also includes pogo pins 360 .
  • the top surface of the chip 330 also has a third electrode (gate), a third electrode pad 340 is arranged on the third electrode, a third electrode base 350 is arranged on the third electrode pad 340, and the third electrode base 350
  • the other end of the pogo pin 360 is clamped and connected with one end of the pogo pin 360 , and the other end of the pogo pin 360 is disposed outside the insulating plastic frame 370 , so that the other end of the pogo pin 360 is higher than the top surface of the insulating plastic frame 370 .
  • the pogo pin 360 of the present invention is connected to the gate of the chip 330 through the third electrode base 350. Therefore, when the mold is turned to form the insulating plastic frame, the pogo pin is already connected to the third electrode base. It is fixedly connected, so it is helpful for the rotational molding of the insulating plastic frame, and can improve the reliability and manufacturability of the interconnection and the reliability of the electromagnetic connection.
  • the pogo pin in the prior art after the chip, the upper molybdenum sheet and the lower molybdenum sheet are positioned and connected to the side frame, respectively, the pogo pin is put into the side frame. There is no effective and reliable connection between the chips, so after applying pressure, there may be a phenomenon that the pressing is not in place and not in contact.
  • the pogo pins of the present invention are fixedly connected to the chip 330 through the third electrode bottom pillars 350 before the insulating plastic frame is formed, so the reliability of the bonding can be improved.
  • the pogo pin 360 serves as the gate lead-out interface of the IGBT subunit, which can be made of beryllium copper.
  • the other end of the pogo pins 360 is higher than the top surface of the insulating plastic frame 370 , so as to ensure that the pads on the lower surface of the circuit board unit 200 described below can be effectively connected to the pogo pins 360 in pressure contact .
  • the circuit topology of the IGBT subunit is shown. Among them, C is the IGBT collector, E is the IGBT emitter, and G is the IGBT gate.
  • the IGBT subunit realizes the functions of power switch and electric energy conversion through the gate drive signal.
  • the present invention provides a method for manufacturing the above-mentioned power sub-module, which includes the following steps.
  • Step S110 as shown in FIG. 6 , the first side (bottom side) and the second side (top side) of the chip 330 are connected to the first molybdenum sheet 310 and the second molybdenum sheet 320 respectively by welding or sintering, and
  • the first molybdenum sheet 310 leads out the first electrode (collector) of the chip 330
  • the second molybdenum sheet 320 leads out the second electrode (emitter) of the chip 330 .
  • Step S120 as shown in FIG. 7 , solder the third electrode bottom post 350 on the third electrode pad 340 on the top surface of the chip 330 , and insert one end (lower end) of the pogo pin 360 into the third electrode bottom post 350 to make The two are snap-fitted (or plugged) connected to obtain a chip assembly.
  • the third electrode bottom pillar 350 is used as the lead-out interface of the third electrode (gate electrode) of the chip 330 .
  • Step S130 As shown in FIG. 8 , the chip assembly is placed in the rotating mold equipment, and the rotating mold equipment adopts the direct mold rotation method to make the glue form the insulating plastic frame 370 on the chip assembly, so as to obtain the power module subunit 300 .
  • the insulating protective glue is used to extract internal air bubbles by vacuuming and other methods before curing.
  • the insulating plastic frame is formed by means of a rotating mold, multiple positioning processes that need to be performed separately in the prior art are avoided, and the manufacturing process of the power sub-unit can be simplified into three steps, which simplifies the process and improves the manufacturing efficiency. , Reduce the production cost.
  • the left side of the insulating plastic frame 370 is the mold unit of the rotating mold equipment.
  • the present invention provides a rotary die crimping type power module, comprising a tube cover unit 100 , a circuit board unit (PCB control board) 200 , and at least one of the above-mentioned power sub-units. unit 300.
  • a header unit 400 may also be included.
  • the number of power sub-units 300 is multiple, and the multiple power sub-units 300 are generally arranged in a rectangular manner. It can be understood that the plurality of power sub-units 300 may also be arranged in other manners, such as circular, oval, etc., which is not limited in the present invention.
  • the circuit board unit 200 is in contact with the third electrode of the power subunit 300 .
  • the tube cover unit 100 is disposed on a side of the circuit board unit 200 away from the power sub-unit 300 .
  • the tube cover unit 100 includes a separable tube cover 110 and a crimping assembly 120.
  • the crimping assembly 120 includes a protruding portion 122 protruding toward the circuit board unit 200, and the protruding portion 122 is used to connect the circuit board unit 200 to the power
  • the third electrode of the subunit 300 is in pressure contact.
  • the raised portion 122 is made of a metallic material. More specifically, the raised portion 122 is made of copper. As shown in FIG. 10 , the protruding portion 122 is a cylindrical boss, so the protruding portion 122 can also be called a copper boss.
  • the tube cap unit 100 By arranging the tube cap unit 100 as the tube cap 110 and the crimping assembly 120 which are separable, the difficulty of processing the bosses 122 (copper bosses) on the crimping assembly 120 is reduced, so that the strength of the bosses 122 can be improved. Surface accuracy to ensure the reliability of pressure transmission.
