WO2021227582A1 - 一种开关检测器、开关检测器的使用方法及车辆 - Google Patents

一种开关检测器、开关检测器的使用方法及车辆 Download PDF

Info

Publication number
WO2021227582A1
WO2021227582A1 PCT/CN2021/076100 CN2021076100W WO2021227582A1 WO 2021227582 A1 WO2021227582 A1 WO 2021227582A1 CN 2021076100 W CN2021076100 W CN 2021076100W WO 2021227582 A1 WO2021227582 A1 WO 2021227582A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
impedance element
switch
switch detector
voltage
Prior art date
Application number
PCT/CN2021/076100
Other languages
English (en)
French (fr)
Inventor
李小秋
余文海
林志添
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2021227582A1 publication Critical patent/WO2021227582A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication

Definitions

  • This application relates to the technical field of switch device detection, and in particular to a switch detector, a method of using the switch detector, and a vehicle.
  • Switching devices such as relays and contactors, are relatively common components in the circuit. After the switching devices are installed in the circuit, they usually need to be tested to ensure that they work well.
  • the voltage at both ends of the switching device is usually detected by a function table, and it is judged whether the switching device to be detected is well-conducted and well-disconnected according to the indication of the function table.
  • the positive line and the negative line will be equipped with a switching device.
  • the switching device on the positive line if the switching device on the negative line is in an off state or is in a poor conduction state, then regardless of the switching device Whether the conduction is good or not, the detection results obtained by using the above method are all poor conduction. It can be seen that the error rate of the detection results obtained when using this method to detect the switching device is relatively high.
  • the embodiments of the present application provide a switch detector, a method for using the switch detector, and a vehicle, which can solve the problem of high error rate of the detection result obtained when the switch device is detected in the related art.
  • the technical solution is as follows :
  • a switch detector includes a power supply element and an impedance element, wherein:
  • the power supply element and the impedance element are connected in series to form a detection circuit, and the output end of the detection circuit is used to connect with the switching device to be detected;
  • the switch detector is used to detect the switch device through the voltage of the impedance element and the drive signal input to the switch device when the output terminal is electrically connected to the switch device.
  • the power supply element, the impedance element, and the switching device to be detected may form a closed loop. At this time, you can measure the voltage across the impedance element, and then cooperate with the drive signal input to the switching device to determine whether the switching device is in good conduction, whether it is in good disconnection, whether there is adhesion failure, and whether there is no action failure.
  • the switch detector further includes a switch element, and the power element, the impedance element, and the switch element are connected in series to form a detection circuit;
  • the switch detector is configured to pass the voltage of the impedance element and the drive input to the switch device when the output terminal is electrically connected to the switch device, and the switch device is in a conductive state. Signal to detect the switching device.
  • the switching element of the switch detector when the switching device needs to be detected, the switching element of the switch detector can be controlled to be turned on, and when the switching device does not need to be detected, the switching element of the switch detector can be controlled to be turned off, saving power components Power.
  • the switch detector may have a button for controlling the on and off of the switch element, and the user can control the on and off of the switch element of the switch detector by manipulating the button.
  • the switch detector further includes an isolation transformer, and the impedance element includes a first impedance element and a second impedance element;
  • the power supply element, the first impedance element of the impedance element, and the primary coil of the isolation transformer are connected in series to form a measuring branch of the detection circuit, and the second impedance element of the impedance element is connected to the secondary of the isolation transformer.
  • the coils are connected in series to form an isolation branch of the detection circuit, and the output end of the detection circuit is located in the isolation branch;
  • the switch detector is used to detect the switch device through the voltage of the first impedance element of the impedance element and the drive signal input to the switch device.
  • the isolation transformer can divide the detection circuit into a measurement branch and an isolation branch.
  • the voltage in the measurement branch is lower, which can reduce potential safety hazards.
  • the switch detector may include a switch element, and the switch element is used for the user to operate to start and stop the detection work of the switch detector.
  • the switch element may be located in the measuring point. In the road. In this way, the first impedance element among the power supply element, the switching element, and the impedance element and the primary coil of the isolation transformer are connected in series to form a measurement branch of the detection circuit.
  • the isolation transformer isolates the switching device to be tested, and the output terminal of the detection circuit is used to connect with the switching device to be tested, the output terminal of the detection circuit is located in the isolation branch, and the output terminal is connected to the switching device to be tested After that, the switching device is located on the isolation branch circuit, so that the secondary coil of the isolation transformer, the second impedance element and the switching device can form a closed loop.
  • the switch detector is used for:
  • the detection result of the switching device is a non-operation fault.
  • the power supply element, the impedance element, and the switching device can form a closed loop, and the voltage across the impedance element can be measured. If the voltage of the impedance element is within the target voltage range and the drive signal input to the switching device is a conduction signal, it can be determined that the detection result of the switching device is good conduction. If the voltage of the impedance element is not within the target voltage range and the drive signal input to the switching device is an off signal, it can be determined that the detection result of the switching device is good off.
  • the detection result of the switching device is an adhesion failure. If the voltage of the impedance element is not within the target voltage range, and the driving signal input to the switching device is an on signal, it can be determined that the detection result of the switching device is a non-operation fault.
  • the target voltage range is determined by the total voltage of the power supply element and the impedance value of the impedance element.
  • the target voltage range may be determined by the total voltage of the power supply element. If the detection circuit of the switch detector includes two impedance elements, the target voltage range can be determined by the total voltage of the power supply element and the impedance values of the two impedance elements.
  • the impedance element is one or a combination of a resistance element, a capacitance element, and an inductance element.
  • the impedance element may be a capacitive element, or may be a combination of multiple capacitive elements, or may be a resistive element, or may be a combination of multiple resistive elements, or may be an inductor
  • the element may be a combination of multiple inductance elements, or may be a combination of a resistance element and a capacitance element, or may be a combination of a resistance element and an inductance element, or may be a combination of a capacitance element and an inductance element, or, It can also be a combination of resistive elements, capacitive elements, and inductive elements.
  • This embodiment does not limit the specific structure of the impedance element.
  • Capacitive elements may be used as examples in the drawings, but they do not constitute a limitation.
  • the switch detector further includes a function table, and the function table is connected in parallel with the impedance element for measuring the voltage of the impedance element.
  • the function table may be a voltmeter, an ammeter, a resistance meter, etc., which is not limited in this embodiment, as long as the voltage at both ends of the impedance element can be measured.
  • a method for using a switch detector is provided.
  • the switch detector is any one of the above-mentioned switch detectors, and the method includes:
  • the detection result of the switching device is determined according to the voltage of the impedance element and the driving signal input to the switching device.
  • the output terminal of the switch detector may be two wire ends, and the two wire ends may be connected to both ends of the switching device.
  • the switch detector includes an isolation transformer, the voltage across the first impedance element among the impedance elements can be obtained.
  • the switch detector can obtain the voltage at both ends of the impedance element through a function table, where the function table can be an independent device with respect to the switch detector, or it can be a component of the switch detector.
  • the function table belongs to the switch detector, the function table is connected in parallel to both ends of the impedance element.
  • the function table can be connected in parallel to both ends of the first impedance element.
  • the driving signal can include a turn-on signal and a turn-off signal, and can be triggered by a user's operation.
  • the detection result includes good conduction, good disconnection, adhesion failure and non-operation failure
  • the determining the detection result of the switching device according to the voltage of the impedance element and the driving signal input to the switching device includes:
  • the driving signal input to the switch device to be detected is a conduction signal, it is determined that the measurement result is a non-operation fault.
  • the switch detector includes a function table connected in parallel with the impedance element
  • the obtaining the voltage of the impedance element of the switch detector includes:
  • the voltage of the impedance element of the switch detector is obtained through the function table.
  • the battery system of the vehicle includes a battery, a fast charging circuit, a normal charging circuit, a power distribution circuit, a plurality of switching devices, and the above-mentioned switch detector, wherein:
  • the fast charging line, the ordinary charging line, and the power distribution line are respectively connected to the battery, and the fast charging line, the ordinary charging line, and the power distribution line each include at least one of the switching devices , Each of the switching devices is connected with the switch detector in parallel.
  • the battery system of the vehicle may also be referred to as the power supply system of the vehicle.
  • the positive line of the fast charging line can be connected to the positive electrode of the battery, and the negative line of the fast charging line can be connected to the negative electrode of the battery. Since the fast charging line is a high-voltage line, it can be connected to the positive line and A switching device is respectively arranged on the negative line, and both ends of the two switching devices on the fast charging line can be respectively connected with a switch detector.
  • the normal charging circuit and the fast charging circuit are connected in parallel.
  • the positive circuit of the normal charging circuit can be connected to the positive terminal of the battery
  • the negative circuit of the normal charging circuit can be connected to the negative terminal of the battery
  • the normal charging circuit can also be connected to the negative terminal of the battery. It is a high-voltage line, and a switching device can also be arranged on the positive line and the negative line respectively, and the two switching devices on the common charging line can be connected with switch detectors respectively.
  • the battery system of the vehicle provides electrical energy for the accessories in the vehicle.
  • the battery system also includes a power distribution line. Connected to the negative pole of the battery, the power distribution line is also a high-voltage line. You can also arrange a switching device on the positive line and the negative line. The two switching devices on the power distribution line can be connected to both ends. Switch detector.
  • the switching device on the distribution line is specifically located on the trunk of the distribution line, as an important switching device of the distribution line, for example, a switch device is arranged on the trunk of the positive line of the distribution line, and the trunk of the negative line is arranged A switching device.
  • the battery system further includes a pre-charging line, the positive line of the power distribution line is provided with the switching device, and the pre-charging line is connected in parallel to the positive line of the power distribution line Both ends of the switching device;
  • the precharging circuit includes the switching device, and the switching device of the precharging circuit is connected in parallel with the switch detector.
  • the pre-charging circuit includes switching devices and pre-charging groups. At the moment the vehicle is just started, the switching devices on the pre-charging circuit are in the on state, and the switching devices on the positive line of the power distribution line are in the off state, and the current flows through The pre-charging circuit, because of the pre-charging resistance in the pre-charging circuit, can prevent the large current in the distribution circuit from burning out the device.
  • the switch detector has an independent power element as the power supply during detection. After the output terminal of the detection circuit of the switch detector is connected to the switching device to be tested, a closed loop can be formed without resorting to The closed loop where the switching device to be tested is located. Therefore, when the switch detector detects the switching device on the positive line, it is not affected by the working state of the switching device on the negative line. When the switch detector detects the switching device on the negative line, it is not affected by the positive line. The working state of the switching device on the device is affected. Therefore, when the switch detector is used to detect the switching device, the accuracy of the detection result can be improved, and the error rate of the detection result can be reduced.
  • the switch detector can be applied to switching devices located in a closed loop, and can also be applied to switching devices not in a closed loop, which can improve the wide range of use of the switch detector.
  • FIG. 1 is a schematic diagram of a circuit structure of a switch detector provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the circuit structure of a switch detector provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a circuit structure of a switch detector provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of a switch detector provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a circuit structure of a switch detector provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for using a switch detector according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for using a switch detector according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a battery system of a vehicle provided by an embodiment of the present application.
