WO2022111073A1 - 一种效能提升的彩色光伏组件及其制备方法 - Google Patents

一种效能提升的彩色光伏组件及其制备方法 Download PDF

Info

Publication number
WO2022111073A1
WO2022111073A1 PCT/CN2021/122948 CN2021122948W WO2022111073A1 WO 2022111073 A1 WO2022111073 A1 WO 2022111073A1 CN 2021122948 W CN2021122948 W CN 2021122948W WO 2022111073 A1 WO2022111073 A1 WO 2022111073A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
layer
ink
printing
photovoltaic module
Prior art date
Application number
PCT/CN2021/122948
Other languages
English (en)
French (fr)
Inventor
徐建智
郑文达
Original Assignee
北京劲吾新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京劲吾新能源科技有限公司 filed Critical 北京劲吾新能源科技有限公司
Priority to EP21896575.4A priority Critical patent/EP4230400A1/en
Priority to US18/038,716 priority patent/US20240055538A1/en
Priority to JP2023530963A priority patent/JP2023550177A/ja
Publication of WO2022111073A1 publication Critical patent/WO2022111073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/008Sequential or multiple printing, e.g. on previously printed background; Mirror printing; Recto-verso printing; using a combination of different printing techniques; Printing of patterns visible in reflection and by transparency; by superposing printed artifacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of photovoltaic components, and in particular relates to a color photovoltaic component with improved efficiency and a preparation method thereof.
  • the existing color photovoltaic modules There are generally two ways to form the existing color photovoltaic modules, one is to directly print the white ink layer on the screen printing machine or the UV printing machine, and then print the color ink layer on the white ink layer to form the color photovoltaic module; The color ink layer is printed on the glass plate, and then the white ink layer is printed on the color ink layer, and then the glass plate and the photovoltaic module are encapsulated together to form a color photovoltaic module. Since the color of the photovoltaic wafer itself in the photovoltaic module is black or blue, if the white ink layer is not printed, the color of the color ink layer will be darker, not full, and the color will not be bright.
  • Printing the white ink layer can make the color of the color ink layer more colorful. Full, making the color ink layer more beautiful.
  • the white ink layer and the color ink layer have a strong shielding effect on the solar light.
  • the shielded photovoltaic chip will be used as a load to consume the energy generated by other solar cell modules with light, and the shielded photovoltaic chip will heat up at this time. , forming a hot spot effect, which seriously reduces the energy efficiency of photovoltaic wafers.
  • the titanium dioxide particles in the white ink layer also reflect the light irradiated on the solar photovoltaic module, thereby reducing the energy efficiency of the solar photovoltaic module.
  • a first aspect of the present invention provides a color photovoltaic module with improved performance, which includes a color-bearing pattern portion and a solar photovoltaic module in order from top to bottom, and the pattern portion at least includes white ink formed by printing. layer and printing the patterned colored ink layer.
  • the pattern part includes a color ink layer and a white ink layer in order from top to bottom
  • the solar photovoltaic module includes a first glass layer, a first adhesive film layer, a photovoltaic wafer layer, and a second adhesive film in order from top to bottom layers and functional backplane layers.
  • the pattern part includes a first glass layer, a color ink layer and a white ink layer in order from top to bottom
  • the solar photovoltaic module includes a photovoltaic wafer layer, a second adhesive film layer and a functional backplane layer in order from top to bottom , the pattern part is bonded with the solar photovoltaic module through the first adhesive film layer.
  • the pattern portion includes a first glass layer, a color ink layer and a white ink layer in order from top to bottom
  • the solar module includes a second glass layer, a second adhesive film layer, a photovoltaic wafer layer, The third adhesive film layer and the functional backplane layer, the pattern part is bonded with the solar photovoltaic module through the first adhesive film layer.
  • the thickness of the color ink layer is 0-0.05mm.
  • the thickness of the white ink layer is 0-0.04mm.
  • a second aspect of the present invention provides a method for preparing a color photovoltaic module with improved efficiency, which at least includes the step of combining the pattern portion with the solar photovoltaic module.
  • the specific printing method of the white ink layer and the color ink layer in the pattern part is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • the printing press when the white ink layer is printed by a printing press, the printing press only outputs white ink, and the printing software controls the ink output of the white ink in the printing press by identifying the color level in the third document, and the white ink with a color level of 255 is output.
  • the ink volume is 100%, the color level decreases, and the ink output also decreases.
  • the ink output of white ink with a color level of 0 is 0%, and the ink output per square meter of white ink layer is 5-15ml.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in the document 4.
  • the level of 255 does not produce ink, and the remaining colors are 100% ink output.
  • the printing software can control the ink output of the white ink when the printing machine prints the white ink layer by identifying the different color levels in the picture, and at the same time control the printing color of the printer. In the ink layer, the black area and the white area are not inked.
  • This method not only reduces the usage of white ink and the production cost of color photovoltaic modules, but also effectively reduces the shading effect of photovoltaic modules, reduces the reflection of sunlight by the white ink layer, increases the transmittance of sunlight, and effectively improves the
  • the efficiency of the photovoltaic module and the safety of the photovoltaic module can also make full use of the black color of the photovoltaic chip itself, which can effectively increase the three-dimensional effect of the pattern and make the color level of the pattern more obvious and rich.
  • FIG. 1 is a schematic diagram of the overall structure of the color photovoltaic module in Example 1.
  • FIG. 1 is a schematic diagram of the overall structure of the color photovoltaic module in Example 1.
  • FIG. 2 is a schematic diagram of the overall structure of the color photovoltaic module in Example 2.
  • FIG. 2 is a schematic diagram of the overall structure of the color photovoltaic module in Example 2.
  • FIG. 3 is a schematic diagram of the overall structure of the color photovoltaic module in Example 3.
  • FIG. 3 is a schematic diagram of the overall structure of the color photovoltaic module in Example 3.
  • 1-color ink layer 2-white ink layer
  • 3-first glass layer 4-first adhesive film layer, 5-photovoltaic wafer layer, 6-second adhesive film layer, 7-functional backplane layer, 8-th Second glass layer, 9-third film layer.
