WO2022110803A1 - 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法 - Google Patents

危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法 Download PDF

Info

Publication number
WO2022110803A1
WO2022110803A1 PCT/CN2021/103328 CN2021103328W WO2022110803A1 WO 2022110803 A1 WO2022110803 A1 WO 2022110803A1 CN 2021103328 W CN2021103328 W CN 2021103328W WO 2022110803 A1 WO2022110803 A1 WO 2022110803A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
hazardous waste
tower
waste incineration
rotary kiln
Prior art date
Application number
PCT/CN2021/103328
Other languages
English (en)
French (fr)
Inventor
陈齐平
代恩岩
谢陈平
严庆云
潘国栋
王增琛
卢照升
田智威
陈惠敏
Original Assignee
中广核工程有限公司
深圳中广核工程设计有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 深圳中广核工程设计有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2022110803A1 publication Critical patent/WO2022110803A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the invention relates to the technical field of hazardous waste treatment, in particular to a hazardous waste incineration flue gas treatment system and a hazardous waste incineration flue gas treatment method.
  • the main furnace types used for hazardous waste incineration at home and abroad include rotary kiln incinerators, grate furnaces, liquid injection incinerators, fluidized bed incinerators, multi-layer bed incinerators and pyrolysis incinerators. More complex, rotary kilns are widely used due to their simple structure, strong adaptability to hazardous waste, stable control, easy operation, mature technology, and long operation history.
  • the flue gas produced by incineration contains sulfur dioxide, nitrogen oxides, hydrogen chloride, hydrogen fluoride, heavy metals, dust, dioxins and other harmful substances, and needs to be purified.
  • the temperature of the flue gas after incineration reaches about 1100 °C, which contains high heat.
  • the general flue gas treatment plan is to treat sulfur dioxide, nitrogen oxides, hydrogen chloride, hydrogen fluoride, heavy metals, and dust in the flue gas, and heat recovery is generally not considered.
  • it is necessary to increase the SCR denitration system using the selective catalytic reduction method.
  • the flue gas treatment process of the general flue gas treatment scheme does not consider heat recovery, resulting in heat loss in the flue gas.
  • external steam is used to heat the flue gas after wet deacidification, resulting in wasted energy.
  • Adding a denitration system by selective catalytic reduction has high operating costs, and the used catalysts belong to hazardous wastes, resulting in high treatment costs.
  • the technical problem to be solved by the present invention is to provide a hazardous waste incineration flue gas treatment system and a hazardous waste incineration flue gas treatment method for realizing flue gas recirculation and heat recovery.
  • the technical scheme adopted by the present invention to solve the technical problem is to provide a hazardous waste incineration flue gas treatment system, which includes a rotary kiln that incinerates the hazardous waste and generates flue gas, and a second that re-burns the flue gas to form high-temperature flue gas.
  • Combustion chamber waste heat boiler for selective non-catalytic reduction reaction of high temperature flue gas and generating steam, quench tower for heat exchange and re-cooling of flue gas after cooling, dryer for adsorption and purification of flue gas Process deacidification tower, dust collector for dedusting and filtering flue gas after adsorption purification, washing tower for washing flue gas after dedusting and filtering, wet deacidification tower for deacidifying flue gas after washing . Drain part of the flue gas after dust removal and filtering to the split flue of the rotary kiln;
  • the rotary kiln, the secondary combustion chamber, the waste heat boiler, the quenching tower, the dry deacidification tower, the dust collector, the washing tower and the wet deacidification tower are connected in sequence along the traveling direction of the flue gas; between the outlet of the kiln and the rotary kiln.
  • the rotary kiln and the second combustion chamber are adjacent to each other; the second combustion chamber is connected to the air inlet of the waste heat boiler through the first flue.
  • the waste heat boiler is provided with a pressurized conveying metering device connected to the denitration spray gun and used for pressurized conveying of the reducing agent;
  • a high temperature resistant casing is sleeved on the denitration spray gun, and an air-cooled cooling ring chamber is formed between the casing and the outer periphery of the denitration spray gun.
  • the air outlet of the waste heat boiler is connected to the quenching tower through a second flue;
  • the quenching tower is provided with a dual-fluid nozzle, which sprays atomized droplets to exchange heat with the flue gas entering the quenching tower, and takes away the heat of the flue gas.
  • the dust collector is a bag filter
  • the outlet of the dust collector is connected to the washing tower through a third flue; an ash hopper is arranged at the bottom of the dust collector, and an electric heating device is arranged on the ash hopper.
  • the inlet and outlet of the precipitator are respectively connected to an electric heater and a thermal circulation fan through a circulation pipe, and the electric heater is connected to the thermal circulation fan, and forms a hot air circulation loop with the precipitator ;
  • the circulating pipeline is provided with a double-layer sealing valve.
  • the hazardous waste incineration flue gas treatment system further includes a sub-cylinder; the sub-cylinder is connected to the steam outlet of the waste heat boiler and receives steam from the waste heat boiler.
  • the hazardous waste incineration flue gas treatment system further comprises a flue gas heater; the flue gas heater is connected to the wet deacidification tower, receives the flue gas from the wet deacidification tower and heats the flue gas .
  • the heat exchange tube of the flue gas heater is made of fluoroplastic steel.
  • the flue gas heater is also connected to the waste heat boiler, and the steam generated by the waste heat boiler is used as a heat source.
  • the present invention also provides a method for treating flue gas from incineration of hazardous wastes, using any of the above systems for treating flue gas from incineration of hazardous wastes, and the method for treating flue gas from incineration of hazardous wastes includes the following steps:
  • the flue gas generated after the hazardous waste is incinerated by the rotary kiln is transported to the secondary combustion chamber for re-combustion treatment, the harmful components including dioxins in the flue gas are decomposed, and the high-temperature flue gas is output;
  • the high-temperature flue gas is transported into the waste heat boiler, and the selective non-catalytic reduction reaction is carried out with the reducing agent to remove nitrogen oxides in the flue gas;
  • the purified flue gas is transported to a dust collector for dust removal and filtration;
  • the washed flue gas is sent to the wet deacidification tower, and the flue gas is deacidified by strong alkali solution to remove the remaining HCl, HF and SO 2 in the flue gas.
  • the reducing agent is a high-efficiency denitration liquid synthesized by using a polymer active ammonia liquid and a trace amount of nano rare earth auxiliary agent.
  • step S3 further includes: delivering the steam generated by the waste heat boiler to the sub-cylinders.
  • the hazardous waste incineration flue gas treatment method further comprises the following steps:
  • the deacidified flue gas is transported to the flue gas heater, heated and then discharged through the chimney.
  • the heat source of the flue gas heater is provided by the steam generated by the waste heat boiler.
  • the beneficial effects of the invention are as follows: the flue gas generated by the incineration of the rotary kiln is treated so that the flue gas meets the low nitrogen emission requirements, and the problem of heat recovery of the flue gas after the incineration of the rotary kiln is solved;
  • the duct diverts the flow to the rotary kiln for recirculation, which increases the inlet air temperature of the rotary kiln, and also reduces the oxygen concentration of the rotary kiln, thereby reducing the emission concentration of nitrogen oxides.
  • FIG. 1 is a connection block diagram of a hazardous waste incineration flue gas treatment system according to an embodiment of the present invention
  • FIG. 2 is a connection block diagram of a hot air circulation loop in a hazardous waste incineration flue gas treatment system according to an embodiment of the present invention.
  • the hazardous waste incineration flue gas treatment system of the present invention is used for treating the flue gas produced by the incineration of the hazardous waste in the rotary kiln, recovering the heat of the flue gas and removing harmful substances therein.
  • the hazardous waste incineration flue gas treatment system includes a rotary kiln 10, a secondary combustion chamber 20, a waste heat boiler 30, a quench tower 40, a dry-process dehydrator, and a rotary kiln 10 connected in sequence along the traveling direction of the flue gas.
  • Acid tower 50 dust collector 60 , washing tower 70 and wet deacidification tower 80 .
  • the rotary kiln 10 is used to incinerate hazardous wastes and generate flue gas; the secondary combustion chamber 20 is connected to the rotary kiln 10 and receives flue gas from the rotary kiln 10, and re-burns the flue gas to form high-temperature flue gas.
  • the waste heat boiler 30 is connected to the secondary combustion chamber 20 and receives the high-temperature flue gas from the secondary combustion chamber 20, which is used to cool the high-temperature flue gas to generate steam and perform SNCR denitrification (selective non-catalytic reduction reaction), recover the heat of the high-temperature flue gas and generate steam. produce steam.
  • the quenching tower 40 is connected to the waste heat boiler 30 and receives the cooled flue gas from the waste heat boiler 30, and is used for the cooled flue gas to exchange heat therein and then cool down.
  • the dry deacidification tower 50 is connected to the quenching tower 40 and receives the flue gas from the quenching tower 40, and performs adsorption purification treatment on the flue gas.
  • the dust collector 60 is used to perform dust removal and filtering treatment on the flue gas after adsorption and purification treatment.
  • the washing tower 70 is used for washing the flue gas after dust removal and filtering by weak alkali washing liquid.
  • the wet deacidification tower 80 is used to deacidify the washed flue gas with strong alkali solution.
  • the rotary kiln 10 and the second combustion chamber 20 are in close contact with each other.
  • the flue gas in the rotary kiln 10 is directly sent into the secondary combustion chamber 20 in the closed space without leakage.
  • the rotary kiln 10 includes a kiln head, a main body, a kiln tail, a transmission mechanism, and the like.
  • the main function of the kiln head is to complete the smooth feeding of materials (such as hazardous waste), and an auxiliary fuel/liquid waste combined burner is arranged inside.
  • the lower part of the kiln head is provided with a waste collector to collect waste leakage.