  • the embodiment of the present application relates to a switch detector, which can be used to detect whether the switching device is in a good state, for example, whether the switching device is in good conduction and whether it is in good disconnection.
  • the switching device can be any device that can be turned on and off, such as a relay, a contactor, and a circuit breaker.
  • the switching device may be a switching device in household electricity, or a switching device in a vehicle, etc.
  • the present embodiment does not limit the application field of the switching device to be detected.
  • the switch detector may include a power supply element 1 and an impedance element 2.
  • the power supply element 1 and the impedance element 2 are connected in series to form a detection circuit, and the output end of the detection circuit is used to connect with the switching device to be detected.
  • the output terminal of the switch detector may be two wire ends, and the two wire ends may be connected to both ends of the switching device 3. In this way, the switch detector can be used to detect the switch device 3 through the voltage of the impedance element 2 and the drive signal input to the switch device 3 when the output terminal is electrically connected to the switch device 3.
  • the impedance element 2 may be one or a combination of a resistance element, a capacitance element, and an inductance element.
  • the impedance element 2 may be a capacitive element, or may be a combination of multiple capacitive elements, or may be a resistive element, or may be a combination of multiple resistive elements, or may be an inductive element, or It can be a combination of multiple inductance elements, or it can be a combination of a resistance element and a capacitance element, or it can be a combination of a resistance element and an inductance element, or it can be a combination of a capacitance element and an inductance element, or it can be Combination of resistance element, capacitance element and inductance element, etc.
  • This embodiment does not limit the specific structure of the impedance element 2.
  • the capacitance element may be used as an example in the drawings, but it does not constitute a limitation.
  • the power supply element 1 may be a DC power supply element, a DC pulse-type power supply, or other types of power supply. This embodiment is not limited to this, and it can realize power supply to the impedance element 2. Can.
  • the power supply element 1 and the impedance element 2 may be electrically connected to form a detection circuit, and the detection circuit has an output terminal for electrically connecting with the switching device 3 to be tested.
  • the power supply element 1, the impedance element 2 and the switch device to be tested 3 can form a closed loop.
  • the voltage across the impedance element 2 can be measured, and then combined with the drive signal input to the switching device 3, it can be judged whether the switching device 3 is in good conduction, whether it is in good disconnection, whether there is adhesion failure, and whether there is any failure. Operation failure.
  • the driving signal is a signal used to drive the switch device 3 to perform the on function and the off function, and can be triggered by the operation of a user (such as a detection person), and the driving signal may include a on signal and a off signal.
  • the switch detector can determine that the detection result of the switching device 3 is good conduction according to the voltage of the impedance element 2 within the target voltage range and the drive signal input to the switching device 3 as the conduction signal; The voltage of the impedance element 2 is not within the target voltage range, and the drive signal input to the switching device 3 is an off signal.
  • the detection result of the switching device 3 is good; it can be determined that the voltage of the impedance element 2 is within the target voltage range, and the switch The drive signal input by the device 3 is an off signal, and it is determined that the detection result of the switching device 3 is an adhesion failure; it can also be based on that the voltage of the impedance element 2 is not within the target voltage range, and the drive signal input to the switching device 3 is an on signal, It is determined that the detection result of the switching device 3 is a non-operation fault.
  • the adhesion fault is the fault that the switching device 3 is normally closed and cannot be opened
  • the non-operation fault is the fault that the switching device 3 is normally open and cannot be closed. No conduction.
  • the target voltage range can be determined by the total voltage of the power supply element 1 and the impedance value of the impedance element 2. If it is not within the target voltage range, for example, if it is detected that the voltage of the impedance element 2 is 0, it can be considered that it is not within the target voltage range.
  • the target voltage range can be U 0 - ⁇ U to U 0 + ⁇ U, where ⁇ U technicians can flexibly choose one according to the actual situation Voltage value.
  • the total voltage U 0 of the power supply element 1 is, and the number of impedance elements 2 is two, which can be called the first impedance element 21 and the second impedance element 22 respectively.
  • the impedance element 21 and the second impedance element 22 and the switching device 3 connected to the output terminal may form a closed loop.
  • the switching device 3 can be detected by the voltage of the first impedance element 21 or the voltage of the second impedance element 22, and the drive signal.
  • the first impedance element 21 and the second impedance element 22 are both capacitors.
  • the target voltage range may be:
  • C 21 is the capacitance value of the first impedance element
  • C 22 is the capacitance value of the second impedance element 22
  • ⁇ U can be a voltage value flexibly selected by a technician according to the actual situation.
  • the switch detector has an independent power supply element as the power supply for detection. After the output terminal of the detection circuit of the switch detector is connected to the switching device to be tested, a closed loop can be formed, without the need for waiting The closed circuit where the detected switching device is located, so when the switch detector detects the switching device on the positive line, it is not affected by the working state of the switching device on the negative line.
  • the switching device on the negative line can be in conductive state.
  • the on state can also be in the off state or in the fault state.
  • the switch detector detects the switching device on the negative line, it is not affected by the working state of the switching device on the positive line.
  • the switching device on the positive line can be in the on state or in the off state. On state, it can also be in a fault state. Therefore, when the switch detector is used to detect the switching device, the accuracy of the detection result can be improved, and the error rate of the detection result can be reduced.
  • the switch detector can detect both switching devices in closed loops and non-closed loops, thereby improving the application versatility of the switch detector and making the application scenarios more extensive.
  • the voltage of the impedance element 2 can be measured by the function table 6, which can be a voltmeter, an ammeter, or a resistance meter.
  • the switch detector may not include a function table, and the user can use the function table to measure the voltage value across the impedance element 2.
  • the switch detector may include a function table.
  • the switch detector includes a function table 6.
  • the function table 6 is connected in parallel with the impedance element 2, and the function table 6 can measure the voltage of the impedance element 2 and display Measurement results for users to view.
  • the switch detector in order to save the power of the power supply element 1, the switch detector can be activated when detection is needed, and shut down when detection is not needed.
  • the switch detector can also include a switching element 4.
  • the power supply element 1, the impedance element 2 and the switching element 4 are connected in series to form a detection circuit.
  • the switch detector can be used to electrically connect the output terminal to the switching device 3, and the switching device 4 is turned on, through the voltage of the impedance element 2 and the drive signal input to the switching device 3, to the switch Device 3 is tested.
  • the switching element 4 can be a common switch, or a MOS tube, etc.
  • the specific structure of the switching element 4 is not limited in this embodiment, and it can detect the conduction and disconnection of the circuit. Take the MOS tube type switching element as an example, but it is not limited to this.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the switch detector may have a button for controlling the on and off of the switch element 4, and the user can control the on and off of the switch element 4 of the switch detector by manipulating the button.
  • the switching element 4 of the switch detector can be controlled to be turned on, and the voltage across the impedance element 2 can be measured through the function table 6. If the voltage across the impedance element 2 is within the target voltage range, and the drive signal input to the switching device 3 is a conduction signal, it indicates that the conduction of the switching device 3 is good. If the voltage across the impedance element 2 is not within the target voltage range, such as zero, and the drive signal input to the switching device 3 is an off signal, it means that the switching device 3 is off well.
  • the switching device 3 has an adhesion failure. If the voltage across the impedance element 2 is not within the target voltage range, for example, zero, and the drive signal input to the switching device 3 is a conduction signal, it means that the switching device 3 has a non-operation fault.
  • the switching device 3 can be used in a high-voltage line.
  • the switching device 3 located in the high-voltage line is detected, there is a greater safety hazard to the user.
  • the switch detector may further include an isolation transformer 5, and the impedance element 2 may include a first impedance element 21 and a second impedance element 22;
  • the first impedance element 21 in the power supply element 1, the impedance element 2 and the primary coil of the isolation transformer 5 are connected in series to form a measuring branch of the detection circuit, and the second impedance element 22 in the impedance element 2 is connected in series with the secondary coil of the isolation transformer 5
  • An isolated branch of the detection circuit is formed, and the output end of the detection circuit is located in the isolated branch.
  • the switch detector can be used to detect the switching device 3 through the voltage of the first impedance element 21 of the impedance element 2 and the drive signal input to the switching device 3.
  • the isolation transformer 5 can divide the detection circuit into a measurement branch and an isolation branch.
  • the voltage in the measurement branch is relatively low, which can reduce or even avoid potential safety hazards during detection.
  • the first impedance element 21 in the measuring branch is used for the function meter 6 to measure the voltage across it, and the second impedance element 22 is used to avoid a short circuit in the isolation branch.
  • the switching device 3 can be detected by measuring the voltage of the first impedance element 21 and the driving signal input to the switching device 3.
  • the circuit diagram shown in FIG. 5 can be equivalently converted first.
  • the circuit diagram of FIG. 5 can be equivalently converted to the circuit diagram shown in FIG. 2, except that the capacitance value of the second impedance element 22 changes.
  • the turns ratio of the primary coil and the secondary coil of the isolation transformer 5 is n:1, so the voltage across the first impedance element 21 can be calculated by the following formula:
  • C 21 represents the capacitance value of the first impedance element
  • C 22 represents the capacitance value of the second impedance element
  • U 0 represents the total voltage of the power supply element 1
  • U 21 represents the voltage across the first impedance element 21.
  • the switch detector may include a switch element 4, which is used by the user to start and stop the detection work of the switch detector.
  • the switch element 4 may be located in the measuring branch. In this way, the power supply element 1, the switching element 4, the first impedance element 21 of the impedance element 2 and the primary coil of the isolation transformer 5 are connected in series to form a measurement branch of the detection circuit.
  • the isolation transformer 5 isolates the switching device 3 to be tested, and the output terminal of the detection circuit is used to connect with the switching device 3 to be tested, the output terminal of the detection circuit is located in the isolation branch. After the switching device 3 is connected, the switching device 3 is located on the isolation branch, so that the secondary coil of the isolation transformer 5, the second impedance element 22 and the switching device 3 can form a closed loop.
  • the output terminal located on the isolation branch can be connected to the switching device 3 to be tested, and then the switching element 4 on the measuring branch can be controlled to be turned on. After that, the user inputs a driving signal to the switching device 3.
  • the voltage of the first impedance element 21 is within the target voltage range and the drive signal is a conduction signal, which corresponds to the switching device 3 being well conducted; the voltage of the first impedance element 21 is not within the target voltage range and the drive signal is The disconnection signal corresponds to the good disconnection of the switching device 3; the voltage of the first impedance element 21 is within the target voltage range and the drive signal is a disconnection signal, which corresponds to the adhesion failure of the switching device 3; the voltage of the first impedance element 21 is not within the target voltage range If the drive signal is turned on, the corresponding switching device 3 does not work.
  • the voltage of the first impedance element 21 is not within the target voltage range, which may mean that the voltage of the first impedance element 21 is zero.
  • the detection circuit can be divided into a measurement branch and an isolation branch.
  • the user can connect the switching device 3 to be tested on the isolation branch, and perform the status of the switching device 3 on the measurement branch. Detection.
  • the switch detector with this detection circuit can improve the safety of the user and reduce the hidden safety hazard in the detection process.
  • the switch detector has an independent power element as the power supply during detection.
  • a closed loop can be formed without With the help of the closed circuit where the switching device to be detected is located, when the switch detector detects the switching device on the positive line, it is not affected by the working state of the switching device on the negative line.
  • the switching device on the negative line can be In the on state, it can also be in the off state, and it can also be in the fault state.
  • the switch detector detects the switching device on the negative line, it is not affected by the working state of the switching device on the positive line.
