WO2022110887A1 - 一种动力电池的绝缘电阻的检测装置、方法和汽车 - Google Patents

一种动力电池的绝缘电阻的检测装置、方法和汽车 Download PDF

Info

Publication number
WO2022110887A1
WO2022110887A1 PCT/CN2021/110371 CN2021110371W WO2022110887A1 WO 2022110887 A1 WO2022110887 A1 WO 2022110887A1 CN 2021110371 W CN2021110371 W CN 2021110371W WO 2022110887 A1 WO2022110887 A1 WO 2022110887A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
voltage
module
switch
unit
Prior art date
Application number
PCT/CN2021/110371
Other languages
English (en)
French (fr)
Inventor
牛高产
李立
张晓庆
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022110887A1 publication Critical patent/WO2022110887A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure belongs to the technical field of batteries, and in particular relates to an insulation resistance detection device, method and automobile of a power battery, and in particular, to an insulation detection circuit, method and automobile.
  • Power battery is one of the core components of new energy vehicles. Due to the existence of high voltage, the high-voltage positive electrode of the battery or the high-voltage negative electrode of the battery forms a current loop to the vehicle ground (such as the vehicle chassis ground) through the insulating layer. , the leakage current will increase, and when the leakage current reaches a certain value, it will cause harm to personal safety and the operation of the vehicle electrical system.
  • the high-voltage insulation performance of electric vehicles is directly related to the life safety of the people in the vehicle, and the insulation performance is determined by the resistance value of the DC positive and negative busbars to the vehicle ground. Therefore, it is necessary to detect the insulation resistance of the battery of the electric vehicle in real time.
  • the balanced bridge method is used to measure the insulation resistance of the positive and negative busbars of the power battery to the ground, but it cannot measure the same insulation resistance of the positive and negative busbars of the power battery to the ground, so the detection accuracy cannot be guaranteed.
  • the purpose of the present disclosure is to provide a detection device, method and automobile for the insulation resistance of a power battery, so as to solve the problem that the detection accuracy cannot be guaranteed for the insulation resistance of the positive and negative busbars to the ground measured by the balanced bridge method, so as to achieve the Using the unbalanced bridge method to measure the insulation resistance of the positive and negative busbars to the ground can improve the detection accuracy.
  • the present disclosure provides a detection device for insulation resistance of a power battery, comprising: a sampling unit, a switch unit, an unbalanced bridge forming unit, and a control unit; wherein the control unit is configured to control the unbalanced bridge formation
  • the unit is connected or disconnected with one of the positive electrode of the power battery and the negative electrode of the power battery, and the switch unit is controlled to control the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit
  • the unbalanced bridge forming unit is configured to be in communication with one of the positive electrode of the power battery and the negative electrode of the power battery when the unbalanced bridge forming unit itself is in communication , an unbalanced bridge is formed between the sampling unit and the switching unit
  • the switching unit is configured to control the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit.
  • the sampling unit is configured to sample the voltage between the positive electrode of the power battery and one of the negative electrodes of the power battery and the ground to obtain a sampled voltage
  • the control unit is also configured to In order to determine the resistance of the positive electrode of the power battery to the ground and the resistance of the negative electrode of the power battery to the ground according to the sampled voltage.
  • it further includes: an isolation interlocking module; the control unit is configured to control the switch unit to control the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit In the case of on-off, send a control signal to the switch unit; the isolation interlock module is configured to, based on the control signal, control the switch unit to control the positive pole of the power battery and the positive pole of the power battery The on-off between the negative electrode and the sampling unit, and when one of the positive electrode of the power battery and the negative electrode of the power battery is connected, the positive electrode of the power battery and the negative electrode of the power battery are controlled. The other electrode in the negative electrode is not switched on.
  • the switch unit includes: a first switch unit and a second switch unit; wherein the first switch unit is disposed between the positive electrode of the power battery and the sampling unit; the The second switch unit is arranged between the negative electrode of the power battery and the sampling unit.
  • the first switch unit includes: a first current limiting module and a first switch module; the positive electrode of the power battery, after passing through the first current limiting module and the first switch module, connected to the sampling unit;
  • the second switch unit includes: a second current-limiting module and a second switch module; the positive pole of the power battery passes through the second current-limiting module and the second switch module , connected to the sampling unit.
  • the first switch module includes: a first solid state relay; the second switch module includes: a second solid state relay.
  • the unbalanced bridge forming unit includes: a third switch module and an unbalanced module; wherein, the positive pole of the power battery is grounded after the unbalanced module and the third switch module .
  • the sampling unit includes: a first voltage dividing module and a second voltage dividing module; wherein, the first voltage dividing module and the second voltage dividing module are arranged in series on the switch unit between the ground.
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the switch unit Controlling the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit includes: when the voltage of the positive and negative electrodes of the power battery is maintained within a set voltage range, controlling the The first switch module is in a closed state, and both the second switch module and the third switch module are controlled to be in an open state, and the first voltage across the second voltage divider module is detected; delay the first setting After time, the second switch module is controlled to be in a closed state, and both the first switch module and the third switch module are controlled to be in an open state, and the second voltage across the second voltage divider module is detected; After the second set time, the first switch module and the third switch module are controlled to be in a closed state, and the second switch module is controlled to be in an open state, and the voltage at both ends of the second voltage divider module is detected
  • control unit determines the resistance of the positive electrode of the power battery to the ground and the resistance of the negative electrode of the power battery to the ground, including: according to the first A voltage, the second voltage, the third voltage, and the fourth voltage are calculated to obtain the resistance of the positive electrode of the power battery to the ground, and the resistance of the negative electrode of the power battery to the ground.
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the switch unit Controlling the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, further comprising: controlling the first switch module to be in a closed state, and controlling the second switch module and the sampling unit Both the third switch modules are in an off state, and the first voltage across the second voltage divider module is detected; after a fourth set time delay, the first switch module and the third switch module are controlled to be closed state, and control the second switch module to be in an off state, detect the second voltage across the second voltage divider module; after a fifth set time delay, control the second switch module and the third The switch modules are all in a closed state, and the first switch module is controlled to be in an open state, and a third voltage across the second voltage divider module is detected; the control unit determines the power battery according to the sampled voltage The positive-to-ground resistance of the
  • an automobile comprising: the above-mentioned device for detecting the insulation resistance of a power battery.
  • another aspect of the present disclosure provides a method for detecting the insulation resistance of a power battery, comprising: controlling an unbalanced bridge forming unit, a positive electrode of the power battery and a negative electrode of the power battery through a control unit One of the electrodes is connected or disconnected, and the switch unit is controlled to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit; an unbalanced bridge is formed to form a unit, in the When the unbalanced bridge forming unit itself is in communication with one of the positive electrode of the power battery and the negative electrode of the power battery, an unbalanced bridge is formed between the sampling unit and the switch unit; The switch unit controls the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit; through the sampling unit, the positive electrode of the power battery and the negative electrode of the power battery are connected to one of the electrodes. The voltage between the grounds is sampled to obtain the sampled voltage; the control unit
  • the method further includes: through the control unit, when it is necessary to control the switch unit to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, send a message to the sampling unit.
  • the switch unit sends a control signal; through the isolation interlock module, based on the control signal, the switch unit is controlled to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, and When one of the positive electrode of the power battery and the negative electrode of the power battery is connected, the other electrode of the positive electrode of the power battery and the negative electrode of the power battery is controlled not to be connected.
  • the switch unit includes: a first switch unit and a second switch unit; wherein the first switch unit is disposed between the positive electrode of the power battery and the sampling unit; the The first switch unit includes: a first current limiting module and a first switch module; the positive electrode of the power battery is connected to the sampling unit after passing through the first current limiting module and the first switch module; The second switch unit is arranged between the negative electrode of the power battery and the sampling unit; the second switch unit includes: a second current limiting module and a second switch module; the positive electrode of the power battery is The second current limiting module and the second switch module are connected to the sampling unit.
  • the unbalanced bridge forming unit includes: a third switch module and an unbalanced module; wherein, the positive pole of the power battery is grounded after the unbalanced module and the third switch module .
  • the sampling unit includes: a first voltage dividing module and a second voltage dividing module; wherein, the first voltage dividing module and the second voltage dividing module are arranged in series on the switch unit between the ground.
  • the unbalanced bridge forming unit is controlled to be connected or disconnected with one of the positive electrode of the power battery and the negative electrode of the power battery
  • the switch unit is controlled to control
  • the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit includes: when the voltage of the positive and negative electrodes of the power battery is maintained within a set voltage range, controlling the The first switch module is in a closed state, and controls both the second switch module and the third switch module to be in an open state, and detects the first voltage across the second voltage divider module; delays the first set time After that, the second switch module is controlled to be in a closed state, and both the first switch module and the third switch module are controlled to be in an open state, and the second voltage across the second voltage divider module is detected; delay time After the second set time, both the first switch module and the third switch module are controlled to be in a closed state, and the second switch module is controlled to be in an open state, and the first switch module at both ends
  • Three voltages after delaying a third set time, control the second switch module and the third switch module to be in a closed state, and control the first switch module to be in an open state, and detect the second switch module.
  • the fourth voltage at both ends of the voltage module; determining the resistance of the positive electrode to ground of the power battery and the resistance of the negative electrode of the power battery to the ground according to the sampled voltage by the control unit, including: according to the first voltage , the second voltage, the third voltage and the fourth voltage, and the resistance of the positive electrode of the power battery to the ground and the resistance of the negative electrode of the power battery to the ground are calculated.