  • the circuit board unit 200 is provided with pads, and the pads are used to connect with the third electrode of the power sub-unit 300; wherein, the pads, the bumps 122 and the power sub-units 300 have the same number and correspond to each other, so that the circuit board unit 200 and the power subunit 300 and the cap unit 100 are easy to assemble, improving manufacturability.
  • the circuit board unit 200 is disposed on the lower surface of the crimping assembly 120 . It can be understood that the circuit board unit 200 may be provided with grooves 210 (as shown in FIG. 11 ) for allowing the protrusions 122 to pass through.
  • the circuit board unit 200 can be connected in pressure contact with the third electrode of the power subunit 300 by means of the protrusion 122 .
  • the circuit board unit 200 may be in contact with the lower surface of the buffer layer 121 . Since the other end of the pogo pin 360 is higher than the top surface of the insulating plastic frame 370 , the pressure is applied to the circuit board unit 200 by the crimping unit 200 , so that the pads on the lower surface of the circuit board unit 200 and the corresponding pads are respectively The pogo pins 360 of the power subunit 300 form an effective pressure contact connection.
  • the protruding portion 122 passes through the groove 210 of the circuit board unit 200 , it extends into the concave portion of the insulating plastic frame 370 to form a clearance fit.
  • the protrusions 122 are respectively inserted into the insulating plastic frames 370 of the corresponding IGBT sub-units, and form a clearance fit with the corresponding insulating plastic frames 370 , thereby Improve the accuracy of its positioning.
  • the pad of the circuit board unit 200 is connected to the gate of the IGBT subunit through pressure contact connection to realize electrical contact, and finally the gates of each IGBT subunit are aggregated.
  • the crimping assembly 120 further includes a buffer layer 121 , and the protruding portion 122 is disposed on a side of the buffer layer 121 close to the circuit board unit 200 .
  • the buffer layer 121 can help to release residual stress, thereby reducing the deformation of the tube cover 110 and the power sub-module 300 .
  • the header unit 400 includes a header 410 and an insulating positioning frame 420 disposed in the header 410 .
  • the insulating positioning frame 420 is fixedly connected to the header 410 through fasteners 430 .
  • the insulating positioning frame 420 can generally be made of a material with good insulating properties such as epoxy resin.
  • the insulating positioning frame 420 is provided with a slot body corresponding to each power sub-unit 300 one-to-one, and each power sub-unit 300 is respectively arranged in the slot body in the insulating positioning frame 420, so that each power sub-unit 300 can be accurately and reliably positioned in the socket 410.
  • the socket 410 is also provided with a conductive terminal 411 , and the conductive terminal 411 is used to draw out the signal of the third electrode (gate) of the power subunit 300 .
  • the conductive terminal 411 is a sheet-like structure, one end of which is connected to the inner wall of the socket 410 , and the other end is bent and extended along the radial direction of the socket 410 , so the conductive terminal 411 can be called a door Extremely pull-out tabs.
  • the buffer layer 121 is provided with an accommodating portion 123 , and the accommodating portion 123 is used for accommodating the conductive terminal 411 .
  • the positions of the conductive terminals 411 and the accommodating portions 123 correspond to each other.
  • the conductive terminal 411 is just disposed in the receiving portion 123 .
  • the accommodating portion 123 can make the conductive terminals 411 contact with the circuit board unit 200, so that the gate signals of the power sub-units 300 aggregated by the circuit board unit 200 can be drawn out, so as to realize the connection with the external driving and control circuit.
  • the accommodating portion may be in the form of an opening, a hole, a groove, or the like.
  • the accommodating portion is a U-shaped notch.
  • the tube base 410 can be made of a first metal (eg, copper), and its surface is relatively smooth, so as to improve the surface precision, thereby ensuring reliable transmission of the contact pressure.
  • a second metal layer may be disposed on the surface of the socket 410, and the second metal layer may be, for example, a silver-plated layer, so as to improve its thermal conductivity.
  • the above-mentioned first metal and second metal may be the same metal or different metals.
  • the first skirt edge 412 of the tube base 410 in the circumferential direction is sealedly connected with the second skirt edge 111 of the tube cover 110 in the circumferential direction.
  • the tube base 410 and the tube cover 110 can be sealedly connected by a cold pressure welding process, so as to improve the packaging reliability, so as to protect the power sub-unit 300 inside thereof, and to achieve an explosion-proof effect.
  • the first molybdenum sheet 310 of the power subunit 300 and the tube base 410 , the second molybdenum sheet 330 of the power subunit 300 and the raised part 122 , the raised part 122 and the tube cover 110 Direct pressure contact between them, thus forming the main circuit of the IGBT subunit.
  • the upper surface of the tube cover 110 is the emitter of the IGBT subunit, and the lower surface of the tube cover 110 is the collector of the IGBT subunit.
  • a certain number of power sub-units (IGBT sub-units) 300 can be packaged in parallel into a power module (IGBT module), and each power sub-unit 300 has Independent electrical characteristics.
  • the layout of the power sub-units is flexible, and can be distributed in a shape such as a circle or a rectangle, and the corresponding tube base 410 and the tube cover 110 can also be a circle or a rectangle.