  • the switching device on the positive line can be in the on state or in the off state. On state, it can also be in a fault state. Therefore, when the switch detector is used to detect the switching device, the accuracy of the detection result can be improved, and the error rate of the detection result can be reduced.
  • This application also provides a method for using a switch detector, which is the above-mentioned switch detector, and the method can be executed according to the process shown in FIG. 6:
  • step 601 the output terminal of the switch detector is connected to the switch device 3 to be tested.
  • the output terminal of the switch detector may be two wire ends, and the two wire ends may be connected to both ends of the switching device 3.
  • step 602 the voltage of the impedance element 2 of the switch detector is obtained.
  • the switch detector includes an isolation transformer 5
  • the voltage across the first impedance element 21 in the impedance element 2 can be obtained.
  • the switch detector can obtain the voltage across the impedance element 2 through a function table, where the function table can be a device independent of the switch detector, or it can be a component of the switch detector. If the function table belongs to a switch detector, the function table is connected in parallel to both ends of the impedance element 2. For example, in the case where the switch detector includes an isolation transformer 5, the function table 6 can be connected in parallel to both ends of the first impedance element 21.
  • step 603 the driving signal input to the switching device 3 is acquired.
  • the driving signal may include a turn-on signal and a turn-off signal, which may be triggered by a user's operation.
  • step 604 the detection result of the switching device 3 is determined according to the voltage of the impedance element 2 and the driving signal input to the switching device 3.
  • the detection result may include good conduction, good disconnection, adhesion failure and non-operation failure.
  • the voltage across the impedance element 2 is also the total voltage of the power supply element 1, wherein the total voltage can be measured by a function table.
  • the detection result is good conduction.
  • the measurement result is a good disconnection.
  • the measurement result is an adhesion failure.
  • the measurement result is a non-operation fault.
  • the process of detecting the switching device 3 to be detected by the switch detector may be as shown in FIG. 7:
  • step 701 is entered to control the switching element 4 of the switch detector to be turned on.
  • the switch detector has a button for triggering the switch element 4 to be turned on and off, and the user can manipulate the button to control the switch element 4 to be turned on, and then go to step 702.
  • step 702 the voltage across the impedance element 2 is measured, for example, the voltage across the impedance element 2 is measured through the function table 6 connected in parallel with the impedance element 2.
  • step 703 it is determined whether the voltage of the impedance element 2 is within the target voltage range. For example, in the case where the switch detector has the isolation transformer 5, it is determined whether the voltage across the first impedance element 21 is within the target voltage range. After that, according to the relationship between the voltage of the impedance element 2 and the target voltage range, and the driving signal, the good and fault conditions of the switching device 3 are determined.
  • the driving signal input to the switching device 3 is determined.
  • the driving signal includes a turn-on signal and a turn-off signal.
  • the driving signal is a turn-on signal or a turn-off signal, it can be judged by the user's operation of the switch device 3.
  • the switch device 3 may have a switch button for the user to operate, and the user inputs a turn-on signal or a turn-off signal to the switch device 3 through the switch button.
  • the detection result of the switching device 3 is that the conduction is good.
  • the voltage across the impedance element 2 is within the target voltage range, and the drive signal is an off signal, the detection result of the switching device 3 is an adhesion failure.
  • the voltage at both ends of the impedance element 2 is not within the target voltage range, and the drive signal is an off signal, then the detection result of the switching device 3 is that the off is good.
  • the voltage across the impedance element 2 is not within the target voltage range, and the drive signal is a conduction signal, the detection result of the switching device 3 is a non-operation fault.
  • the switch detector When using the switch detector to detect the switching device 3 to be tested, it may be performed once to draw a conclusion, or it may need to be performed twice to draw a conclusion.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is within the target voltage range and the drive signal is an off signal, it can be determined The switching device 3 has a fault and is a sticking fault. Then, there is no need to detect the conduction function afterwards, that is, it is the first time that the switching device 3 is judged to be faulty, and there is no need to continue the detection.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is not within the target voltage range, and the drive signal is a turn-on signal, it can be determined The switching device 3 has a fault and is a non-operation fault. Then, there is no need to detect the conduction function afterwards, that is, it is the first time that the switching device 3 is judged to be faulty, and there is no need to continue the detection.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is within the target voltage range and the drive signal is a conduction signal, it can be excluded The switching device 3 does not have a non-operation fault, but there may also be an adhesion fault, and its disconnection function needs to be detected later. Then a second test is performed. In the second test, if it is determined that the voltage of the impedance element 2 is not within the target voltage range and the drive signal is an off signal, then the switching device 3 can continue to be ruled out without adhesion failure. Furthermore, according to the two detection results, it can be concluded that the switching device 3 conducts well and disconnects well.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is within the target voltage range and the drive signal is a conduction signal, it can be excluded The switching device 3 does not have a non-operation fault, but there may also be an adhesion fault, and its disconnection function needs to be detected later. Then a second test is performed. In the second test, if it is determined that the voltage of the impedance element 2 is within the target voltage range and the drive signal is an off signal, then the switching device 3 has an adhesion failure.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is not within the target voltage range and the drive signal is an off signal, it can be excluded The switching device 3 does not have an adhesion failure, but may also have a non-operation failure, and its conduction function needs to be detected later. Then the second test is performed. In the second test, if it is determined that the voltage of the impedance element 2 is within the target voltage range and the drive signal is a conduction signal, then the switching device 3 does not have a non-operation fault, that is, the The conduction of the switching device 3 is good. Furthermore, according to the two detection results, it can be concluded that the switching device 3 conducts well and disconnects well.
  • the switching device 3 when the switching device 3 is tested, in the first test, if it is determined that the voltage of the impedance element 2 is not within the target voltage range and the drive signal is an off signal, it can be excluded The switching device 3 does not have an adhesion failure, but may also have a non-operation failure, and its conduction function needs to be detected later.
  • a second test is performed. In the second test, if it is determined that the voltage of the impedance element 2 is not within the target voltage range and the drive signal is a conduction signal, then the switching device 3 has a non-operation fault.
  • a switch detector with an independent power supply element is used, and the output terminal of the detection circuit of the switch detector is connected to the switching device to be tested After that, a closed loop can be formed without the need to rely on the closed loop where the switching device to be detected is located. Therefore, when the switch detector detects the switching device on the positive line, it is not affected by the working state of the switching device on the negative line. For example, the switching device on the negative line can be in an on state, or in an off state, or in a fault state. Similarly, when the switch detector detects the switching device on the negative line, it is not affected by the working state of the switching device on the positive line.
  • the switching device on the positive line can be in the on state or in the off state. On state, it can also be in a fault state. Therefore, when the switch detector is used to detect the switching device, the accuracy of the detection result can be improved, and the error rate of the detection result can be reduced.
  • the switch detector can be applied to switching devices located in a closed loop, and can also be applied to switching devices not in a closed loop, thereby increasing the wide range of use of the switch detector.
  • the embodiment of the present application also provides a vehicle.
  • the vehicle may be an electric vehicle or a hybrid vehicle.
  • the battery system 10 of the vehicle may include a battery 101, a fast charging line 102, and a common charging line. 103.
  • the line 103 and the power distribution line 104 respectively include at least one switching device 3, and each switching device 3 is connected in parallel with a switch detector.
  • FIG. 8 does not show a switch detector connected in parallel to each switching device, and the diagram of the switch detector can be referred to as shown in FIG. 1 to FIG. 5.
  • the battery system 10 of the vehicle may also be referred to as the power supply system of the vehicle.
  • the switching devices 3 included in the battery system 10 can be relays, circuit breakers, or contactors.
  • they can all be relays, or all circuit breakers, or all contactors, or
  • this embodiment does not limit the specific type of the switching device 3.
  • the positive line of the fast charging line 102 can be connected to the positive electrode of the battery 101, and the negative line of the fast charging line 102 can be connected to the negative electrode of the battery 101.
  • a switching device 3 can be arranged on the positive circuit and the negative circuit respectively. Both ends of the two switching devices 3 on the fast charging line 102 can be connected with switch detectors respectively.
  • the output end of the detection circuit of the switch detector can be connected to both ends of each switching device 3 through the switch detector.
  • the normal charging circuit 103 and the fast charging circuit 102 are connected in parallel.
  • the positive circuit of the normal charging circuit 103 can be connected to the positive electrode of the battery 101
  • the negative circuit of the normal charging circuit 103 can be connected to
  • the ordinary charging circuit 103 is also a high-voltage circuit
  • a switching device 3 can also be arranged on the positive circuit and the negative circuit respectively.
  • Both ends of the two switching devices 3 on the ordinary charging line 103 can be connected with switch detectors respectively.
  • the output end of the detection circuit of the switch detector can be connected to both ends of each switching device 3 through the switch detector.
  • the battery system 10 of the vehicle provides electrical energy for the accessories in the vehicle.
  • the battery system 10 further includes a power distribution line 104.
  • the negative circuit of the circuit 104 can be connected to the negative electrode of the battery 101.
  • the power distribution circuit 104 is also a high-voltage circuit, and a switching device 3 can also be arranged on the positive circuit and the negative circuit. Both ends of the two switching devices 3 on the power distribution line 104 can be connected with switch detectors respectively.
  • the output end of the detection circuit of the switch detector can be connected to both ends of each switching device 3 through the switch detector.
  • the switching device 3 on the distribution line 104 is specifically located on the trunk of the distribution line 104, as an important switching device of the distribution line 104, for example, a switching device 3 is arranged on the trunk of the positive line of the distribution line 104, A switching device 3 is arranged on the trunk of the negative line.
  • various accessories of the vehicle can be connected to the power distribution line 104, where, as shown in FIG. 8, a switch device 3 can be arranged on the branch where each accessory is located.
  • the above-mentioned switch detectors can also be connected to both ends of the switching device 3.
  • the battery system 10 may also include a pre-charge circuit 105, There is a switching device 3 on the positive line of the electric circuit 104, and the precharging line 105 can be connected in parallel to both ends of the switching device 3 on the positive line of the distribution line 104; the precharging line 105 includes the switching device 3 and the precharging line 105 The switching device 3 may also be connected in parallel with the above-mentioned switch detector.
  • the pre-charging circuit 105 includes a switching device 3 and a pre-charging group. At the moment the vehicle is just started, the switching device 3 on the pre-charging circuit 105 is in a conducting state, and the positive circuit of the power distribution circuit 104 The upper switching device 3 is in an off state, and the current flows through the precharging circuit 105. Since the precharging circuit 105 has a precharging resistor, it can avoid the occurrence of a large current in the power distribution circuit 104 and burning out the device.
  • the process of using the switch detector to detect the switching devices connected in parallel can refer to the above-mentioned method of using the switch detector and the process shown in FIG. 7, which will not be repeated here.
  • a switch detector connected in parallel with it when detecting the switching device on the battery system of the vehicle, a switch detector connected in parallel with it can be used for detection.
  • the switch detector and switching device connected in parallel can form a closed loop without the need for the vehicle.
  • the battery to provide detection power. Therefore, when the switch detector detects the switching device on the positive line, it is not affected by the working state of the switching device on the negative line.
  • the switching device on the negative line can be in the on state or in the off state. , It can also be in a fault state.
  • the switch detector detects the switching device on the negative line it is not affected by the working state of the switching device on the positive line.
  • the switching device on the positive line can be in the on state or in the off state. On state, it can also be in a fault state. Therefore, when the switch detector is used to detect the switching device, the accuracy of the detection result can be improved, and the error rate of the detection result can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本申请实施例公开了一种开关检测器、开关检测器的使用方法和车辆,属于开关器件检测技术领域。该开关检测器包括电源元件和阻抗元件,其中电源元件和阻抗元件相串联形成检测线路,检测线路的输出端用于与待检测的开关器件相连;该开关检测器用于在输出端与开关器件电性连接状态下,通过阻抗元件的电压和向开关器件输入的驱动信号,对开关器件检测。采用本申请,检测线路的输出端接在待检测的开关器件上便可构成闭合回路,无需借助开关器件所在的闭合回路,对正极线路上的开关器件检测时,不受负极线路上的开关器件的影响,对负极线路上的开关器件检测时,也不受正极线路上的开关器件的影响。故可以提高检测结果的准确率,降低检测结果的错误率。