  • the unbalanced bridge forming unit is controlled to be connected or disconnected with one of the positive electrode of the power battery and the negative electrode of the power battery
  • the switch unit is controlled to control
  • the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit further includes: controlling the first switch module to be in a closed state, and controlling the second switch module and the first switch module.
  • the three switch modules are all in an off state, and the first voltage across the second voltage divider module is detected; after a fourth set time delay, the first switch module and the third switch module are controlled to be in a closed state , and control the second switch module to be in an off state, detect the second voltage across the second voltage divider module; after a fifth set time delay, control the second switch module and the third switch
  • the modules are all in a closed state, and the first switch module is controlled to be in an open state to detect the third voltage across the second voltage divider module; the control unit determines the positive pole of the power battery according to the sampled voltage
  • the resistance to ground and the resistance of the negative pole of the power battery to the ground also include: calculating the positive pole to ground of the power battery according to the first voltage, the second voltage and the third voltage. resistance, and the resistance of the negative electrode of the power battery to the ground.
  • the positive electrode of the power battery or the negative electrode of the power battery is selectively connected, and only the voltage value of the positive electrode of the power battery or the negative electrode of the power battery to the ground is detected, so as to realize the control of the power battery.
  • the detection of the insulation resistance of the power battery can improve the detection accuracy by measuring the insulation resistance of the positive and negative busbars to the ground by the unbalanced bridge method.
  • FIG. 1 is a schematic structural diagram of an embodiment of the apparatus for detecting insulation resistance of a power battery of the present disclosure
  • FIG. 2 is a schematic structural diagram of an embodiment of an insulation detection circuit
  • FIG. 3 is a schematic flowchart of an embodiment of a method for detecting the insulation resistance of a power battery of the present disclosure
  • FIG. 4 is a schematic flowchart of an embodiment of isolating and interlocking the selection paths of the switch unit to the positive electrode of the power battery and the negative electrode of the power battery in the method of the present disclosure
  • FIG. 5 is a schematic flowchart of an embodiment of a first control process for controlling switches of the first switch module, the second switch module, and the third switch module in the method of the present disclosure
  • FIG. 6 is a schematic flowchart of an embodiment of a second control process for controlling switches of the first switch module, the second switch module, and the third switch module in the method of the present disclosure.
  • a device for detecting the insulation resistance of a power battery is provided.
  • the detection device for the insulation resistance of the power battery may include: a sampling unit, a switch unit, an unbalanced bridge forming unit and a control unit (eg MCU).
  • control unit is configured to control the connection or disconnection of the unbalanced bridge forming unit with one of the positive electrode of the power battery and the negative electrode of the power battery, and to control the switch unit to control The connection between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit.
  • the unbalanced bridge forming unit is configured to communicate with one of the positive electrode of the power battery and the negative electrode of the power battery in the unbalanced bridge forming unit itself under the control of the control unit In the case of , an unbalanced bridge is formed between the sampling unit and the switching unit.
  • the switch unit is configured to, under the control of the control unit, control the connection between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit.
  • the sampling unit is configured to, under the condition that the switch unit controls the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, the positive electrode of the power battery and the all The voltage between one of the negative electrodes of the power battery and the ground is sampled to obtain the sampled voltage.
  • the control unit is further configured to determine the resistance of the positive electrode of the power battery to the ground and the resistance of the negative electrode of the power battery to the ground according to the sampled voltage.
  • an unbalanced bridge is formed through the sampling unit, the switch unit, the unbalanced bridge forming unit and the control unit, and the unbalanced bridge method is used to detect the high voltage insulation of the power battery, which can avoid the unbalanced measurement of the balanced bridge method. It is found that the positive and negative busbars have the same insulation resistance to the ground, so that the detection results are more accurate, and only one voltage value needs to be collected, which simplifies the AD sampling circuit.
  • an isolation and interlocking module is further included, so as to realize the process of isolating and interlocking the selected paths of the switch unit to the positive pole of the power battery and the negative pole of the power battery.
  • control unit is configured to control the switching unit to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, and send the switching unit to the switching unit.
  • Send control signals eg PWM signals.
  • the isolation interlock module is configured to, based on the control signal, control the switch unit to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, and when the When one of the positive electrode of the power battery and the negative electrode of the power battery is connected, the other electrode of the positive electrode of the power battery and the negative electrode of the power battery is controlled not to be connected.
  • the function of the isolation interlocking module is to prevent the contacts of the solid state relay K 1 and the solid state relay K 2 from being turned on at the same time.
  • the switch unit includes: a first switch unit and a second switch unit.
  • the first switch unit is arranged between the positive electrode of the power battery and the sampling unit.
  • the second switch unit is arranged between the negative electrode of the power battery and the sampling unit.
  • the first switch unit includes: a first current limiting module (eg, a resistor R 1 ) and a first switch module.
  • the positive electrode of the power battery is connected to the sampling unit after passing through the first current limiting module and the first switch module.
  • the second switch unit includes: a second current limiting module (such as a resistor R 4 ) and a second switch module.
  • the positive electrode of the power battery is connected to the sampling unit after passing through the second current limiting module and the second switch module.
  • the first switch module includes: a first solid state relay (eg, solid state relay K 1 ).
  • the second switch module includes: a second solid state relay (eg, solid state relay K 2 ).
  • the role of the solid state relay K 1 and the solid state relay K 2 is to selectively connect the positive and negative terminals of the battery, specifically: the contacts of the solid state relay K 1 and the solid state relay K 2 cannot be closed at the same time, so it is necessary to Controlled by an isolation interlock module.
  • the positive terminal of the battery (such as the positive terminal V+ of the battery E) is connected to the sampling point A through the series connected resistor R 1 and the contact point of the solid state relay K 1 and the resistor R 2 .
  • the negative terminal of the battery (such as the negative terminal V- of the battery E) is connected to the sampling point A through the series connected resistor R4 and the contacts of the solid state relay K2 and the resistor R2, and the sampling point A is connected to the sampling point A through the sampling resistor R3 . Chassis ground.
  • the unbalanced bridge forming unit includes: a third switch module (eg, switch K 3 ) and an unbalanced module (eg, resistor R 5 ). Wherein, the positive electrode of the power battery is grounded after passing through the unbalanced module and the third switch module.
  • a third switch module eg, switch K 3
  • an unbalanced module eg, resistor R 5
  • the resistor R 5 is an unbalanced resistor
  • the insulation detection circuit is an unbalanced bridge when the switch K 3 is closed.
  • Adopt MCU to control solid state relay K 1 , solid state relay K 2 and switch K 3 to selectively connect the positive electrode V+ of battery E and the negative electrode V- of battery E, only need to detect the voltage value in one place, reduce one AD sampling and simplify AD sampling circuit.
  • the sampling unit includes: a first voltage dividing module (eg, resistor R 2 ) and a second voltage dividing module (eg, resistor R 3 ). Wherein, the first voltage dividing module and the second voltage dividing module are arranged in series between the switch unit and the ground.
  • a first voltage dividing module eg, resistor R 2
  • a second voltage dividing module eg, resistor R 3
  • the resistor R 3 is a sampling resistor
  • point A ie, the common terminal of the resistor R 3 and the resistor R 2 ) is the AD sampling point.
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the switch unit Controlling the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit includes: a first control process of controlling the switches of the first switch module, the second switch module and the third switch module, Specifically, it can be as follows:
  • the first switch module is controlled to be in a closed state, and both the second switch module and the third switch module are controlled to be off In the ON state, the first voltage across the second voltage dividing module (eg, the voltage V 1 across the resistor R 3 ) is detected.
  • the voltage of the battery terminal is detected to ensure that the voltage of the battery terminal remains unchanged.
  • the MCU controls the contact of the solid-state relay K1 to be in a closed state, the contact of the solid - state relay K2 and the switch K3 are disconnected.
  • the AD of the MCU Sampling can sample the voltage V 1 across the resistor R 3 , which can be obtained according to Kirchhoff's current theorem:
  • the second switch module After delaying the first set time, the second switch module is controlled to be in a closed state, and both the first switch module and the third switch module are controlled to be in an open state, and the second voltage divider module is detected.
  • the second voltage at the terminal eg, the voltage V 2 across the resistor R 3 ).
  • the voltage of the battery terminal is detected to ensure that the voltage of the battery terminal remains unchanged.
  • the MCU controls the contact of the solid - state relay K2 to be in a closed state, and the contact of the solid - state relay K1 and the switch K3 are disconnected.
  • the voltage V 2 across the resistor R 3 can be sampled through the AD sampling of the MCU, and can be obtained according to Kirchhoff's law of voltage and current:
  • the first switch module and the third switch module are controlled to be in a closed state, and the second switch module is controlled to be in an open state, and two voltage dividers of the second voltage divider module are detected.
  • the third voltage at the terminal eg, the voltage V 3 across the resistor R 3 .
  • the MCU controls the contacts of the solid - state relay K1 and the switch K3 to close, and the contacts of the solid - state relay K2 are disconnected.
  • the AD sampling of the MCU can sample the two ends of the resistor R3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • the second switch module and the third switch module are controlled to be in a closed state, and the first switch module is controlled to be in an open state, and two voltages of the second voltage divider module are detected.
  • the fourth voltage at the terminal eg, the voltage V 4 across the resistor R 3 ).
  • the MCU controls the contacts of the solid state relay K 2 and the switch K 3 to close, and the contacts of the solid state relay K 1 are disconnected.
  • the voltage across the resistor R 3 can be sampled through the AD sampling of the MCU.
  • V 4 according to Kirchhoff's voltage and current laws:
  • control unit determines the resistance of the positive electrode to the ground of the power battery and the resistance of the negative electrode of the power battery to the ground, including: according to the first voltage, The second voltage, the third voltage and the fourth voltage are calculated to obtain the resistance of the positive electrode of the power battery to the ground and the resistance of the negative electrode of the power battery to the ground.
  • the insulation resistance R p of the positive electrode V+ of the battery E to the chassis ground and the insulation resistance R n of the negative electrode V- of the battery E to the chassis ground can be obtained:
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the switch unit Controlling the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, further comprising: a second control process of controlling the switches of the first switch module, the second switch module and the third switch module , which can be as follows:
  • the control unit is further configured to control the first switch module to be in a closed state, control both the second switch module and the third switch module to be in an open state, and detect the second voltage divider module The first voltage across the terminals (eg, the voltage V 1 across the resistor R 3 ).
  • the MCU controls the contact of the solid - state relay K1 to close, the contact of the solid - state relay K2 and the switch K3 are disconnected, and the measured voltage across the resistor R3 is V1, which can be obtained according to Kirchhoff’s voltage law :
  • the control unit is further configured to control the first switch module and the third switch module to be in a closed state, and control the second switch module to be in an open state after a delay of a fourth set time. , and detect the second voltage across the second voltage dividing module (eg, the voltage V 2 across the resistor R 3 ).
  • the MCU controls the contacts of the solid state relay K 1 and the switch K 3 to close, and the contacts of the solid state relay K 2 are disconnected.
  • the measured voltage across the resistor R 3 is V 2 , which is determined by Kirkho The husband's current law can be obtained:
  • the control unit is further configured to control both the second switch module and the third switch module to be in a closed state, and control the first switch module to be in an open state after a fifth set time delay , and detect the third voltage across the second voltage dividing module (eg, the voltage V 3 across the resistor R 3 ) .
  • the MCU controls the contacts of the solid state relay K2 and the switch K3 to close, and when the contacts of the solid state relay K1 are disconnected, the AD sampling of the MCU can sample the two ends of the resistor R3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • control unit determines the resistance of the positive electrode to the ground of the power battery and the resistance of the negative electrode of the power battery to the ground, further comprising: according to the first voltage , the second voltage and the third voltage, the resistance of the positive pole of the power battery to the ground and the resistance of the negative pole of the power battery to the ground are calculated.
  • the insulation resistances R p and R n of the battery E positive V- to the chassis ground can also be obtained.
  • the technical solution of the present disclosure is adopted, and the positive electrode of the power battery or the negative electrode of the power battery is selectively connected by using the unbalanced bridge method, and only the positive electrode of the power battery or the negative electrode of the power battery is detected.
  • the voltage value can realize the detection of the insulation resistance of the power battery.
  • an automobile corresponding to the detection device of the insulation resistance of the power battery is also provided.
  • the automobile may include: the above-mentioned detection device for the insulation resistance of the power battery.
  • two-way AD acquisition circuits are used for detection.
  • the structure of the sampling circuit is complex and occupies a lot of resources of the single-chip microcomputer.
  • the solution of the present disclosure provides an insulation detection circuit and an insulation detection method.
  • the unbalanced bridge method is used to perform high-voltage insulation detection of the power battery, which can avoid that the positive and negative bus bars cannot be measured by the balanced bridge method.
  • the detection result is more accurate, and only one voltage value needs to be collected, which simplifies the AD sampling circuit.
  • the bridge that is measured according to the balance conditions of the bridge is called a balanced bridge. Its operation is cumbersome and the measurement time is long. Usually, the bridge is usually referred to as a balanced bridge.
  • An unbalanced bridge is an unbalanced bridge, which measures lumped parameter components by directly measuring the current flowing through the indicator or the voltage at both ends of the bridge in an unbalanced state. It is easy to operate, short in measurement time, and easy to implement digital Measurement.
  • the solution of the present disclosure adopts the method of the unbalanced bridge method, which can avoid the situation that the insulation resistance of the positive and negative busbars to the ground cannot be measured by the balanced bridge method, and increases the accuracy of detection.
  • the MCU is used to control the solid state relay.
  • K 1 , solid state relay K 2 and switch K 3 are selectively connected to the positive electrode V+ of the battery E and the negative electrode V- of the battery E, only need to detect the voltage value in one place, reduce one AD sampling and simplify the AD sampling circuit.
  • the solution of the present disclosure adopts the method of the unbalanced bridge method to perform the high voltage insulation detection of the power battery, which can avoid the situation that the positive and negative busbars cannot be measured with the same insulation resistance to the ground by the balanced bridge method, so that the detection results are more accurate, and In the detection process, only one AD sampling is adopted, which simplifies the AD sampling circuit.
  • FIG. 2 is a schematic structural diagram of an embodiment of an insulation detection circuit.
  • the insulation detection circuit includes: resistor R 1 , resistor R 2 , resistor R 3 , resistor R 4 and resistor R 5 , solid state relay K 1 , solid state relay K 2 and switch K 3 , Isolate the interlock module and the MCU.
  • the isolation interlocking module chips with models CD40106B and CD4011B can be selected.
  • the PWM output end of the MCU is connected to the input end of the isolation interlocking module.
  • the first output terminal of the isolation interlock module is connected to the coil of the solid state relay K1.
  • the second output terminal of the isolation interlock module is connected to the coil of the solid state relay K2.
  • the contacts of the solid state relay K 1 , the contacts of the solid state relay K 2 and the resistor R 4 are connected to the negative electrode V- of the battery E.
  • the positive electrode V+ of the battery E is connected to the solid state relay K 1 via the resistor R 1 .
  • the common terminal between the contacts of the solid state relay K 1 and the contacts of the solid state relay K 2 is grounded through the resistor R 2 and the resistor R 3 .
  • the positive electrode V+ of the battery E is grounded through the contact of the resistor R5 and the switch K3.
  • the common terminal of the resistor R 2 and the resistor R 3 is connected to the AD sampling terminal of the MCU.
  • U represents the voltage between the positive and negative bus bars of the battery
  • R p is the insulation resistance of the positive electrode V+ of the battery E to the chassis ground
  • R n is the insulation resistance of the negative electrode V- of the battery E to the chassis ground
  • the ground is the chassis ground.
  • the rest are the main circuit of the measurement circuit, including: resistor R 1 , resistor R 2 , resistor R 3 , resistor R 4 and resistor R 5 , solid state relay K 1 , solid state relay K 2 and switch K 3 .
  • the resistor R 1 , the resistor R 2 , and the resistor R 4 have the function of dividing the voltage and limiting the current.
  • the solid state relay K 1 , the solid state relay K 2 and the switch K 3 are used to select the turn-on and turn-off of the circuit.
  • the function of the isolation interlock module is to prevent the contacts of the solid state relay K 1 and the contacts of the solid state relay K 2 from conducting at the same time.
  • Resistor R3 is a sampling resistor, and point A (that is, the common terminal of resistor R3 and resistor R2) is the AD sampling point.
  • the resistor R5 is an unbalanced resistor, and the insulation detection circuit is an unbalanced bridge when the switch K3 is closed.
  • the role of the solid state relay K 1 and the solid state relay K 2 is to selectively connect the positive and negative terminals of the battery, specifically: the contacts of the solid state relay K 1 and the solid state relay K 2 cannot be closed at the same time, so they need to be isolated and mutually connected. Controlled by the lock module.
  • the positive terminal of the battery (such as the positive terminal V+ of the battery E) is connected to the sampling point A through the series connected resistor R 1 and the contact point of the solid state relay K 1 and the resistor R 2 .
  • the negative terminal of the battery (such as the negative terminal V- of the battery E) is connected to the sampling point A through the series resistor R 4 and the contacts of the solid state relay K 2 and the resistor R 2 , and the sampling point A is connected to the sampling point A through the sampling resistor R 3 .
  • the solid state relay is applied on the board and has the advantages of small size, fast response, high reliability, good electromagnetic compatibility, and low driving power.
  • the insulation detection method of the insulation detection circuit includes:
  • Step 11 Detect the voltage of the battery terminal to ensure that the voltage of the battery terminal remains unchanged.
  • the MCU controls the contact of the solid-state relay K1 to be in a closed state, the contact of the solid - state relay K2 and the switch K3 are disconnected. At this time, the AD of the MCU is passed. Sampling can sample the voltage V 1 across the resistor R 3 , which can be obtained according to Kirchhoff's current theorem:
  • Step 12 Detect the voltage of the battery terminal to ensure that the voltage of the battery terminal remains unchanged. After a delay for a period of time, the MCU controls the contact of the solid - state relay K2 to be in a closed state, and the contact of the solid - state relay K1 and the switch K3 are disconnected.
  • the voltage V 2 across the resistor R 3 can be sampled through the AD sampling of the MCU, and can be obtained according to Kirchhoff's law of voltage and current:
  • the voltage of the battery terminal can be detected by sampling, and if the voltages are not equal, the detection can be continued after a delay.
  • Step 13 After delaying for a period of time, the MCU controls the contacts of the solid state relay K1 and the switch K3 to close, and when the contacts of the solid state relay K2 are disconnected, the AD sampling of the MCU can sample the two ends of the resistor R3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • Step 14 After delaying for a period of time, the MCU controls the contacts of the solid state relay K 2 and the switch K 3 to close, and the contacts of the solid state relay K 1 are disconnected. At this time, the voltage across the resistor R 3 can be sampled through the AD sampling of the MCU. V 4 , according to Kirchhoff's voltage and current laws:
  • the insulation resistance R p of the positive electrode V+ of the battery E to the chassis ground and the insulation resistance R n of the negative electrode V- of the battery E to the chassis ground can be obtained:
  • implementations in the present disclosure may also be calculated as follows:
  • Step 21 The MCU controls the contact of the solid - state relay K1 to close, the contact of the solid - state relay K2 and the switch K3 are disconnected, and the measured voltage across the resistor R3 is V1 . According to Kirchhoff’s voltage law, it can be obtained:
  • Step 22 After a period of delay, the MCU controls the contacts of the solid state relay K1 and the switch K3 to close, and the contacts of the solid state relay K2 are disconnected.
  • the measured voltage across the resistor R3 is V2 , which is determined by Kirkho The husband's current law can be obtained:
  • Step 23 After a period of delay, the MCU controls the contacts of the solid state relay K 2 and the switch K 3 to close, and the contacts of the solid state relay K 1 are disconnected. At this time, the AD sampling of the MCU can sample the two ends of the resistor R 3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • Step 24 According to formulas (4), (5) and (6), the insulation resistances Rp and Rn of the battery E positive V- to the chassis ground can also be obtained.
  • steps 21 to 24 it is also necessary to detect the voltage of the battery terminal and ensure that the voltage of the battery terminal remains unchanged.
  • the calculation is performed according to the above formula, and the insulation resistance can be detected more accurately.
  • the unbalanced bridge method is used for the high voltage insulation detection of the power battery, which can avoid the situation that the positive and negative busbars cannot be measured with the same insulation resistance to ground by the balanced bridge method, so that the detection results are more accurate.
  • AD sampling which simplifies the AD sampling circuit.
  • the technical solution of the present disclosure is adopted, and the positive electrode of the power battery or the negative electrode of the power battery is selectively connected by using the unbalanced bridge method, and only the positive electrode of the power battery or the negative electrode of the power battery is detected.
  • the voltage value can realize the detection of the insulation resistance of the power battery, which can avoid the situation that the insulation resistance of the positive and negative busbars to the ground cannot be measured by the balanced bridge method, and the accuracy of the detection is increased.
  • a method for detecting the insulation resistance of a power battery corresponding to an automobile is also provided, as shown in FIG. 3 , a schematic flowchart of an embodiment of the method of the present disclosure.
  • the method for detecting the insulation resistance of the power battery may include steps S110 to S150.