  • the body of the rotary kiln 10 is a cylinder rolled from steel plates and lined with refractory materials.
  • the main body is provided with two pulleys and a large ring gear, the transmission mechanism drives the large ring gear on the main body through the pinion gear, and then drives the main body of the rotary kiln 10 to rotate through the large ring gear.
  • the kiln tail is the transition body connecting the rotary kiln 10 body and the secondary combustion chamber 20, and its main function is to ensure the sealing of the kiln tail and the conveying channel of flue gas and incineration residues.
  • the flue gas generated by the incineration in the rotary kiln 10 is transported to the secondary combustion chamber 20 for re-combustion treatment, and the incinerated residue is discharged from the bottom for subsequent further treatment.
  • Hazardous waste usually includes liquid waste and solid waste; solid waste is pushed into the rotary kiln 10 by hydraulic push rods;
  • the secondary combustion chamber 20 reburns the flue gas to decompose dioxins and other harmful components in the flue gas.
  • the size of the secondary combustion chamber 20 is set to ensure that the residence time of the flue gas is greater than 2s at a temperature above 1100°C; under this condition, 99.99% of the dioxins and other harmful components in the flue gas can be decomposed.
  • the lower part of the secondary combustion chamber 20 is provided with a required number of multi-functional burners to ensure that the temperature of the flue gas in the secondary combustion chamber 20 meets the requirements and the flue gas is sufficiently disturbed.
  • a thermocouple can be set on the secondary combustion chamber 20 to control the fire power of the multifunctional burner, so that the temperature of the secondary combustion chamber 20 can be stabilized at the set value.
  • liquid waste Before the flue gas is reburned, liquid waste also needs to be input into the secondary combustion chamber 20 .
  • the liquid waste is transported to the multifunctional burner of the secondary combustion chamber 20 through the pipeline through the delivery pump, and then enters the secondary combustion chamber 20 .
  • Both the rotary kiln 10 and the secondary combustion chamber 20 are provided with air inlets for feeding combustion-supporting air respectively.
  • the inner wall of the secondary combustion chamber 20 is a refractory layer, and the outer wall is a thermal insulation layer and an outer protective plate in sequence.
  • the internal working temperature of the secondary combustion chamber 20 is above 1100°C, and the external temperature is less than or equal to 60°C.
  • the secondary combustion chamber 20 is connected to the air inlet of the waste heat boiler 30 through the first flue 21, and the high temperature flue gas formed after recombustion is sent to the waste heat boiler 30 for selective non-catalytic reduction reaction (SNCR).
  • SNCR non-catalytic reduction reaction
  • the reducing agent reacts with nitrogen oxides in the high temperature flue gas, so as to achieve the purpose of removing nitrogen oxides in the flue gas.
  • the heat of the high-temperature flue gas is recovered by the waste heat boiler 30, which can generate a large amount of steam, and the generated steam can be used by other users inside the production line and in the plant area to avoid heat loss of the flue gas.
  • the reducing agent is uniformly sprayed on the water cooling wall in the waste heat boiler 30 where the flue gas temperature ranges from 900°C to 1050°C.
  • the reducing agent adopts a new type of high-efficiency denitrification liquid, which is synthesized with high-molecular active ammonia liquid and trace nanometer rare earth additives, and has high denitration efficiency.
  • the high-pressure micron spray denitrification process is used to pressurize the reducing agent through the pressurized conveying metering device, and the conveying pressure can reach 10Mpa, thereby generating superior kinetic energy, greatly improving the penetration rigidity of the reducing agent spray, and increasing the flue gas. Contact area with reducing agent.
  • the denitration spray gun adopts a high-pressure micron atomizing spray gun, and the installation position is determined according to the temperature distribution interval of the furnace; the denitration spray gun is further made of high-temperature and wear-resistant hard alloy to ensure that the atomized particle size of ammonia water is within 10-80 ⁇ m, and the denitration efficiency is improved.
  • Pressurized conveying and metering devices include precision filters, high-pressure atomizing pumps, variable frequency motors, regulating valves, electromagnetic flowmeters, pressure transmitters, etc.
  • the pressurized conveying and metering device is connected to the denitration spray gun. Because the working environment of the denitration spray gun is relatively harsh, it is located in the high temperature area of the waste heat boiler 30. Therefore, in order to prevent the denitration spray gun from extending into the furnace wall, the part will deform in the high temperature area, resulting in the spray gun being stuck or unable to work.
  • a high temperature resistant casing is set on the denitration spray gun, an air-cooled cooling ring chamber is formed between the casing and the outer periphery of the denitration spray gun, and the operation of the denitration spray gun is reduced by introducing cold air into the air-cooled cooling ring chamber temperature to protect the denitration spray gun.
  • the temperature of the working area of the denitration spray gun can be reduced to 400°C ⁇ 500°C, which can effectively ensure the continuous operation of the spray gun for a long time.
  • the hazardous waste incineration flue gas treatment system of the present invention may further include a sub-cylinder 90, and the steam outlet of the waste heat boiler 30 is connected to the sub-cylinder 90, so as to transport the steam therein to the sub-cylinder 90, and then the sub-cylinder 90 is connected to the steam outlet of the waste heat boiler 30.
  • the cylinders 90 are transported to other desired places, such as production lines and the like.
  • the temperature can be reduced to 550°C or below.
  • the gas outlet of the waste heat boiler 30 is connected to the quenching tower 40 through the second flue 31 , and the flue gas is output from the gas outlet of the waste heat boiler 30 and sent to the quenching tower 40 through the second flue 31 .
  • the flue gas enters the quench tower 40 mainly from above.
  • the quenching tower 40 is provided with a dual-fluid nozzle, which sprays atomized liquid droplets to exchange heat with the flue gas entering the quenching tower 40 to take away the heat of the flue gas.
  • a dual-fluid nozzle which sprays atomized liquid droplets to exchange heat with the flue gas entering the quenching tower 40 to take away the heat of the flue gas.
  • the compressed air and the cooling liquid water
  • the cooling liquid is atomized into droplets of about 0.08mm, and the atomized droplets and high-temperature smoke
  • the gas is fully heat exchanged, evaporates rapidly in a short time, and takes away heat, so that the temperature of the flue gas is instantly reduced to below 200 °C, and the moisture content (mass ratio) is less than 3%.
  • the quenching tower 40 adopts dual-fluid nozzles, the atomized particles of the cooling liquid are very small, the total evaporation surface area of the droplets is large, and the evaporation time is short, ensuring 100% evaporation and ensuring that the bottom does not wet.
  • the quenched flue gas is transported from the quench tower 40 to the dry deacidification tower 50 for adsorption purification treatment.
  • the dry deacidification tower In order to meet the emission standards of waste incineration flue gas and ensure the emission standards of heavy metals (especially Hg), dioxins and furans, in addition to strictly controlling the incineration process and technical parameters, the dry deacidification tower often adopts the auxiliary purification measures of activated carbon jet adsorption . Because activated carbon has a very large specific surface area, even a small amount of activated carbon can achieve high adsorption purification efficiency as long as it is evenly mixed with the flue gas and the contact time is long enough.
  • the flue gas enters the dry deacidification tower 50 and is fully contacted with the mixed powder of slaked lime, activated carbon and fly ash injected into the tower, and reacts to form dusty calcium salts to achieve the purpose of removing acid gases such as sulfur dioxide and hydrogen chloride in the flue gas.
  • the water contained in the flue gas undergoes a liquid-phase ionic reaction between the surface of the Ca(OH) 2 particles and the acid gas, which significantly improves the deacidification efficiency and the utilization rate of the absorbent.
  • activated carbon is sprayed on the inlet pipe of the dry deacidification tower 50, and the activated carbon is directly fed into the flue after being metered, and is fully mixed with the flue gas and then enters the dry deacidification tower 50; slaked lime is sprayed into the tower and then Mix with flue gas mixed with activated carbon.
  • Activated carbon of 200 mesh is preferably used to ensure the specific surface area and adsorption capacity.
  • the addition of activated carbon is a continuous operation, and the amount of activated carbon added is controlled by a variable frequency screw feeder.
  • the uniform mixing of activated carbon and flue gas is achieved by strong turbulent flow, and the activated carbon is uniformly sprayed into the flue gas, and the mixing is uniform, achieving a good adsorption effect.
  • the dust collector 60 is preferably a bag filter.
  • the activated carbon is strongly and uniformly mixed with the flue gas in the pipeline of the dry deacidification tower 50, the high-efficiency adsorption effect is achieved, but the adsorption in the pipeline has not reached saturation, and then it enters the dust collector 60 together with the flue gas, and stays in the dust collector 60.
  • On the filter bag it is in full contact with the flue gas that slowly passes through the filter bag, so as to achieve the adsorption and purification of heavy metals (especially Hg), dioxins, furans and other pollutants in the flue gas.
  • the activated carbon falls into the ash hopper at the bottom of the precipitator 60 , and the purified flue gas enters the clean room of the precipitator 60 through the mouth of the filter bag, and is discharged from the outlet of the precipitator 60 .
  • the filter bag is made of high-efficiency polytetrafluoroethylene film-coated filter material.
  • an electric heating device is installed in the ash hopper at the bottom of the dust collector 60 to heat the ash hopper, so as to avoid acid condensation, ash bridge and hardening, and ensure that the The outer surface temperature is less than 60°C.
  • a hot air circulation loop is set to preheat the dust collector 60 before starting the furnace to prevent dew point corrosion.
  • the inlet and outlet of the precipitator 60 are respectively connected to the electric heater 601 and the thermal circulation fan 602 through the circulation pipeline, and the electric heater 601 is connected to the thermal circulation fan 602 and forms a Hot air circulation loop; double-layer sealing valve 603 is arranged on the circulation pipeline to control the on-off of the circulation pipeline.