Description

一种开关检测器、开关检测器的使用方法及车辆
本申请要求于2020年05月14日提交的申请号为202010406274.6、发明名称为“一种开关检测器、开关检测器的使用方法及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及开关器件检测技术领域,特别涉及一种开关检测器、开关检测器的使用方法及车辆。
背景技术
开关器件,例如,继电器和接触器等是线路中比较常见的元器件,开关器件安装在线路中后,通常需要对其进行检测,以确保其工作良好。
相关技术中通常是通过功能表检测开关器件两端的电压,根据功能表的示数判断待检测的开关器件是否为导通良好,以及是否为断开良好。
而高压线路中,正极线路和负极线路会分别安装一个开关器件,在检测正极线路上的开关器件时,如果负极线路上的开关器件处于断开状态或者处于导通不良好状态,那么无论开关器件是否为导通良好,使用上述方法得出的检测结果均为导通不良好,可见,使用该方法对开关器件进行检测时得出的检测结果的错误率较高。
发明内容
本申请实施例提供了一种开关检测器、开关检测器的使用方法和车辆,能够解决相关技术中对开关器件进行检测时得出的检测结果的错误率较高的问题,所述技术方案如下:
一方面,提供了一种开关检测器,所述开关检测器包括电源元件和阻抗元件,其中:
所述电源元件和所述阻抗元件相串联形成检测线路,所述检测线路的输出端用于与待检测的开关器件相连;
所述开关检测器,用于在所述输出端与所述开关器件电性连接状态下,通过所述阻抗元件的电压和向所述开关器件输入的驱动信号,对所述开关器件进行检测。
在一种示例中,该开关检测器的输出端与待检测的开关器件实现电性连接之后,电源元件、阻抗元件和待检测的开关器件可以构成闭合回路。这个时候可以测量阻抗元件两端的电压,然后再配合向开关器件输入的驱动信号,可以判断出该开关器件是否处于导通良好,是否处于断开良好,是否存在粘连故障,是否存在不动作故障。
在一种可能的实施方式中,所述开关检测器还包括开关元件,所述电源元件、所述阻抗元件和所述开关元件相串联形成检测线路;
所述开关检测器,用于在所述输出端与所述开关器件电性连接,且所述开关元件为导通的状态下,通过所述阻抗元件的电压和向所述开关器件输入的驱动信号,对所述开关器件进行检测。
在一种示例中,当需要对开关器件进行检测时,可以控制开关检测器的开关元件导通,当不需要对开关器件进行检测时,可以控制开关检测器的开关元件断开,节约电源元件的电量。
在一种示例中,该开关检测器上可以具有控制开关元件导通和断开的按钮,用户可以通过操控该按钮控制开关检测器的开关元件的导通和断开。
在一种可能的实施方式中,所述开关检测器还包括隔离变压器,所述阻抗元件包括第一阻抗元件和第二阻抗元件;
所述电源元件、所述阻抗元件中的第一阻抗元件和所述隔离变压器的原线圈相串联形成检测线路的测量分路,所述阻抗元件中的第二阻抗元件和所述隔离变压器的副线圈相串联形成检测线路的隔离分路,所述检测线路的输出端位于所述隔离分路中;
所述开关检测器,用于通过所述阻抗元件的第一阻抗元件的电压和向所述开关器件输入的驱动信号,对所述开关器件进行检测。
其中,隔离变压器可以将检测线路划分为测量分路和隔离分路,测量分路中的电压较低,可以降低安全隐患。
在一种示例中,如上述所述,该开关检测器可以包括开关元件,开关元件用于供用户操作,来启动和停止该开关检测器的检测工作,为了安全起见,开关元件可以位于测量分路中。这样,电源元件、开关元件、阻抗元件中的第一阻抗元件和隔离变压器的原线圈相串联形成检测线路的测量分路。
由于隔离变压器是将待检测的开关器件隔离开,而检测线路的输出端用于与待检测的开关器件相连,故检测线路的输出端位于隔离分路中,输出端与待检测的开关器件相连之后,开关器件便位于隔离分路上,这样隔离变压器的副线圈、第二阻抗元件和开关器件可以构成闭合回路。
在一种可能的实施方式中,所述开关检测器,用于:
根据所述阻抗元件的电压在目标电压范围内,以及向所述开关器件输入的驱动信号为导通信号,确定所述开关器件的检测结果为导通良好;
根据所述阻抗元件的电压不在目标电压范围内,以及向所述开关器件输入的驱动信号为断开信号,确定所述开关器件的检测结果为断开良好;
根据所述阻抗元件的电压在目标电压范围内,以及向所述开关器件输入的驱动信号为断开信号,确定所述开关器件的检测结果为粘连故障;
根据所述阻抗元件的电压不在目标电压范围内,以及向所述开关器件输入的驱动信号为导通信号,确定所述开关器件的检测结果为不动作故障。
在一种示例中,该开关检测器的输出端与待检测的开关器件相连之后,电源元件、阻抗元件和开关器件便可以构成一个闭合回路,便可以对阻抗元件两端的电压进行测量。如果所述阻抗元件的电压在目标电压范围内,以及向所述开关器件输入的驱动信号为导通信号,则可以确定所述开关器件的检测结果为导通良好。如果所述阻抗元件的电压不在目标电压范围内,以及向所述开关器件输入的驱动信号为断开信号,则可以确定所述开关器件的检测结果为断开良好。如果所述阻抗元件的电压在目标电压范围内,以及向所述开关器件输入的驱动信号为断开信号,则可以确定所述开关器件的检测结果为粘连故障。如果所述阻抗元件的电压不在目标电压范围内,以及向所述开关器件输入的驱动信号为导通信号,则可以确定所述 开关器件的检测结果为不动作故障。
在一种可能的实施方式中,所述目标电压范围通过所述电源元件的总电压和所述阻抗元件的阻抗值确定。
在一种示例中,如果该开关检测器的检测线路中包括一个阻抗元件,则目标电压范围可以由电源元件的总电压确定。如果开关检测器的检测线路中包括两个阻抗元件,则目标电压范围可以由电源元件的总电压和两个阻抗元件的阻抗值确定。
在一种可能的实施方式中,所述阻抗元件为电阻元件、电容元件和电感元件中的一种或者多种的组合。
在一种示例中,阻抗元件可以是一个电容元件,或者,可以是多个电容元件的组合,或者,可以是一个电阻元件,或者,可以是多个电阻元件的组合,或者,可以是一个电感元件,或者可以是多个电感元件的组合,或者,可以是电阻元件和电容元件的组合,或者,可以是电阻元件和电感元件的组合,或者,可以是电容元件和电感元件的组合,或者,还可以是电阻元件、电容元件和电感元件的组合等。本实施例对阻抗元件的具体结构不做限定,附图中可以以电容元件进行示例,但并不构成限定。
在一种可能的实施方式中,所述开关检测器还包括功能表,所述功能表与所述阻抗元件相并联,用于测量所述阻抗元件的电压。
在一种示例中,功能表可以电压表、电流表和电阻表等,本实施例对此不做限定,能够测量出阻抗元件两端的电压即可。
另一方面,提供了一种开关检测器的使用方法,所述开关检测器为上述任一所述的开关检测器,所述方法包括:
将所述开关检测器的输出端连接在待检测的开关器件上;
获取所述开关检测器的阻抗元件的电压;
获取向所述开关器件输入的驱动信号;
根据所述阻抗元件的电压,以及向所述开关器件输入的驱动信号,确定所述开关器件的检测结果。
在一种示例中,开关检测器的输出端可以是两个导线端,这两个导线端可以接在开关器件的两端。如果该开关检测器包括隔离变压器,则可以获取阻抗元件中的第一阻抗元件两端的电压。该开关检测器可以通过功能表获取阻抗元件两端的电压,其中,该功能表可以相对于开关检测器独立的器件,也可以属于开关检测器的元件。如果功能表属于开关检测器,则功能表并联在阻抗元件的两端,例如,在该开关检测器包括隔离变压器的情况下,功能表可以并联在第一阻抗元件的两端。驱动信号可以包括导通信号和断开信号,可以由用户的操作来触发。
在一种可能的实施方式中,所述检测结果包括导通良好、断开良好、粘连故障和不动作故障;
所述根据所述阻抗元件的电压,以及向所述开关器件输入的驱动信号,确定所述开关器件的检测结果,包括:
根据所述阻抗元件的电压在目标电压范围内,以及向所述待检测的开关器件输入的驱动信号为导通信号,确定所述检测结果为导通良好;
根据所述阻抗元件的电压不在目标电压范围内,以及向所述待检测的开关器件输入的驱 动信号为断开信号,确定所述测量结果为断开良好;
根据所述阻抗元件的电压在目标电压范围内,以及向所述待检测的开关器件输入的驱动信号为断开信号,确定所述测量结果为粘连故障;
根据所述阻抗元件的电压不在目标电压范围内,以及向所述待检测的开关器件输入的驱动信号为导通信号,确定所述测量结果为不动作故障。
在一种可能的实施方式中,所述开关检测器包括用于与所述阻抗元件相并联的功能表;
所述获取所述开关检测器的阻抗元件的电压,包括:
通过所述功能表获取所述开关检测器的阻抗元件的电压。
另一方面,还提供了一种车辆,所述车辆的电池系统包括电池、快速充电线路、普通充电线路、配电线路、多个开关器件和上述所述的开关检测器,其中:
所述快速充电线路、所述普通充电线路和所述配电线路分别与所述电池相连,所述快速充电线路、所述普通充电线路和所述配电线路中分别包括至少一个所述开关器件,每个所述开关器件并联有所述开关检测器。
其中,车辆的电池系统也可以称为车辆的供电系统。
在一种示例中,快速充电线路的正极线路可以接在电池的正极处,快速充电线路的负极线路可以接在电池的负极处,由于快速充电线路属于高电压线路,可以分别在其正极线路和负极线路上分别布置一个开关器件,快速充电线路上的这两个开关器件的两端可以分别接有开关检测器。
在一种示例中,普通充电线路和快速充电线路相并联,同样,普通充电线路的正极线路可以接在电池的正极处,普通充电线路的负极线路可以接在电池的负极处,普通充电线路也属于高电压线路,也可以分别在其正极线路和负极线路上分别布置一个开关器件,普通充电线路上的这两个开关器件的两端可以分别接有开关检测器。
在一种示例中,车辆的电池系统为车辆中的配件提供电能,相应的,电池系统还包括配电线路,配电线路的正极线路可以接在电池的正极处,配电线路的负极线路可以接在电池的负极处,配电线路也属于高电压线路,也可以分别在其正极线路和负极线路上分别布置一个开关器件,配电线路上的这两个开关器件的两端可以分别接有开关检测器。
其中,配电线路上的开关器件具体位于配电线路的干路上,作为配电线路的重要的开关器件,例如,配电线路的正极线路的干路上布置一个开关器件,负极线路的干路上布置一个开关器件。
在一种可能的实施方式中,所述电池系统还包括预充线路,所述配电线路的正极线路上具有所述开关器件,所述预充线路并联在所述配电线路的正极线路上的开关器件的两端;
所述预充线路中包括所述开关器件,所述预充线路的开关器件并联有所述开关检测器。
其中,预充线路中包括开关器件和预充电组,车辆在刚启动的瞬间,预充线路上的开关器件处于导通状态,配电线路的正极线路上的开关器件处于断开状态,电流通过预充线路,由于预充线路中具有预充电阻,进而可以避免配电线路中出现大电流而烧坏器件。
