WO2022110656A1 - 一种增韧增强聚丙烯复合材料的制备方法 - Google Patents

一种增韧增强聚丙烯复合材料的制备方法 Download PDF

Info

Publication number
WO2022110656A1
WO2022110656A1 PCT/CN2021/092749 CN2021092749W WO2022110656A1 WO 2022110656 A1 WO2022110656 A1 WO 2022110656A1 CN 2021092749 W CN2021092749 W CN 2021092749W WO 2022110656 A1 WO2022110656 A1 WO 2022110656A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
toughened
composite material
reinforced polypropylene
polypropylene composite
Prior art date
Application number
PCT/CN2021/092749
Other languages
English (en)
French (fr)
Inventor
唐宇航
黄险波
叶南飚
陈国雄
钱志军
郭唐华
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022110656A1 publication Critical patent/WO2022110656A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to a polypropylene polymer material, and more particularly, to a preparation method of a toughened and reinforced polypropylene material.
  • Polypropylene has excellent properties such as high rigidity, durability and creep resistance after being reinforced by glass fiber, and even some properties can reach the grade of engineering plastics, and its low cost and easy molding characteristics make it suitable for electronic appliances and automobiles.
  • Competitiveness in the material market is increasing, especially in the automotive industry.
  • glass fiber reinforced polypropylene composites are injected into parts: glass fiber reinforced polypropylene increases the rigidity of the composite material, and the brittleness will also increase correspondingly, resulting in a decrease in impact resistance; Difficulty in demolding caused by excessive attachment of rigid parts to molds, etc., results in difficult ejection of molded parts with complex structures and a high rate of defective products, which seriously hinders the improvement of production efficiency.
  • the glass fiber will be sheared very short, which will seriously reduce the mechanical properties of the product.
  • Chinese patent (CN103571040A) discloses a high-strength, high-toughness, high-rigidity polypropylene composite material and its preparation method, although the polypropylene composition prepared by this method has a simply supported beam notched impact strength of 10KJ/m 2 , a tensile strength of 75MPa and bending strength of 89MPa, but the products prepared by it cannot be used for forming parts with complex structures, and the scheme adopts low-speed operation, and the production efficiency is low.
  • the present invention provides a preparation method for producing toughened and reinforced polypropylene composite materials at high speed in order to overcome the defects of low production efficiency, difficulty in demolding and high production efficiency and mechanical properties of the above-mentioned prior art preparation methods that cannot be guaranteed at the same time.
  • a preparation method of toughened and reinforced polypropylene composite material comprising the following steps:
  • the glass fiber is fed from the middle section of the main machine to the side feed port through the non-meshing type co-rotating twin-screw side feeder, and the composition is obtained through melting, kneading, extrusion and post-processing.
  • the side feeder screw The speed is greater than or equal to 400rpm;
  • the screw elements between the main feeding port and the exhaust port include conveying thread blocks, 45-degree three-head kneading blocks, and two-head kneading blocks; and at least two sets of 45-degree three-head kneading blocks are used.
  • the side feeding port and the vacuum section include conveying thread blocks, Non-engaging stretched threaded elements, two-head kneading blocks; and at least one pair of non-engaging stretched threaded elements.
  • the screw elements between the main feeding port and the exhaust port are in order: conveying thread block, two-end kneading block, conversion thread block, 45-degree three-end kneading block, reverse screw kneading block, and two-end conveying thread. block, the effect of connecting in the above way is better.
  • the length of the extrusion screw for toughened and reinforced polypropylene is selected to be 40 to 48 times the screw diameter, which can well meet the balance between product performance and production capacity.
  • the screw design of the co-rotating screw extruder is composed of different types and The number of screw blocks is composed in an orderly manner. Different materials have different requirements for each function during the extrusion process, and need to be realized by the corresponding local screw configuration. According to different functions, they are often divided into: 1Conveying and melting and plasticizing section , generally from the main feeding port to the first natural exhaust port, and the length is generally selected to be 12 times the diameter of the extrusion screw.
  • This section generally adopts a large-lead conveying thread block and a double-ended meshing shear block; 2 Natural The length of the exhaust section is 4 to 6 times the diameter of the extrusion screw. This section naturally exhausts the gas and small molecules contained in the melt after melting and plasticizing upstream through the diffusion principle of gas concentration. Lead conveying thread block; 3 Secondary feeding and conveying section, the length of this section is generally 6 to 8 times the diameter of the extrusion screw, and the secondary feeding and conveying in the host screw can be realized through the corresponding screw configuration.
  • This section generally adopts conveying screw blocks with different leads; 4Secondary shear dispersion and mixing section, the length of this section is generally 8 times the diameter of the extrusion screw, and the material added for the second time passes through the shear mixing of the main screw. It can be uniformly dispersed in the upstream incoming material. Through the dispersing and mixing function of the main screw, the secondary feeding material and the composition at the upstream end can form a uniform and strong interfacial force.
  • This section generally adopts different guides. 5.
  • the large-lead conveying thread block is externally connected to a forced vacuuming machine to extract the small molecules and gases in the incoming material at the upstream end through the forced devolatilization process.
  • a forced vacuuming machine to extract the small molecules and gases in the incoming material at the upstream end through the forced devolatilization process.
  • it is composed of a large-lead conveying thread block; 6Measuring conveying
  • the length is 6 to 8 times the diameter of the extrusion screw.
  • This section is mainly used to stably measure the composition after vacuuming and transport it to the die for plastic production. This section selects a suitable lead to convey the screw element in the future. The material is gradually compacted until it can be stably extruded.
  • the conveying thread block mainly realizes the functions of material pressure building, conveying and metering through the selection of different thread lead and thread rotation direction; Different thicknesses and dislocation angles can be combined into screw configurations with different shearing and kneading capabilities. Each time the two-end kneading block rotates, the materials between the meshing discs are theoretically mixed with each other twice.