  • the hot air circulation loop When the hot air circulation loop is working, open the double-layer sealing valve 603 on the circulation pipe, start the hot circulation fan 602 and the electric heater 601, the electric heater 601 heats the air in the circulation pipe, and the hot circulation fan 602 drives the hot air in the hot air.
  • the circulation loop is circulated, so that the internal temperature of the dust collector 60 reaches the set value, and the hot air circulation loop is closed;
  • a split flue 62 is also connected between the outlet of the dust collector 60 and the rotary kiln 10.
  • the split flue 62 diverts part of the flue gas output from the dust collector 60 to the rotary kiln 10, which can not only improve the rotary
  • the inlet air temperature of the kiln 10 also reduces the oxygen concentration, thereby reducing the emission concentration of nitrogen oxides, and realizing the recycling and reuse of the flue gas.
  • the ratio of the amount of flue gas fed into the rotary kiln 10 by the dust collector 60 also referred to as the amount of recirculated flue gas
  • the amount of flue gas produced by incineration in the rotary kiln 10 is controlled at 10-20%.
  • combustion in the rotary kiln 10 may be unstable.
  • a baffle 621 is provided on the split flue 62, and the amount of flue gas fed into the rotary kiln 10 by the dust collector 60 is adjusted by controlling the baffle 621, and the optimum combustion curve is set by the amount of flue gas and the heat load of the rotary kiln 10 to achieve control Reasonable peroxidation coefficient, according to the operating conditions of the rotary kiln under different operating conditions to automatically adjust the amount of flue gas recovery, to meet the different load operation to control the concentration of nitrogen oxides within a reasonable range.
  • the outlet of the dust collector 60 is connected to the washing tower 70 through the third flue 61 , and the flue gas after dedusting treatment is transported into the washing tower 70 through the third flue 61 .
  • two layers of weak alkali washing liquid are arranged at the top of the washing tower 70.
  • the dust in the flue gas is mixed with the weak alkaline washing liquid, a part enters the bottom of the washing tower 70 with the weak base washing liquid, and the flue gas temperature is reduced from 170 ° C to about 90 °C and remove HCl, HF, SO 2 in part of the flue gas; the weak alkali washing liquid at the bottom of the washing tower 70 is pumped to the top of the washing tower 70 to continue washing the flue gas.
  • the flue gas enters the wet deacidification tower 80 from the washing tower 70 for deacidification treatment.
  • the wet deacidification tower 80 uses strong alkali solution such as NaOH solution to remove HCl, HF and SO 2 in the flue gas.
  • strong alkali solution such as NaOH solution to remove HCl, HF and SO 2 in the flue gas.
  • the flue gas mixes and reacts with the NaOH solution sprayed from the upper spray device in the tower. Due to the strong alkalinity of the NaOH solution, the removal rate of HCl, HF and SO2 in the flue gas is relatively high.
  • the spray device consists of spray pipes and nozzles.
  • the arrangement of the nozzles on each layer ensures that the spray liquid has no dead angle in the section within the effective distance of the spray, and the entire spray
  • the drenching coverage rate is greater than 300%, which achieves the most ideal contact area and method, and fully absorbs, dissolves and reacts.
  • the purified flue gas (referred to as pure smoke) rises into the mist eliminator in the wet deacidification tower 80.
  • the defogger adopts a baffle plate mist eliminator. This device is used to ensure that the moisture content of the flue gas output from the wet deacidification tower 80 is not greater than 75 mg/Nm3.
  • the inner wall of the wet deacidification tower 80 is made of glass flakes for anti-corrosion, which improves the safety and reliability of the equipment and prolongs the operation period.
  • the waste water produced by the washing tower 70 and the wet deacidification tower 80 enters the waste water treatment workshop for treatment.
  • the temperature of the flue gas output from the wet deacidification tower 80 is about 60°C, and the output flue gas can be transported to the chimney 110 for external discharge.
  • the hazardous waste incineration flue gas treatment system of the present invention further includes a flue gas heater 100; The flue gas of the wet deacidification tower 80 and the flue gas are heated. The heated clean smoke is discharged from the chimney 110 under the driving of the fan 111 .
  • the flue gas heater 100 is also connected to the waste heat boiler 30, and the steam generated by the waste heat boiler 30 is used as a heat source, and no externally supplied steam is required, thereby saving energy.
  • the heat exchange tube of the flue gas heater 100 is made of fluoroplastic steel, which is different from the conventional stainless steel heat exchange tube, is not easy to corrode, and has a long service life.
  • the hazardous waste incineration flue gas treatment method of the present invention adopts the above-mentioned hazardous waste incineration flue gas treatment system.
  • the method for treating flue gas from incineration of hazardous waste may include the following steps:
  • the flue gas generated after the hazardous waste is incinerated in the rotary kiln 10 is transported to the secondary combustion chamber 20 for re-combustion treatment, the harmful components including dioxins in the flue gas are decomposed, and high-temperature flue gas is output.
  • the high-temperature flue gas is transported into the waste heat boiler 30, and a selective non-catalytic reduction reaction is carried out with a reducing agent to remove nitrogen oxides in the flue gas.
  • the reducing agent is a high-efficiency denitrification liquid synthesized by using a polymer active ammonia liquid and a trace amount of nano-rare earth additives, and the denitration efficiency is high.
  • the reducing agent reacts with nitrogen oxides in the high temperature flue gas, so as to achieve the purpose of removing nitrogen oxides in the flue gas.
  • the heat of the high-temperature flue gas is recovered by the waste heat boiler 30, which can generate a large amount of steam, and the generated steam can be used by other users inside the production line and in the factory area to avoid heat loss of the flue gas.
  • the temperature can be reduced to 550°C or below.
  • droplets of about 0.08mm are ejected through the two-fluid nozzle, and the droplets and the flue gas fully exchange heat, evaporate rapidly in a short time, and take away the heat, so that the temperature of the flue gas is instantly reduced to 200°C below, and the moisture content (mass ratio) is less than 3%. Since the residence time of the flue gas between 200°C and 500°C is less than 1 s, the resynthesis of dioxin is prevented.
  • a part of the fly ash removed from the flue gas in the quenching tower 40 is discharged from the bottom of the quenching tower 40 for collection and treatment.
  • Step S3 also includes: transporting the steam generated by the waste heat boiler 30 to the sub-cylinder 90, and then transporting the steam from the sub-cylinder 90 to other required places, such as a production line and the like.
  • the flue gas after heat exchange and cooling down is transported to the dry deacidification tower 50 to remove the acid gas in the flue gas.
  • the flue gas enters the dry deacidification tower 50 and is fully contacted with the mixed powder of slaked lime, activated carbon and fly ash injected into the tower, and reacts to form dusty calcium salts to achieve the purpose of removing acid gases such as sulfur dioxide and hydrogen chloride in the flue gas.
  • the water contained in the flue gas undergoes a liquid-phase ionic reaction between the surface of the Ca(OH) 2 particles and the acid gas, which significantly improves the deacidification efficiency and the utilization rate of the absorbent.
  • the purified flue gas is transported to the dust collector 60 for dust removal and filtration treatment.
  • the dust collector 60 is preferably a bag filter. After the activated carbon is strongly and uniformly mixed with the flue gas in the pipeline of the dry deacidification tower 50, the high-efficiency adsorption effect is achieved, but the adsorption in the pipeline has not reached saturation, and then it enters the dust collector 60 together with the flue gas, and stays in the dust collector 60. On the filter bag, it is in full contact with the flue gas that slowly passes through the filter bag, so as to achieve the adsorption and purification of heavy metals (especially Hg), dioxins, furans and other pollutants in the flue gas.
  • the activated carbon falls into the ash hopper at the bottom of the precipitator 60 , and the purified flue gas enters the clean room of the precipitator 60 through the mouth of the filter bag, and is discharged from the outlet of the precipitator 60 .
  • part of the flue gas after dust removal and filtering is drained to the rotary kiln 10 through the split flue 62, and part is transported to the washing tower 70, and the flue gas is washed with a weak alkaline washing solution to remove part of the HCl and HF in the flue gas. and SO 2 .
  • the rotary kiln 10 by transporting a part of the flue gas to the rotary kiln 10, it can not only increase the inlet air temperature of the rotary kiln 10, but also reduce the oxygen concentration, thereby reducing the emission concentration of nitrogen oxides, and realizing the recycling and reuse of the flue gas.
  • the amount of flue gas fed into the rotary kiln 10 is adjusted by adjusting the baffle 621 on the split flue 62 .
  • the other part of the flue gas enters the washing tower 70, and the top of the washing tower 70 is sprayed with a weak alkali washing liquid to wash the flue gas.
  • a part enters the bottom of the washing tower 70 with the weak base washing liquid, At the same time, the temperature of the flue gas is reduced from 170°C to about 90°C and part of the HCl, HF and SO 2 in the flue gas is removed.
  • the weak alkali washing liquid at the bottom of the washing tower 70 is pumped to the top of the washing tower 70 to continue washing the flue gas.
  • the washed flue gas is sent to the wet deacidification tower 80, and the flue gas is deacidified by strong alkali solution to remove the remaining HCl, HF and SO2 in the flue gas, and output clean smoke.
  • the hazardous waste incineration flue gas treatment method of the present invention further comprises the following steps:
  • the deacidified flue gas is transported to the flue gas heater 100, heated and then discharged through the chimney 110.
  • the heat source of the flue gas heater 100 is provided by the steam generated by the waste heat boiler 30, and it is not necessary to use externally supplied steam, thus saving energy.
  • the specific operations of each treatment process can refer to the relevant description of the above system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法,危险废物焚烧烟气处理系统包括回转窑(10)、二燃室(20)、余热锅炉(30)、急冷塔(40)、干法脱酸塔(50)、除尘器(60)、洗涤塔(70)、湿式脱酸塔(80)以及分流烟道;回转窑(10)、二燃室(20)、余热锅炉(30)、急冷塔(40)、干法脱酸塔(50)、除尘器(60)、洗涤塔(70)和湿式脱酸塔(80)沿烟气的行进方向依次连接;分流烟道连接在除尘器(60)的出口和回转窑(10)之间。该烟气处理系统对回转窑(10)焚烧产生的烟气进行处理,使烟气满足低氮排放要求,同时解决回转窑(10)焚烧后烟气热量回收的问题;部分烟气在后续处理中通过分流烟道引流到回转窑(10)内再循环,提高回转窑(10)的进风温度,也降低了回转窑(10)的氧气浓度,进而降低了氮氧化物的排放浓度。