  • the range is considered continuous and includes the minimum and maximum values of the range, and every value between such minimum and maximum values. Further, when a range refers to an integer, every integer between the minimum and maximum values of the range is included. Furthermore, when multiple ranges are provided to describe a feature or characteristic, the ranges may be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to include any and all subranges subsumed therein. For example, a specified range from "1 to 10" should be deemed to include any and all subranges between a minimum value of 1 and a maximum value of 10. Exemplary subranges of the range 1 to 10 include, but are not limited to, 1 to 6.1, 3.5 to 7.8, 5.5 to 10, and the like.
  • a first aspect of the present invention provides a color photovoltaic module with improved performance, which includes a color-bearing pattern portion and a solar photovoltaic module in order from top to bottom, and the pattern portion at least includes white ink formed by printing. layer and printing the patterned colored ink layer.
  • the pattern portion includes a color ink layer and a white ink layer in sequence from top to bottom
  • the solar photovoltaic module includes a first glass layer, a first adhesive film layer, and a photovoltaic wafer layer in sequence from top to bottom , the second film layer and the functional backplane layer.
  • the functional backplane in the present invention includes glass plate, PE plate, PC plate, PET film and other plate layers with supporting and protective functions.
  • the pattern portion includes a first glass layer, a color ink layer and a white ink layer in sequence from top to bottom
  • the solar photovoltaic module includes a photovoltaic wafer layer and a second adhesive film layer in sequence from top to bottom and a functional backplane layer, the pattern part is bonded with the solar photovoltaic module through the first adhesive film layer.
  • the pattern part includes a first glass layer, a color ink layer and a white ink layer in sequence from top to bottom
  • the solar module includes a second glass layer and a second adhesive film layer in sequence from top to bottom , a photovoltaic wafer layer, a third adhesive film layer and a functional backplane layer, and the pattern portion is bonded to the solar photovoltaic assembly through the first adhesive film layer.
  • the thickness of the color ink layer is 0-0.05mm.
  • the thickness of the color ink layer is 0-0.0118mm.
  • the thickness of the white ink layer is 0-0.04mm.
  • the thickness of the white ink layer is 0-0.02mm.
  • the main raw material in the white ink layer is titanium dioxide. Titanium dioxide can easily reflect part of the sunlight transmitted to the white ink layer, reducing the sunlight transmitted to the solar cells and reducing the efficiency of photovoltaic modules.
  • a second aspect of the present invention provides a method for preparing a color photovoltaic module with improved efficiency, which at least includes the step of combining the pattern portion with the solar photovoltaic module.
  • the specific printing method of the white ink layer and the color ink layer in the pattern part is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • the printing press when a white ink layer is printed by a printing press, the printing press only outputs white ink, and the printing software controls the ink output of the white ink in the printing press by identifying the color level in the third document, and the color level
  • the ink output of white ink with a color level of 255 is 100%, and the color level is reduced, and the ink output is also reduced.
  • the ink output of white ink with a color level of 0 is 0%, and the ink output per square meter of white ink layer is 5-15ml.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in the document 4, and the color level is 0. Ink out, while the color level is 255 does not ink out, and the rest of the colors are 100% ink out.
  • the inventor found that by controlling the ink output of the white ink, it can not only reduce the reflection of the white ink layer to sunlight, improve the transmittance of sunlight, improve the overall efficiency of the photovoltaic module, but also reduce the production cost of the overall photovoltaic module.
  • the photovoltaic module has no obvious performance improvement, and the color saturation and gorgeousness of the pattern will be greatly reduced.
  • the inventor mainly improves the energy efficiency of the photovoltaic module by adjusting the ink output of the white ink.
  • the first aspect of this embodiment provides a color photovoltaic module with improved performance, as shown in FIG.
  • the solar photovoltaic module includes, from top to bottom, a first glass layer 3, a first adhesive film layer 4, a photovoltaic wafer layer 5, a second adhesive film layer 6 and a functional backplane layer 7, the white ink layer 2 is printed directly on the first glass layer 3.
  • the white ink layer 2 and the color ink layer 1 are directly printed on the solar photovoltaic module.
  • the thickness of the color ink layer 1 is 0-0.0118mm, and the thickness of the white ink layer 2 is 0-0.02mm.
  • a second aspect of this embodiment provides a method for preparing a color photovoltaic module with improved efficiency, comprising the following steps:
  • the concrete method of described printing white ink layer and color ink layer is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • C Edit document 1 into document 3 that can be recognized by the printing software through the printing software.
  • the printing press only outputs white ink.
  • the printing software controls the ink output of white ink in the printing press by identifying the color level in document 3, and the color level is 255 white ink.
  • the ink output is 100%, the color level is reduced, and the ink output is also reduced.
  • the ink output of white ink with a color level of 0 is 0%, and the ink output per square meter of white ink layer is 5-15ml. become a white ink layer;
  • D Edit document 2 into document 4 that can be recognized by the printing software through the printing software.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in document 4.
  • the grade of 255 does not emit ink, and the remaining colors are 100% ink output, which is printed by a printing machine to become a color ink layer.
  • the first aspect of this embodiment provides a color photovoltaic module with improved efficiency.
  • FIG. 2 it includes a pattern part and a solar photovoltaic module.
  • the pattern part includes a first glass layer 3, a printed
  • the color ink layer 1 on the first glass layer 3, the white ink layer 2 printed on the color ink layer 1, the solar photovoltaic module sequentially includes a photovoltaic wafer layer 5, a second adhesive film layer 6 and a functional back layer from top to bottom.
  • the board layer 7, the white ink layer 2 is bonded to the photovoltaic wafer layer 5 through the first adhesive film layer 4.
  • the color ink layer 1 and the white ink layer 2 are printed on the first glass layer 3, and then packaged on the solar photovoltaic module.
  • the thickness of the color ink layer 1 is 0-0.0118mm, and the thickness of the white ink layer 2 is 0-0.02mm.
  • a second aspect of this embodiment provides a method for preparing a color photovoltaic module with improved efficiency, comprising the following steps:
  • the concrete method of described printing white ink layer and color ink layer is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • C Edit document 1 to document 3 that can be recognized by the printing software through the printing software.