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the switch unit to control the power battery On-off between the positive electrode and the negative electrode of the power battery and the sampling unit.
  • step S120 through an unbalanced bridge forming unit, under the control of the control unit, the unbalanced bridge forming unit itself and one electrode of the positive electrode of the power battery and the negative electrode of the power battery When connected, an unbalanced bridge is formed between the sampling unit and the switch unit.
  • a switch unit controls the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit.
  • step S140 through the sampling unit, under the condition that the switch unit controls the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, the positive electrode and the negative electrode of the power battery are checked. The voltage between one of the negative electrodes of the power battery and the ground is sampled to obtain the sampled voltage.
  • control unit determines the resistance of the positive electrode to the ground of the power battery and the resistance of the negative electrode of the power battery to the ground according to the sampled voltage.
  • an unbalanced bridge is formed through the sampling unit, the switch unit, the unbalanced bridge forming unit and the control unit, and the unbalanced bridge method is used to detect the high voltage insulation of the power battery, which can avoid the unbalanced measurement of the balanced bridge method. It is found that the positive and negative busbars have the same insulation resistance to the ground, so that the detection results are more accurate, and only one voltage value needs to be collected, which simplifies the AD sampling circuit.
  • the method further includes: a process of isolating the interlocking path for the selection of the positive electrode of the power battery and the negative electrode of the power battery by the switch unit.
  • the following is a schematic flow diagram of an embodiment of the isolation and interlocking path for the selection of the positive electrode of the power battery and the negative electrode of the power battery by the switch unit in the method of the present disclosure shown in FIG.
  • the specific process of selecting and isolating the interlocking path includes: step S210 and step S220.
  • Step S210 through the control unit, when it is necessary to control the switch unit to control the connection between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, send a control signal to the switch unit (eg PWM signal).
  • a control signal eg PWM signal
  • Step S220 through the isolation interlock module, based on the control signal, the switch unit is controlled to control the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, and when the power When one of the positive electrode of the battery and the negative electrode of the power battery is connected, the other electrode of the positive electrode of the power battery and the negative electrode of the power battery is controlled not to be connected.
  • the function of the isolation interlocking module is to prevent the contacts of the solid state relay K 1 and the solid state relay K 2 from being turned on at the same time.
  • the switch unit includes: a first switch unit and a second switch unit.
  • the first switch unit is arranged between the positive electrode of the power battery and the sampling unit.
  • the first switch unit includes: a first current limiting module (such as a resistor R 1 ) and a first switch module.
  • the positive electrode of the power battery is connected to the sampling unit after passing through the first current limiting module and the first switching module.
  • the second switch unit is arranged between the negative electrode of the power battery and the sampling unit.
  • the second switch unit includes: a second current limiting module (such as a resistor R 4 ) and a second switch module.
  • the positive electrode of the power battery is connected to the sampling unit after passing through the second current limiting module and the second switch module.
  • the unbalanced bridge forming unit includes: a third switch module (eg, switch K 3 ) and an unbalanced module (eg, resistor R 5 ). Wherein, the positive electrode of the power battery is grounded after passing through the unbalanced module and the third switch module.
  • a third switch module eg, switch K 3
  • an unbalanced module eg, resistor R 5
  • the resistor R 5 is an unbalanced resistor
  • the insulation detection circuit is an unbalanced bridge when the switch K 3 is closed.
  • Adopt MCU to control solid state relay K 1 , solid state relay K 2 and switch K 3 to selectively connect the positive electrode V+ of battery E and the negative electrode V- of battery E, only need to detect the voltage value in one place, reduce one AD sampling and simplify AD sampling circuit.
  • the sampling unit includes: a first voltage dividing module (eg, resistor R 2 ) and a second voltage dividing module (eg, resistor R 3 ). Wherein, the first voltage dividing module and the second voltage dividing module are arranged in series between the switch unit and the ground.
  • a first voltage dividing module eg, resistor R 2
  • a second voltage dividing module eg, resistor R 3
  • the resistor R 3 is a sampling resistor
  • point A ie, the common terminal of the resistor R 3 and the resistor R 2 ) is the AD sampling point.
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the
  • the switch unit controls the on-off between the positive electrode of the power battery and the negative electrode of the power battery and the sampling unit, including: controlling the first control of the switches of the first switch module, the second switch module and the third switch module process.
  • the control of the first switch module, the second switch module, the second switch module and the third switch module are further described below with reference to the schematic flowchart of an embodiment of the first control process for controlling the switches of the first switch module, the second switch module and the third switch module in the method of the present disclosure shown in FIG. 5 .
  • the specific process of the first control process of the switches of the switch module and the third switch module includes steps S310 to S340.
  • Step S310 when the positive and negative voltages of the power battery are maintained within a set voltage range, control the first switch module to be in a closed state, and control the second switch module and the third switch module Both are in an off state, and the first voltage across the second voltage dividing module (eg, the voltage V 1 across the resistor R 3 ) is detected.
  • the first voltage across the second voltage dividing module eg, the voltage V 1 across the resistor R 3
  • the voltage of the battery terminal is detected to ensure that the voltage of the battery terminal remains unchanged.
  • the MCU controls the contact of the solid-state relay K1 to be in a closed state, the contact of the solid - state relay K2 and the switch K3 are disconnected.
  • the AD of the MCU Sampling can sample the voltage V 1 across the resistor R 3 , which can be obtained according to Kirchhoff's current theorem:
  • Step S320 after delaying the first set time, control the second switch module to be in a closed state, and control both the first switch module and the third switch module to be in an open state, and detect the second switch module.
  • the second voltage across the voltage module eg, the voltage V 2 across the resistor R 3 ).
  • the voltage of the battery terminal is detected to ensure that the voltage of the battery terminal remains unchanged.
  • the MCU controls the contact of the solid - state relay K2 to be in a closed state, and the contact of the solid - state relay K1 and the switch K3 are disconnected.
  • the voltage V 2 across the resistor R 3 can be sampled through the AD sampling of the MCU, and can be obtained according to Kirchhoff's law of voltage and current:
  • Step S330 after delaying the second set time, control both the first switch module and the third switch module to be in a closed state, and control the second switch module to be in an open state, and detect the second switch module.
  • the third voltage across the voltage module eg, the voltage V 3 across the resistor R 3 .
  • the MCU controls the contacts of the solid - state relay K1 and the switch K3 to close, and the contacts of the solid - state relay K2 are disconnected.
  • the AD sampling of the MCU can sample the two ends of the resistor R3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • Step S340 after delaying a third set time, control the second switch module and the third switch module to be in a closed state, and control the first switch module to be in an open state, and detect the second switch module.
  • the fourth voltage across the voltage module eg, the voltage V 4 across the resistor R 3 ).
  • the MCU controls the contacts of the solid state relay K 2 and the switch K 3 to close, and the contacts of the solid state relay K 1 are disconnected.
  • the voltage across the resistor R 3 can be sampled through the AD sampling of the MCU.
  • V 4 according to Kirchhoff's voltage and current laws:
  • step S150 the control unit determines the resistance of the positive electrode to the ground of the power battery and the resistance of the negative electrode to the ground of the power battery according to the sampled voltage, including: according to the first voltage, the second The voltage, the third voltage, and the fourth voltage are calculated to obtain the resistance of the positive electrode of the power battery to the ground, and the resistance of the negative electrode of the power battery to the ground.
  • the insulation resistance R p of the positive electrode V+ of the battery E to the chassis ground and the insulation resistance R n of the negative electrode V- of the battery E to the chassis ground can be obtained:
  • control unit controls the connection or disconnection between the unbalanced bridge forming unit and one of the positive electrode of the power battery and the negative electrode of the power battery, and controls the
  • the switch unit controls the on/off between the positive pole of the power battery and the negative pole of the power battery and the sampling unit, and further includes: a second switch that controls the switches of the first switch module, the second switch module and the third switch module control process.
  • the following is a further description of the control of the first switch module, the second switch module, the second
  • the specific process of the second control process of the switches of the switch module and the third switch module includes steps S410 to S430.
  • Step S410 control the first switch module to be in a closed state, and control both the second switch module and the third switch module to be in an open state, and detect the first voltage across the second voltage divider module (eg voltage V 1 across resistor R 3 ).
  • the MCU controls the contact of the solid - state relay K1 to close, the contact of the solid - state relay K2 and the switch K3 are disconnected, and the measured voltage across the resistor R3 is V1, which can be obtained according to Kirchhoff’s voltage law :
  • Step S420 after a fourth set time delay, control the first switch module and the third switch module to be in a closed state, and control the second switch module to be in an open state, and detect the second switch module.
  • the second voltage across the voltage module eg, the voltage V 2 across the resistor R 3 ).
  • the MCU controls the contacts of the solid state relay K 1 and the switch K 3 to close, and the contacts of the solid state relay K 2 are disconnected.
  • the measured voltage across the resistor R 3 is V 2 , which is determined by Kirkho The husband's current law can be obtained:
  • Step S430 after a fifth set time delay, control the second switch module and the third switch module to be in a closed state, and control the first switch module to be in an open state, and detect the second switch module.
  • the third voltage across the voltage module eg, the voltage V 3 across the resistor R 3 .
  • the MCU controls the contacts of the solid state relay K2 and the switch K3 to close, and when the contacts of the solid state relay K1 are disconnected, the AD sampling of the MCU can sample the two ends of the resistor R3 .
  • the voltage V 3 according to Kirchhoff's law of voltage and current, can be obtained as:
  • step S150 the control unit determines the resistance of the positive electrode to the ground of the power battery and the resistance of the negative electrode of the power battery to the ground according to the sampled voltage, further comprising: according to the first voltage, the first voltage The second voltage and the third voltage are calculated to obtain the resistance of the positive electrode of the power battery to the ground, and the resistance of the negative electrode of the power battery to the ground.
  • the insulation resistances R p and R n of the battery E positive V- to the chassis ground can also be obtained.
  • the technical solution of this embodiment is adopted, and the positive electrode of the power battery or the negative electrode of the power battery is selectively connected by using the unbalanced bridge method, and only the positive electrode of the power battery or the negative electrode of the power battery is detected to the ground.
  • the detection of the insulation resistance of the power battery only one voltage value needs to be detected, which reduces one AD sampling and simplifies the AD sampling circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)