Description

危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法 技术领域
本发明涉及危险废物处理技术领域,尤其涉及一种危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法。
背景技术
目前国内外用于危险废物焚烧的主要炉型有回转窑焚烧炉、炉排炉、液体注射式焚烧炉、流化床焚烧炉、多层床焚烧炉和热解焚烧炉等,危险废物的焚烧过程较复杂,回转窑炉因结构简单、对危险废物的适应能力强、控制稳定、操作容易、技术成熟、运行历史悠久等优点被广泛采用。焚烧产生的烟气中因含有二氧化硫、氮氧化物、氯化氢、氟化氢、重金属、粉尘、二噁英等有害物质,需要进行净化处理。焚烧后的烟气温度达到1100℃左右,含有较高的热量,需考虑如何高效率利用烟气热量,同时尽可能降低烟气中的有害物质。对于部分地区提出的低氮排放要求,目前的危险废物焚烧烟气处理系统无法满足越来越严格的环保要求。
一般烟气处理方案是处理烟气中二氧化硫、氮氧化物、氯化氢、氟化氢、重金属、粉尘,一般不考虑热量回收。为满足越来越严格的低氮排放要求,需要增加采用选择性催化还原法的SCR脱硝系统。
因此,一般烟气处理方案的烟气处理过程未考虑热量回收,造成烟气中热量损失。同时,为了避免烟囱出口的烟气出现“白烟”现象,利用外来蒸汽加热湿法脱酸后的烟气,造成能源浪费,同时存在加热器烟气腐蚀、使用寿命短的问题。增加选择性催化还原法的脱硝系统,运行成本高,且使用后的催化剂属于危险废物,处理成本高。
技术问题
本发明要解决的技术问题在于,提供一种实现烟气再循环及热量回收的危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种危险废物焚烧烟气处理系统,包括对危险废物进行焚烧并产生烟气的回转窑、对烟气再次燃烧处理形成高温烟气的二燃室、用于高温烟气在其中进行选择性非催化还原反应并产生蒸汽的余热锅炉、用于降温后的烟气在其中换热再降温的急冷塔、对烟气进行吸附净化处理的干法脱酸塔、对吸附净化处理后的烟气进行除尘过滤处理的除尘器、对除尘过滤后的烟气进行洗涤处理的洗涤塔、对洗涤后的烟气进行脱酸处理的湿式脱酸塔、将部分除尘过滤后的烟气引流至所述回转窑的分流烟道;
所述回转窑、二燃室、余热锅炉、急冷塔、干法脱酸塔、除尘器、洗涤塔和湿式脱酸塔沿烟气的行进方向依次连接;所述分流烟道连接在所述除尘器的出口和所述回转窑之间。
优选地,所述回转窑和二燃室紧邻相接;所述二燃室通过第一烟道连接所述余热锅炉的进气口。
优选地,所述余热锅炉上设有与脱硝喷枪连接并用于将还原剂进行加压输送的加压输送计量装置;
所述脱硝喷枪上套设有耐高温的套管,所述套管与所述脱硝喷枪的外周之间形成一个风冷降温环室。
优选地,所述余热锅炉的出气口通过第二烟道连接所述急冷塔;
所述急冷塔内设有双流体喷头,喷出雾化液滴与进入所述急冷塔内的烟气进行换热,带走烟气的热量。
优选地,所述除尘器为袋式除尘器;
所述除尘器的出口通过第三烟道连接所述洗涤塔;所述除尘器的底部设有灰斗,且所述灰斗上设有电加热装置。
优选地,所述除尘器的进口和出口还分别通过循环管道连接电加热器和热循环风机,并且所述电加热器与所述热循环风机连接,并与所述除尘器形成一个热风循环回路;所述循环管道上设有双层密封阀。
优选地,所述危险废物焚烧烟气处理系统还包括分汽缸;所述分汽缸连接所述余热锅炉的蒸汽出口,接收来自所述余热锅炉的蒸汽。
优选地,所述危险废物焚烧烟气处理系统还包括烟气加热器;所述烟气加热器连接所述湿式脱酸塔,接收来自所述湿式脱酸塔的烟气并对烟气进行加热。
优选地,所述烟气加热器的换热管采用氟塑钢制成。
优选地,所述烟气加热器还连接所述余热锅炉,以所述余热锅炉产生的蒸汽作为热源。
本发明还提供一种危险废物焚烧烟气处理方法,采用以上任一项所述的危险废物焚烧烟气处理系统,所述危险废物焚烧烟气处理方法包括以下步骤:
S1、将回转窑对危险废物进行焚烧处理后产生的烟气输送至二燃室内进行再次燃烧处理,将烟气中的包括二噁英的有害成分分解,输出高温烟气;
S2、将高温烟气输送至余热锅炉内,与还原剂进行选择性非催化还原反应,脱除烟气中的氮氧化物;
S3、将降温后的烟气从所述余热锅炉输送至急冷塔进行换热再降温,同时防止二噁英再合成;
S4、将换热再降温后的烟气输送至干法脱酸塔,去除烟气中的酸性气体;
S5、将净化后的烟气输送至除尘器进行除尘过滤处理;
S6、将除尘过滤后的烟气部分通过分流烟道引流至所述回转窑,部分输送至洗涤塔,通过弱碱洗涤液对烟气进行洗涤处理,脱除烟气中的部分HCl、HF和SO 2
S7、将洗涤后的烟气输送至湿式脱酸塔,通过强碱液对烟气进行脱酸处理,脱除烟气中的剩余的HCl、HF和SO 2
优选地,步骤S2中,所述还原剂为采用高分子活性氨液体和微量纳米稀土助剂合成的高效脱硝液。
优选地,步骤S3还包括:将所述余热锅炉产生的蒸汽输送至分汽缸。
优选地,所述危险废物焚烧烟气处理方法还包括以下步骤:
S8、将脱酸处理后的烟气输送至烟气加热器,加热后再通过烟囱排放。
优选地,所述烟气加热器的热源由所述余热锅炉产生的蒸汽提供。
有益效果
本发明的有益效果:对回转窑焚烧产生的烟气进行处理,以使烟气满足低氮排放要求,同时解决回转窑焚烧后烟气热量回收的问题;部分烟气在后续处理中通过分流烟道引流到回转窑内再循环,提高回转窑的进风温度,也降低了回转窑的氧气浓度,进而降低了氮氧化物的排放浓度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例的危险废物焚烧烟气处理系统的连接框图;
图2是本发明一实施例的危险废物焚烧烟气处理系统中热风循环回路的连接框图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明的危险废物焚烧烟气处理系统,用于对回转窑对危险废物焚烧产生的烟气进行处理,对烟气进行热量回收以及去除其中的有害物质等。
如图1所示,本发明一实施例的危险废物焚烧烟气处理系统,包括沿烟气的行进方向依次连接的回转窑10、二燃室20、余热锅炉30、急冷塔40、干法脱酸塔50、除尘器60、洗涤塔70和湿式脱酸塔80。