  • the 45-degree three-head kneading block is characterized in that each time the kneading block rotates, the materials between the kneading discs are sheared and kneaded three times to each other, resulting in a three-head kneading block that is more effective than a two-head kneading block for dispersing mixing and mixing, and at the same time
  • the ratio of the maximum and minimum instantaneous shear rates of the three-head kneading block is obviously low, which can effectively reduce the effect of easy decomposition of the material caused by the strong shearing effect of the building block.
  • the three-head kneading block and the toothed block are used to replace the two-head kneading block between the main feeding port and the exhaust port, which will be composed of the following elements in sequence (as shown in Figure 1): one two-head to three
  • Toothed disc threaded elements are characterized by providing intensive distributive mixing to achieve melt equilibrium (distributed mixing reorients the material, creating new interfaces without excessive energy input.
  • At least one group of two-head kneading blocks is replaced by a toothed disk screw element between the exhaust port and the side feeding port, which can improve the dispersion uniformity among the components.
  • the non-engaging tensile thread element is characterized by a double-ended screw element with a lead of 120mm, a combination of a forward thread element and a reverse thread element with a length of 60mm, and the total length of the screw element is 120mm.
  • the engaging type drawing type thread element can make the direction of the velocity gradient of the melt flow parallel to the flow direction, resulting in a longitudinal velocity gradient, and at this time, the flow velocity changes along the flow direction.
  • the change of material flow rate will inevitably deform the material, so the thickness of the material layer decreases with the increase of the flow rate, so as not to cause the material to accumulate, and the exchange interface of the material is increased, which is more conducive to mixing.
  • the non-engaging stretched threaded elements are used to replace at least one set of two-end kneading blocks in the side feeding port and the vacuum section, which avoids the excessively short shearing of the glass fiber by the high rotation speed of the screw, and at the same time ensures the uniformity of the glass fiber.
  • the melt is subjected to a weak shear field but a strong tensile field at the threaded element, which ensures the shearing and dispersion of the glass fiber, and also helps to ensure the length of the glass fiber, thereby improving the strength of the composite material. the goal of.
  • the side feeder adopts a non-meshing type co-rotating twin-screw feeder, and the non-meshing type twin-screw side feeder can disperse the upstream glass fiber in advance, which can greatly improve the glass fiber after entering the host. Dispersion effect, non-intermeshing side-feed twin-screw can maintain glass fiber length to the greatest extent.
  • the polypropylene toughened and reinforced composite material prepared at a higher production speed still has excellent properties such as high rigidity and easy demoulding, which overcomes the problem of polypropylene composite materials caused by the increase of production speed in the prior art. Defects that reduce the mechanical properties of materials.
  • the number of the 45-degree three-head kneading blocks is 2 to 4 groups, the number of the toothed disk threaded elements is 1 to 3 pairs, and the number of the non-engaging tensile threaded elements is 1 to 3 pairs. .
  • the number of the 45-degree three-head kneading blocks is 4 groups, the number of the toothed disk screw elements is 2 pairs, and the number of the non-engaging tension type screw elements is 2 pairs.
  • the rotational speed of the screw of the host is less than or equal to 1200rmp.
  • the screw speed of the side feeder is less than or equal to 600rmp.
  • the barrel temperature of the host is set to 120-140°C in zone 1; 200-240°C in zones 2-5; 180-220°C in zones 6 and 7; 200-230°C in zones 8 and 9; 200°C in zone 10 °C; 11 zone 180-210 °C.
  • the 45-degree three-head kneading block and the two-head kneading block are connected in any order.
  • the toothed disk screw elements are connected with the two-end kneading block in any order.
  • the non-engaging stretch-type threaded elements are connected with the two-end kneading block in any order.
  • the polypropylene composite material includes components calculated by weight: 25-90 parts of the polypropylene; 3-10 parts of the impact modifier; 5-10 parts of the compatibilizer; 20-60 parts of glass fiber; 0.2-0.5 part of the release agent; 0.3 part of the antioxidant.
  • the polypropylene (PP) refers to free propylene homopolymers, propylene-ethylene copolymers (including block copolymers and random copolymers), propylene- ⁇ -olefin copolymers (including block copolymers and random copolymers) ) composed of two or more crystalline polypropylenes.
  • the melt flow rate (230° C., 2.15Kg) of homopolymer PP is 2 ⁇ 60g/10min; the melt flow rate of copolymer PP is 10 ⁇ 100g/10min.
  • Described polypropylene is preferably homopolymerized PP, such as PP L5E89, and its melt flow rate is 3 ⁇ 5g/10min; Described copolymerization PP is preferably melt flow rate of 25 ⁇ 80g/10min, such as PP AZ564.
  • the impact modifier is ethylene-propylene copolymer elastomer EPR, ethylene-butene copolymer elastomer EBR, ethylene-hexene copolymer elastomer EHR, ethylene-octene copolymer elastomer POE, ethylene-propylene- One of diene copolymer elastomer EPDM, styrene-ethylene-butylene-styrene block copolymer SEBS or styrene-ethylene-propylene-styrene block copolymer SEPS.
  • the compatibilizer is at least one of maleic acid, fumaric acid, itaconic acid, acrylic acid or methacrylic acid grafted polypropylene.
  • the diameter of the glass fiber is 3-25 ⁇ m, and when the fiber length is within this range, the rigidity and impact strength of the composite material can be improved.
  • the glass fiber can be used without special restrictions, and can be alkali-free glass fiber (E-glass fiber), medium-alkali glass fiber (C-glass fiber), high-alkali glass fiber (A-glass), high-strength glass fiber (S-glass fiber) -Glass).