  • the embodiment shown in FIG. 9 shows an IGBT module which is packaged in a round tube and case and whose IGBT subunits are in a nearly rectangular layout.
  • the IGBT described above is an insulated gate bipolar transistor, which is a power semiconductor switching device.
  • the IGBT subunits are subcomponent units of parallel crimp IGBT modules with independent electrical characteristics.
  • the crimp IGBT module is a package form of the IGBT module, namely the crimp package, which has the characteristics of free wire bonding, double-sided heat dissipation and failure short circuit, so as to have lower thermal resistance and higher operating junction temperature. , lower parasitic inductance, wider safe working area and higher reliability, it is mainly used in the field of flexible DC transmission, and also has a competitive advantage in applications with harsh application environments and higher reliability requirements.
  • the pressure contact type described above can have two ways, one is direct pressure contact; the other is spring contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Abstract

本发明涉及一种功率子模块、其制作方法以及转模压接式功率模块,涉及电力电子技术领域,用于解决结构复杂、封装可靠性较差的技术问题。本发明的功率子单元包括绝缘胶框以及芯片,由于绝缘胶框是用胶体在所述芯片组件上以直接转模的方式而形成,避免了现有技术中将单个的芯片、上钼片和下钼片等部件逐一地放入侧框中并对其一一进行定位的多道工序,因此不仅简化了定位工序;还由于绝缘胶框为一体形成的,因此其并不存在装配缝隙,也无需后续的涂胶处理,从而也简化了涂胶工序,因此本发明的功率子单元的工序简单易操作;并且使功率子单元能够实现功率子单元一体化绝缘的保护方式,从而保证良好的绝缘效果和封装可靠性。

Description

功率子模块、其制作方法以及转模压接式功率模块
相关申请的交叉引用
本申请要求享有于2020年11月27日提交的名称为“功率子模块、其制作方法以及转模压接式功率模块”的中国专利申请CN 202011355642.5的优先权,上述申请的全部内容通过引用并入本文中。
技术领域
本发明涉及电力电子技术领域,特别地涉及一种功率子模块、其制作方法以及转模压接式功率模块。
背景技术
中国专利CN105679750B公开了一种压接式半导体模块及其制作方法,其半导体模块封装结构如图1和2所示。包括:半导体芯片1、上钼片2、下钼片3、管座4、管盖5、栅极引出端6、PCB7。上钼片2设置在所述半导体芯片1的上表面,下钼片3设置在半导体芯片1的下表面,下钼片3采用大钼圆片结构。半导体芯片1包括IGBT芯片或MOSFET芯片,IGBT芯片/MOSFET芯片的集电极/漏极烧结在下钼片3上,并作为压接式半导体模块的集电极/漏极;上钼片2烧结在IGBT芯片/MOSFET芯片的发射极/源极上,并作为压接式半导体模块的发射极/源极;PCB7设置在烧结有半导体芯片1的下钼片3上,IGBT芯片/MOSFET芯片的栅极通过引线键合方式互连至PCB7上,并通过PCB7的内部线路汇集至栅极引出端6;分别烧结有上钼片2和下钼片3的半导体芯片1通过PCB7固定在底座4的凸台15上,烧结有半导体芯片1的下钼片3固定在底座4上,管盖5设置在上钼片2的上部。
上述的子单元17存在以下缺点,结构复杂;并且下钼片3与底座4上的凸台15以及上钼片2与侧框18之间需多处定位,封装可靠性较差,绝缘效果不良,且工序繁多。
发明内容
本发明提供一种功率子模块、其制作方法以及转模压接式功率模块,用于至少解决上述一个技术问题。
根据本发明的第一个方面,本发明提供一种转模压接式功率模块,包括绝缘 胶框和芯片组件;
其中,所述绝缘胶框是用胶体在所述芯片组件上以直接转模的方式而形成。
在一个实施方式中,所述芯片组件包括芯片、设置在所述芯片的第一面的第一钼片和设置在所述芯片的第二面的第二钼片,所述第一钼片与所述芯片的第一电极相连,所述第二钼片与所述芯片的第二电极相连;
第二钼片的至少一部分侧壁和/或所述第一钼片的至少一部分侧壁被所述绝缘胶框所包覆。
在一个实施方式中,所述第二钼片的上表面和所述绝缘胶框的内壁围成凹陷部。