其中,回转窑10用于对危险废物进行焚烧并产生烟气;二燃室20连接回转窑10并接收来自回转窑10的烟气,对烟气进行再次燃烧处理形成高温烟气。余热锅炉30连接二燃室20并接收来自二燃室20的高温烟气,用于高温烟气在其中降温产生蒸汽并且进行SNCR脱硝(选择性非催化还原反应),回收高温烟气的热量并产生蒸汽。急冷塔40连接余热锅炉30并接收来自余热锅炉30的降温后的烟气,用于降温后的烟气在其中换热再降温。干法脱酸塔50连接急冷塔40并接收来自急冷塔40的烟气,对烟气进行吸附净化处理。除尘器60用于对吸附净化处理后的烟气进行除尘过滤处理。洗涤塔70用于通过弱碱洗涤液对除尘过滤后的烟气进行洗涤处理。湿式脱酸塔80用于通过强碱液对洗涤后的烟气进行脱酸处理。
本实施例中,回转窑10和二燃室20紧邻相接。回转窑10内的烟气在密闭空间内直接送入二燃室20,不外漏。
回转窑10包括窑头、本体、窑尾和传动机构等。窑头的主要作用是完成物料(如危险废物)的顺畅进料,内部布置有辅助燃料/液废组合燃烧器。窑头下部设置有废料收集器收集废物漏料。回转窑10的本体是一个由钢板卷成的圆筒,内衬耐火材料。本体上设有两个带轮和一个大齿圈,传动机构通过小齿轮带动本体上的大齿圈,然后通过大齿圈带动回转窑10本体转动。窑尾是连接回转窑10本体以及二燃室20的过渡体,它的主要作用是保证窑尾的密封以及烟气和焚烧残渣的输送通道。回转窑10内焚烧产生的烟气输送至二燃室20进行再次燃烧处理,焚烧后的残渣则从底部排出以进行后续的进一步处理。
危险废物通常包括有液态废物和固态废物;固态废物通过液压推杆推入回转窑10内;液态废物通过输送泵经管道输送至回转窑10窑头,再送入回转窑10的本体内。
二燃室20对烟气进行再次燃烧处理,以将烟气中的二噁英和其它有害成分分解。二燃室20的尺寸以能保证烟气在1100℃以上的温度下滞留时间大于2s进行设置;在此条件下,烟气中的二噁英和其它有害成分的99.99%能够被分解掉。二燃室20的下部设置有所需数量的多功能燃烧器,保证二燃室20烟气温度达到要求,并使烟气有充分的扰动。二燃室20上可设置热电偶控制多功能燃烧器的火力大小,使二燃室20温度稳定在设定值。
在对烟气进行再次燃烧处理前,二燃室20内也需输入液态废物。液态废物通过输送泵经管道输送至二燃室20的多功能燃烧器,然后进入二燃室20内。回转窑10和二燃室20上均设有进风口以分别送入助燃风。
作为选择,二燃室20内壁为耐火层,外壁依次为隔热保温层和外防护板。二燃室20内部工作温度为1100℃以上,外表温度≤60℃。
二燃室20通过第一烟道21连接余热锅炉30的进气口,将再次燃烧后形成的高温烟气输送至余热锅炉30,进行选择性非催化还原反应(SNCR)。在余热锅炉30内,还原剂与高温烟气中的氮氧化物进行反应,从而达到脱除烟气中氮氧化物的目的。通过SNCR,高温烟气的热量被余热锅炉30回收,可产生大量蒸汽,产生的蒸汽可供生产线内部及厂区其他用户使用,避免烟气热量损失。
具体地,在余热锅炉30内烟气温度900℃-1050℃区间的水冷壁上均匀喷入还原剂。还原剂采用新型高效脱硝液,该脱硝液采用高分子活性氨液体和微量纳米稀土助剂合成,脱硝效率高。优选地,采用高压微米喷雾脱硝工艺,将还原剂通过加压输送计量装置进行加压输送,输送压力可达10Mpa,从而产生优势动能,极大地提高了还原剂喷雾的穿透刚性,增加烟气与还原剂接触面积。脱硝喷枪采用高压微米雾化喷枪,根据炉膛温度分布区间确定安装位置;脱硝喷枪进一步采用耐高温耐磨硬质合金制成,确保氨水雾化粒径在10-80μm之内,提高脱硝效率。
加压输送计量装置包括精密过滤器、高压雾化泵、变频电机、调节阀、电磁流量计、压力变送器等。加压输送计量装置与脱硝喷枪连接,由于脱硝喷枪工作环境较为恶劣,处于余热锅炉30的高温区,因此为防止脱硝喷枪伸入炉墙内部分在高温区内会出现变形导致喷枪卡涩或者无法拔出,本发明中,在脱硝喷枪上套设耐高温的套管,套管与脱硝喷枪的外周之间形成一个风冷降温环室,通过往风冷降温环室通入冷风降低脱硝喷枪工作温度,保护脱硝喷枪。通过上述的风冷方式,脱硝喷枪的工作区温度能够降至400℃~500℃,可以有效地保证喷枪长时间连续运行。
对于余热锅炉30产生的蒸汽,本发明的危险废物焚烧烟气处理系统还可包括分汽缸90,余热锅炉30的蒸汽出口连接分汽缸90,以将其中的蒸汽输送至分汽缸90,再由分汽缸90输送至其他所需地方,如生产线等。
高温烟气经过余热锅炉30的处理后,温度可降至550℃或以下。余热锅炉30的出气口通过第二烟道31连接急冷塔40,烟气从余热锅炉30的出气口输出并通过第二烟道31输送至急冷塔40。
烟气主要从急冷塔40的上方进入其内。急冷塔40内设有双流体喷头,喷出雾化液滴与进入急冷塔40内的烟气进行换热,带走烟气的热量。其中,在压缩空气的作用下,在喷头的内部,压缩空气与冷却液(水)经过若干次的打击,冷却液被雾化成0.08mm左右的液滴,被雾化后的液滴与高温烟气充分换热,在短时间内迅速蒸发,带走热量,使得烟气温度在瞬间被降至200℃以下,且含水率(质量比)小于3%。由于烟气在200℃-500℃之间停留时间小于1s,因此防止了二噁英的再合成。急冷塔40内从烟气中脱除的一部分飞灰从急冷塔40底部排出,以便于收集处理。
由于急冷塔40采用双流体喷头,使得冷却液的雾化颗粒非常细小,液滴总蒸发表面积大,蒸发时间短,确保100%蒸发,保证不湿底。
经过急冷后的烟气从急冷塔40输送至干法脱酸塔50以进行吸附净化处理。为了满足废物焚烧烟气排放标准,确保重金属(尤其是Hg)、二噁英、呋喃的排放标准,除严格控制焚烧工艺和技术参数外,干法脱酸塔常采用活性炭喷射吸附的辅助净化措施。由于活性炭具有极大的比表面积,因此,即使是少量的活性炭,只要与烟气混合均匀且接触时间足够长,就可以达到高吸附净化效率。
烟气进入干法脱酸塔50与喷入塔中的熟石灰、活性炭和飞灰的混合粉充分接触,反应形成粉尘状钙盐,达到去除烟气中二氧化硫和氯化氢等酸性气体的目的。烟气中含有的水分在Ca(OH) 2颗粒表面与酸性气体间发生液相离子反应,显著提高脱酸效率和吸收剂利用率。
本实施例中,在干法脱酸塔50入口管道上喷入活性炭,活性炭经计量后直接送入烟道,与烟气充分混合后进入干法脱酸塔50内;熟石灰喷入塔内再与混合活性炭的烟气混合。优选采用200目的活性炭,以保证比表面积和吸附能力,活性炭添加为连续作业,由变频螺旋给料机控制活性炭添加量。活性炭与烟气的均匀混合是通过强烈的湍流实现的,活性炭被均匀的喷入烟气中,混合均匀,达到了良好的吸附效果。
干法脱酸塔50输出的含尘的烟气再输送至除尘器60进行除尘过滤处理。本实施例中,除尘器60优选袋式除尘器。活性炭在干法脱酸塔50管道中与烟气强烈均匀混合后,达到高效吸附效果,但管道内的吸附并未达到饱和,随后再与烟气一起进入除尘器60中,停留在除尘器60的滤袋上,与缓慢通过滤袋的烟气充分接触,达到对烟气中重金属(尤其是Hg)、二噁英、呋喃等污染物的吸附净化,吸附重金属、二噁英等污染物的活性炭落入除尘器60底部的灰斗内,净化后的烟气经滤袋口进入除尘器60的清洁室,由除尘器60的出口排出。