在本申请实施例中,该开关检测器具有独立的电源元件作为检测时候的供电电源,该开关检测器的检测线路的输出端接在待检测的开关器件上后,可以构成闭合回路,无需借助待检测的开关器件所在的闭合回路。故该开关检测器在对正极线路上的开关器件进行检测时,不受负极线路上的开关器件的工作状态影响,该开关检测器在对负极线路上的开关器件进行 检测时,不受正极线路上的开关器件的工作状态影响。因此,使用该开关检测器对开关器件进行检测时,可以提高检测结果的准确率,降低检测结果的错误率。
而且,该开关检测器可以应用于位于闭合回路中的开关器件,也可以应用于不在闭合回路的开关器件,可以提高该开关检测器的使用广泛性。
附图说明
图1是本申请实施例提供的一种开关检测器的线路结构示意图;
图2是本申请实施例提供的一种开关检测器的线路结构示意图;
图3是本申请实施例提供的一种开关检测器的线路结构示意图;
图4是本申请实施例提供的一种开关检测器的线路结构示意图;
图5是本申请实施例提供的一种开关检测器的线路结构示意图;
图6是本申请实施例提供的一种开关检测器的使用方法的流程示意图;
图7是本申请实施例提供的一种开关检测器的使用方法的流程示意图;
图8是本申请实施例提供的一种车辆的电池系统的结构示意图。
图例说明
1、电源元件;2、阻抗元件;3、开关器件;4、开关元件;5、隔离变压器;6、功能表;
21、第一阻抗元件;22、第二阻抗元件;
10、电池系统;101电池;102、快速充电线路;103、普通充电线路;104、配电线路;105、预充线路。
具体实施方式
本申请实施例涉及一种开关检测器,该开关检测器可以用来检测开关器件是否处于良好状态,例如是否处于导通良好,是否处于断开良好。其中,开关器件可以是继电器、接触器和断路器等任一一种能够实现导通和断开的器件。其中,开关器件可以是家庭用电中的开关器件,也可以是车辆中的开关器件等,本实施例对待检测的开关器件所应用的领域不做限定。
如图1所示,该开关检测器可以包括电源元件1和阻抗元件2,其中:电源元件1和阻抗元件2相串联形成检测线路,检测线路的输出端用于与待检测的开关器件相连。开关检测器的输出端可以是两个导线端,这两个导线端可以接在开关器件3的两端。这样,开关检测器,可以用于在输出端与开关器件3电性连接状态下,通过阻抗元件2的电压和向开关器件3输入的驱动信号,对开关器件3进行检测。
其中,阻抗元件2可以是电阻元件、电容元件和电感元件中的一种或者多种的组合。
例如,阻抗元件2可以是一个电容元件,或者,可以是多个电容元件的组合,或者,可以是一个电阻元件,或者,可以是多个电阻元件的组合,或者,可以是一个电感元件,或者可以是多个电感元件的组合,或者,可以是电阻元件和电容元件的组合,或者,可以是电阻元件和电感元件的组合,或者,可以是电容元件和电感元件的组合,或者,还可以是电阻元件、电容元件和电感元件的组合等。本实施例对阻抗元件2的具体结构不做限定,附图中可以以电容元件进行示例,但并不构成限定。
其中,电源元件1可以是一个直流型的电源元件,也可以是一个直流的脉冲型的电源,还可以是其他类型的电源,本实施例对此不做限定,能够实现向阻抗元件2供电即可。
在一种示例中,电源元件1和阻抗元件2电性连接可以形成检测线路,检测线路具有输出端,该输出端用于和待检测的开关器件3实现电性连接。该开关检测器的输出端与待检测 的开关器件实现电性连接之后,电源元件1、阻抗元件2和待检测的开关器件3可以构成闭合回路。这个时候可以测量阻抗元件2两端的电压,然后再配合向开关器件3输入的驱动信号,可以判断出该开关器件3是否处于导通良好,是否处于断开良好,是否存在粘连故障,是否存在不动作故障。
其中,驱动信号是用来驱动开关器件3执行导通功能和断开功能的信号,可以通过用户(如检测人员)的操作来触发,驱动信号可以包括导通信号和断开信号。
这样,该开关检测器可以根据阻抗元件2的电压在目标电压范围内,以及向开关器件3输入的驱动信号为导通信号,确定开关器件3的检测结果为导通良好;可以根据阻抗元件2的电压不在目标电压范围内,以及向开关器件3输入的驱动信号为断开信号,确定开关器件3的检测结果为断开良好;可以根据阻抗元件2的电压在目标电压范围内,以及向开关器件3输入的驱动信号为断开信号,确定开关器件3的检测结果为粘连故障;还可以根据阻抗元件2的电压不在目标电压范围内,以及向开关器件3输入的驱动信号为导通信号,确定开关器件3的检测结果为不动作故障。
其中,粘连故障也即是开关器件3处于常闭合无法断开的故障,不动作故障也即是开关器件3处于常断开无法闭合的故障,向开关器件3发送导通信号但开关器件3却不导通。
其中,目标电压范围可以通过电源元件1的总电压和阻抗元件2的阻抗值确定。不在目标电压范围内,例如,检测到阻抗元件2的电压为0,则可以认为不在目标电压范围内。
例如,电源元件1的总电压为U 0,阻抗元件2的阻抗值为Z,则目标电压范围可以是U 0-ΔU至U 0+ΔU,其中,ΔU技术人员可以根据实际情况灵活选择的一个电压值。
又例如,电源元件1的总电压U 0为,阻抗元件2的数量为两个,可以分别称为第一阻抗元件21和第二阻抗元件22,如图2所示,电源元件1、第一阻抗元件21和第二阻抗元件22和与输出端相连的开关器件3可以构成闭合回路。这种情况下,可以通过第一阻抗元件21的电压或者第二阻抗元件22的电压,以及驱动信号,对开关器件3进行检测,例如,第一阻抗元件21和第二阻抗元件22均为电容,以通过第一阻抗元件21的电压和驱动信号进行时,目标电压范围可以是:
Figure PCTCN2021076100-appb-000001
Figure PCTCN2021076100-appb-000002
其中,C 21为第一阻抗元件21的电容值,C 22为第二阻抗元件22的电容值,ΔU技术人员可以根据实际情况灵活选择的一个电压值。
由上述可知,要想确定待检测的开关器件3是否处于良好状态,需要在驱动信号为导通信号的情况下,检测一次,在驱动信号为断开信号的情况下,再检测一次,根据这两次的结果对开关器件3的状态做出判断。
基于上述所述,该开关检测器具有独立的电源元件作为检测时候的供电电源,该开关检测器的检测线路的输出端接在待检测的开关器件上之后,便可以构成闭合回路,无需借助待检测的开关器件所在的闭合回路,故该开关检测器在对正极线路上的开关器件进行检测时,不受负极线路上的开关器件的工作状态影响,例如,负极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。同样,该开关检测器在对负极线路上的开关器件进行检测时,也不受正极线路上的开关器件的工作状态影响,例如,正极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。因此,使用该开关 检测器对开关器件进行检测时,可以提高检测结果的准确率,降低检测结果的错误率。
可见,该开关检测器既可以对闭合回路中的开关器件进行检测,也可以对非闭合回路中的开关器件进行检测,进而可以提高该开关检测器的应用广泛性,使用场景更加广泛。
在一种示例中,阻抗元件2的电压,可以通过功能表6测量,功能表6可以是电压表、电流表或者电阻表等。该开关检测器可以不包括功能表,用户可以使用功能表测量阻抗元件2两端的电压值。或者,该开关检测器可以包括功能表,例如,如图3所示,开关检测器包括功能表6,功能表6与阻抗元件2相并联,功能表6可以测量阻抗元件2的电压,并显示测量结果,以供用户查看。
在一种示例中,为了节约电源元件1的电量,该开关检测器可以在需要检测时启动,不需要检测时关闭,相应的,如图4所示,该开关检测器还可以包括开关元件4,电源元件1、阻抗元件2和开关元件4相串联形成检测线路。这样,该开关检测器,可以用于在输出端与开关器件3电性连接,且开关元件4为导通的状态下,通过阻抗元件2的电压和向开关器件3输入的驱动信号,对开关器件3进行检测。
其中,该开关元件4可以是普通的开关,也可以是MOS管等,本实施例对开关元件4的具体结构不做限定,能够实现检测线路的导通和断开即可,附图中可以以MOS管型的开关元件示例,但并不以此为限定。
其中,MOS管是MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)的缩写。
在一种示例中,该开关检测器上可以具有控制开关元件4导通和断开的按钮,用户可以通过操控该按钮控制开关检测器的开关元件4的导通和断开。
例如,用户将检测线路的输出端接在待检测的开关器件3两端之后,可以控制该开关检测器的开关元件4导通,通过功能表6测量阻抗元件2两端的电压。如果阻抗元件2两端的电压位于目标电压范围内,且向开关器件3输入的驱动信号为导通信号,则说明开关器件3的导通良好。如果阻抗元件2两端的电压未位于目标电压范围内,例如为零,且向开关器件3输入的驱动信号为断开信号,则说明开关器件3的断开良好。如果阻抗元件2两端的电压位于目标电压范围内,且向开关器件3输入的驱动信号为断开信号,则说明开关器件3存在粘连故障。如果阻抗元件2两端的电压未位于目标电压范围内,例如为零,且向开关器件3输入的驱动信号为导通信号,则说明开关器件3存在不动作故障。
在一种可能的应用中,开关器件3可以应用在高压线路中,对位于高压线路中的开关器件3进行检测时,对用户存在较大的安全隐患。
为了降低检测开关器件3所带来的安全隐患,相应的,如图5所示,该开关检测器还可以包括隔离变压器5,阻抗元件2可以包括第一阻抗元件21和第二阻抗元件22;电源元件1、阻抗元件2中的第一阻抗元件21和隔离变压器5的原线圈相串联形成检测线路的测量分路,阻抗元件2中的第二阻抗元件22和隔离变压器5的副线圈相串联形成检测线路的隔离分路,检测线路的输出端位于隔离分路中。这样,开关检测器可以用于通过阻抗元件2的第一阻抗元件21的电压和向开关器件3输入的驱动信号,对开关器件3进行检测。
其中,隔离变压器5可以将检测线路划分为测量分路和隔离分路,测量分路中的电压较低,可以降低甚至避免检测时存在的安全隐患。
在一种示例中,测量分路中的第一阻抗元件21用于供功能表6测量其两端的电压,第二阻抗元件22用于避免隔离分路中形成短路。这样,可以通过测量第一阻抗元件21的电压,以及向开关器件3输入的驱动信号,对开关器件3进行检测。
具有隔离变压器5的检测线路中,在计算测量分路上的第一阻抗元件21的电压时,可以先对图5所示线路图进行等效转换。例如,第一阻抗元件21和第二阻抗元件22均为电容的情况下,图5的线路图可以等效转换为如图2所示的线路图,只不过第二阻抗元件22的电容值变为
Figure PCTCN2021076100-appb-000003
其中,隔离变压器5的原线圈和副线圈的匝数比为n:1,这样第一阻抗元件21两端的电压可以通过如下公式计算:
Figure PCTCN2021076100-appb-000004
式中,C 21表示第一阻抗元件21的电容值,C 22表示第二阻抗元件22的电容值,U 0表示电源元件1的总电压,U 21表示第一阻抗元件21两端的电压。