  • E-glass fiber alkali-free glass fiber
  • C-glass fiber medium-alkali glass fiber
  • A-glass high-alkali glass fiber
  • S-glass fiber high-strength glass fiber
  • the release agent is a fatty acid amide, which can improve the release property of the composite material and contribute to scratch resistance and formability.
  • the antioxidant is one or more of hindered phenols, naphthylamines, diphenylamines, p-phenylenediamines, phosphites, quinoline derivatives or thioesters.
  • the invention provides a preparation method of toughened and reinforced polypropylene material.
  • the screw element between the main feeding port and the exhaust port adopts at least one set of 45-degree three-head kneading blocks, and the distance between the exhaust port and the side feeding port is at least one set.
  • At least one set of toothed disk threaded elements is used in the middle; at least one set of non-engaging tensile threaded elements is used in the side feeding port and the vacuum section; the replacement of the above combination can meet the requirement that polypropylene can maintain excellent mechanics at high production speed. Therefore, it can greatly improve the production efficiency of toughened and reinforced polypropylene materials, the tensile strength is greater than 100MPa, the impact strength is greater than 40KJ/m 2 , and the production efficiency is greater than 600Kg/H.
  • Fig. 1 is the screw assembly structure schematic diagram of embodiment 1;
  • Figure 2 is a structural diagram of a toothed disk screw element
  • Figure 3 is a structural diagram of a non-engaging tensile type threaded element.
  • reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • Polypropylene A homopolypropylene, PP L5E89, melt flow rate 3g/10min; China National Petroleum Corporation
  • Polypropylene B Copolymerized polypropylene, melt flow rate is 30g/10min, PP AZ564, SUMITOMO CHEMICAL
  • Glass fiber E6CR10-4.5-534A, monofilament diameter 10 ⁇ m, Jushi Group Co., Ltd.
  • Antioxidant Antioxidant 1010, Sanfeng Chemical Co., Ltd.
  • the screw diameter of this model is 58mm.
  • the screw speed is 800rpm, its output is 1.5 times that of a medium-speed extruder with a screw diameter of 65mm.
  • the barrel temperature and total feeding of each zone of the main machine and side feeder are as follows:
  • the screw elements between the main feeding port and the exhaust port are in order: conveying thread block, two-end kneading block, conversion thread block, 45-degree three-end kneading block, reverse screw kneading block, and two-end conveying thread.
  • the total length of the conveying screw block is 490mm
  • the length of the conversion screw block is 40mm
  • the length of the two-end kneading block is 80mm
  • the number is 1
  • the number of the reverse screw kneading block is 1
  • the 45-degree three-headed kneading blocks are 4 groups.
  • a conveying screw block with a length of 220mm Between the exhaust port and the side feeding port, there are sequentially a conveying screw block with a length of 220mm, a pair of toothed disk screw elements with a length of 105mm, a double-ended reverse screw kneading block with a length of 30mm, and a A conveying screw block with a length of 60mm, a pair of toothed disc screw elements with a length of 105mm; each pair of toothed disc screw elements is connected in series by a ZME toothed disc with a length of 45 mm and a TME toothed disc with a length of 60 mm. The total length of each pair is 105mm.
  • the side feeding port and the vacuum section sequentially include a conveying screw block with a length of 400 mm, two pairs of non-meshing stretched screw elements, and the two pairs of non-engaging stretched screw elements are connected by a conveying block with a length of 40 mm. Downstream is connected the delivery block to the end.
  • each pair of non-engaging stretched threaded elements adopts double ends, a lead of 120 mm, a combination of a forward spiral length of 60 mm and a reverse spiral length of 60, with a total length of 120 mm.
  • the length of the screw remains unchanged, and the above-mentioned 45-degree three-head kneading block, toothed disk screw element or non-mesh tension type screw element is increased or decreased, and the conveying type with the same length is reduced or increased.
  • the way the threaded block keeps the screw length the same.
  • Embodiment 11 and embodiment 12 preparation method and parameter setting are with embodiment 1, and formula content is shown in Table 2.
  • the equipment of Comparative Example 1 is a twin-screw extruder of Nanjing Ruiya High Polymer Equipment Co., Ltd. (screw diameter: 65mm, the maximum speed of the main screw is 600rpm, and the screw between the main feed port and the exhaust port is used.
  • the element adopts a two-head kneading block, and a toothed disk threaded element is used between the exhaust port and the side feeding port; the side feeding port and the vacuum section use a non-engaging stretched threaded element; formula and preparation method and formula Same as Example 1.
  • the equipment of Comparative Example 2 is a twin-screw extruder of type TSE-65D (screw diameter: 65mm, the maximum speed of the main screw is 600rpm) of Nanjing Ruiya High Polymer Equipment Co., Ltd.
  • the screw element adopts a 45-degree three-head kneading block, and a two-head kneading block is used between the exhaust port and the side feeding port; the side feeding port and the vacuum section use non-engaging stretching screw elements; formula and preparation method Same as Example 1.
  • the equipment of Comparative Example 3 is a twin-screw extruder of the type TSE-65D (screw diameter: 65mm, and the maximum speed of the main screw is 600rpm.) of Nanjing Ruiya High Polymer Equipment Co., Ltd., between the main feeding port and the exhaust port.
  • the screw element adopts a 45-degree three-head kneading block, and a toothed disc screw element is used between the exhaust port and the side feeding port; the side feeding port to the vacuum section adopts a two-head kneading block, with a total length of 240mm; formula And the preparation method is the same as Example 1.
  • the molding temperature is 240 ° C
  • the mold temperature is 30 ° C
  • the injection pressure is 80 MPa to form the corresponding test standard.