滤袋采用高效聚四氟乙烯覆膜滤料制成。
由于危险废物焚烧所产生烟气中的氯化物具有强吸水性,因此在除尘器60底部的灰斗设置电加热装置实现对灰斗加热,避免出现酸结露和灰搭桥、板结现象,并保证外表面温度小于60℃。
为防止启炉时除尘器60出现露点腐蚀,通过设置热风循环回路,用于在启炉前将除尘器60预热,防止露点腐蚀。其中,如图2所示,除尘器60的进口和出口还分别通过循环管道连接电加热器601和热循环风机602,并且电加热器601与热循环风机602连接,并与除尘器60形成一个热风循环回路;循环管道上设有双层密封阀603,控制循环管道的通断。
热风循环回路工作时,打开循环管道上的双层密封阀603,启动热循环风机602和电加热器601,电加热器601对循环管道内的空气进行加热,热循环风机602驱动热风在该热循环回路中流动循环,使除尘器60内部温度达到设定值,关闭热风循环回路;除尘器60启动进行烟气除尘过滤处理。
可以理解地,在启动热风循环回路前,先断开除尘器60和干法脱酸塔50、洗涤塔70的连通。
特别地,本发明中,除尘器60的出口和回转窑10之间还连接有分流烟道62,分流烟道62将除尘器60输出的部分烟气分流至回转窑10,这样不但可提高回转窑10的进风温度,而且也降低了氧气浓度,进而降低了氮氧化物的排放浓度,实现烟气的循环再利用。除尘器60送入回转窑10的烟气量(也可称再循环烟气量)与回转窑10内焚烧产生的烟气量之比控制在10-20%。当采用更高的烟气再循环率时,回转窑10内的燃烧会不稳定。分流烟道62上设有挡板621,除尘器60送入回转窑10的烟气量通过控制挡板621来调节,通过烟气量与回转窑10热负荷整定出最佳燃烧曲线,实现控制合理的过氧系数,根据回转窑不同工况下运行状况自动调整烟气的回收量,来满足不同负荷运行下将氮氧化物浓度控制在合理的范围内。
除尘器60的出口通过第三烟道61连接洗涤塔70,将除尘处理后的烟气通过第三烟道61输送至洗涤塔70内。
作为选择,洗涤塔70顶部设置了两层弱碱洗涤液,烟气中灰尘与弱碱洗涤液混合后,一部分跟弱碱洗涤液进入洗涤塔70底部,同时烟气温度由170℃降至约90℃并脱除部分烟气中的HCl、HF、SO 2;洗涤塔70底部的弱碱洗涤液经泵打到洗涤塔70顶部继续对烟气进行洗涤。
完成洗涤后,烟气从洗涤塔70进入湿式脱酸塔80进行脱酸处理。湿式脱酸塔80采用强碱液如NaOH溶液去除烟气中的HCl、HF以及SO 2。烟气在上升过程中,与从塔内上部喷淋装置喷淋出来的NaOH溶液混合接触反应。由于NaOH溶液的碱性较强,对烟气中的HCl、HF、SO 2的脱除率较高。
湿式脱酸塔80内共设置三层喷淋装置,喷淋装置由喷淋管道及喷嘴组成,每层喷嘴的布置,保证喷淋液在喷淋有效距离的范围内的截面无死角,整个喷淋覆盖率大于300%,达到最理想的接触面积与方式,并充分吸收溶解及反应。净化后的烟气(简称净烟)上升进入湿式脱酸塔80内除雾器,除雾器选用折流板除雾器,整套装置包括两层除雾器以及相应的三层冲洗水装置,使用该装置以保证湿法脱酸塔80输出的烟气的含湿率不大于75mg/Nm³。湿法脱酸塔80内壁做玻璃鳞片防腐,提高设备的安全可靠性,延长运行周期。
洗涤塔70和湿法脱酸塔80产生的废水进入废水处理车间处理。
湿法脱酸塔80输出的烟气温度为60℃左右,输出的烟气可输送至烟囱110进行外排。为避免烟囱110出口出现“白烟”现象,本发明的危险废物焚烧烟气处理系统还包括烟气加热器100;烟气加热器100连接在湿式脱酸塔80和烟囱110之间,接收来自湿式脱酸塔80的烟气并对烟气进行加热。经加热后的净烟在风机111的驱动下从烟囱110排出。
烟气加热器100还连接余热锅炉30,以余热锅炉30产生的蒸汽作为热源,不需要使用外供蒸汽,节省能源。此外,为解决烟气加热器100的腐蚀问题,烟气加热器100的换热管采用氟塑钢制成,区别常规的不锈钢换热管,不易腐蚀,使命寿命长。
本发明的危险废物焚烧烟气处理方法,采用上述的危险废物焚烧烟气处理系统。参考图1,该危险废物焚烧烟气处理方法可包括以下步骤:
S1、将回转窑10对危险废物进行焚烧处理后产生的烟气输送至二燃室20内进行再次燃烧处理,将烟气中的包括二噁英的有害成分分解,输出高温烟气。
将再次燃烧处理后,烟气中的二噁英和其它有害成分的99.99%能够被分解掉。
S2、将高温烟气输送至余热锅炉30内,与还原剂进行选择性非催化还原反应,脱除烟气中的氮氧化物。
其中,还原剂为采用高分子活性氨液体和微量纳米稀土助剂合成的高效脱硝液,脱硝效率高。
在余热锅炉30内,还原剂与高温烟气中的氮氧化物进行反应,从而达到脱除烟气中氮氧化物的目的。高温烟气的热量被余热锅炉30回收,可产生大量蒸汽,产生的蒸汽可供生产线内部及厂区其他用户使用,避免烟气热量损失。
S3、将降温后的烟气从余热锅炉30输送至急冷塔40进行换热再降温,同时防止二噁英再合成。
高温烟气经过余热锅炉30的处理后,温度可降至550℃或以下。在急冷塔40内,通过双流体喷头喷出0.08mm左右的液滴,液滴与烟气充分换热,在短时间内迅速蒸发,带走热量,使得烟气温度在瞬间被降至200℃以下,且含水率(质量比)小于3%。由于烟气在200℃-500℃之间停留时间小于1s,因此防止了二噁英的再合成。
急冷塔40内从烟气中脱除的一部分飞灰从急冷塔40底部排出,以便于收集处理。
步骤S3还包括:将余热锅炉30产生的蒸汽输送至分汽缸90,再由分汽缸90输送至其他所需地方,如生产线等。
S4、将换热再降温后的烟气输送至干法脱酸塔50,去除烟气中的酸性气体。
烟气进入干法脱酸塔50与喷入塔中的熟石灰、活性炭和飞灰的混合粉充分接触,反应形成粉尘状钙盐,达到去除烟气中二氧化硫和氯化氢等酸性气体的目的。烟气中含有的水分在Ca(OH) 2颗粒表面与酸性气体间发生液相离子反应,显著提高脱酸效率和吸收剂利用率。
S5、将净化后的烟气输送至除尘器60进行除尘过滤处理。
除尘器60优选袋式除尘器。活性炭在干法脱酸塔50管道中与烟气强烈均匀混合后,达到高效吸附效果,但管道内的吸附并未达到饱和,随后再与烟气一起进入除尘器60中,停留在除尘器60的滤袋上,与缓慢通过滤袋的烟气充分接触,达到对烟气中重金属(尤其是Hg)、二噁英、呋喃等污染物的吸附净化,吸附重金属、二噁英等污染物的活性炭落入除尘器60底部的灰斗内,净化后的烟气经滤袋口进入除尘器60的清洁室,由除尘器60的出口排出。