Abstract

一种动力电池的绝缘电阻的检测装置、方法和汽车,该装置包括:控制单元,控制不平衡电桥形成单元与动力电池的正极和动力电池的负极中的一个电极的连通或断开,并控制开关单元选择并接通一个电极;不平衡电桥形成单元,在自身与一个电极连通的情况下,与采样单元和开关单元之间,形成不平衡电桥;开关单元,选择并接通一个电极;采样单元,对选择并接通的一个电极与地之间的电压进行采样,得到采样电压;控制单元,根据采样电压,确定动力电池的正极对地的电阻、以及动力电池的负极对地的电阻。通过采用非平衡电桥法测量的正负母线对地的绝缘电阻,能够提高检测准确性。

Description

一种动力电池的绝缘电阻的检测装置、方法和汽车
本公开要求于2020年11月30日提交中国专利局、申请号为202011379215.0、发明名称为“一种动力电池的绝缘电阻的检测装置、方法和汽车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于电池技术领域,具体涉及一种动力电池的绝缘电阻的检测装置、方法和汽车,尤其涉及一种绝缘检测电路、方法和汽车。
背景技术
动力电池是新能源汽车的核心部件之一,由于高压的存在,电池的高压正极或电池高压负极通过绝缘层对整车地(如整车底盘地)构成电流回路,当整车绝缘性能下降时,漏电流就会增大,当漏电流达到一定值时,就会对人身安全和整车电气系统的运行造成危害。电动汽车高压绝缘性能直接关系到车内人员的生命安全,而绝缘性能由直流正负母线对整车地的电阻值决定,因此需要实时检测电动汽车的电池的绝缘电阻。相关方案中,采用平衡电桥法测量动力电池的正负母线对地的绝缘电阻,但测量不出动力电池的正负母线对地绝缘电阻相同的情况,因此检测准确性无法保证。
上述内容仅用于辅助理解本公开的技术方案,并不代表承认上述 内容是现有技术。
发明内容
本公开的目的在于,提供一种动力电池的绝缘电阻的检测装置、方法和汽车,以解决采用平衡电桥法测量的正负母线对地的绝缘电阻,检测准确性无法保证的问题,达到通过采用非平衡电桥法测量的正负母线对地的绝缘电阻,能够提高检测准确性的效果。
本公开提供一种动力电池的绝缘电阻的检测装置,包括:采样单元、开关单元、不平衡电桥形成单元和控制单元;其中,所述控制单元,被配置为控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;所述不平衡电桥形成单元,被配置为在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥;所述开关单元,被配置为控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;所述采样单元,被配置为对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压;所述控制单元,还被配置为根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
在一些实施方式中,还包括:隔离互锁模块;所述控制单元,被配置为在需要控制所述开关单元控制所述动力电池的正极和所述动 力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号;所述隔离互锁模块,被配置为基于所述控制信号,控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
在一些实施方式中,所述开关单元,包括:第一开关单元和第二开关单元;其中,所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间;所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间。
在一些实施方式中,所述第一开关单元,包括:第一限流模块和第一开关模块;所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元;所述第二开关单元,包括:第二限流模块和第二开关模块;所述动力电池的正极,经所述第二限流模块和所述第二开关模块后,连接至所述采样单元。
在一些实施方式中,所述第一开关模块,包括:第一固态继电器;所述第二开关模块,包括:第二固态继电器。
在一些实施方式中,所述不平衡电桥形成单元,包括:第三开关模块和不平衡模块;其中,所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
在一些实施方式中,所述采样单元,包括:第一分压模块和第二分压模块;其中,所述第一分压模块和所述第二分压模块,串联设置 在所述开关单元与地之间。
在一些实施方式中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第二电压;延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压;延时第三设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压;所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,包括:根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
在一些实施方式中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力 电池的负极与所述采样单元之间的通断,还包括:控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压;延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压;所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,还包括:根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
与上述装置相匹配,本公开再一方面提供一种汽车,包括:以上所述的动力电池的绝缘电阻的检测装置。
与上述汽车相匹配,本公开再一方面提供一种动力电池的绝缘电阻的检测方法,包括:通过控制单元,控制不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;通过不平衡电桥形成单元,在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极 中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥;通过开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;通过采样单元,对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压;通过控制单元,还根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
在一些实施方式中,还包括:通过控制单元,在需要控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号;通过隔离互锁模块,基于所述控制信号,控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
在一些实施方式中,所述开关单元,包括:第一开关单元和第二开关单元;其中,所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间;所述第一开关单元,包括:第一限流模块和第一开关模块;所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元;所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间;所述第二开关单元,包括:第二限流模块和第二开关模块;所述动力电池的正极,经所述第二限流模 块和所述第二开关模块后,连接至所述采样单元。
在一些实施方式中,所述不平衡电桥形成单元,包括:第三开关模块和不平衡模块;其中,所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
在一些实施方式中,所述采样单元,包括:第一分压模块和第二分压模块;其中,所述第一分压模块和所述第二分压模块,串联设置在所述开关单元与地之间。
在一些实施方式中,通过控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第二电压;延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压;延时第三设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压;通过控制单元,根据所述采样电压,确定所述动力电池的正极对地的 电阻、以及所述动力电池的负极对地的电阻,包括:根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
在一些实施方式中,通过控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,还包括:控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压;延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压;通过控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,还包括:根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
由此,本公开的方案,通过采用非平衡电桥法,选择性地接入动力电池的正极或动力电池的负极,只检测动力电池的正极或动力电池的负极对地的电压值,实现对动力电池的绝缘电阻的检测,通过采用 非平衡电桥法测量的正负母线对地的绝缘电阻,能够提高检测准确性。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
附图说明
图1为本公开的动力电池的绝缘电阻的检测装置的一实施例的结构示意图;
图2为绝缘检测电路的一实施例的结构示意图;
图3为本公开的动力电池的绝缘电阻的检测方法的一实施例的流程示意图;
图4为本公开的方法中对开关单元对动力电池正极和动力电池负极的选择路径进行隔离互锁的一实施例的流程示意图;
图5为本公开的方法中控制第一开关模块、第二开关模块和第三开关模块的开关的第一控制过程的一实施例的流程示意图;
图6为本公开的方法中控制第一开关模块、第二开关模块和第三开关模块的开关的第二控制过程的一实施例的流程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施 例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
根据本公开的实施例,提供了一种动力电池的绝缘电阻的检测装置。参见图1所示本公开的装置的一实施例的结构示意图。该动力电池的绝缘电阻的检测装置可以包括:采样单元、开关单元、不平衡电桥形成单元和控制单元(如MCU)。
其中,所述控制单元,被配置为控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断。
所述不平衡电桥形成单元,被配置为在所述控制单元的控制下,在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥。
所述开关单元,被配置为在所述控制单元的控制下,控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断。
所述采样单元,被配置为在所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压。
所述控制单元,还被配置为根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,通过采样单元、开关单元、不平衡电桥形成单元和控制单元,形成不平衡电桥,采用非平衡电桥法的方法进行动力电池的高压绝缘检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,使检测结果更加准确,并且只需要采集一处电压值,简化了AD采样电路。
在一些实施方式中,还包括:隔离互锁模块,以实现对开关单元对动力电池正极和动力电池负极的选择路径进行隔离互锁的过程。
其中,所述控制单元,被配置为在需要控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号(如PWM信号)。
所述隔离互锁模块,被配置为基于所述控制信号,控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
具体地,在开关单元包括固态继电器K 1和固态继电器K 2的情况下,隔离互锁模块的作用是使固态继电器K 1的触点和固态继电器K 2的触点不能同时导通。
在一些实施方式中,所述开关单元,包括:第一开关单元和第二开关单元。其中,所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间。所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间。
在一些实施方式中,所述第一开关单元,包括:第一限流模块(如电阻R 1)和第一开关模块。所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元。
所述第二开关单元,包括:第二限流模块(如电阻R 4)和第二开关模块。所述动力电池的正极,经所述第二限流模块和所述第二开关模块后,连接至所述采样单元。
在一些实施方式中,所述第一开关模块,包括:第一固态继电器(如固态继电器K 1)。所述第二开关模块,包括:第二固态继电器(如固态继电器K 2)。
具体地,固态继电器K 1和固态继电器K 2的作用是选择性地接入电池的正负端,具体地:固态继电器K 1的触点和固态继电器K 2的触点不能同时闭合,所以需要经过隔离互锁模块进行控制。电池的正端(如蓄电池E的正极V+),通过串联的电阻R 1和固态继电器K 1的触点以及电阻R 2,连接至采样点A点。电池的负端(如蓄电池E的负极V-),通过串联的电阻R 4和固态继电器K 2的触点以及电阻R 2连接至采样点A点,采样点A点通过采样电阻R 3连接至底盘地。
在一些实施方式中,所述不平衡电桥形成单元,包括:第三开关模块(如开关K 3)和不平衡模块(如电阻R 5)。其中,所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
具体地,电阻R 5为不平衡电阻,开关K 3闭合时该绝缘检测电路为不平衡电桥。采用MCU控制固态继电器K 1、固态继电器K 2和开关K 3选择性地接入蓄电池E正极V+和蓄电池E负极V-,只需检测 一处的电压值,减少了一路AD采样,简化了AD采样电路。
在一些实施方式中,所述采样单元,包括:第一分压模块(如电阻R 2)和第二分压模块(如电阻R 3)。其中,所述第一分压模块和所述第二分压模块,串联设置在所述开关单元与地之间。
具体地,电阻R 3为采样电阻,A点(即电阻R 3和电阻R 2的公共端)为AD采样点。
在一些实施方式中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:控制第一开关模块、第二开关模块和第三开关模块的开关的第一控制过程,具体可以如下:
在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压(如电阻R 3两端的电压V 1)。
具体地,检测电池端的电压,确保电池端的电压保持不变,当MCU控制固态继电器K 1的触点处于闭合状态,固态继电器K 2的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 1,根据基尔霍夫电流定理可得:
Figure PCTCN2021110371-appb-000001
延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所 述第二分压模块两端的第二电压(如电阻R 3两端的电压V 2)。
具体地,检测电池端的电压,确保电池端的电压保持不变,延时一段时间后,MCU控制固态继电器K 2的触点处于闭合状态,固态继电器K 1的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 2,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000002
延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压(如电阻R 3两端的电压V 3)。
具体地,延时一段时间后,MCU控制固态继电器K 1的触点、开关K 3闭合,固态继电器K 2的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000003
延时第三设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压(如电阻R 3两端的电压V 4)。
具体地,延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 4,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000004
在一些实施方式中,所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,包括:根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,根据公式(1)-公式(4)可以得出蓄电池E的正极V+对底盘地的绝缘电阻R p和蓄电池E的负极V-对底盘地的绝缘电阻R n
Figure PCTCN2021110371-appb-000005
Figure PCTCN2021110371-appb-000006
在一些实施方式中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,还包括:控制第一开关模块、第二开关模块和第三开关模块的开关的第二控制过程,具体可以如下:
所述控制单元,具体还被配置为控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压(如电阻R 3两端的电压V 1)。
具体地,MCU控制固态继电器K 1的触点闭合,固态继电器K 2的触点和开关K 3断开,测得电阻R 3两端的电压为V 1,根据基尔霍夫电压定律可得:
Figure PCTCN2021110371-appb-000007
所述控制单元,具体还被配置为延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压(如电阻R 3两端的电压V 2)。