在一个实施方式中,所述述芯片组件还包括弹簧针,所述芯片的第一面还具有第三电极,所述第三电极上设置有第三电极衬垫,所述第三电极衬垫上设置有第三电极底柱,所述第三电极底柱与弹簧针的一端卡合连接,所述弹簧针的另一端设置在所述绝缘胶框的外部。
在一个实施方式中,所述弹簧针由铍铜制成。
根据本发明的第二个方面,本发明提供一种功率模块子单元的制作方法,其包括以下步骤:
S110:采用焊接或烧结的方法使芯片的第一面和第二面分别与第一钼片和第二钼片相连,并使第一钼片引出芯片的第一电极、第二钼片引出芯片的第二电极;
S120:在芯片的第三电极衬垫上焊接第三电极底柱,将弹簧针的一端与该第三电极底柱卡合相连,从而获得芯片组件;
S130:将所述芯片组件放置在转模设备中,所述转模设备使采用直接转模的方式使胶体在所述芯片组件上形成绝缘胶框,从而获得所述功率模块子单元。
在一个实施方式中,所述绝缘保护胶在未固化前通过抽真空的方式抽取内部气泡
根据本发明的第三个方面,本发明提供一种转模压接式功率模块,其包括:
至少一个如上所述的功率子单元;
电路板单元,其与所述功率子单元的第三电极接触;以及
管盖单元,其设置在所述电路板单元远离所述功率子单元的一侧;
其中,所述管盖单元包括可分离的管盖和压接组件,所述压接组件包括朝向所述电路板单元凸起的凸起部,所述凸起部用于使所述电路板单元与所述功率子单元的第三电极压力接触。
在一个实施方式中,所述电路板单元上设置有焊盘,所述焊盘用于与所述第三电极相连;
其中,所述焊盘、所述凸起部以及所述功率子单元的数量相同且相互对应。
在一个实施方式中,还包括管座单元,所述管座单元包括管座和设置在所述管座中的绝缘定位框,所述功率子单元设置在所述绝缘定位框中,所述管座上还设置有导电端子,所述导电端子用于引出所述第三电极的信号。
在一个实施方式中,所述压接组件还包括缓冲层,所述凸起部设置在所述缓冲层靠近所述电路板单元的一侧上,所述缓冲层上设置有容纳部,所述容纳部用于容纳所述导电端子。
在一个实施方式中,所述管座周向上的第一裙边与所述管盖周向上的第二裙边密封连接。
在一个实施方式中,所述管座由第一金属制成;所述管座的表面镀有第二金属层,所述第一金属和第二金属相同或者不同;所述凸起部由第一金属制成。
与现有技术相比,本发明的优点在于,
(1)由于绝缘胶框是用胶体在所述芯片组件上以直接转模的方式而形成,避免了现有技术中将单个的芯片、上钼片和下钼片等部件逐一地放入侧框中并对其一一进行定位的多道工序,因此不仅简化了定位工序;还由于绝缘胶框为一体形成的,因此其并不存在装配缝隙,也无需后续的涂胶处理,从而也简化了涂胶工序,因此本发明的功率子单元的工序简单易操作;并且使功率子单元300能够实现功率子单元300一体化绝缘的保护方式,从而保证良好的绝缘效果和封装可靠性。
(2)本发明的功率子单元,其通过绝缘胶框对芯片组件进行包覆,由于绝缘胶框为一体形成的,因此其并不存在装配缝隙,绝缘胶框优选完全包覆第二钼片的侧壁,并至少包覆第一钼片的一部分侧壁,从而能够增大第二钼片的表面和第一钼片的表面之间的爬电距离,从而使功率子单元本身具有更高的绝缘保护能力。
(3)弹簧针是通过第三电极底柱与芯片的门极相连,因此在转模形成绝缘胶框时,弹簧针已经与第三电极底柱固定相连,因此有助于该绝缘胶框的转模成型,并且能够提高互连的可靠性和工艺性以及提高电磁连接的可靠性。
(4)由于通过采用转模方式形成绝缘胶框,从而避免了现有技术中要单独进行芯片、钼片以及侧框之间的多处定位工序,而使功率子单元的制造过程可简化为三步,简化了工序、提高了制作效率、降低了生产成本。
(5)通过将管盖单元设置为可分离的管盖和压接组件,在压接组件上加工凸起部的难度将大大减小,从而提高了凸起部的表面精度,保证了压力传递的可靠性,使转模压接式功率模块的可制造性得以提高。
(6)由于压接组件还包括缓冲层,因此能够有助于释放残余应力,从而降低管盖及功率子模块的变形。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。
图1是现有技术中压接式模块封装结构的爆炸图;
图2是图1中子单元的爆炸图;
图3是本发明的实施例中的功率子单元的爆炸图;
图4是本发明的实施例中的功率子单元的剖视图;
图5是本发明的实施例中的功率子单元的电路拓扑图;
图6-8是本发明的实施例中功率子单元的制作过程示意图;
图9是本发明的实施例中转模压接式功率模块的爆炸图;
图10是图9所示的压接组件的立体结构示意图;
图11是图9所示的电路板单元的立体结构示意图;
图12是本发明的实施例中转模压接式功率模块的剖视图。
附图标记:
100-管盖单元;110-管盖;111-第二裙边;120-压接组件;121-缓冲层;122-凸起部;123-U形缺口;
具体实施方式
下面将结合附图对本发明作进一步说明。
如图3-5所示,根据本发明的第一个方面,本发明提供一种功率子单元300,其包括绝缘胶框370以及的芯片组件。与现有技术所不同的是,本发明的绝缘胶框370是是用胶体(优选为绝缘保护胶)在芯片组件上以直接转模的方式而形成,避免了现有技术中将单个的芯片、上钼片和下钼片等部件逐一地放入侧框中并对其一一进行定位的多道工序,不仅简化了生产过程,并且使功率子单元300能够实现功率子单元300一体化绝缘的保护方式,从而保证良好的绝缘效果和封装可靠性。
此外,由于绝缘保护胶为透明的,因此可以观察到胶体内部气泡等缺陷,从而在其未固化前通过抽真空等方式抽取内部气泡,以提高工艺可制造性。
下面以功率子单元300为IGBT子单元为例对本发明进行详细地说明。
如图3-5所示,芯片组件包括芯片330以及分别设置在芯片330的第一面(底面)和第二面(顶面)的第一钼片(下钼片)310和第二钼片(上钼片)320,第一钼片310与芯片330的第一电极(集电极)相连,第二钼片320与芯片330的第二电极(发射极)相连,即第一钼片310引出IGBT子单元的集电极,第二钼片引出IGBT子单元的发射极。