S6、将除尘过滤后的烟气部分通过分流烟道62引流至回转窑10,部分输送至洗涤塔70,通过弱碱洗涤液对烟气进行洗涤处理,脱除烟气中的部分HCl、HF和SO 2
其中,通过将一部分烟气输送会回转窑10,这样不但可提高回转窑10的进风温度,而且也降低了氧气浓度,进而降低了氮氧化物的排放浓度,实现烟气的循环再利用。通过调节分流烟道62上的挡板621调节送入回转窑10的烟气量。
另一部分的烟气进入洗涤塔70,洗涤塔70顶部喷淋弱碱洗涤液对烟气进行洗涤,烟气中灰尘与弱碱洗涤液混合后,一部分跟弱碱洗涤液进入洗涤塔70底部,同时烟气温度由170℃降至约90℃并脱除部分烟气中的HCl、HF、SO 2。洗涤塔70底部的弱碱洗涤液经泵打到洗涤塔70顶部继续对烟气进行洗涤。
S7、将洗涤后的烟气输送至湿式脱酸塔80,通过强碱液对烟气进行脱酸处理,脱除烟气中的剩余的HCl、HF和SO 2,输出净烟。
本发明的危险废物焚烧烟气处理方法还包括以下步骤:
S8、将脱酸处理后的烟气输送至烟气加热器100,加热后再通过烟囱110排放。
烟气加热器100的热源由余热锅炉30产生的蒸汽提供,不需要使用外供蒸汽,节省能源。
本发明的危险废物焚烧烟气处理方法,各处理过程的具体操作可参考上述系统相关所述。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种危险废物焚烧烟气处理系统,其特征在于,包括对危险废物进行焚烧并产生烟气的回转窑、对烟气再次燃烧处理形成高温烟气的二燃室、用于高温烟气在其中降温产生蒸汽并进行SNCR脱硝的余热锅炉、用于降温后的烟气在其中换热再降温的急冷塔、对烟气进行吸附净化处理的干法脱酸塔、对吸附净化处理后的烟气进行除尘过滤处理的除尘器、对除尘过滤后的烟气进行洗涤处理的洗涤塔、对洗涤后的烟气进行脱酸处理的湿式脱酸塔、将部分除尘过滤后的烟气引流至所述回转窑的分流烟道;
    所述回转窑、二燃室、余热锅炉、急冷塔、干法脱酸塔、除尘器、洗涤塔和湿式脱酸塔沿烟气的行进方向依次连接;所述分流烟道连接在所述除尘器的出口和所述回转窑之间。
  2. 根据权利要求1所述的危险废物焚烧烟气处理系统,其特征在于,所述回转窑和二燃室紧邻相接;所述二燃室通过第一烟道连接所述余热锅炉的进气口。
  3. 根据权利要求1所述的危险废物焚烧烟气处理系统,其特征在于,所述余热锅炉上设有与脱硝喷枪连接并用于将还原剂进行加压输送的加压输送计量装置;
    所述脱硝喷枪上套设有耐高温的套管,所述套管与所述脱硝喷枪的外周之间形成一个风冷降温环室。
  4. 根据权利要求1所述的危险废物焚烧烟气处理系统,其特征在于,所述余热锅炉的出气口通过第二烟道连接所述急冷塔;
    所述急冷塔内设有双流体喷头,喷出雾化液滴与进入所述急冷塔内的烟气进行换热,带走烟气的热量。
  5. 根据权利要求1所述的危险废物焚烧烟气处理系统,其特征在于,所述除尘器为袋式除尘器;
    所述除尘器的出口通过第三烟道连接所述洗涤塔;所述除尘器的底部设有灰斗,且所述灰斗上设有电加热装置。
  6. 根据权利要求5所述的危险废物焚烧烟气处理系统,其特征在于,所述除尘器的进口和出口还分别通过循环管道连接电加热器和热循环风机,并且所述电加热器与所述热循环风机连接,并与所述除尘器形成一个热风循环回路;所述循环管道上设有双层密封阀。
  7. 根据权利要求1-6任一项所述的危险废物焚烧烟气处理系统,其特征在于,所述危险废物焚烧烟气处理系统还包括分汽缸;所述分汽缸连接所述余热锅炉的蒸汽出口,接收来自所述余热锅炉的蒸汽。
  8. 根据权利要求1-6任一项所述的危险废物焚烧烟气处理系统,其特征在于,所述危险废物焚烧烟气处理系统还包括烟气加热器;所述烟气加热器连接所述湿式脱酸塔,接收来自所述湿式脱酸塔的烟气并对烟气进行加热。
  9. 根据权利要求8所述的危险废物焚烧烟气处理系统,其特征在于,所述烟气加热器的换热管采用氟塑钢制成。
  10. 根据权利要求8所述的危险废物焚烧烟气处理系统,其特征在于,所述烟气加热器还连接所述余热锅炉,以所述余热锅炉产生的蒸汽作为热源。
  11. 一种危险废物焚烧烟气处理方法,其特征在于,采用权利要求1-10任一项所述的危险废物焚烧烟气处理系统,所述危险废物焚烧烟气处理方法包括以下步骤:
    S1、将回转窑对危险废物进行焚烧处理后产生的烟气输送至二燃室内进行再次燃烧处理,将烟气中的包括二噁英的有害成分分解,输出高温烟气;
    S2、将高温烟气输送至余热锅炉内,与还原剂进行选择性非催化还原反应,脱除烟气中的氮氧化物;
    S3、将降温后的烟气从所述余热锅炉输送至急冷塔进行换热再降温,同时防止二噁英再合成;
    S4、将换热再降温后的烟气输送至干法脱酸塔,去除烟气中的酸性气体;
    S5、将净化后的烟气输送至除尘器进行除尘过滤处理;
    S6、将除尘过滤后的烟气部分通过分流烟道引流至所述回转窑,部分输送至洗涤塔,通过弱碱洗涤液对烟气进行洗涤处理,脱除烟气中的部分HCl、HF和SO 2
    S7、将洗涤后的烟气输送至湿式脱酸塔,通过强碱液对烟气进行脱酸处理,脱除烟气中的剩余的HCl、HF和SO 2
  12. 根据权利要求11所述的危险废物焚烧烟气处理方法,其特征在于,步骤S2中,所述还原剂为采用高分子活性氨液体和微量纳米稀土助剂合成的高效脱硝液。
  13. 根据权利要求11所述的危险废物焚烧烟气处理方法,其特征在于,步骤S3还包括:将所述余热锅炉产生的蒸汽输送至分汽缸。
  14. 根据权利要求11所述的危险废物焚烧烟气处理方法,其特征在于,所述危险废物焚烧烟气处理方法还包括以下步骤:
    S8、将脱酸处理后的烟气输送至烟气加热器,加热后再通过烟囱排放。
  15. 根据权利要求14所述的危险废物焚烧烟气处理方法,其特征在于,所述烟气加热器的热源由所述余热锅炉产生的蒸汽提供。
PCT/CN2021/103328 2020-11-26 2021-06-29 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法 WO2022110803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011350764.5 2020-11-26
CN202011350764.5A CN112460604A (zh) 2020-11-26 2020-11-26 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法