具体地,延时一段时间后,MCU控制固态继电器K 1的触点和开关K 3闭合,固态继电器K 2的触点断开,测得电阻R 3两端的电压为V 2,由基尔霍夫电流定律可以得出:
Figure PCTCN2021110371-appb-000008
所述控制单元,具体还被配置为延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压(如电阻R 3两端的电压V 3)。
具体地,延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000009
在一些实施方式中,所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,还包括:根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,根据公式(4)、(5)和(6)也可以得出蓄电池E正V-对底盘地的绝缘电阻R p和R n
经大量的试验验证,采用本公开的技术方案,通过采用非平衡电桥法,选择性地接入动力电池的正极或动力电池的负极,只检测动力电池的正极或动力电池的负极对地的电压值,实现对动力电池的绝缘电阻的检测,通过采用非平衡电桥法测量的正负母线对地的绝缘电阻,能够提高检测准确性。
根据本公开的实施例,还提供了对应于动力电池的绝缘电阻的检测装置的一种汽车。该汽车可以包括:以上所述的动力电池的绝缘电阻的检测装置。
相关方案中,在检测车辆的绝缘电阻时,采用了两路AD采集电路进行检测,采样电路的结构复杂,占用单片机的资源较多。
在一些实施方式中,本公开的方案,提供一种绝缘检测电路及绝缘检测方法,采用非平衡电桥法的方法进行动力电池的高压绝缘检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,使检测结果更加准确,并且只需要采集一处电压值,简化了AD采样电 路。
其中,依据电桥平衡条件进行测量的电桥称为平衡电桥,它的操作繁琐、测量时间长,平时所说的电桥通常是指平衡电桥。非平衡电桥即不平衡电桥,是通过直接测量电桥非平衡状态下流经指示器的电流或两端电压大小来测量集总参数元件的,它的操作简便、测量时间短、易实现数字化测量。
具体地,本公开的方案,采用非平衡电桥法的方法,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,增加了检测的准确性,同时采用MCU控制固态继电器K 1、固态继电器K 2和开关K 3选择性地接入蓄电池E正极V+和蓄电池E负极V-,只需检测一处的电压值,减少了一路AD采样,简化了AD采样电路。
可见,本公开的方案,采用非平衡电桥法的方法进行动力电池的高压绝缘检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,使检测结果更加准确,并且在检测过程中只采取一路AD采样,简化了AD采样电路。
图2为绝缘检测电路的一实施例的结构示意图。如图2所示,绝缘检测电路,绝缘检测电路,包括:电阻R 1、电阻R 2、电阻R 3、电阻R 4和电阻R 5,固体继电器K 1、固体继电器K 2和开关K 3,隔离互锁模块和MCU。隔离互锁模块,可以选用型号为CD40106B和CD4011B的芯片。
其中,MCU的PWM输出端,连接至隔离互锁模块的输入端。隔离互锁模块的第一输出端,连接至固态继电器K 1的线圈。隔离互 锁模块的第二输出端,连接至固态继电器K 2的线圈。固态继电器K 1的触点、固态继电器K 2的触点和电阻R 4,连接至蓄电池E的负极V-。蓄电池E的正极V+,经电阻R 1连接至固态继电器K 1。固态继电器K 1的触点和固态继电器K 2的触点之间的公共端,经电阻R 2和电阻R 3后接地。蓄电池E的正极V+经电阻R 5和开关K 3的触点后接地。电阻R 2和电阻R 3的公共端连接至MCU的AD采样端。
在图2所示的例子中,U表示电池正负母线之间的电压,R p为蓄电池E的正极V+对底盘地的绝缘电阻,R n为蓄电池E的负极V-对底盘地的绝缘电阻。地即为底盘地。其余为测量电路的主体电路,包括:电阻R 1、电阻R 2、电阻R 3、电阻R 4和电阻R 5,固态继电器K 1、固态继电器K 2和开关K 3。电阻R 1、电阻R 2、电阻R 4具有分压限流的作用。固态继电器K 1、固态继电器K 2和开关K 3用来选择电路的开通与关断。隔离互锁模块的作用是使固态继电器K 1的触点和固态继电器K 2的触点不能同时导通。
电阻R 3为采样电阻,A点(即电阻R 3和电阻R 2的公共端)为AD采样点。电阻R 5为不平衡电阻,开关K 3闭合时该绝缘检测电路为不平衡电桥。
固态继电器K 1和固态继电器K 2的作用是选择性地接入电池的正负端,具体地:固态继电器K 1的触点和固态继电器K 2的触点不能同时闭合,所以需要经过隔离互锁模块进行控制。电池的正端(如蓄电池E的正极V+),通过串联的电阻R 1和固态继电器K 1的触点以及电阻R 2,连接至采样点A点。电池的负端(如蓄电池E的负极V-), 通过串联的电阻R 4和固态继电器K 2的触点以及电阻R 2连接至采样点A点,采样点A点通过采样电阻R 3连接至底盘地。固态继电器应用于板载上,具有体积小,响应速度快,可靠性高,电磁兼容性好、驱动功率低等好处。
在图2所示的例子中,只需要采集一处电压值,简化了AD采样电路。
在一些实施方式中,本公开的方案中,绝缘检测电路的绝缘检测方法,包括:
步骤11、检测电池端的电压,确保电池端的电压保持不变,当MCU控制固态继电器K 1的触点处于闭合状态,固态继电器K 2的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 1,根据基尔霍夫电流定理可得:
Figure PCTCN2021110371-appb-000010
步骤12、检测电池端的电压,确保电池端的电压保持不变,延时一段时间后,MCU控制固态继电器K 2的触点处于闭合状态,固态继电器K 1的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 2,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000011
其中,为确保电池端的电压保持不变,可以通过采样可以检测出电池端的电压,如果电压不相等,可进行延时后继续检测。
步骤13、延时一段时间后,MCU控制固态继电器K 1的触点、 开关K 3闭合,固态继电器K 2的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000012
步骤14、延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 4,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000013
根据公式(1)-公式(4)可以得出蓄电池E的正极V+对底盘地的绝缘电阻R p和蓄电池E的负极V-对底盘地的绝缘电阻R n
Figure PCTCN2021110371-appb-000014
Figure PCTCN2021110371-appb-000015
在一些实施方式中,本公开中的实施方式也可按照如下方式进行计算:
步骤21、MCU控制固态继电器K 1的触点闭合,固态继电器K 2的触点和开关K 3断开,测得电阻R 3两端的电压为V 1,根据基尔霍夫电压定律可得:
Figure PCTCN2021110371-appb-000016
步骤22、延时一段时间后,MCU控制固态继电器K 1的触点和开关K 3闭合,固态继电器K 2的触点断开,测得电阻R 3两端的电压为V 2,由基尔霍夫电流定律可以得出:
Figure PCTCN2021110371-appb-000017
步骤23、延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000018
步骤24、根据公式(4)、(5)和(6)也可以得出蓄电池E正V-对底盘地的绝缘电阻R p和R n
在步骤21至步骤24中,也需要检测电池端的电压,并确保电池端的电压保持不变。
本公开的方案,根据上述公式进行计算,可以对绝缘电阻检测的更为准确。采用非平衡电桥法的方法进行动力电池的高压绝缘检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,使检测结果更加准确,并且在检测过程中只采取一路AD采样,简化了AD采样电路。
由于本实施例的汽车所实现的处理及功能基本相应于前述图1所示的装置的实施例、原理和实例,故本实施例的描述中未详尽之处, 可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本公开的技术方案,通过采用非平衡电桥法,选择性地接入动力电池的正极或动力电池的负极,只检测动力电池的正极或动力电池的负极对地的电压值,实现对动力电池的绝缘电阻的检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,增加了检测的准确性。
根据本公开的实施例,还提供了对应于汽车的一种动力电池的绝缘电阻的检测方法,如图3所示本公开的方法的一实施例的流程示意图。该动力电池的绝缘电阻的检测方法可以包括:步骤S110至步骤S150。
在步骤S110处,通过控制单元,控制不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断。
在步骤S120处,通过不平衡电桥形成单元,在所述控制单元的控制下,在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥。
在步骤S130处,通过开关单元在所述控制单元的控制下,控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断。
在步骤S140处,通过采样单元,在所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压。
在步骤S150处,通过控制单元,还根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,通过采样单元、开关单元、不平衡电桥形成单元和控制单元,形成不平衡电桥,采用非平衡电桥法的方法进行动力电池的高压绝缘检测,能够避免平衡电桥法测量不出正负母线对地绝缘电阻相同的情况,使检测结果更加准确,并且只需要采集一处电压值,简化了AD采样电路。
在一些实施方式中,还包括:对开关单元对动力电池正极和动力电池负极的选择进行隔离互锁路径的过程。
下面结合图4所示本公开的方法中对开关单元对动力电池正极和动力电池负极的选择进行隔离互锁路径的一实施例流程示意图,进一步说明对开关单元对动力电池正极和动力电池负极的选择进行隔离互锁路径的具体过程,包括:步骤S210和步骤S220。
步骤S210,通过控制单元,在需要控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号(如PWM信号)。
步骤S220,通过隔离互锁模块,基于所述控制信号,控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采 样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
具体地,在开关单元包括固态继电器K 1和固态继电器K 2的情况下,隔离互锁模块的作用是使固态继电器K 1的触点和固态继电器K 2的触点不能同时导通。
在一些实施方式中,所述开关单元,包括:第一开关单元和第二开关单元。
其中,所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间。所述第一开关单元,包括:第一限流模块(如电阻R 1)和第一开关模块。所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元。
所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间。所述第二开关单元,包括:第二限流模块(如电阻R 4)和第二开关模块。所述动力电池的正极,经所述第二限流模块和所述第二开关模块后,连接至所述采样单元。
在一些实施方式中,所述不平衡电桥形成单元,包括:第三开关模块(如开关K 3)和不平衡模块(如电阻R 5)。其中,所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
具体地,电阻R 5为不平衡电阻,开关K 3闭合时该绝缘检测电路为不平衡电桥。采用MCU控制固态继电器K 1、固态继电器K 2和开关K 3选择性地接入蓄电池E正极V+和蓄电池E负极V-,只需检测 一处的电压值,减少了一路AD采样,简化了AD采样电路。
在一些实施方式中,所述采样单元,包括:第一分压模块(如电阻R 2)和第二分压模块(如电阻R 3)。其中,所述第一分压模块和所述第二分压模块,串联设置在所述开关单元与地之间。
具体地,电阻R 3为采样电阻,A点(即电阻R 3和电阻R 2的公共端)为AD采样点。
在一些实施方式中,步骤S110中通过控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:控制第一开关模块、第二开关模块和第三开关模块的开关的第一控制过程。
下面结合图5所示本公开的方法中控制第一开关模块、第二开关模块和第三开关模块的开关的第一控制过程的一实施例流程示意图,进一步说明控制第一开关模块、第二开关模块和第三开关模块的开关的第一控制过程的具体过程,包括:步骤S310至步骤S340。
步骤S310,在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压(如电阻R 3两端的电压V 1)。
具体地,检测电池端的电压,确保电池端的电压保持不变,当MCU控制固态继电器K 1的触点处于闭合状态,固态继电器K 2的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端 的电压V 1,根据基尔霍夫电流定理可得:
Figure PCTCN2021110371-appb-000019
步骤S320,延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第二电压(如电阻R 3两端的电压V 2)。
具体地,检测电池端的电压,确保电池端的电压保持不变,延时一段时间后,MCU控制固态继电器K 2的触点处于闭合状态,固态继电器K 1的触点和开关K 3断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 2,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000020
步骤S330,延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压(如电阻R 3两端的电压V 3)。
具体地,延时一段时间后,MCU控制固态继电器K 1的触点、开关K 3闭合,固态继电器K 2的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000021
步骤S340,延时第三设定时间后,控制所述第二开关模块和所 述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压(如电阻R 3两端的电压V 4)。
具体地,延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 4,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000022
步骤S150中通过控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,包括:根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,根据公式(1)-公式(4)可以得出蓄电池E的正极V+对底盘地的绝缘电阻R p和蓄电池E的负极V-对底盘地的绝缘电阻R n
Figure PCTCN2021110371-appb-000023
Figure PCTCN2021110371-appb-000024
在一个实施方式中,步骤S110中通过控制单元,控制所述不平 衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,还包括:控制第一开关模块、第二开关模块和第三开关模块的开关的第二控制过程。
下面结合图6所示本公开的方法中控制第一开关模块、第二开关模块和第三开关模块的开关的第二控制过程的一实施例流程示意图,进一步说明控制第一开关模块、第二开关模块和第三开关模块的开关的第二控制过程的具体过程,包括:步骤S410至步骤S430。
步骤S410,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压(如电阻R 3两端的电压V 1)。
具体地,MCU控制固态继电器K 1的触点闭合,固态继电器K 2的触点和开关K 3断开,测得电阻R 3两端的电压为V 1,根据基尔霍夫电压定律可得:
Figure PCTCN2021110371-appb-000025
步骤S420,延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压(如电阻R 3两端的电压V 2)。
具体地,延时一段时间后,MCU控制固态继电器K 1的触点和开关K 3闭合,固态继电器K 2的触点断开,测得电阻R 3两端的电压为V 2,由基尔霍夫电流定律可以得出:
Figure PCTCN2021110371-appb-000026
步骤S430,延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压(如电阻R 3两端的电压V 3)。
具体地,延时一段时间后,MCU控制固态继电器K 2的触点、开关K 3闭合,固态继电器K 1的触点断开时,此时通过MCU的AD采样可采样到电阻R 3两端的电压V 3,根据基尔霍夫电压和电流定律可以得出:
Figure PCTCN2021110371-appb-000027
步骤S150中通过控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,还包括:根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
具体地,根据公式(4)、(5)和(6)也可以得出蓄电池E正V-对底盘地的绝缘电阻R p和R n
由于本实施例的方法所实现的处理及功能基本相应于前述汽车的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本实施例的技术方案,通过采用非平衡电桥法,选择性地接入动力电池的正极或动力电池的负极,只检测动 力电池的正极或动力电池的负极对地的电压值,实现对动力电池的绝缘电阻的检测,只需检测一处的电压值,减少了一路AD采样,简化了AD采样电路。
综上,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (17)