Abstract

本发明公开了一种增韧增强聚丙烯复合材料的制备方法,包括以下步骤:S1.将聚丙烯、冲击改性剂、相容剂、脱模剂、抗氧剂通过混合机混匀,将混合均匀的物料喂入双螺杆挤出机的主喂料口喂入,经过螺杆的输送、熔融塑化与强剪切混练后成为熔融均化的流体状组合物,所述同向双螺杆挤出机的主机螺杆转速为大于等于800rmp;S2.将玻璃纤维通过非啮合型同向双螺杆侧喂料机从主机的中段喂入侧喂料口,玻纤与上游段的流体状组合物共同再次经过剪切、混炼与分散、定量挤出塑型后加工得到组合物,所述侧喂料机螺杆转速大于等于400rpm。该制备方法能够提高生产效率且保持优异的力学性能和高刚性,拉伸强度大于100MPa,冲击强度大于40KJ/m2,生产效率大于600Kg/H。

Description

一种增韧增强聚丙烯复合材料的制备方法 技术领域
本发明涉及聚丙烯高分子材料,更具体地,涉及一种增韧增强聚丙烯材料制备方法。
背景技术
聚丙烯通过玻纤增强改性后具有优良的高刚性、耐久性和耐蠕变性等性能,甚至部分性能可达到工程塑料等级,而且成本低、易成型等特点使得其在电子电器、车用材料市场中竞争力日趋增强,尤其在汽车工业应用中越来越广泛。但在许多情况下,玻纤增强聚丙烯复合材料通过注塑成型制件时存在着一些问题:玻纤增强聚丙烯提高复合材料的刚性同时,脆性相应地也会增加导致抗冲击性能降低;由高刚性的制件过度贴附着模具等引起的脱模难,造成结构复杂的成型件的顶出困难与不良品率高,严重阻碍生产效率的提高。
但是目前通过提高挤出机螺杆的高转速来提升生产效率,又会将玻璃纤维剪切的很短导致产品力学性能严重降低。
中国专利(CN103571040A)公开了一种高强、高韧、高刚的聚丙烯复合材料及其制备方法,虽然该方法制备的聚丙烯组合物具有简支梁缺口冲击强度10KJ/m 2,拉伸强度75MPa,弯曲强度89MPa,但是其制备的产品不能用于结构复杂的成型件,且该方案采用低转速运转,生产效率低。
发明内容
本发明为克服上述现有技术的制备方法生产效率低,脱模困难以及高生产效率与力学性能不能同时保证的缺陷,提供一种高速下生产增韧增强聚丙烯复合材料的制备方法。
为实现上述目的,本发明采用的技术方案是:
一种增韧增强聚丙烯复合材料的制备方法,包括以下步骤:
S1.将聚丙烯、冲击改性剂、相容剂、脱模剂、抗氧剂通过混合机混匀,将混合均匀的物料喂入双螺杆挤出机的主喂料口,所述双螺杆挤出机的主机螺杆转速为大于等于800rmp;
S2.将玻璃纤维通过非啮合型同向双螺杆侧喂料机从主机的中段喂入侧喂 料口,经过熔融、混炼、挤出、后加工得到组合物,所述侧喂料机螺杆转速大于等于400rpm;
所述主喂料口与排气口之间的螺杆元件包括输送型螺纹块、45度三头捏合块、二头捏合块;且至少采用2组45度三头捏合块,所述排气口与侧喂料口之间包括输送型螺纹块、齿形盘螺纹元件、二头捏合块;且至少采用1对齿形盘螺纹元件;所述侧喂料口与真空段包括输送型螺纹块、非啮合拉伸型螺纹元件、二头捏合块;且至少采用1对非啮合拉伸型螺纹元件。
所述主喂料口与排气口之间的螺杆元件依次为:输送型螺纹块、二头捏合块、转换螺纹块、45度三头捏合块、反向螺旋捏合块、二头的输送螺纹块,采用上述方式连接的效果更好。
一般地,对于增韧增强聚丙烯的挤出螺杆长度选择为螺杆直径的40~48倍,这样可以很好的满足产品性能与产能的平衡,同向螺杆挤出机的螺杆设计由不同类型与数量的螺纹块有序组成,不同的物料在挤出过程中对各个功能的要求不同,需要与之相应的局部螺杆构型来实现,根据不同的功能常分为:①输送与熔融塑化段,一般为主喂料口到第一个自然排气口,长度一般选择为挤出螺杆直径的12倍,该段一般采用大导程的输送螺纹块与双头的啮合剪切块;②自然排气段,长度为挤出螺杆直径的4~6倍,该部分对上游熔融塑化后的熔体中夹杂的气体及小分子通过气体浓度的扩散原理进行自然排气,该段一般采用大导程的输送型螺纹块;③二次喂料与输送段,该段长度一般为挤出螺杆直径的6~8倍,通过相应的螺杆构型实现对在主机螺杆中进行二次加料与输送,该段一般采用不同导程的输送型螺纹块;④二次剪切分散与混练段,该段长度一般为挤出螺杆直径的8倍,二次加入的物料通过主机螺杆的剪切混练,可以均匀的分散于上游来料中,通过主机螺杆的分散与混练功能,二次喂入的物料与上游端的组合物可以形成均匀的且很强的界面力,该段一般采用不同导程输送型螺纹块及剪切强度不同的双头啮合型剪切块;⑤强制脱挥段,长度一般为挤出螺杆直径的4~6倍,该段一般设置抽真空口,主机螺杆通过设置大导程的输送螺纹块,外部连接强制的抽真空机,将上游端的来料中的小分子及气体通过强制脱挥的过程抽出,一般由大导程的输送型螺纹块组成;⑥计量输送端,长度为挤出螺杆直径的6~8倍,该段主要对抽完真空后的组合物进行稳定计量的输送至口模处进行塑形生产,该段选择合适的导程输送螺纹元件将来料逐渐压实直至可稳定的计量挤出。