Publications (1)

Publication Number Publication Date
WO2022110803A1 true WO2022110803A1 (zh) 2022-06-02

Family

ID=74808780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103328 WO2022110803A1 (zh) 2020-11-26 2021-06-29 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法

Country Status (2)

Country Link
CN (1) CN112460604A (zh)
WO (1) WO2022110803A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304073A (zh) * 2022-07-14 2022-11-08 北京凯盛建材工程有限公司 一种锂辉石煅烧转型系统及方法
CN116123555A (zh) * 2023-02-28 2023-05-16 江苏立宇环境科技有限公司 化工危险废物焚烧烟气余热再利用装置及方法
CN116412403A (zh) * 2023-04-19 2023-07-11 江苏桓尔环境工程有限公司 一种有机硅三废焚烧装置及其控制系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928263A (zh) * 2020-07-10 2020-11-13 山东东顺环保科技有限公司 一种利用回转窑焚烧炉处理危险废物的系统
CN112460604A (zh) * 2020-11-26 2021-03-09 中广核工程有限公司 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法
CN113310056A (zh) * 2021-05-11 2021-08-27 中广核工程有限公司 危险废物焚烧处理系统及方法
CN113483348A (zh) * 2021-05-28 2021-10-08 光大绿色环保管理(深圳)有限公司 一种危废焚烧烟气处理装置及方法
WO2023284636A1 (zh) * 2021-07-16 2023-01-19 重庆创绿环境保护有限公司 一种危废焚烧烟气净化系统及净化方法
CN113847601A (zh) * 2021-09-28 2021-12-28 山西华仕集团股份有限公司 一种危险废物处理系统
CN114110613A (zh) * 2021-11-25 2022-03-01 内蒙古恒星化学有限公司 有机硅废料的焚烧方法及系统
CN114263919A (zh) * 2021-12-31 2022-04-01 盐城市国投环境技术股份有限公司 废盐裂解烟气无害化处理方法
CN114177761A (zh) * 2022-02-16 2022-03-15 浙江百能科技有限公司 一种危废焚烧烟气污染物超低排放系统及方法
CN114177760A (zh) * 2022-02-16 2022-03-15 浙江百能科技有限公司 危废焚烧烟气活性氧氧化及一体化超低排放系统及方法
CN114704833B (zh) * 2022-05-20 2023-03-10 中冶长天国际工程有限责任公司 一种回转窑-烧结机协同处置危险废物的方法及系统
CN117548228B (zh) * 2023-12-27 2024-05-31 江苏舜科科技有限公司 一种焚烧炉烟气净化装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427642A (en) * 1979-03-23 1984-01-24 Babcock-Hitachi Kabushiki Kaisha Process for dry desulfurization of flue gas
CN203030181U (zh) * 2012-11-15 2013-07-03 西安天立能源环保工程技术有限公司 一种脱硝液体喷射装置及喷枪
CN204006025U (zh) * 2013-11-01 2014-12-10 上海灿州环境工程有限公司 一种危险废物和医疗废物焚烧炉成套装置
CN206027980U (zh) * 2016-09-08 2017-03-22 上海守望者喷雾智能系统有限公司 一种风冷脱硝喷枪
CN206809958U (zh) * 2017-06-06 2017-12-29 河北沧净环保设备有限公司 低温高湿含尘烟气塑烧板高效脉冲除尘器
CN109631047A (zh) * 2018-12-19 2019-04-16 苏州新区环保服务中心有限公司 一种废物焚烧处置系统以及危险废物焚烧处理方法
CN208990406U (zh) * 2018-08-20 2019-06-18 苏州科思瑞得环保科技有限公司 具有热风循环的除尘器
CN110642271A (zh) * 2019-10-31 2020-01-03 江苏省环境科学研究院 一种工业废盐熔融处理与精制的装置与方法
CN210107409U (zh) * 2019-03-20 2020-02-21 浙江大维高新技术股份有限公司 危险废物焚烧烟气净化系统
CN210718694U (zh) * 2019-08-23 2020-06-09 上海环信环境工程有限公司 一种危废车间废气协同处置系统
CN111928263A (zh) * 2020-07-10 2020-11-13 山东东顺环保科技有限公司 一种利用回转窑焚烧炉处理危险废物的系统
CN112460604A (zh) * 2020-11-26 2021-03-09 中广核工程有限公司 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104147874B (zh) * 2014-07-29 2016-11-02 光大环保(中国)有限公司 用于布袋除尘器的控制方法和控制系统
CN106310809A (zh) * 2016-08-12 2017-01-11 光大环境科技(中国)有限公司 一种用于袋式除尘器的预热循环系统和垃圾焚烧系统
CN108355420A (zh) * 2018-03-18 2018-08-03 上海柯来浦能源科技有限公司 一种石灰窑烟气再循环系统
CN108714349A (zh) * 2018-08-02 2018-10-30 镇江大铭鑫电气有限公司 一种废气净化装置
CN110006050A (zh) * 2019-03-20 2019-07-12 浙江大维高新技术股份有限公司 危险废物焚烧烟气净化系统及工艺

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427642A (en) * 1979-03-23 1984-01-24 Babcock-Hitachi Kabushiki Kaisha Process for dry desulfurization of flue gas
CN203030181U (zh) * 2012-11-15 2013-07-03 西安天立能源环保工程技术有限公司 一种脱硝液体喷射装置及喷枪
CN204006025U (zh) * 2013-11-01 2014-12-10 上海灿州环境工程有限公司 一种危险废物和医疗废物焚烧炉成套装置
CN206027980U (zh) * 2016-09-08 2017-03-22 上海守望者喷雾智能系统有限公司 一种风冷脱硝喷枪
CN206809958U (zh) * 2017-06-06 2017-12-29 河北沧净环保设备有限公司 低温高湿含尘烟气塑烧板高效脉冲除尘器
CN208990406U (zh) * 2018-08-20 2019-06-18 苏州科思瑞得环保科技有限公司 具有热风循环的除尘器
CN109631047A (zh) * 2018-12-19 2019-04-16 苏州新区环保服务中心有限公司 一种废物焚烧处置系统以及危险废物焚烧处理方法
CN210107409U (zh) * 2019-03-20 2020-02-21 浙江大维高新技术股份有限公司 危险废物焚烧烟气净化系统
CN210718694U (zh) * 2019-08-23 2020-06-09 上海环信环境工程有限公司 一种危废车间废气协同处置系统
CN110642271A (zh) * 2019-10-31 2020-01-03 江苏省环境科学研究院 一种工业废盐熔融处理与精制的装置与方法
CN111928263A (zh) * 2020-07-10 2020-11-13 山东东顺环保科技有限公司 一种利用回转窑焚烧炉处理危险废物的系统
CN112460604A (zh) * 2020-11-26 2021-03-09 中广核工程有限公司 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304073A (zh) * 2022-07-14 2022-11-08 北京凯盛建材工程有限公司 一种锂辉石煅烧转型系统及方法
CN116123555A (zh) * 2023-02-28 2023-05-16 江苏立宇环境科技有限公司 化工危险废物焚烧烟气余热再利用装置及方法
CN116123555B (zh) * 2023-02-28 2023-09-15 江苏立宇环境科技有限公司 化工危险废物焚烧烟气余热再利用装置及方法
CN116412403A (zh) * 2023-04-19 2023-07-11 江苏桓尔环境工程有限公司 一种有机硅三废焚烧装置及其控制系统

Also Published As

Publication number Publication date
CN112460604A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022110803A1 (zh) 危险废物焚烧烟气处理系统及危险废物焚烧烟气处理方法
CN109539272A (zh) 含氯废物高温等离子体资源化回收工艺及系统
CN110917843A (zh) 一种垃圾焚烧节能烟气超低净化系统
WO2021114084A1 (zh) 一种垃圾焚烧节能烟气超低净化系统
CN109458622A (zh) 一种丙烯腈含盐有机废液及废气焚烧环保节能排放系统
CN105289248B (zh) 一种生活垃圾焚烧发电厂烟气湿式净化处理方法及装置
CN102644922A (zh) 用于含氮有机废物的焚烧处理装置及其焚烧处理工艺
CN112628747A (zh) 一种危险废物无害化处置集成系统
CN110360575A (zh) 一种危废处置中心的焚烧系统
CN112791717A (zh) 连续式废弃活性炭活化再生方法
CN113310056A (zh) 危险废物焚烧处理系统及方法
CN213956022U (zh) 回转窑烟气处理系统
CN215523303U (zh) 等离子危险废物处理系统
CN111928263A (zh) 一种利用回转窑焚烧炉处理危险废物的系统
CN116293721A (zh) 一种贵金属焚烧及尾气净化工艺
CN209415471U (zh) 一种丙烯腈含盐有机废液及废气焚烧环保节能排放系统
CN110425548A (zh) 化工含盐残液焚烧系统及其焚烧工艺
CN113587117B (zh) 一种无害化处置污泥的系统及方法
CN213761219U (zh) 基于触媒陶瓷纤维滤管的危险废物焚烧烟气净化系统
CN113847601A (zh) 一种危险废物处理系统
CN108273371A (zh) 一种双气路的工业燃烧过程烟气净化方法及系统
CN114420336B (zh) 一种等离子体高温热解熔融处理放射性废物的系统及方法
CN116422311A (zh) 一种活性炭的热再生装置及再生方法
CN210568478U (zh) 化工含盐残液焚烧系统
CN105546552A (zh) 树脂类危废流化床高温焚烧净化一体化装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896311

Country of ref document: EP

Kind code of ref document: A1