  1. 一种动力电池的绝缘电阻的检测装置,包括:采样单元、开关单元、不平衡电桥形成单元和控制单元;其中,
    所述控制单元,被配置为控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;
    所述不平衡电桥形成单元,被配置为在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥;
    所述开关单元,被配置为控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;
    所述采样单元,被配置为对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压;
    所述控制单元,还被配置为根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
  2. 根据权利要求1所述的动力电池的绝缘电阻的检测装置,其中,还包括:隔离互锁模块;
    所述控制单元,被配置为在需要控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号;
    所述隔离互锁模块,被配置为基于所述控制信号,控制所述开关 单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
  3. 根据权利要求1或2所述的动力电池的绝缘电阻的检测装置,其中,所述开关单元,包括:第一开关单元和第二开关单元;其中,
    所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间;
    所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间。
  4. 根据权利要求3所述的动力电池的绝缘电阻的检测装置,其中,所述第一开关单元,包括:第一限流模块和第一开关模块;所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元;
    所述第二开关单元,包括:第二限流模块和第二开关模块;所述动力电池的正极,经所述第二限流模块和所述第二开关模块后,连接至所述采样单元。
  5. 根据权利要求4所述的动力电池的绝缘电阻的检测装置,其中,所述第一开关模块,包括:第一固态继电器;所述第二开关模块,包括:第二固态继电器。
  6. 根据权利要求4所述的动力电池的绝缘电阻的检测装置,其中,所述不平衡电桥形成单元,包括:第三开关模块和不平衡模块; 其中,
    所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
  7. 根据权利要求6所述的动力电池的绝缘电阻的检测装置,其中,所述采样单元,包括:第一分压模块和第二分压模块;其中,
    所述第一分压模块和所述第二分压模块,串联设置在所述开关单元与地之间。
  8. 根据权利要求7所述的动力电池的绝缘电阻的检测装置,其中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:
    在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;
    延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第二电压;
    延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压;
    延时第三设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压;
    所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,包括:
    根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
  9. 根据权利要求7所述的动力电池的绝缘电阻的检测装置,其中,所述控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,还包括:
    控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;
    延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压;
    延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压;
    所述控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,还包括:
    根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
  10. 一种汽车,包括:如权利要求1至9中任一项所述的动力电池的绝缘电阻的检测装置。
  11. 一种动力电池的绝缘电阻的检测方法,包括:
    通过控制单元,控制不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;
    通过不平衡电桥形成单元,在所述不平衡电桥形成单元自身与所述动力电池的正极和所述动力电池的负极中的一个电极连通的情况下,与所述采样单元和所述开关单元之间,形成不平衡电桥;
    通过开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断;
    通过采样单元,对所述动力电池的正极和所述动力电池的负极中的一个电极与地之间的电压进行采样,得到采样电压;
    通过控制单元,还根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
  12. 根据权利要求11所述的动力电池的绝缘电阻的检测方法,其中,还包括:
    通过控制单元,在需要控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断的情况下,向所述开关单元发送控制信号;
    通过隔离互锁模块,基于所述控制信号,控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,并在所述动力电池的正极和所述动力电池的负极中的一个电极接通的情况下,控制所述动力电池的正极和所述动力电池的负极中的另一个电极不被接通。
  13. 根据权利要求11或12所述的动力电池的绝缘电阻的检测方法,其中,所述开关单元,包括:第一开关单元和第二开关单元;其中,
    所述第一开关单元,设置在所述动力电池的正极与所述采样单元之间;所述第一开关单元,包括:第一限流模块和第一开关模块;所述动力电池的正极,经所述第一限流模块和所述第一开关模块后,连接至所述采样单元;
    所述第二开关单元,设置在所述动力电池的负极与所述采样单元之间;所述第二开关单元,包括:第二限流模块和第二开关模块;所述动力电池的正极,经所述第二限流模块和所述第二开关模块后,连接至所述采样单元。
  14. 根据权利要求13所述的动力电池的绝缘电阻的检测方法,其中,所述不平衡电桥形成单元,包括:第三开关模块和不平衡模块;其中,
    所述动力电池的正极,经所述不平衡模块和所述第三开关模块后接地。
  15. 根据权利要求14所述的动力电池的绝缘电阻的检测方法,其中,所述采样单元,包括:第一分压模块和第二分压模块;其中,
    所述第一分压模块和所述第二分压模块,串联设置在所述开关单元与地之间。
  16. 根据权利要求15所述的动力电池的绝缘电阻的检测方法,其中,通过控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,包括:
    在所述动力电池的正负极电压维持在设定电压范围内的情况下,控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;
    延时第一设定时间后,控制所述第二开关模块处于闭合状态,并控制所述第一开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第二电压;
    延时第二设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第三电压;
    延时第三设定时间后,控制所述第二开关模块和所述第三开关模 块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第四电压;
    通过控制单元,根据所述采样电压,确定所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻,包括:
    根据所述第一电压、所述第二电压、所述第三电压和所述第四电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
  17. 根据权利要求15所述的动力电池的绝缘电阻的检测方法,其中,通过控制单元,控制所述不平衡电桥形成单元与所述动力电池的正极和所述动力电池的负极中的一个电极的连通或断开,并控制所述开关单元控制所述动力电池的正极和所述动力电池的负极与所述采样单元之间的通断,还包括:
    控制所述第一开关模块处于闭合状态,并控制所述第二开关模块和所述第三开关模块均处于断开状态,检测所述第二分压模块两端的第一电压;
    延时第四设定时间后,控制所述第一开关模块和所述第三开关模块均处于闭合状态,并控制所述第二开关模块处于断开状态,检测所述第二分压模块两端的第二电压;
    延时第五设定时间后,控制所述第二开关模块和所述第三开关模块均处于闭合状态,并控制所述第一开关模块处于断开状态,检测所述第二分压模块两端的第三电压;
    通过控制单元,根据所述采样电压,确定所述动力电池的正极对 地的电阻、以及所述动力电池的负极对地的电阻,还包括:
    根据所述第一电压、所述第二电压和所述第三电压,计算得到所述动力电池的正极对地的电阻、以及所述动力电池的负极对地的电阻。
PCT/CN2021/110371 2020-11-30 2021-08-03 一种动力电池的绝缘电阻的检测装置、方法和汽车 WO2022110887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011379215.0A CN112578300A (zh) 2020-11-30 2020-11-30 一种动力电池的绝缘电阻的检测装置、方法和汽车
CN202011379215.0 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110887A1 true WO2022110887A1 (zh) 2022-06-02