如上述所述,该开关检测器可以包括开关元件4,开关元件4用于供用户操作,来启动和停止该开关检测器的检测工作,为了安全起见,开关元件4可以位于测量分路中。这样,电源元件1、开关元件4、阻抗元件2中的第一阻抗元件21和隔离变压器5的原线圈相串联形成检测线路的测量分路。
由于隔离变压器5是将待检测的开关器件3隔离开,而检测线路的输出端用于与待检测的开关器件3相连,故检测线路的输出端位于隔离分路中,输出端与待检测的开关器件3相连之后,开关器件3便位于隔离分路上,这样隔离变压器5的副线圈、第二阻抗元件22和开关器件3可以构成闭合回路。
这样,在需要对开关器件3进行检测时,可以将位于隔离分路上的输出端接在待检测的开关器件3上,然后控制测量分路上的开关元件4导通。之后,用户向开关器件3输入驱动信号。如表1所示,第一阻抗元件21的电压在目标电压范围内且驱动信号为导通信号,对应开关器件3导通良好;第一阻抗元件21的电压不在目标电压范围内且驱动信号为断开信号,对应开关器件3断开良好;第一阻抗元件21的电压在目标电压范围内且驱动信号为断开信号,对应开关器件3粘连故障;第一阻抗元件21的电压不在目标电压范围内且驱动信号为导通,对应开关器件3不动作故障。
其中,第一阻抗元件21的电压未位于目标电压范围内可以是第一阻抗元件21的电压为零。
表1 该开关检测器对开关器件3进行检测的检测结果
第一阻抗元件21的电压 向开关器件3输入的驱动信号 检测结果
在目标电压范围内 导通信号 导通良好
不在位于目标电压范围内 断开信号 断开良好
在目标电压范围内 断开信号 粘连故障
不在目标电压范围内 导通信号 不动作故障
这样,通过在检测线路中增加隔离变压器5,可以将检测线路划分为测量分路和隔离分路,用户可以在隔离分路上连接待检测的开关器件3,在测量分路上进行开关器件3的状态检测。具有这种检测线路的开关检测器可以提高用户的安全性,降低检测过程存在的安全隐患。
在本申请实施例中,该开关检测器具有独立的电源元件作为检测时候的供电电源,该开关检测器的检测线路的输出端接在待检测的开关器件上之后,便可以构成闭合回路,无需借助待检测的开关器件所在的闭合回路,故该开关检测器在对正极线路上的开关器件进行检测时,不受负极线路上的开关器件的工作状态影响,例如,负极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。同样,该开关检测器在对负极线路上的开关器件进行检测时,也不受正极线路上的开关器件的工作状态影响,例如,正极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。因此,使用该开关检测器对开关器件进行检测时,可以提高检测结果的准确率,降低检测结果的错误率。
本申请还提供了一种开关检测器的使用方法,该开关检测器即为上述所述的开关检测器,该方法可以按照如图6所示的流程执行:
在步骤601中,将开关检测器的输出端连接在待检测的开关器件3上。
在一种示例中,开关检测器的输出端可以是两个导线端,这两个导线端可以接在开关器件3的两端。
在步骤602中,获取开关检测器的阻抗元件2的电压。
其中,如果该开关检测器包括隔离变压器5,则可以获取阻抗元件2中的第一阻抗元件21两端的电压。
在一种示例中,该开关检测器可以通过功能表获取阻抗元件2两端的电压,其中,该功能表可以相对于开关检测器独立的器件,也可以属于开关检测器的元件。如果功能表属于开关检测器,则功能表并联在阻抗元件2的两端,例如,在该开关检测器包括隔离变压器5的情况下,功能表6可以并联在第一阻抗元件21的两端。
在步骤603中,获取向开关器件3输入的驱动信号。
在一种示例中,驱动信号可以包括导通信号和断开信号,可以由用户的操作来触发。
在步骤604中,根据阻抗元件2的电压,以及向开关器件3输入的驱动信号,确定开关器件3的检测结果。
其中,检测结果可以包括导通良好、断开良好、粘连故障和不动作故障。
在一种示例中,该开关检测器不包括隔离变压器的情况下,阻抗元件2两端的电压也即是电源元件1的总电压,其中该总电压可以通过功能表测量。
例如,根据阻抗元件2的电压在目标电压范围内,以及向待检测的开关器件3输入的驱动信号为导通信号,确定检测结果为导通良好。根据阻抗元件2的电压不在目标电压范围内,以及向待检测的开关器件3输入的驱动信号为断开信号,确定测量结果为断开良好。根据阻抗元件2的电压在目标电压范围内,以及向待检测的开关器件3输入的驱动信号为断开信号,确定测量结果为粘连故障。根据阻抗元件2的电压不在目标电压范围内,以及向待检测的开关器件3输入的驱动信号为导通信号,确定测量结果为不动作故障。
由上述可知,要想确定待检测的开关器件3是否处于良好状态,需要在驱动信号为导通 信号的情况下,检测一次,在驱动信号为断开信号的情况下,再检测一次,根据这两次的结果对开关器件3的状态做出判断。
基于上述所述,该开关检测器对待检测的开关器件3进行检测的流程可以如图7所示:
将该开关检测器的输出端接在待检测的开关器件3的两端之后,对开关器件3开始检测,进入步骤701,控制开关检测器的开关元件4导通。例如,该开关检测器上具有用于触发开关元件4导通和断开的按钮,用户操控该按钮即可控制开关元件4导通,之后,转至步骤702。在步骤702中,测量阻抗元件2两端的电压,例如,通过与阻抗元件2相并联的功能表6测量阻抗元件2两端的电压。其中,该开关检测器中具有隔离变压器5的情况下,功能表6与位于测量分路上的第一阻抗元件21相并联,测量第一阻抗元件21两端的电压。完成电压测量之后,执行步骤703,在步骤703中,判断阻抗元件2的电压是否在目标电压范围内。例如,在该开关检测器中具有隔离变压器5的情况下,判断第一阻抗元件21两端的电压是否在目标电压范围内。之后,再根据阻抗元件2的电压与目标电压范围的关系,以及驱动信号,确定开关器件3的良好和故障情况。
继续参见图7,在步骤704中,判断向开关器件3输入的驱动信号。其中驱动信号包括导通信号和断开信号,驱动信号时导通信号还是断开信号,可以通过用户对开关器件3的操作来判断。例如,开关器件3上可以具有用于供用户操作的开关按钮,用户通过该开关按钮向开关器件3输入导通信号或者断开信号。
这样,如图7所示,阻抗元件2两端的电压在目标电压范围内,且驱动信号为导通信号,则对开关器件3的检测结果为导通良好。阻抗元件2两端的电压在目标电压范围内,且驱动信号为断开信号,则对开关器件3的检测结果为粘连故障。阻抗元件2两端的电压不在目标电压范围内,且驱动信号为断开信号,则对开关器件3的检测结果为断开良好。阻抗元件2两端的电压不在目标电压范围内,且驱动信号为导通信号,则对开关器件3的检测结果为不动作故障。
在使用该开关检测器对待检测的开关器件3进行检测时,可能进行一次就可以得出结论,也可以需要进行两次得出结论。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果判断出阻抗元件2的电压在目标电压范围内,而驱动信号为断开信号,则可以确定该开关器件3存在故障,且为粘连故障。那么,之后可以不用再检测其导通功能,也即是第一次检测判断出该开关器件3存在故障,可以不用接着进行检测。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果判断出阻抗元件2的电压不在目标电压范围内,而驱动信号为导通信号,则可以确定该开关器件3存在故障,且为不动作故障。那么,之后可以不用再检测其导通功能,也即是第一次检测判断出该开关器件3存在故障,可以不用接着进行检测。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果如果判断出阻抗元件2的电压在目标电压范围内,驱动信号为导通信号,则可以排除该开关器件3不存在不动作故障,但是可能还存在粘连故障,之后还需要检测其断开功能。接着进行第二次检测,在第二次检测中,如果判断出阻抗元件2的电压不在目标电压范围内,驱动信号为断开信号,则可以继续排除该开关器件3不存在粘连故障。进而根据两次检测结果可以得出该开关器件3导通良好和断开良好。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果如果判断出阻抗元件2的电压在目标电压范围内,驱动信号为导通信号,则可以排除该开关器件3不存在不动作故障,但是可能还存在粘连故障,之后还需要检测其断开功能。接着进行第二次检测,在第二次检测中,如果判断出阻抗元件2的电压在目标电压范围内,驱动信号为断开信号,则该开关器件3存在粘连故障。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果如果判断出阻抗元件2的电压不在目标电压范围内,驱动信号为断开信号,则可以排除该开关器件3不存在粘连故障,但是可能还存在不动作故障,之后还需要检测其导通功能。接着进行第二次检测,在第二次检测中,如果判断出阻抗元件2的电压在目标电压范围内,驱动信号为导通信号,则该开关器件3不存在不动作故障,也即是该开关器件3的导通良好。进而根据两次检测结果可以得出该开关器件3导通良好和断开良好。
例如,在一种可能的应用中,在对开关器件3进行检测时,第一次检测中,如果如果判断出阻抗元件2的电压不在目标电压范围内,驱动信号为断开信号,则可以排除该开关器件3不存在粘连故障,但是可能还存在不动作故障,之后还需要检测其导通功能。接着进行第二次检测,在第二次检测中,如果判断出阻抗元件2的电压不在目标电压范围内,驱动信号为导通信号,则该开关器件3存在不动作故障。
在本申请实施例中,对待检测的开关器件进行检测其功能是否良好时,使用具有具有独立的电源元件的开关检测器,该开关检测器的检测线路的输出端接在待检测的开关器件上之后,便可以构成闭合回路,无需借助待检测的开关器件所在的闭合回路,故该开关检测器在对正极线路上的开关器件进行检测时,不受负极线路上的开关器件的工作状态影响,例如,负极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。同样,该开关检测器在对负极线路上的开关器件进行检测时,也不受正极线路上的开关器件的工作状态影响,例如,正极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。因此,使用该开关检测器对开关器件进行检测时,可以提高检测结果的准确率,降低检测结果的错误率。
而且,该开关检测器可以应用于位于闭合回路中的开关器件,也可以应用于不在闭合回路的开关器件,进而可以提高该开关检测器的使用广泛性。
本申请实施例还提供了一种车辆,该车辆可以是电动汽车,也可以是混动汽车,如图8所示,该车辆的电池系统10可以包括电池101、快速充电线路102、普通充电线路103、配电线路104、多个开关器件3和上述所述的开关检测器,其中:快速充电线路102、普通充电线路103和配电线路104分别与电池101相连,快速充电线路102、普通充电线路103和配电线路104中分别包括至少一个开关器件3,每个开关器件3并联有开关检测器。