  • the printing press only outputs white ink.
  • the printing software controls the ink output of white ink in the printing press by identifying the color level in document 3, and the color level is 255 white ink.
  • the ink output is 100%, the color level is reduced, and the ink output is also reduced.
  • the ink output of white ink with a color level of 0 is 0%, and the ink output per square meter of white ink layer is 5-15ml. become a white ink layer;
  • D Edit document 2 into document 4 that can be recognized by the printing software through the printing software.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in document 4.
  • the grade of 255 does not emit ink, and the remaining colors are 100% ink output, which is printed by a printing machine to become a color ink layer.
  • the first aspect of this embodiment provides a color photovoltaic module with improved performance, which includes a pattern part and a solar photovoltaic module as shown in FIG.
  • the color ink layer 1 on the first glass layer 3, the white ink layer 2 printed on the color ink layer 1, the solar photovoltaic module sequentially includes a second glass layer 8, a second adhesive film layer 6, a photovoltaic module from top to bottom.
  • the wafer layer 5 , the third adhesive film layer 9 and the functional backplane layer 7 , the white ink layer 2 is bonded to the second glass layer 8 through the first adhesive film layer 4 .
  • the color ink layer 1 and the white ink layer 2 are printed on the first glass layer 3, and then packaged on the solar photovoltaic module.
  • the thickness of the color ink layer 1 is 0-0.0118mm, and the thickness of the white ink layer 2 is 0-0.02mm.
  • a second aspect of this embodiment provides a method for preparing a color photovoltaic module with improved efficiency, comprising the following steps:
  • the concrete method of described printing white ink layer and color ink layer is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • C Edit document 1 to document 3 that can be recognized by the printing software through the printing software.
  • the printing press only outputs white ink.
  • the printing software controls the ink output of white ink in the printing press by identifying the color level in document 3, and the color level is 255 white ink.
  • the ink output is 100%, the color level is reduced, and the ink output is also reduced.
  • the ink output of white ink with a color level of 0 is 0%, and the ink output per square meter of white ink layer is 5-15ml. become a white ink layer;
  • D Edit document 2 into document 4 that can be recognized by the printing software through the printing software.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in document 4.
  • the grade of 255 does not emit ink, and the remaining colors are 100% ink output, which is printed by a printing machine to become a color ink layer.
  • Example 2 The difference from Example 2 in this comparative example is that the specific method for printing the white ink layer and the color ink layer in this comparative example is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • C Edit document 1 to document 3 that can be recognized by the printing software through the printing software.
  • the printing press only outputs white ink.
  • the printing software controls the ink output of white ink in the printing press by identifying the color level in document 3, and the color level is 255 white ink.
  • the ink output is 50%, the color level decreases, and the ink output also decreases.
  • the ink output of white ink with a color level of 0 is 0%.
  • the ink output 100%, the ink output per square meter of the white ink layer It is 5-15ml, and it becomes a white ink layer by printing by a printing machine;
  • D Edit document 2 into document 4 that can be recognized by the printing software through the printing software.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in document 4.
  • the grade of 255 does not emit ink, and the remaining colors are 100% ink output, which is printed by a printing machine to become a color ink layer.
  • Example 2 The difference from Example 2 in this comparative example is that the specific method for printing the white ink layer and the color ink layer in this comparative example is:
  • A Process the picture with the desired pattern through the picture processing software, adjust the picture to grayscale mode, establish a white spot color channel, and store it as a document that can be recognized by the printing software;
  • C Edit document 1 to document 3 that can be recognized by the printing software through the printing software.
  • the printing press only outputs white ink.
  • the printing software controls the ink output of white ink in the printing press by identifying the color level in document 3, and the color level is 255 white ink.
  • the ink output is 20%, the color level decreases, and the ink output also decreases.
  • the ink output of the white ink with a color level of 0 is 0%.
  • the ink output 100%, the ink output per square meter of the white ink layer It is 5-15ml, and it becomes a white ink layer by printing by a printing machine;
  • D Edit document 2 into document 4 that can be recognized by the printing software through the printing software.
  • the printing software controls the ink output of the color ink in the printing press by identifying the color level in document 4.
  • the grade of 255 does not emit ink, and the remaining colors are 100% ink output, which is printed by a printing machine to become a color ink layer.
  • Example 2 The difference from Example 2 in this comparative example is that the specific methods for printing the white ink layer and the color ink layer in this comparative example are:
  • A Edit the picture with the pattern into a document that can be recognized by the printing machine through the printing software, the color is 100% ink output, and it is printed into the color ink layer by the printing machine.
  • white ink is printed on the color ink layer by a printing press, and the ink output of every square meter of the white ink layer is 5-15ml, and 100% ink is discharged, and the printing press becomes a white ink layer;
  • Comparative Example 1 Comparative Example 2 and Comparative Example 3
  • first print the white ink layer on the same transparent plastic sheet and then print the color ink layer of the same pattern on the white ink layer.
  • measure the respective illuminance measure the respective illuminance to characterize the light transmission performance.
  • the printing software can control the ink output of the white ink when the printer prints the white ink layer by identifying the different color levels in the picture, and at the same time control the color ink layer when the printer prints the color ink layer. Black and white areas do not get ink.
  • This method not only reduces the usage of white ink and the production cost of color photovoltaic modules, but also effectively reduces the shading effect of photovoltaic modules, reduces the reflection of sunlight by the white ink layer, increases the transmittance of sunlight, and effectively improves the
  • the efficiency of the photovoltaic module and the safety of the photovoltaic module can also make full use of the black color of the photovoltaic chip itself, which can effectively increase the three-dimensional effect of the pattern and make the color level of the pattern more obvious and rich.