输送螺纹块通过不同螺纹导程、螺纹的旋向选择,主要实现物料的建压与输送、计量的功能;二头捏合块主要实现物料的剪切熔融混炼与分散的功能,通过捏合块的厚度与错位角不同可以组合成不同剪切混练能力的螺杆构型,二头捏合块每转一圈,理论上啮合盘间的物料相互混练作用2次。
45度三头捏合块,特征是捏合块每转一圈,捏合盘间物料的有三次剪切混练间相互左右,导致三头捏合块比二头捏合块对分散混合混练更有效,同时三头捏合块的最大和最小瞬时剪切速率之比明显低,可有效降低建切块的强剪切作用引起物料易分解影响。
本发明在主喂料口至排气口之间采用所述的三头捏合块与齿形块替代二头捏合块,将依次由下列元件组成(如图1所示):一个二头到三头的正向捏合块的转换段,一个或两个三头正向捏合块,一个由三头向两头的转换段以及2~4个分布混合元件(例如齿形元件),如果需要增加流动阻力,可以增加一个反向螺旋的螺纹元件,如反向捏合块。其具有高的剪切速率场、更均匀的剪切应力场分布和更高的产率,可更好的将各组分剪切成尺寸更小并提高组分之间的分散效果。
齿形盘螺纹元件(如图2所示的TME与ZME),其特点是可提供强力分布混合可实现熔融的平衡(分布混合使物料再取向,产生新的界面而又不使能量过度输入。
本发明在排气口与侧喂料口之间采用齿形盘螺纹元件替换至少一组二头捏合块,可以提高各组分之间的分散均匀性。
非啮合拉伸型螺纹元件,其特点是螺杆元件截面为双头、导程120mm,由长度为60mm正向螺纹元件和反向螺纹元件组合而成的元件,螺杆元件的总长为120mm。所述啮合型拉伸型螺纹元件可使得熔体流动的速度梯度方向与流动方向相平行,产生了纵向速度梯度,此时流动速度沿流动方向改变。物料流速的变化必将使物料产生变形,因此物料的料层厚度随着流速地增加而减小,不至于使物料堆积,增加了物料的交换界面,更加有利于混合。
本发明在侧喂料口与真空段采用非啮合拉伸型螺纹元件替换至少一组二头捏合块,避免了螺杆的高转速将玻纤剪切的过短,同时还能保证玻纤的均匀分散,熔体在螺纹元件处受到的是剪切场较弱但拉伸场较强,这样就保证对玻纤剪切与分散,同时也有利于保证玻纤的长度,从而达到提高复合材料强度的目的。
所述侧喂料机采用非啮合型同向双螺杆喂料机,非啮合型的双螺杆侧喂料机可预先对上游来的玻璃纤维进行分散处理,这样可以大大提高玻纤进入主机后的分散效果,而非啮合型的侧喂料双螺杆又可最大程度的维持玻纤长度。
通过上述元件的组合,使得即使在较高的生产速度下制备的聚丙烯增韧增强复合材料仍具有高刚性、易脱模等优异性能,克服了现有技术因为生产速度提高而导致聚丙烯复合材料力学性能下降的缺陷。
优选地,所述45度三头捏合块的数量为2~4组,所述齿形盘螺纹元件的数量为1~3对;所述非啮合拉伸型螺纹元件的数量为1~3对。
优选地,所述45度三头捏合块的数量为4组,所述齿形盘螺纹元件的数量为2对;所述非啮合拉伸型螺纹元件的数量为2对。
优选地,所述主机螺杆转速小于等于1200rmp。
优选地,所述侧喂料机螺杆转速小于等于600rmp。
优选地,所述主机的的螺筒温度设置为1区120~140℃;2~5区200~240℃;6和7区180~220℃;8和9区200-230℃;10区200℃;11区180-210℃。
优选地,所述45度三头捏合块与二头捏合块任意顺序连接。
优选地,所述齿形盘螺纹元件与二头捏合块任意顺序连接。
所述非啮合拉伸型螺纹元件与二头捏合块任意顺序连接。
优选地,所述聚丙烯复合材料包括按重量份计算的组分:所述聚丙烯25-90份;所述冲击改性剂3-10份;所述相容剂5-10份;所述玻璃纤维20-60份;所述脱模剂0.2-0.5份;所述抗氧剂0.3份。
所述聚丙烯(PP)指自由丙烯均聚物、丙烯-乙烯共聚物(包括嵌段共聚物和无规共聚物)、丙烯-α-烯烃共聚物(包括嵌段共聚物和无规共聚物)组成的2种或多种结晶性聚丙烯。其中,均聚物PP的熔体流动速率(230℃,2.15Kg)为2~60g/10min;共聚PP的熔体流动速率为10~100g/10min。
所述聚丙烯优先选用均聚PP,如PP L5E89,其熔体流动速率为3~5g/10min;所述共聚PP优选为熔体流动速率为25~80g/10min,如PP AZ564。
所述冲击改性剂为乙烯-丙烯共聚物弹性体EPR、乙烯-丁烯共聚物弹性体EBR、乙烯-己烯共聚物弹性体EHR、乙烯-辛烯共聚物弹性体POE、乙烯-丙烯-二烯共聚物弹性体EPDM、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物SEBS或苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物SEPS中的一种。