其中,图8中未示出并联在每个开关器件上的开关检测器,开关检测器的示图可以参考如图1至图5所示。
其中,车辆的电池系统10也可以称为车辆的供电系统。电池系统10所包括的开关器件3可以是继电器,也可以是断路器,还可以是接触器等,例如,可以全部是继电器,也可以全部是断路器,还可以全部是接触器,也可以是继电器、断路器和接触器中的两种或者三种的组合等,本实施例对开关器件3的具体类型不做限定。
在一种示例中,如图8所示,快速充电线路102的正极线路可以接在电池101的正极处,快速充电线路102的负极线路可以接在电池101的负极处,由于快速充电线路属于高电压线路,可以分别在其正极线路和负极线路上分别布置一个开关器件3。快速充电线路102上的这两个开关器件3的两端可以分别接有开关检测器,例如,开关检测器的检测线路的输出端可以接在每个开关器件3的两端,通过开关检测器来检测位于快速充电线路102上的开关器件3是否处于良好状态,如果开关器件3出现故障,能够达到快速检测和及时更换的效果。
在一种示例中,普通充电线路103和快速充电线路102相并联,如图8所示,普通充电线路103的正极线路可以接在电池101的正极处,普通充电线路103的负极线路可以接在电池101的负极处,普通充电线路103也属于高电压线路,也可以分别在其正极线路和负极线路上分别布置一个开关器件3。普通充电线路103上的这两个开关器件3的两端可以分别接有开关检测器,例如,开关检测器的检测线路的输出端可以接在每个开关器件3的两端,通过开关检测器来检测位于普通充电线路103上的开关器件3是否处于良好状态,如果开关器件3出现故障,能够达到快速检测和及时更换的效果。
在一种示例中,车辆的电池系统10为车辆中的配件提供电能,相应的,电池系统10还包括配电线路104,配电线路104的正极线路可以接在电池101的正极处,配电线路104的负极线路可以接在电池101的负极处,配电线路104也属于高电压线路,也可以分别在其正极线路和负极线路上分别布置一个开关器件3。配电线路104上的这两个开关器件3的两端可以分别接有开关检测器,例如,开关检测器的检测线路的输出端可以接在每个开关器件3的两端,通过开关检测器来检测位于配电线路104上的开关器件3是否处于良好状态,如果开关器件3出现故障,能够达到快速检测和及时更换的效果。
其中,配电线路104上的开关器件3具体位于配电线路104的干路上,作为配电线路104的重要的开关器件,例如,配电线路104的正极线路的干路上布置一个开关器件3,负极线路的干路上布置一个开关器件3。
在一种示例中,车辆的各种配件,例如,车灯和空调等可以接在配电线路104上,其中,如图8所示,各个配件所在的支路上可以分别布置一个开关器件3,该开关器件3的两端也可以接有上述所述的开关检测器。
在一种示例中,为了避免车辆启动的瞬间,电池系统10中的线路中的电流过大而烧坏器件,相应的,如图8所示,电池系统10还可以包括预充线路105,配电线路104的正极线路上具有开关器件3,预充线路105可以并联在配电线路104的正极线路上的开关器件3的两端;预充线路105中包括开关器件3,预充线路105的开关器件3也可以并联有上述所述的开关检测器。
其中,如图8所示,预充线路105中包括开关器件3和预充电组,车辆在刚启动的瞬间,预充线路105上的开关器件3处于导通状态,配电线路104的正极线路上的开关器件3处于断开状态,电流通过预充线路105,由于预充线路105中具有预充电阻,进而可以避免配电线路104中出现大电流而烧坏器件。
其中,在使用开关检测器对各自相并联的开关器件进行检测的流程可以参考上述所述的开关检测器的使用方法和如图7所示的流程,此处便不再赘述。
在本申请实施例中,在对车辆的电池系统上的开关器件进行检测时,可以使用与其相并联的开关检测器进行检测,相并联的开关检测器和开关器件可以构成闭合回路,无需借助车 辆的电池来提供检测电能。故该开关检测器在对正极线路上的开关器件进行检测时,不受负极线路上的开关器件的工作状态影响,例如,负极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。同样,该开关检测器在对负极线路上的开关器件进行检测时,也不受正极线路上的开关器件的工作状态影响,例如,正极线路上的开关器件可以处于导通状态,也可以处于断开状态,还可以处于故障状态。因此,使用该开关检测器对开关器件进行检测时,可以提高检测结果的准确率,降低检测结果的错误率。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种开关检测器,其特征在于,所述开关检测器包括电源元件(1)和阻抗元件(2),其中:
    所述电源元件(1)和所述阻抗元件(2)相串联形成检测线路,所述检测线路的输出端用于与待检测的开关器件(3)相连;
    所述开关检测器,用于在所述输出端与所述开关器件(3)电性连接状态下,通过所述阻抗元件(2)的电压和向所述开关器件(3)输入的驱动信号,对所述开关器件(3)进行检测。
  2. 根据权利要求1所述的开关检测器,其特征在于,所述开关检测器还包括开关元件(4),所述电源元件(1)、所述阻抗元件(2)和所述开关元件(4)相串联形成检测线路;
    所述开关检测器,用于在所述输出端与所述开关器件(3)电性连接,且所述开关元件(4)为导通的状态下,通过所述阻抗元件(2)的电压和向所述开关器件(3)输入的驱动信号,对所述开关器件(3)进行检测。
  3. 根据权利要求1或2所述的开关检测器,其特征在于,所述开关检测器还包括隔离变压器(5),所述阻抗元件(2)包括第一阻抗元件(21)和第二阻抗元件(22);
    所述电源元件(1)、所述阻抗元件(2)中的第一阻抗元件(21)和所述隔离变压器(5)的原线圈相串联形成检测线路的测量分路,所述阻抗元件(2)中的第二阻抗元件(22)和所述隔离变压器(5)的副线圈相串联形成检测线路的隔离分路,所述检测线路的输出端位于所述隔离分路中;
    所述开关检测器,用于通过所述阻抗元件(2)的第一阻抗元件(21)的电压和向所述开关器件(3)输入的驱动信号,对所述开关器件(3)进行检测。
  4. 根据权利要求1至3任一所述的开关检测器,其特征在于,所述开关检测器,用于:
    根据所述阻抗元件(2)的电压在目标电压范围内,以及向所述开关器件(3)输入的驱动信号为导通信号,确定所述开关器件(3)的检测结果为导通良好;
    根据所述阻抗元件(2)的电压不在目标电压范围内,以及向所述开关器件(3)输入的驱动信号为断开信号,确定所述开关器件(3)的检测结果为断开良好;
    根据所述阻抗元件(2)的电压在目标电压范围内,以及向所述开关器件(3)输入的驱动信号为断开信号,确定所述开关器件(3)的检测结果为粘连故障;
    根据所述阻抗元件(2)的电压不在目标电压范围内,以及向所述开关器件(3)输入的驱动信号为导通信号,确定所述开关器件(3)的检测结果为不动作故障。
  5. 根据权利要求4所述的开关检测器,其特征在于,所述目标电压范围通过所述电源元件(1)的总电压和所述阻抗元件(2)的阻抗值确定。
  6. 根据权利要求1至5任一所述的开关检测器,其特征在于,所述阻抗元件(2)为电阻元件、电容元件和电感元件中的一种或者多种的组合。
  7. 根据权利要求1至6任一所述的开关检测器,其特征在于,所述开关检测器还包括功能表(6),所述功能表(6)与所述阻抗元件(2)相并联,用于测量所述阻抗元件(2)的电压。
  8. 一种开关检测器的使用方法,其特征在于,所述开关检测器为权利要求1至7任一所述的开关检测器,所述方法包括:
    将所述开关检测器的输出端连接在待检测的开关器件(3)上;
    获取所述开关检测器的阻抗元件(2)的电压;
    获取向所述开关器件(3)输入的驱动信号;
    根据所述阻抗元件(2)的电压,以及向所述开关器件(3)输入的驱动信号,确定所述开关器件(3)的检测结果。
  9. 根据权利要求8所述的方法,其特征在于,所述检测结果包括导通良好、断开良好、粘连故障和不动作故障;
    所述根据所述阻抗元件(2)的电压,以及向所述开关器件(3)输入的驱动信号,确定所述开关器件(3)的检测结果,包括:
    根据所述阻抗元件(2)的电压在目标电压范围内,以及向所述待检测的开关器件(3)输入的驱动信号为导通信号,确定所述检测结果为导通良好;
    根据所述阻抗元件(2)的电压不在目标电压范围内,以及向所述待检测的开关器件(3)输入的驱动信号为断开信号,确定所述测量结果为断开良好;
    根据所述阻抗元件(2)的电压在目标电压范围内,以及向所述待检测的开关器件(3)输入的驱动信号为断开信号,确定所述测量结果为粘连故障;
    根据所述阻抗元件(2)的电压不在目标电压范围内,以及向所述待检测的开关器件(3)输入的驱动信号为导通信号,确定所述测量结果为不动作故障。
  10. 根据权利要求8或9所述的方法,其特征在于,所述开关检测器包括用于与所述阻抗元件(2)相并联的功能表(6);
    所述获取所述开关检测器的阻抗元件(2)的电压,包括:
    通过所述功能表(6)获取所述开关检测器的阻抗元件(2)的电压。
  11. 一种车辆,其特征在于,所述车辆的电池系统(10)包括电池(101)、快速充电线路(102)、普通充电线路(103)、配电线路(104)、多个开关器件(3)和权利要求1至7任一所述的开关检测器,其中:
    所述快速充电线路(102)、所述普通充电线路(103)和所述配电线路(104)分别与所述电池(101)相连,所述快速充电线路(102)、所述普通充电线路(103)和所述配电线路(104)中分别包括至少一个所述开关器件(3),每个所述开关器件(3)并联有所述开关检测器。
  12. 根据权利要求11所述的车辆,其特征在于,所述电池系统(10)还包括预充线路(105),所述配电线路(104)的正极线路上具有所述开关器件(3),所述预充线路(105)并联在所述配电线路(104)的正极线路上的开关器件(3)的两端;
    所述预充线路(105)中包括所述开关器件(3),所述预充线路(105)的开关器件(3)并联有所述开关检测器。
PCT/CN2021/076100 2020-05-14 2021-02-08 一种开关检测器、开关检测器的使用方法及车辆 WO2021227582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010406274.6 2020-05-14
CN202010406274.6A CN111707934A (zh) 2020-05-14 2020-05-14 一种开关检测器、开关检测器的使用方法及车辆