Abstract

一种效能提升的彩色光伏组件,从上到下依次包括承载色彩的图案部、太阳能光伏组件,所述图案部包括印刷形成的白墨层(2)和印刷形成图案的彩墨层(1)。通过调整带有所需图案的图片的色阶,使打印软件通过识别图片中的不同色阶,控制印刷机印刷白墨层(2)时白墨的出墨量,同时控制打印机印刷彩墨层(1)时黑色地方和白色地方不出墨。通过这种方法不仅减少了白墨的使用量,降低了彩色光伏组件的生产成本,还能有效降低光伏组件的遮蔽效应,减少白墨层(2)对太阳光的反射,有效提高了光伏组件的效能和光伏组件的安全性,还能充分利用光伏晶片自身的黑色,有效的增加图案的立体感,使图案的色彩层次更加明显,丰富。

Description

一种效能提升的彩色光伏组件及其制备方法 技术领域
本发明属于光伏组件技术领域,具体涉及一种效能提升的彩色光伏组件及其制备方法。
背景技术
随着建筑光伏一体化概念在光伏领域中得到了越来越广泛的认同,对于作为建筑材料的光伏产品,人们希望能够选择自己喜欢的颜色来装扮自己的建筑,彰显建筑的个性,这就要求光伏组件具有各种颜色以适应美观的要求。现有的彩色光伏组件的形成方式一般有两种,一种是直接在丝网印刷机或UV印刷机上印刷白墨层再在白墨层上印刷彩墨层形成彩色光伏组件;另一种是先在玻璃板上印刷彩墨层,然后再在彩墨层上印刷白墨层,再通过封装的方式将玻璃板与光伏组件封装在一起,形成彩色光伏组件。由于光伏组件中的光伏晶片自身的颜色为黑色或者蓝色,如果不印刷白墨层,彩墨层的颜色会比较暗,不饱满,色彩也不鲜艳,印刷白墨层能够使彩墨层的颜色更加饱满,使彩墨层更加艳丽。但是白墨层以及彩墨层对太阳能光线有较强的遮蔽作用,被遮蔽的光伏晶片,将被当作负载消耗其他有光照的太阳能电池组件所产生的能量,被遮蔽的光伏晶片此时会发热,形成热斑效应,这种热斑效应严重的降低了光伏晶片的能效。而且白墨层中的二氧化钛颗粒也对照射到太阳能光伏组件上的光进行反射,降低太阳能光伏组件的能效。
发明内容
为解决上述技术问题,本发明的第一个方面提供了一种效能提升的彩色光伏组件,从上到下依次包括承载色彩的图案部、太阳能光伏组件,所述图案部至少包括印刷形成的白墨层和印刷形成图案的彩墨层。
优选的,所述图案部从上到下依次包括彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括第一玻璃层、第一胶膜层、光伏晶片层、第二胶膜层和功能背板层。
优选的,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括光伏晶片层、第二胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
优选的,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能组件从上到下依次包括第二玻璃层、第二胶膜层、光伏晶片层、第三胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
优选的,所述彩墨层的厚度在0-0.05mm。
优选的,所述白墨层的厚度在0-0.04mm。
本发明的第二个方面提供了一种效能提升的彩色光伏组件的制备方法,至少包括步骤:将图案部与太阳能光伏组件相结合。
优选的,所述图案部中的白墨层和彩墨层的具体印刷方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,并通过印刷软件控制印刷机,使印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,并通过印刷软件控制印刷机,使印刷机印刷成为彩墨层。
优选的,所述步骤C中通过印刷机印刷成为白墨层时,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量在5-15ml。
优选的,所述步骤D中通过印刷机印刷成为彩墨层时,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量。
有益效果:本技术方案中通过调整带有所需图案的图片的色阶,使打印软件通过识别图片中的不同色阶,控制印刷机印刷白墨层时白墨的出墨量,同时控制打印机印刷彩墨层时黑色地方和白色地方不出墨。通过这种方法不仅减少了白墨的使用量,降低了彩色光伏组件的生产成本,还能有效降低光伏组件的遮蔽效应,减少白墨层对太阳光的反射,增加太阳光线的透过率,有效提高光伏组件的效能和光伏组件的安全性,还能充分利用光伏晶片自身的黑色,有效的增加图案的立体感,使图案的色彩层次更加明显,丰富。
附图说明
图1是实施例1中的彩色光伏组件的整体结构示意图。
图2是实施例2中的彩色光伏组件的整体结构示意图。
图3是实施例3中的彩色光伏组件的整体结构示意图。
1-彩墨层、2-白墨层、3-第一玻璃层、4-第一胶膜层、5-光伏晶片层、6-第二胶膜层、7-功能背板层、8-第二玻璃层、9-第三胶膜层。
具体实施方式
为了下面的详细描述的目的,应当理解,本发明可采用各种替代的变化和步骤顺序,除非明确规定相反。此外,除了在任何操作实例中,或者以其他方式指出的情况下,表示例如说明书和权利要求中使用的成分的量的所有数字应被理解为在所有情况下被术语“约”修饰。因此,除非相反指出,否则在以下说明书和所附权利要求中阐述的数值参数是根据本发明所要获得的期望性能而变化的近似值。至少并不是试图将等同原则的适用限制在权利要求的范围内,每个数值参数至少应该根据报告的有效数字的个数并通过应用普通舍入技术来解释。
尽管阐述本发明的广泛范围的数值范围和参数是近似值,但是具体实例中列出的数值尽可能精确地报告。然而,任何数值固有地包含由其各自测试测量中发现的标准偏差必然产生的某些误差。
当本文中公开一个数值范围时,上述范围视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。例如,从“1至10”的指定范围应视为包括最小值1与最大值10之间的任何及所有的子范围。范围1至10的示例性子范围包括但不限于1至6.1、3.5至7.8、5.5至10等。
为解决上述技术问题,本发明的第一个方面提供了一种效能提升的彩色光伏组件,从上到下依次包括承载色彩的图案部、太阳能光伏组件,所述图案部至少包括印刷形成的白墨层和印刷形成图案的彩墨层。
作为一种优选的技术方案,所述图案部从上到下依次包括彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括第一玻璃层、第一胶膜层、光伏晶片层、第二胶膜层和功能背板层。
本发明中的功能背板包括玻璃板、PE板、PC板、PET薄膜等具有支撑和保护功能的板层。
作为一种优选的技术方案,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括光伏晶片层、第二胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