由于绝缘胶框370是在芯片组件上直接转模成型,因此成型后的绝缘胶框370中可一体式地形成用于与第一钼片310相配合的第一钼片容纳部(例如可以是凹槽和/或凸台)和用于与第二钼片相320配合的第二钼片容纳部(例如可以是凹槽和/或凸台),从而使第二钼片320的至少一部分侧壁/或第一钼片310的至少一部分侧壁被绝缘胶框370所包覆,以保证其绝缘性能。
如图4所示的优选实施例中,绝缘胶框370完全包覆第二钼片320的侧壁,并至少包覆第一钼片310的一部分侧壁,其目的是增大第二钼片320的表面和第一钼片310的表面之间的爬电距离,从而使IGBT子单元具有更高的绝缘保护能力。
如上所述,绝缘胶框370通过转模的方式形成,因此绝缘胶框370中可一体式地形成与上述芯片容纳部、第一钼片容纳部和第二钼片容纳部,从而使其自带 定位功能,并且能够提高绝缘效果。
进一步地,第二钼片320的上表面和绝缘胶框370的内壁围成能够容纳凸起部122的凹陷部;该凹陷部将与下文所述的凸起部122形成间隙配合。
芯片组件还包括弹簧针360。芯片330的顶面还具有第三电极(门极),第三电极上设置有第三电极衬垫340,第三电极衬垫340上设置有第三电极底柱350,第三电极底柱350与弹簧针360的一端卡合连接,弹簧针360的另一端设置在绝缘胶框370的外部,从而使弹簧针360的另一端高于绝缘胶框370的顶面。
与现有技术所不同的是,本发明的弹簧针360是通过第三电极底柱350与芯片330的门极相连,因此在转模形成绝缘胶框时,弹簧针已经与第三电极底柱固定相连,因此有助于该绝缘胶框的转模成型,并且能够提高互连的可靠性和工艺性以及提高电磁连接的可靠性。
此外,现有技术中的弹簧针是在将芯片、上钼片和下钼片分别与侧框定位相连后,再将弹簧针放入侧框中,换言之,在未施加压力之前,弹簧针与芯片之间并未形成有效可靠的连接,因此在施加压力后可能会存在压合不到位从而未接触的现象。而本发明的弹簧针在形成绝缘胶框之前就已经通过第三电极底柱350与芯片330形成固定连接,因此能够提高接合的可靠性。
此外,弹簧针360作为IGBT子单元的门极引出接口,其可以由铍铜制成。
如图4所示,弹簧针360的另一端高于绝缘胶框370的顶面,从而能够保证下文所述的电路板单元200的下表面上的焊盘能够有效地和弹簧针360压力接触连接。
如图5所示,显示了IGBT子单元的电路拓扑结构。其中,C为IGBT集电极,E为IGBT发射极,G为IGBT的门极。IGBT子单元通过门极驱动信号实现功率开关、电能转换功能。
如图6-8所示,根据本发明的第二个方面,本发明提供一种上述功率子模块的制作方法,包括以下步骤。
步骤S110:如图6所示,采用焊接或烧结的方法使芯片330的第一面(底面)和第二面(顶面)分别与第一钼片310和第二钼片320相连,并使第一钼片310引出芯片330的第一电极(集电极),第二钼片320引出芯片330的第二电 极(发射极)。
步骤S120:如图7所示,在芯片330顶面的第三电极衬垫340上焊接第三电极底柱350,将弹簧针360的一端(下端)插入该第三电极底柱350中,使二者卡合(或插合)连接,从而获得芯片组件。其中,第三电极底柱350作为芯片330的第三电极(门极)引出接口。
步骤S130:如图8所示,将芯片组件放置在转模设备中,转模设备采用直接转模的方式使胶体在芯片组件上形成绝缘胶框370,从而获得所述功率模块子单元300。
其中,绝缘保护胶在未固化前通过抽真空等方式抽取内部气泡。
并且由于通过采用转模方式形成绝缘胶框,从而避免了现有技术中要单独进行的多处定位工序,而使功率子单元的制造过程可简化为三步,简化了工序、提高了制作效率、降低了生产成本。
在图8中,绝缘胶框370左侧所示的即为转模设备的模具单元。
图9-12所示,根据本发明的第三个方面,本发明提供一种转模压接式功率模块,包括管盖单元100、电路板单元(PCB控制板)200、至少一个上述的功率子单元300。在一些实施例中,还可包括管座单元400。
在一个具体的实施例中,功率子单元300的数量为多个,且多个功率子单元300大致以矩形的方式进行排布。可以理解地,多个功率子单元300还可以其他方式进行排布,例如圆形、椭圆形等,本发明对此并不进行限定。
具体来说,电路板单元200与功率子单元300的第三电极接触。管盖单元100设置在电路板单元200远离功率子单元300的一侧。其中,管盖单元100包括可分离的管盖110和压接组件120,压接组件120包括朝向电路板单元200凸起的凸起部122,凸起部122用于使电路板单元200与功率子单元300的第三电极压力接触。
在一些实施例中,凸起部122由金属材料制成。更具体地,凸起部122由铜制成。如图10所示,凸起部122为柱状凸台,因此凸起部122也可称为铜凸台。
通过将管盖单元100设置为可分离的管盖110和压接组件120,使得在压接组件120上加工凸起部122(铜凸台)的难度减小,从而能够提高凸起部122的 表面精度,以保证压力传递的可靠性。
电路板单元200上设置有焊盘,焊盘用于与功率子单元300的第三电极相连;其中,焊盘、凸起部122以及功率子单元300的数量相同且相互对应,使电路板单元200和功率子单元300以及管盖单元100易于装配,提升了可制造性。
电路板单元200设置在压接组件120的下表面。可以理解地,电路板单元200上可以设置有用于使凸起部122穿过的凹槽210(如图11所示)。通过凸起部122可以使电路板单元200与功率子单元300的第三电极进行压力接触连接。