Publications (1)

Publication Number Publication Date
WO2021227582A1 true WO2021227582A1 (zh) 2021-11-18

Family

ID=72537258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076100 WO2021227582A1 (zh) 2020-05-14 2021-02-08 一种开关检测器、开关检测器的使用方法及车辆

Country Status (2)

Country Link
CN (1) CN111707934A (zh)
WO (1) WO2021227582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707934A (zh) * 2020-05-14 2020-09-25 华为技术有限公司 一种开关检测器、开关检测器的使用方法及车辆
WO2024092495A1 (zh) * 2022-11-01 2024-05-10 宁德时代新能源科技股份有限公司 开关模块的状态检测方法、电路、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202794463U (zh) * 2012-09-27 2013-03-13 潍柴动力股份有限公司 一种高压直流接触器主触点故障的检测装置
EP2708907A1 (de) * 2012-08-24 2014-03-19 Omicron electronics GmbH Verfahren und Vorrichtung zur Messung von Widerständen von Schaltkontakten eines elektrischen Leistungsschalters
CN104142470A (zh) * 2013-05-10 2014-11-12 台达电子工业股份有限公司 继电器检测装置及其操作方法
CN106338688A (zh) * 2016-08-24 2017-01-18 深圳市科列技术股份有限公司 车载电池管理系统主继电器粘连检测电路及其检测方法
CN106707152A (zh) * 2016-12-20 2017-05-24 东莞钜威动力技术有限公司 一种电动汽车功率继电器的粘连检测电路和检测方法
CN107284247A (zh) * 2017-06-19 2017-10-24 北京长安汽车工程技术研究有限责任公司 一种电动汽车及高压配电盒
CN111707934A (zh) * 2020-05-14 2020-09-25 华为技术有限公司 一种开关检测器、开关检测器的使用方法及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201489089U (zh) * 2009-08-25 2010-05-26 广州粤能电力科技开发有限公司 一种开关量测量电路
CN102916354A (zh) * 2012-10-10 2013-02-06 潍柴动力股份有限公司 一种电动汽车高压配电箱
CN106371009A (zh) * 2016-09-23 2017-02-01 上海地铁维护保障有限公司 安全型继电器的测试装置及测试方法
KR102258558B1 (ko) * 2017-03-29 2021-06-01 주식회사 엘지에너지솔루션 개방 회로 전압을 이용한 릴레이 상태 모니터링 시스템 및 방법
CN109188266A (zh) * 2018-10-11 2019-01-11 东莞塔菲尔新能源科技有限公司 一种高压负极继电器黏连的检测电路及其检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708907A1 (de) * 2012-08-24 2014-03-19 Omicron electronics GmbH Verfahren und Vorrichtung zur Messung von Widerständen von Schaltkontakten eines elektrischen Leistungsschalters
CN202794463U (zh) * 2012-09-27 2013-03-13 潍柴动力股份有限公司 一种高压直流接触器主触点故障的检测装置
CN104142470A (zh) * 2013-05-10 2014-11-12 台达电子工业股份有限公司 继电器检测装置及其操作方法
CN106338688A (zh) * 2016-08-24 2017-01-18 深圳市科列技术股份有限公司 车载电池管理系统主继电器粘连检测电路及其检测方法
CN106707152A (zh) * 2016-12-20 2017-05-24 东莞钜威动力技术有限公司 一种电动汽车功率继电器的粘连检测电路和检测方法
CN107284247A (zh) * 2017-06-19 2017-10-24 北京长安汽车工程技术研究有限责任公司 一种电动汽车及高压配电盒
CN111707934A (zh) * 2020-05-14 2020-09-25 华为技术有限公司 一种开关检测器、开关检测器的使用方法及车辆

Also Published As

Publication number Publication date
CN111707934A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021227582A1 (zh) 一种开关检测器、开关检测器的使用方法及车辆
CN2901330Y (zh) 具有高精度、高速度测控电路的交直流耐压绝缘测试仪
CN206848434U (zh) 一种测量高压断路器分合闸时间的装置
US10180459B2 (en) Monitoring system for detecting occurrence of leakage current and/or relay short-circuit condition in an electrical system
CN107478908B (zh) 一种电动车绝缘检测装置及其检测方法
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
CN112526337B (zh) 电动汽车继电器粘连检测电路及其检测方法
US10205315B2 (en) Fault detection system
CN112886551A (zh) Mmc换流器直流配电网单极高阻接地故障保护方法
TWI684770B (zh) 直流供電洩漏電流偵測裝置
JP5104520B2 (ja) 電動車両の充電装置
CN104251978B (zh) 直流系统交流串扰与电压波动对继电器影响的测试装置
CN109444507B (zh) 一种电动汽车直流充电桩充电电压采集电路、绝缘检测系统及方法
CN104065034A (zh) 低压故障检测仪
WO2024066551A1 (zh) 车辆电池包的高压采样电路、继电器诊断及预充方法
CN113466739A (zh) 一种直流系统瞬时接地监测记录仪及方法
CN102944834B (zh) 一种预付费电能表专用断路器的检测方法和装置
CN203543694U (zh) 一种高压配电控制装置
CN110286317B (zh) 一种电池系统的诊断电路与方法
CN203951163U (zh) 低压故障检测仪
CN207336698U (zh) 一种用于电动车高压绝缘检测系统的绝缘检测电路
CN106124978B (zh) 一种基于绝缘监测装置和混沌检测电路的pwm变流器故障诊断方法
CN111929540B (zh) 一种开关器件耐压测量电路及方法
CN110954820B (zh) 一种继电器寿命测试装置
CN114252813B (zh) 变电站直流系统双段母线互窜检测装置的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804218

Country of ref document: EP

Kind code of ref document: A1