作为一种优选的技术方案,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能组件从上到下依次包括第二玻璃层、第二胶膜层、光伏晶片层、第三胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
作为一种优选的技术方案,所述彩墨层的厚度在0-0.05mm。
作为一种优选的技术方案,所述彩墨层的厚度在0-0.0118mm。
作为一种优选的技术方案,所述白墨层的厚度在0-0.04mm。
作为一种优选的技术方案,所述白墨层的厚度在0-0.02mm。
发明人发现白墨层中的主要原料为二氧化钛,二氧化钛很容易将透射到白墨层上的一部分太阳光反射掉,减少透射到太阳能电池片上的太阳光,降低光伏组件的效能。
本发明的第二个方面提供了一种效能提升的彩色光伏组件的制备方法,至少包括步骤:将图案部与太阳能光伏组件相结合。
作为一种优选的技术方案,所述图案部中的白墨层和彩墨层的具体印刷方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,并通过印刷软件控制印刷机,使印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,并通过印刷软件控制印刷机,使印刷机印刷成为彩墨层。
作为一种优选的技术方案,所述步骤C中通过印刷机印刷成为白墨层时,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量, 色阶为255的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量在5-15ml。
作为一种优选的技术方案,所述步骤D中通过印刷机印刷成为彩墨层时,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量。
发明人在实验过程中发现,通过控制白墨的出墨量不仅能够减少白墨层对太阳光的反射,提高太阳光的透过率,提高光伏组件的整体效能,还能降低整体光伏组件的生产成本,但是控制彩色墨的出墨量,光伏组件没有明显的效能提升,而且图案的色彩饱和度和艳丽感会下降很多,发明人主要通过调整白墨的出墨量,提高光伏组件的能效。
另外,如果没有其它说明,所用原料都是市售得到的。
实施例1
为解决上述技术问题,本实施例的第一个方面提供了一种效能提升的彩色光伏组件,如图1所示包括印刷于太阳能光伏组件上的白墨层2,印刷于白墨层2上的彩墨层1,所述太阳能光伏组件从上到下依次包括第一玻璃层3、第一胶膜层4、光伏晶片层5、第二胶膜层6和功能背板层7,所述白墨层2直接印刷于第一玻璃层3上。该实施例中直接将白墨层2和彩墨层1打印在太阳能光伏组件上。
所述彩墨层1的厚度在0-0.0118mm,所述白墨层2的厚度在0-0.02mm。
本实施例的第二个方面提供了效能提升的彩色光伏组件的制备方法,包括以下步骤:
(1)在太阳能光伏组件的第一玻璃层3上印刷白墨层2;
(2)在白墨层2上印刷彩墨层1。
所述印刷白墨层和彩墨层的具体方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255 的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量为5-15ml,通过印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量,通过印刷机印刷成为彩墨层。
实施例2
为解决上述技术问题,本实施例的第一个方面提供了一种效能提升的彩色光伏组件,如图2所示包括图案部和太阳能光伏组件,所述图案部包括第一玻璃层3、印刷于第一玻璃层3上的彩墨层1、印刷于彩墨层1上的白墨层2,所述太阳能光伏组件从上到下依次包括光伏晶片层5、第二胶膜层6和功能背板层7,所述白墨层2通过第一胶膜层4与光伏晶片层5相粘结。该实施例中将彩墨层1和白墨层2打印到第一玻璃层3上,然后再封装到太阳能光伏组件上。
所述彩墨层1的厚度在0-0.0118mm,所述白墨层2的厚度在0-0.02mm。
本实施例的第二个方面提供了效能提升的彩色光伏组件的制备方法,包括以下步骤:
(1)在第一玻璃层3上印刷彩墨层1和白墨层,得到图案部;
(2)将图案部与太阳能光伏组件通过第一胶膜层4相粘合。
所述印刷白墨层和彩墨层的具体方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量为5-15ml,通过印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量,通过印刷机印刷成为彩墨层。
实施例3
为解决上述技术问题,本实施例的第一个方面提供了一种效能提升的彩色光伏组件,如图3所示包括图案部和太阳能光伏组件,所述图案部包括第一玻璃层3、印刷于第一玻璃层3上的彩墨层1、印刷于彩墨层1上的白墨层2,所述太阳能光伏组件从上到下依次包括第二玻璃层8、第二胶膜层6、光伏晶片层5、第三胶膜层9和功能背板层7,所述白墨层2通过第一胶膜层4与第二玻璃层8相粘结。该实施例中将彩墨层1和白墨层2打印到第一玻璃层3上,然后再封装到太阳能光伏组件上。
所述彩墨层1的厚度在0-0.0118mm,所述白墨层2的厚度在0-0.02mm。
本实施例的第二个方面提供了效能提升的彩色光伏组件的制备方法,包括以下步骤:
(1)在第一玻璃层3上印刷彩墨层1和白墨层,得到图案部;
(2)将图案部与太阳能光伏组件通过第一胶膜层4相粘合。
所述印刷白墨层和彩墨层的具体方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量为5-15ml,通过印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量,通过印刷机印刷成为彩墨层。
对比例1
该对比例中与实施例2不同的点在于,该对比例中印刷白墨层和彩墨层的具体方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调 整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为50%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,当出墨量为100%时,每平方米白墨层的出墨量为5-15ml,通过印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量,通过印刷机印刷成为彩墨层。
对比例2
该对比例中与实施例2不同的点在于,该对比例中印刷白墨层和彩墨层的具体方法为:
A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为20%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,当出墨量为100%时,每平方米白墨层的出墨量为5-15ml,通过印刷机印刷成为白墨层;