凸起部122穿过电路板单元200的凹槽210后,电路板单元200可与缓冲层121的下表面接触。由于弹簧针360的另一端高于绝缘胶框370的顶面,因此通过压接单元200对电路板单元200施加压力,可使电路板单元200的下表面上的焊盘分别和与其相对应的功率子单元300的弹簧针360形成有效的压力接触连接。
具体地,凸起部122穿过电路板单元200的凹槽210后,伸入绝缘胶框370的凹陷部中,并形成间隙配合。如上所述,将通过压接单元200对电路板单元200施加压力时,凸起部122分别插入相应的IGBT子单元的绝缘胶框370中,并与相应的绝缘胶框370形成间隙配合,从而提高其定位的准确性。
由于第三电极为IGBT子单元的门极,因此电路板单元200的焊盘与IGBT子单元的门极通过压力接触连接实现电气接触,最终将各IGBT子单元的门极汇总。
压接组件120还包括缓冲层121,凸起部122设置在缓冲层121靠近电路板单元200的一侧上。缓冲层121能够有助于释放残余应力,从而降低管盖110及功率子模块300的变形。
如图9所示,管座单元400包括管座410和设置在管座410中的绝缘定位框420,如图12所示,绝缘定位框420通过紧固件430与管座410固定连接。绝缘定位框420通常可采用环氧树脂等绝缘性好的材料制成。
绝缘定位框420上设置有与各功率子单元300一一对应的槽体,各功率子单元300分别设置在绝缘定位框420中的槽体中,从而使各功率子单元300被准确可靠地定位在管座410中。
管座410上还设置有导电端子411,导电端子411用于引出功率子单元300 的第三电极(门极)的信号。图9所示的实施例中,导电端子411为薄片状结构,其一端与管座410的内壁相连,另一端弯曲后沿着管座410的径向方向延伸,因此导电端子411可以称为门极引出耳片。
如图10所示,缓冲层121上设置有容纳部123,容纳部123用于容纳导电端子411。导电端子411与容纳部123的位置相互对应。将管盖单元100和电路板单元200压在功率子单元300上时,导电端子411恰好设置在容纳部123中。容纳部123可使导电端子411与电路板单元200接触,从而可将电路板单元200汇总的各功率子单元300的门极信号引出,即可实现与外部驱动和控制电路的连接。
其中,容纳部可以是开口、孔、槽等结构形式。如图10所示的实施例中,容纳部为U形缺口。
管座410可采用第一金属(例如铜)制成,其表面较为光滑,以提高表面精度,从而保证接触压力的可靠传递。管座410的表面可设置第二金属层,第二金属层例如可以是镀银层,从而提高其导热性能。此外,上述的第一金属和第二金属可以是相同的金属,也可以是不同的金属。
如图9所示,管座410周向上的第一裙边412与管盖110周向上的第二裙边111密封连接。具体地,可以通过冷压焊工艺使管座410与管盖110密封连接,以提高封装可靠性,从而保护其内部的功率子单元300,并且能够起到防爆的效果。
管座410与管盖110密封连接后,功率子单元300的第一钼片310与管座410、功率子单元300的第二钼片330与凸起部122、凸起部122与管盖110之间直接压力接触,从而形成IGBT子单元的主电路。管盖110的上表面即为IGBT子单元的发射极,管盖110的下表面即为IGBT子单元的集电极。
因此,本发明的转模压接式功率模块,可以根据电流等级的需求,将一定数量的功率子单元(IGBT子单元)300并联封装成功率模块(IGBT模块),每个功率子单元300都具有独立电气特性。其中,功率子单元的布局方式灵活,可呈圆形、矩形等形状分布,对应的管座410和管盖110也可为圆形或矩形。图9所示的实施例中示出了采用圆形管壳封装、IGBT子单元为近矩形布局的IGBT 模块。
上文所述的IGBT为绝缘栅双极晶体管,其是一种功率半导体开关器件。IGBT子单元为并联压接式IGBT模块的子部件单元,其具有独立电气特性。压接式IGBT模块为IGBT模块的一种封装形式,即压接式封装,其具有免引线键合、双面散热和失效短路等特点,从而具有更低的热阻、更高的工作结温、更低的寄生电感、更宽的安全工作区和更高的可靠性,主要在柔性直流输电领域应用,同时在应用环境苛刻和可靠性要求更高的场合也有竞争优势。
上文所述的压力接触式可以有两种方式,其一是直接压力接触;其二是弹簧接触。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种功率模块子单元,其特征在于,包括:绝缘胶框和芯片组件;
    其中,所述绝缘胶框是用胶体在所述芯片组件上以直接转模的方式而形成。
  2. 根据权利要求1所述的功率模块子单元,其特征在于,所述芯片组件包括芯片、设置在所述芯片的第一面的第一钼片和设置在所述芯片的第二面的第二钼片,所述第一钼片与所述芯片的第一电极相连,所述第二钼片与所述芯片的第二电极相连;
    第二钼片的至少一部分侧壁和/或所述第一钼片的至少一部分侧壁被所述绝缘胶框所包覆。
  3. 根据权利要求2所述的功率模块子单元,其特征在于,所述第二钼片的上表面和所述绝缘胶框的内壁围成凹陷部。
  4. 根据权利要求1-3中任一项所述的功率模块子单元,其特征在于,所述述芯片组件还包括弹簧针,所述芯片的第一面还具有第三电极,所述第三电极上设置有第三电极衬垫,所述第三电极衬垫上设置有第三电极底柱,所述第三电极底柱与弹簧针的一端卡合连接,所述弹簧针的另一端设置在所述绝缘胶框的外部;
    其中,所述弹簧针由铍铜制成。
  5. 一种功率模块子单元的制作方法,其特征在于,包括以下步骤:
    S110:采用焊接或烧结的方法使芯片的第一面和第二面分别与第一钼片和第二钼片相连,并使第一钼片引出芯片的第一电极、第二钼片引出芯片的第二电极;
    S120:在芯片的第三电极衬垫上焊接第三电极底柱,将弹簧针的一端与该第三电极底柱卡合相连,从而获得芯片组件;