所述相容剂为马来酸、富马酸、衣康酸、丙烯酸或甲基丙烯酸接枝聚丙烯中的至少一种。
所述玻璃纤维的直径为3-25μm,当纤维长度在该范围内时,能够提高复合材料的刚性和冲击强度。
所述玻璃纤维可不特别限制类别使用,可以为无碱玻纤(E-玻纤)、中碱玻纤(C-玻纤)、高碱玻纤(A-玻璃)、高强度玻纤(S-玻璃)。
优选地,所述脱模剂为脂肪酸酰胺,能够提高复合材料的脱模性,并且有助于耐擦伤性和成形性。
所述抗氧剂为受阻酚类、萘胺、二苯胺、对苯二胺、亚磷酸脂类、喹啉衍生物或硫酯类的中的一种或多种。
与现有技术相比,本发明的有益效果是:
本发明提供一种增韧增强聚丙烯材料的制备方法,通过在主喂料口与排气口之间的螺杆元件至少采用一组45度三头捏合块,排气口与侧喂料口之间至少采用一组齿形盘螺纹元件;侧喂料口与真空段至少采用一组非啮合拉伸型螺纹元件;上述组合的替换可以满足聚丙烯在高的生产速度下还能够保持优异的力学性能和高刚性,因此能够大大提高增韧增强聚丙烯材料的生产效率,拉伸强度大于100MPa,冲击强度大于40KJ/m 2,生产效率大于600Kg/H。
附图说明
图1为实施例1的螺杆组合结构示意图;
图2为齿形盘螺纹元件结构图;
图3为非啮合拉伸型螺纹元件结构图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,但本发明的实施方式不限于此。
本发明所采用的试剂、方法和设备,如无特殊说明,均为本技术领域常规试剂、方法和设备。
以下实施例及对比例中采用的设备和原料如下:
聚丙烯A:均聚聚丙烯,PP L5E89,熔体流动速率为3g/10min;中国石油天然气股份有限公司
聚丙烯B:共聚聚丙烯,熔体流动速率为30g/10min,,PP AZ564,SUMITOMO  CHEMICAL
玻璃纤维:E6CR10-4.5-534A,单丝直径10μm,巨石集团有限公司
冲击改性剂:EPDM XUS 51111.00,DOW
相容剂:Bonyarm 1001CN,上海状景化工有限公司
脱模剂:CRODAMIDE ER-CH-MB-(SI),禾大西普化学有限公司
抗氧剂:抗氧剂1010,三丰化工有限公司。
实施例以STEER公司OMEGA-58机型为例,该机型螺杆直径为58mm,当采用螺杆转速800rpm时,其产量是螺杆直径65mm的中速挤出机产量1.5倍。
主机与侧喂料机各区螺筒温度及总喂料如下表:
Figure PCTCN2021092749-appb-000001
实施例1
S1.将聚丙烯、冲击改性剂、相容剂、脱模剂、抗氧剂通过混合机混匀,混合2min,将混合均匀的物料喂入双螺杆挤出机的主喂料口,所述双螺杆挤出机的主机螺杆转速为900rmp;
S2.将玻璃纤维通过非啮合型同向双螺杆侧喂料机从主机的中段喂入侧喂料口,经过熔融、混炼、小分子脱挥,挤出、水冷却定型、剪切得到组合物;所述侧喂料机螺杆转速为600rmp;
所述主喂料口与排气口之间的螺杆元件依次为:输送型螺纹块、二头捏合块、转换螺纹块、45度三头捏合块、反向螺旋捏合块、二头的输送螺纹块;其中,所述输送型螺纹块的总长度为490mm,转换螺纹块的长度为40mm,所述二头捏合块的长度为80mm数量为1个,所述反向螺旋捏合块数量为1个,所述45度三头捏合块为4组。
所述排气口与侧喂料口之间依次包括长度为220mm的输送型螺纹块、1对长度为105mm的齿形盘螺纹元件、1个长度为30mm二头反向螺旋捏合块,1个长度60mm的输送螺纹块,1对长度为105mm齿形盘螺纹元件;所述每对齿形盘螺纹元件分别由长度为45mm的ZME齿形盘与长度为60mm的TME齿形盘串联在一起,每对总长度105mm。
所述侧喂料口与真空段依次包括长度为400mm的输送型螺纹块、2对非啮合拉伸型螺纹元件,2对非啮合拉伸型螺纹元件之间用长度为40mm的输送块连接,下游连接着输送块至末端。其中,所述每对非啮合拉伸型螺纹元件采用双头、导程120mm,正向螺旋长度60mm与反向螺旋长度60组合在一起,总长度为120mm。
实施例2~12
制备方法与配方同实施例1,参数设置见表1,配方见表2。
表1参数设置
Figure PCTCN2021092749-appb-000002
在上述实施例1~12中,螺杆长度保持不变,上述45度三头捏合块、齿形盘螺纹元件或非啮合拉伸型螺纹元件的增加或减少,采用减少或增加同等长度的输送型螺纹块的方式保持螺杆长度保持不变。
实施例11和实施例12制备方法与参数设置同实施例1,配方含量见表2.