D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量,通过印刷机印刷成为彩墨层。
对比例3
该对比例中与实施例2不同的点在于,该对比例中的印刷白墨层和彩墨层的具体方法为:
A:通过打印软件将带有图案的图片编辑为印刷机可以识别的文档,色彩为100%出墨量,通过印刷机印刷成为彩墨层。
B:通过印刷机在彩墨层上印刷白墨,每平方米白墨层的出墨量为5-15ml, 100%出墨,通过印刷机印刷成为白墨层;
性能测试
性能测试一
按照实施例2、对比例1、对比例2和对比例3中白墨层和彩墨层的印刷方法,在相同的透明塑料片上先印刷白墨层,然后在白墨层上印刷相同图案的彩墨层,然后在同样的光照强度下,测量各自的照度,表征透光性能。
性能测试二
对按照实施例2、对比例1、对比例2和对比例3中的方法所制的的相同面积的彩色光伏组件,在相同的条件下,进行效能测试,并基于对比例3的效能值计算相应的效能提升率。
性能测试三
选取20名志愿者,观察实施例2、对比例1、对比例2和对比例3中的彩色图案的失真情况,并进行评价,图案色彩饱满为优,图案色彩有失真为良,图案色彩严重失真为差,0-1个差为优,2-5个差为良,6个以上差为差。
性能测试表
Figure PCTCN2021122948-appb-000001
本技术方案中通过调整带有所需图案的图片的色阶,使打印软件通过识别图片中的不同色阶,控制印刷机印刷白墨层时白墨的出墨量,同时控制打印机印刷彩墨层时黑色地方和白色地方不出墨。通过这种方法不仅减少了白墨的使用量,降低了彩色光伏组件的生产成本,还能有效降低光伏组件的遮蔽效应,减少白墨层对太阳光的反射,增加太阳光线的透过率,有效提高光伏组件的效能和光伏组件的安全性,还能充分利用光伏晶片自身的黑色,有效的增加图案的立体感,使图案的色彩层次更加明显,丰富。
以上所述,仅是本发明的较佳实施例而已,并非是对发明作其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或更改为等同变化的等效实施例,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改,等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种效能提升的彩色光伏组件,其特征在于,从上到下依次包括承载色彩的图案部、太阳能光伏组件,所述图案部至少包括印刷形成的白墨层和印刷形成图案的彩墨层。
  2. 根据权利要求1所述的效能提升的彩色光伏组件,其特征在于,所述图案部从上到下依次包括彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括第一玻璃层、第一胶膜层、光伏晶片层、第二胶膜层和功能背板层。
  3. 根据权利要求1所述的效能提升的彩色光伏组件,其特征在于,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能光伏组件从上到下依次包括光伏晶片层、第二胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
  4. 根据权利要求1所述的效能提升的彩色光伏组件,其特征在于,所述图案部从上到下依次包括第一玻璃层、彩墨层和白墨层,所述太阳能组件从上到下依次包括第二玻璃层、第二胶膜层、光伏晶片层、第三胶膜层和功能背板层,所述图案部通过第一胶膜层与太阳能光伏组件相粘结。
  5. 根据权利要求1-4任一项所述的效能提升的彩色光伏组件,其特征在于,所述彩墨层的厚度在0-0.05mm。
  6. 根据权利要求1-4任一项所述的效能提升的彩色光伏组件,其特征在于,所述白墨层的厚度在0-0.04mm。
  7. 一种根据权利要求1-6任一项所述的效能提升的彩色光伏组件的制备方法,其特征在于,至少包括步骤:将图案部与太阳能光伏组件相结合。
  8. 根据权利要求7所述的效能提升的彩色光伏组件的制备方法,其特征在于,所述图案部中的白墨层和彩墨层的具体印刷方法为:
    A:将带有所需图案的图片通过图片处理软件进行处理,将图片调整为灰度模式,并建立白色专色通道,存储为打印软件可识别的文档一;
    B:将带有所需图案的图片通过图片处理软件进行处理,在图片上建立曲线调整图层,并将黑度值降到最低,存储为打印软件可识别的文档二;
    C:通过打印软件将文档一编辑为印刷软件可以识别的文档三,并通过印刷软件控制印刷机,使印刷机印刷成为白墨层;
    D:通过打印软件将文档二编辑为印刷软件可以识别的文档四,并通过印刷软件控制印刷机,使印刷机印刷成为彩墨层。
  9. 根据权利要求8所述的效能提升的彩色光伏组件的制备方法,其特征在于,所 述步骤C中通过印刷机印刷成为白墨层时,印刷机只出白墨,印刷软件通过识别文档三中的色阶控制印刷机中白墨的出墨量,色阶为255的白墨出墨量为100%,色阶降低,出墨量也随之降低,色阶为0的白墨出墨量为0%,每平方米白墨层的出墨量在5-15ml。
  10. 根据权利要求9所述的效能提升的彩色光伏组件的制备方法,其特征在于,所述步骤D中通过印刷机印刷成为彩墨层时,印刷软件通过识别文档四中的色阶控制印刷机中彩墨的出墨量,色阶为0的不出墨,同时色阶为255的也不出墨,其余色彩为100%出墨量。
PCT/CN2021/122948 2020-11-25 2021-10-11 一种效能提升的彩色光伏组件及其制备方法 WO2022111073A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21896575.4A EP4230400A1 (en) 2020-11-25 2021-10-11 Color photovoltaic module having improved efficiency and preparation method therefor
US18/038,716 US20240055538A1 (en) 2020-11-25 2021-10-11 Color photovoltaic module with improved efficiency and preparation method thereof
JP2023530963A JP2023550177A (ja) 2020-11-25 2021-10-11 性能が向上したカラー太陽光発電モジュール及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011339748.6A CN112406223B (zh) 2020-11-25 2020-11-25 一种效能提升的彩色光伏组件及其制备方法
CN202011339748.6 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022111073A1 true WO2022111073A1 (zh) 2022-06-02