    S130:将所述芯片组件放置在转模设备中,所述转模设备采用直接转模的方式使胶体在所述芯片组件上形成绝缘胶框,从而获得所述功率模块子单元;
    其中,步骤S130中,所述绝缘保护胶在未固化前通过抽真空的方式抽取内部气泡。
  6. 一种转模压接式功率模块,其特征在于,包括:
    至少一个如权利要求1-4中任一项所述的功率子单元;
    电路板单元,其与所述功率子单元的第三电极接触;以及
    管盖单元,其设置在所述电路板单元远离所述功率子单元的一侧;
    其中,所述管盖单元包括可分离的管盖和压接组件,所述压接组件包括朝向所述电路板单元凸起的凸起部,所述凸起部用于使所述电路板单元与所述功率子单元的第三电极压力接触。
  7. 根据权利要求6所述的转模压接式功率模块,其特征在于,所述电路板单元上设置有焊盘,所述焊盘用于与所述第三电极相连;
    其中,所述焊盘、所述凸起部以及所述功率子单元的数量相同且相互对应。
  8. 根据权利要求8或9所述的转模压接式功率模块,其特征在于,还包括管座单元,所述管座单元包括管座和设置在所述管座中的绝缘定位框,所述功率子单元设置在所述绝缘定位框中,所述管座上还设置有导电端子,所述导电端子用于引出所述第三电极的信号;
    所述管座周向上的第一裙边与所述管盖周向上的第二裙边密封连接
  9. 根据权利要求8所述的转模压接式功率模块,其特征在于,所述压接组件还包括缓冲层,所述凸起部设置在所述缓冲层靠近所述电路板单元的一侧上,所述缓冲层上设置有容纳部,所述容纳部用于容纳所述导电端子。
  10. 根据权利要求8所述的转模压接式功率模块,其特征在于,所述管座由第一金属制成;所述管座的表面镀有第二金属层,所述第一金属和第二金属相同或者不同;
    所述凸起部由第一金属制成。
PCT/CN2021/125472 2020-11-27 2021-10-22 功率子模块、其制作方法以及转模压接式功率模块 WO2022111159A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21896661.2A EP4254482A1 (en) 2020-11-27 2021-10-22 Power sub-module and manufacturing method therefor, and transfer-molded crimping-type power module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011355642.5A CN112635404B (zh) 2020-11-27 2020-11-27 功率子模块、其制作方法以及转模压接式功率模块
CN202011355642.5 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022111159A1 true WO2022111159A1 (zh) 2022-06-02

Family

ID=75306413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125472 WO2022111159A1 (zh) 2020-11-27 2021-10-22 功率子模块、其制作方法以及转模压接式功率模块

Country Status (3)

Country Link
EP (1) EP4254482A1 (zh)
CN (1) CN112635404B (zh)
WO (1) WO2022111159A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635404B (zh) * 2020-11-27 2024-04-19 株洲中车时代半导体有限公司 功率子模块、其制作方法以及转模压接式功率模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102481A1 (en) * 2013-10-15 2015-04-16 Ixys Corporation Sintered backside shim in a press pack cassette
CN105679750A (zh) 2014-11-19 2016-06-15 株洲南车时代电气股份有限公司 压接式半导体模块及其制作方法
CN109524363A (zh) * 2017-09-18 2019-03-26 株洲中车时代电气股份有限公司 一种压接式子单元和制造其的方法
CN110676233A (zh) * 2019-09-10 2020-01-10 深圳第三代半导体研究院 一种压接式功率开关模块及其制备方法
CN112635404A (zh) * 2020-11-27 2021-04-09 株洲中车时代半导体有限公司 功率子模块、其制作方法以及转模压接式功率模块

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098181A (ja) * 2008-10-17 2010-04-30 Citizen Electronics Co Ltd Led発光装置
KR101310290B1 (ko) * 2013-02-05 2013-09-23 주식회사 세미콘테스트 포고핀 및 이를 이용하는 회로 검사장치
CN103325750B (zh) * 2013-05-24 2015-07-08 苏州英能电子科技有限公司 一种大功率整晶圆平板压接式封装结构及其方法
CN105161477B (zh) * 2015-08-14 2019-10-18 株洲南车时代电气股份有限公司 一种平面型功率模块