表2实施例1~12配方(份)
Figure PCTCN2021092749-appb-000003
Figure PCTCN2021092749-appb-000004
对比例1
对比例1的设备以南京瑞亚高聚物装备有限公司的TSE-65D型号(螺杆直径:65mm,主机螺杆最高转速600rpm的双螺杆挤出机,主喂料口与排气口之间的螺杆元件采用二头捏合块,所述排气口与侧喂料口之间采用齿形盘螺纹元件;所述侧喂料口与真空段采用非啮合拉伸型螺纹元件;配方和制备方法与配方同实施例1。
对比例2
对比例2的设备以南京瑞亚高聚物装备有限公司的TSE-65D型号(螺杆直径:65mm,主机螺杆最高转速600rpm)的双螺杆挤出机,主喂料口与排气口之间的螺杆元件采用45度三头捏合块,所述排气口至侧喂料口之间采用二头捏合块;所述侧喂料口与真空段采用非啮合拉伸型螺纹元件;配方和制备方法同实施例1。
对比例3
对比例3的设备以南京瑞亚高聚物装备有限公司的TSE-65D(螺杆直径:65mm,主机螺杆最高转速600rpm。)型号的双螺杆挤出机,主喂料口与排气口之间的螺杆元件采用45度三头捏合块,所述排气口与侧喂料口之间采用齿形盘螺纹元件;所述侧喂料口至真空段采用二头捏合块,总长度240mm;配方和制备方法同实施例1。
上述实施例和对比例的测试方法如下所示:
(1)力学性能(拉伸强度:ISO527-1-2012,悬臂梁缺口冲击强度:ISO-179-1-2010)
用由海天注塑机制造的150型注塑机,成型温度240℃,模具温度30℃,注塑压力80MPa条件下注塑成相应测试标准的样条,本样条尺寸与测定方法参照 ISO标准。
(2)弯曲模量的测试标准:ISO-178-2010
(3)生产效率高的自定义标准:最大产能,Kg/H。
表3性能数据表
Figure PCTCN2021092749-appb-000005
实施例1~4,随着主机螺杆转速的从800rpm增加到1000rpm,产量提升明显。在产品性能变化不大的基础上产能从850Kg/H提高到1100Kg/H,生产效率提高了29%;当转速提高到1200rpm时,产量可达到1200Kg/H,当产品的拉伸强度近110MPa,缺口冲击强度>45KJ/m 2,弯曲模量高于12000MPa,仍然可满足许多结构件的使用要求。
实施例1和5~6,侧机转速在400rpm时,性能最好,但由于侧机螺杆转速降低,玻纤的喂入量也相应的降低,产量有所下降。
实施例1和7~8,随着三头捏合块的数量减少,产品的力学性能不仅下降, 三头捏合块从4组减少到2组时,拉伸强度也从127MPa降低到106MPa,产量也从850Kg/H降低到了600Kg/H。随着捏合块的数量减少,树脂熔融塑化效率大大降低导致产能与性能下降,也会降低了增韧剂增韧的效果。
实施例1、9和10,随着齿形盘数量的降低,均布分散效果降低了冲击改性剂的分散均匀性,导致拉伸强度和缺口冲击强度会降低5~10%。
实施例1、11和12,随着拉伸元件的数量降低到1对,拉伸流动的作用降低,对熔体挤压的界面降低,降低了玻纤与熔体的接触面,相应的影响了玻纤的增强作用。
从对比例1~3看,其性能都不能达到要求,拉伸强度低于100MPa,生产效率过低,仅仅只有500Kg/H.。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种增韧增强聚丙烯复合材料的制备方法,其特征在于,包括以下步骤:
    S1.将聚丙烯、冲击改性剂、相容剂、脱模剂、抗氧剂通过混合机混匀,将混合均匀的物料喂入双螺杆挤出机的主喂料口,所述双螺杆挤出机的主机螺杆转速为大于等于800rmp;
    S2.将玻璃纤维通过非啮合型同向双螺杆侧喂料机从主机的中段喂入侧喂料口,经过熔融、混炼、挤出、后加工得到组合物,所述侧喂料机螺杆转速大于等于400rpm;
    所述主喂料口与排气口之间的螺杆元件包括输送型螺纹块、45度三头捏合块、二头捏合块;且至少采用2组45度三头捏合块,所述排气口与侧喂料口之间包括输送型螺纹块、齿形盘螺纹元件、二头捏合块;且至少采用1对齿形盘螺纹元件;所述侧喂料口与真空段包括输送型螺纹块、非啮合拉伸型螺纹元件、二头捏合块;且至少采用1对非啮合拉伸型螺纹元件。
  2. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述45度三头捏合块的数量为2~4组,所述齿形盘螺纹元件的数量为1~3对;所述非啮合拉伸型螺纹元件的数量为1~3对。
  3. 如权利要求2所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述45度三头捏合块的数量为4组,所述齿形盘螺纹元件的数量为2对;所述非啮合拉伸型螺纹元件的数量为2对。
  4. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述主机螺杆转速小于等于1200rmp。
  5. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述侧喂料机螺杆转速小于等于600rmp。
  6. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述主机的的螺筒温度设置为1区温度为120~140℃;2~5区温度为200~240℃;6~7区温度为180~220℃;8~9区温度为20~230℃;10区温度为200℃;11区温度为180~210℃。
  7. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述45度三头捏合块与二头捏合块任意顺序连接。
  8. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所 述齿形盘螺纹元件与二头捏合块任意顺序连接。
  9. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,包括按重量份计算的组分:
    所述聚丙烯25-90份;所述冲击改性剂3~10份;所述相容剂5~10份;所述玻璃纤维20~60份;所述脱模剂0.2~0.5份;所述抗氧剂0.3份。
  10. 如权利要求1所述增韧增强聚丙烯复合材料的制备方法,其特征在于,所述脱模剂为脂肪酸酰胺。
PCT/CN2021/092749 2020-11-30 2021-05-10 一种增韧增强聚丙烯复合材料的制备方法 WO2022110656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011374960.6 2020-11-30
CN202011374960.6A CN112592534B (zh) 2020-11-30 2020-11-30 一种增韧增强聚丙烯复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2022110656A1 true WO2022110656A1 (zh) 2022-06-02

Family

ID=75187896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092749 WO2022110656A1 (zh) 2020-11-30 2021-05-10 一种增韧增强聚丙烯复合材料的制备方法

Country Status (2)

Country Link
CN (1) CN112592534B (zh)
WO (1) WO2022110656A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592534B (zh) * 2020-11-30 2022-12-06 金发科技股份有限公司 一种增韧增强聚丙烯复合材料的制备方法