Family

ID=74842326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122948 WO2022111073A1 (zh) 2020-11-25 2021-10-11 一种效能提升的彩色光伏组件及其制备方法

Country Status (5)

Country Link
US (1) US20240055538A1 (zh)
EP (1) EP4230400A1 (zh)
JP (1) JP2023550177A (zh)
CN (1) CN112406223B (zh)
WO (1) WO2022111073A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115272498A (zh) * 2022-08-02 2022-11-01 新源劲吾(北京)科技有限公司 一种彩色光伏板表面制绒方法及相关设备
CN116239312A (zh) * 2023-03-17 2023-06-09 江西盛富莱光学科技股份有限公司 一种环保型光伏玻璃用高反射油墨涂层及其制备方法
CN117038784A (zh) * 2023-08-01 2023-11-10 新源劲吾(北京)科技有限公司 一种高效的彩色光伏制作方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406223B (zh) * 2020-11-25 2022-09-13 新源劲吾(北京)科技有限公司 一种效能提升的彩色光伏组件及其制备方法
CN114566558A (zh) * 2021-03-22 2022-05-31 北京劲吾新能源科技有限公司 一种控制彩色光伏组件颜色深浅的制作方法
CN114583007A (zh) * 2021-04-14 2022-06-03 北京劲吾新能源科技有限公司 一种具有剪影效果的彩色太阳能光伏组件制作方法
CN114759115A (zh) * 2021-05-25 2022-07-15 北京劲吾新能源科技有限公司 一种优化彩色光伏组件画面的方法及其应用
CN114851762A (zh) * 2021-06-19 2022-08-05 北京劲吾新能源科技有限公司 一种具备立体效果的彩色光伏组件及其制备方法
CN114274688A (zh) * 2021-12-24 2022-04-05 上海紫恩数码科技有限公司 一种透明塑料薄膜的二维码印刷方法
CN115172504B (zh) * 2022-07-21 2023-05-23 新源劲吾(北京)科技有限公司 一种彩色光伏板及一种彩色光伏板的制作方法
CN116093196B (zh) * 2022-11-08 2024-01-23 新源劲吾(北京)科技有限公司 一种彩色背板的制备方法、彩色光伏组件及其制备方法
CN115939228B (zh) * 2022-12-29 2023-08-11 新源劲吾(北京)科技有限公司 一种具有立体反射层的彩色光伏组件及其制备方法
CN116799100B (zh) * 2023-06-21 2024-02-02 新源劲吾(北京)科技有限公司 一种彩色光伏组件的制作方法
CN116741878B (zh) * 2023-06-21 2024-03-08 新源劲吾(北京)科技有限公司 一种用于增加彩色光伏效能方法
CN116799072B (zh) * 2023-06-26 2024-02-02 新源劲吾(北京)科技有限公司 一种错位打印的彩色光伏组件
CN117614378A (zh) * 2023-11-13 2024-02-27 新源劲吾(北京)科技有限公司 一种利用折射来增加立面彩色光伏效能的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337090A1 (de) * 2009-12-18 2011-06-22 Malibu GmbH & Co. Kg Verfahren zur Herstellung von semitransparenten Photovoltaikmodulen und Photovoltaikmodul
CN105489679A (zh) * 2015-12-17 2016-04-13 江苏宇昊新能源科技有限公司 一种双玻光伏组件
CN106585152A (zh) * 2016-12-20 2017-04-26 深圳市贤俊龙彩印有限公司 一种新型数码喷墨整饰工艺
CN107278332A (zh) * 2017-01-12 2017-10-20 艾尔碧全球绿色科技有限公司 彩色太阳能模块及其制造方法
CN207009458U (zh) * 2017-06-28 2018-02-13 艾尔碧全球绿色科技有限公司 彩色太阳能模块
CN110010704A (zh) * 2018-12-11 2019-07-12 艾尔碧全球绿色科技有限公司 多色太阳能发电模块及其制造方法
CN112406223A (zh) * 2020-11-25 2021-02-26 可罗盈(上海)太阳能科技有限公司 一种效能提升的彩色光伏组件及其制备方法
CN213184311U (zh) * 2020-11-12 2021-05-11 北京劲吾新能源科技有限公司 一种方便更换色彩的光伏组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114178A1 (en) * 2009-11-17 2011-05-19 Du Pont Apollo Limited Solar cell module
EP3248223A1 (en) * 2015-01-23 2017-11-29 Sistine Solar, Inc. Graphic layers and related methods for incorporation of graphic layers into solar modules
CN105576060B (zh) * 2015-12-18 2017-03-29 孙戎斐 一种模块化光伏板及其制造方法