JP6818636B2 (ja) * 2017-06-14 2021-01-20 株式会社東芝 パワー半導体モジュール
CN208028095U (zh) * 2017-10-11 2018-10-30 东莞塔菲尔新能源科技有限公司 一种动力电池顶盖用绝缘件及动力电池顶盖装配结构
CN108274458B (zh) * 2017-12-19 2020-12-18 北京可以科技有限公司 用于构建模块化机器人的子单元模块
CN108172617B (zh) * 2017-12-23 2020-04-17 湖南大学 一种圆形大尺寸igbt芯片压接封装结构及制造方法
CN108170944B (zh) * 2017-12-26 2021-07-30 全球能源互联网研究院有限公司 一种半导体器件的压力均衡制作参数优化方法及制作方法
CN108766941A (zh) * 2018-04-12 2018-11-06 全球能源互联网研究院有限公司 一种压接型SiC混合模块封装结构
CN110828433A (zh) * 2019-09-30 2020-02-21 全球能源互联网研究院有限公司 一种弹性压接封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102481A1 (en) * 2013-10-15 2015-04-16 Ixys Corporation Sintered backside shim in a press pack cassette
CN105679750A (zh) 2014-11-19 2016-06-15 株洲南车时代电气股份有限公司 压接式半导体模块及其制作方法
CN109524363A (zh) * 2017-09-18 2019-03-26 株洲中车时代电气股份有限公司 一种压接式子单元和制造其的方法
CN110676233A (zh) * 2019-09-10 2020-01-10 深圳第三代半导体研究院 一种压接式功率开关模块及其制备方法
CN112635404A (zh) * 2020-11-27 2021-04-09 株洲中车时代半导体有限公司 功率子模块、其制作方法以及转模压接式功率模块

Also Published As

Publication number Publication date
CN112635404B (zh) 2024-04-19
EP4254482A1 (en) 2023-10-04
CN112635404A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
US7759778B2 (en) Leaded semiconductor power module with direct bonding and double sided cooling
JP6764807B2 (ja) 半導体モジュール
JP2801534B2 (ja) パワー半導体モジュールおよびそれに使用する絶縁金属基板
US9136193B2 (en) Semiconductor device and method of manufacturing the same
CN105190874B (zh) 半导体模块及半导体装置
US10950516B2 (en) Resin encapsulated power semiconductor module with exposed terminal areas
CN107924913B (zh) 半导体装置及半导体装置的制造方法
CN102332445B (zh) 半导体装置及其制造方法
US8664755B2 (en) Power module package and method for manufacturing the same
JP2012195492A (ja) パワー半導体モジュール及びその取り付け構造
CN111276447B (zh) 双侧冷却功率模块及其制造方法
CN102983114A (zh) 具有超薄封装的高性能功率晶体管
WO2022111159A1 (zh) 功率子模块、其制作方法以及转模压接式功率模块
CN111883490A (zh) 具有用于顶侧冷却的多级传导夹的半导体封装
US20150179556A1 (en) Semiconductor package and method of manufacturing the same
US5063434A (en) Plastic molded type power semiconductor device
US20140291849A1 (en) Multi-Level Semiconductor Package
KR101994727B1 (ko) 전력 모듈 패키지 및 그 제조방법
US20230327350A1 (en) Transfer molded power modules and methods of manufacture
JP2012238737A (ja) 半導体モジュール及びその製造方法
CN106684074B (zh) 一种新型压接型功率模块
CN115443531A (zh) 功率模组及其制造方法、转换器和电子设备
CN219085965U (zh) 表面贴装金属散热块的半导体电路组件和散热组件
CN221057406U (zh) 一种具有银浆烧结层的功率模块
CN210467819U (zh) 一种芯片封装件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021896661

Country of ref document: EP

Effective date: 20230627