Family

ID=75126584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110371 WO2022110887A1 (zh) 2020-11-30 2021-08-03 一种动力电池的绝缘电阻的检测装置、方法和汽车

Country Status (2)

Country Link
CN (1) CN112578300A (zh)
WO (1) WO2022110887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117991062A (zh) * 2024-04-03 2024-05-07 江苏英拓动力科技有限公司 一种微电网多机并网时的绝缘检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578300A (zh) * 2020-11-30 2021-03-30 珠海格力电器股份有限公司 一种动力电池的绝缘电阻的检测装置、方法和汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203396844U (zh) * 2013-06-08 2014-01-15 广东明阳龙源电力电子有限公司 用于光伏发电系统的直流母线对地绝缘电阻检测系统
CN203705549U (zh) * 2013-12-02 2014-07-09 北汽福田汽车股份有限公司 动力系统的绝缘电阻检测系统
CN109917240A (zh) * 2019-03-07 2019-06-21 深圳市盛弘电气股份有限公司 一种双边直流绝缘检测方法和系统
WO2019164300A1 (ko) * 2018-02-21 2019-08-29 주식회사 이티에스 이차전지셀의 절연저항측정방법
CN110726876A (zh) * 2018-07-16 2020-01-24 昆山富士锦电子有限公司 绝缘电阻检测装置
CN210051820U (zh) * 2019-04-01 2020-02-11 威雅利电子(上海)有限公司 一种绝缘检测装置及电池管理系统
CN112578300A (zh) * 2020-11-30 2021-03-30 珠海格力电器股份有限公司 一种动力电池的绝缘电阻的检测装置、方法和汽车

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707144B (zh) * 2012-05-24 2016-06-08 北华大学 动力电池组母线绝缘电阻测量装置及方法
CN202870176U (zh) * 2012-10-09 2013-04-10 浙江埃菲生能源科技有限公司 一种直流接地电阻检测装置
CN103105537B (zh) * 2012-12-26 2015-08-12 深圳创动科技有限公司 电池板对地绝缘阻抗检测电路及方法
CN105606960B (zh) * 2016-03-16 2018-07-06 同济大学 海洋装备配电线路接地故障监测系统
CN106291282A (zh) * 2016-08-11 2017-01-04 北京新能源汽车股份有限公司 一种动力系统的绝缘监测装置及方法
CN106291112B (zh) * 2016-10-27 2019-06-18 宁德时代新能源科技股份有限公司 绝缘电阻检测电路及方法
CN109212385B (zh) * 2017-06-29 2020-11-13 宝沃汽车(中国)有限公司 电动汽车的整车电路绝缘检测方法和装置
CN107765149A (zh) * 2017-10-13 2018-03-06 上海钛昕电气科技有限公司 集成多功能的绝缘检测装置
CN110873845A (zh) * 2018-08-31 2020-03-10 宁德时代新能源科技股份有限公司 一种绝缘检测方法
CN209691889U (zh) * 2018-12-04 2019-11-26 欣旺达惠州动力新能源有限公司 一种电池管理系统
CN110967557B (zh) * 2019-02-25 2021-06-15 宁德时代新能源科技股份有限公司 检测电路及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203396844U (zh) * 2013-06-08 2014-01-15 广东明阳龙源电力电子有限公司 用于光伏发电系统的直流母线对地绝缘电阻检测系统
CN203705549U (zh) * 2013-12-02 2014-07-09 北汽福田汽车股份有限公司 动力系统的绝缘电阻检测系统
WO2019164300A1 (ko) * 2018-02-21 2019-08-29 주식회사 이티에스 이차전지셀의 절연저항측정방법
CN110726876A (zh) * 2018-07-16 2020-01-24 昆山富士锦电子有限公司 绝缘电阻检测装置
CN109917240A (zh) * 2019-03-07 2019-06-21 深圳市盛弘电气股份有限公司 一种双边直流绝缘检测方法和系统
CN210051820U (zh) * 2019-04-01 2020-02-11 威雅利电子(上海)有限公司 一种绝缘检测装置及电池管理系统
CN112578300A (zh) * 2020-11-30 2021-03-30 珠海格力电器股份有限公司 一种动力电池的绝缘电阻的检测装置、方法和汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117991062A (zh) * 2024-04-03 2024-05-07 江苏英拓动力科技有限公司 一种微电网多机并网时的绝缘检测方法
CN117991062B (zh) * 2024-04-03 2024-06-07 江苏英拓动力科技有限公司 一种微电网多机并网时的绝缘检测方法

Also Published As

Publication number Publication date
CN112578300A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022110887A1 (zh) 一种动力电池的绝缘电阻的检测装置、方法和汽车
CN107991625B (zh) 动力蓄电池系统绝缘电阻检测电路与检测方法
WO2020147749A1 (zh) 绝缘检测电路及检测方法、电池管理系统
CN109521359A (zh) 一种动力电池主负继电器状态检测电路及方法
CN111308396B (zh) 虚焊检测电路及方法
US20200200833A1 (en) Monitoring device for monitoring an electrical energy source with respect to the source voltage thereof and the insulation resistances thereof, high-voltage system, and method for operating the monitoring device
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
WO2020173429A1 (zh) 检测电路及方法
WO2023231734A1 (zh) 一种高压上下电接触器触点状态诊断装置、方法及车辆
CN111812474A (zh) 直流充电桩绝缘检测电路、系统及方法
CN108732511A (zh) 一种直流电源系统的绝缘电阻检测电路及检测方法
CN112798975A (zh) 高压电池包的绝缘检测电路及检测方法
CN110456265A (zh) 一种充电桩内继电器的检测方法
CN112415374A (zh) 用于测量光耦继电器响应时间的测量电路及测量方法
WO2021227582A1 (zh) 一种开关检测器、开关检测器的使用方法及车辆
CN109917240B (zh) 一种双边直流绝缘检测方法和系统
JP2015090745A (ja) 外部短絡試験装置及び外部短絡試験方法
WO2021248961A1 (zh) 高压互锁装置及其检测方法
WO2022022038A1 (zh) 一种绝缘电阻检测电路及方法
CN116047324A (zh) 一种电池组用矩阵开关短路检测电路及检测方法
US20170033416A1 (en) Secondary cell state detector
CN113189530B (zh) 电芯充放电测试设备的计量校准装置
CN114167268A (zh) 一种断路器特性测试辅助装置
CN113567502A (zh) 电子开关电路中的湿气检测
RU2013133667A (ru) Схема управления для электромагнитного реле

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896394

Country of ref document: EP

Kind code of ref document: A1