CN111746071A (zh) * 2019-03-29 2020-10-09 汉能移动能源控股集团有限公司 光伏防弹组件及其制备方法
CN210073876U (zh) * 2019-04-30 2020-02-14 广东汉能薄膜太阳能有限公司 彩色光伏组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337090A1 (de) * 2009-12-18 2011-06-22 Malibu GmbH & Co. Kg Verfahren zur Herstellung von semitransparenten Photovoltaikmodulen und Photovoltaikmodul
CN105489679A (zh) * 2015-12-17 2016-04-13 江苏宇昊新能源科技有限公司 一种双玻光伏组件
CN106585152A (zh) * 2016-12-20 2017-04-26 深圳市贤俊龙彩印有限公司 一种新型数码喷墨整饰工艺
CN107278332A (zh) * 2017-01-12 2017-10-20 艾尔碧全球绿色科技有限公司 彩色太阳能模块及其制造方法
CN207009458U (zh) * 2017-06-28 2018-02-13 艾尔碧全球绿色科技有限公司 彩色太阳能模块
CN110010704A (zh) * 2018-12-11 2019-07-12 艾尔碧全球绿色科技有限公司 多色太阳能发电模块及其制造方法
CN213184311U (zh) * 2020-11-12 2021-05-11 北京劲吾新能源科技有限公司 一种方便更换色彩的光伏组件
CN112406223A (zh) * 2020-11-25 2021-02-26 可罗盈(上海)太阳能科技有限公司 一种效能提升的彩色光伏组件及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115272498A (zh) * 2022-08-02 2022-11-01 新源劲吾(北京)科技有限公司 一种彩色光伏板表面制绒方法及相关设备
CN115272498B (zh) * 2022-08-02 2023-06-09 新源劲吾(北京)科技有限公司 一种彩色光伏板表面制绒方法及相关设备
CN116239312A (zh) * 2023-03-17 2023-06-09 江西盛富莱光学科技股份有限公司 一种环保型光伏玻璃用高反射油墨涂层及其制备方法
CN117038784A (zh) * 2023-08-01 2023-11-10 新源劲吾(北京)科技有限公司 一种高效的彩色光伏制作方法
CN117038784B (zh) * 2023-08-01 2024-02-02 新源劲吾(北京)科技有限公司 一种高效的彩色光伏制作方法

Also Published As

Publication number Publication date
CN112406223A (zh) 2021-02-26
EP4230400A1 (en) 2023-08-23
CN112406223B (zh) 2022-09-13
JP2023550177A (ja) 2023-11-30
US20240055538A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2022111073A1 (zh) 一种效能提升的彩色光伏组件及其制备方法
US20200185545A1 (en) Color solar energy module and fabrication method therefor
CN110010704B (zh) 多色太阳能发电模块及其制造方法
CN105938273B (zh) 背光模组和显示设备
CN206497278U (zh) 一种量子点显示装置
CN214956904U (zh) 一种具有高透光筛孔涂层的彩色光伏组件
CN206497274U (zh) 一种彩膜基板、显示面板和显示装置
CN107731183A (zh) 一种显示装置的驱动方法及显示装置
CN109390426A (zh) 一种太阳能光伏电池用的玻璃面板及其制备方法
CN107564490A (zh) 一种显示装置的驱动方法及显示装置
TWI630787B (zh) 具備裸視3d圖案的彩色太陽能模組及製造方法
CN101826283B (zh) 一种高导光黑色透光树脂灯箱
CN104751805A (zh) 调整图像显示的方法、光源模块以及电子装置
TWM556970U (zh) 彩色太陽能模組
CN107564480A (zh) 一种显示装置的驱动方法及显示装置
CN209013089U (zh) 一种全光谱珊瑚灯
CN206039093U (zh) 用于背光模组的荧光薄膜
CN108598069A (zh) 一种基于结构化荧光膜的集成单片色温可调led
CN114567255A (zh) 一种彩色光伏组件检测方法
CN108873147B (zh) 一种量子点导光板及其制作方法
TWI689108B (zh) 多色太陽能發電模組及其製造方法
CN206877003U (zh) 一种背光模组
CN206115102U (zh) 一种背光源及液晶显示模组
CN208479577U (zh) 光伏电池样片
CN206546486U (zh) 一种背光源及液晶显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530963

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18038716

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021896575

Country of ref document: EP

Effective date: 20230517

NENP Non-entry into the national phase

Ref country code: DE