CN113373591B (zh) * 2021-06-04 2022-08-16 艾姆菲特(上海)健康科技有限公司 一种抑菌无纺布及其制备方法
CN113799364A (zh) * 2021-09-23 2021-12-17 金旸(厦门)新材料科技有限公司 一种螺杆组合、平行双螺杆挤出机、高导电pp/hips复合材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419864B1 (en) * 1998-10-19 2002-07-16 Krupp Werner & Pfleiderer Gmbh Method of preparing filled, modified and fiber reinforced thermoplastics and twin screw extruder for putting the method into practice
CN102807710A (zh) * 2012-08-15 2012-12-05 科沃斯机器人科技(苏州)有限公司 一种玻璃纤维增强聚丙烯复合材料及其制备方法
CN102942736A (zh) * 2011-08-15 2013-02-27 金发科技股份有限公司 一种高玻纤含量增强聚丙烯材料及其制备方法
CN103342858A (zh) * 2013-06-29 2013-10-09 金发科技股份有限公司 一种短玻纤增强聚丙烯复合材料及其制备方法和应用
CN204955364U (zh) * 2015-06-18 2016-01-13 合肥杰事杰新材料股份有限公司 一种用于加工玻纤增强材料的挤出机
CN105437513A (zh) * 2014-09-30 2016-03-30 温兴琴 一种提高玻璃纤维性能的螺杆挤出工艺
CN206623374U (zh) * 2017-03-20 2017-11-10 房小珍 一种加工玻璃纤维增强尼龙用双螺杆挤出机
CN105385030B (zh) * 2015-12-08 2017-11-24 中广核俊尔新材料有限公司 一种高性能短玻纤增强聚丙烯复合材料及其制备方法
EP3037233B1 (en) * 2013-08-23 2018-09-26 The Japan Steel Works, Ltd. Twin screw extruder for manufacturing a fiber-reinforced resin composition, and related process
CN209036972U (zh) * 2018-08-23 2019-06-28 会通新材料股份有限公司 一种挤出机的螺杆组合
CN211492772U (zh) * 2019-12-26 2020-09-15 昆山顺威工程塑料有限公司 一种生产高强度高尺寸稳定性pp加纤材料的螺杆组合
CN112592534A (zh) * 2020-11-30 2021-04-02 金发科技股份有限公司 一种增韧增强聚丙烯复合材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799877B2 (ja) * 2012-03-30 2015-10-28 東レ株式会社 熱可塑性樹脂組成物の製造方法および粉体原料用押出機
CN109291404B (zh) * 2018-09-07 2020-11-13 青岛国恩科技股份有限公司 用于尼龙和玻璃纤维挤塑加工的双螺杆组合及其加工方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419864B1 (en) * 1998-10-19 2002-07-16 Krupp Werner & Pfleiderer Gmbh Method of preparing filled, modified and fiber reinforced thermoplastics and twin screw extruder for putting the method into practice
CN102942736A (zh) * 2011-08-15 2013-02-27 金发科技股份有限公司 一种高玻纤含量增强聚丙烯材料及其制备方法
CN102807710A (zh) * 2012-08-15 2012-12-05 科沃斯机器人科技(苏州)有限公司 一种玻璃纤维增强聚丙烯复合材料及其制备方法
CN103342858A (zh) * 2013-06-29 2013-10-09 金发科技股份有限公司 一种短玻纤增强聚丙烯复合材料及其制备方法和应用
EP3037233B1 (en) * 2013-08-23 2018-09-26 The Japan Steel Works, Ltd. Twin screw extruder for manufacturing a fiber-reinforced resin composition, and related process
CN105437513A (zh) * 2014-09-30 2016-03-30 温兴琴 一种提高玻璃纤维性能的螺杆挤出工艺
CN204955364U (zh) * 2015-06-18 2016-01-13 合肥杰事杰新材料股份有限公司 一种用于加工玻纤增强材料的挤出机
CN105385030B (zh) * 2015-12-08 2017-11-24 中广核俊尔新材料有限公司 一种高性能短玻纤增强聚丙烯复合材料及其制备方法
CN206623374U (zh) * 2017-03-20 2017-11-10 房小珍 一种加工玻璃纤维增强尼龙用双螺杆挤出机
CN209036972U (zh) * 2018-08-23 2019-06-28 会通新材料股份有限公司 一种挤出机的螺杆组合
CN211492772U (zh) * 2019-12-26 2020-09-15 昆山顺威工程塑料有限公司 一种生产高强度高尺寸稳定性pp加纤材料的螺杆组合
CN112592534A (zh) * 2020-11-30 2021-04-02 金发科技股份有限公司 一种增韧增强聚丙烯复合材料的制备方法

Also Published As

Publication number Publication date
CN112592534B (zh) 2022-12-06
CN112592534A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022110656A1 (zh) 一种增韧增强聚丙烯复合材料的制备方法
JP2872466B2 (ja) 複合強化ポリプロピレン樹脂組成物の製造方法
JP5369614B2 (ja) 粉体原料用押出機および熱可塑性樹脂組成物の製造方法
CA2608892A1 (en) Method for making fiber reinforced polypropylene composites
CN103030891A (zh) 一种长玻璃纤维增强聚丙烯复合材料及其制备方法
CN107641255B (zh) 玻璃纤维增强聚丙烯复合材料及其制备方法
CN107892772A (zh) 一种轻质抗翘曲连续玻纤增强聚丙烯复合材料及制备方法
CN103044764A (zh) 一种高韧性长玻璃纤维增强聚丙烯复合材料及其制备方法
CN102924807A (zh) 一种薄壁化汽车保险杠专用聚丙烯复合材料及其制备方法
CN106189218A (zh) 隔热条专用的玻璃纤维增强的pa66组合物及其制备方法
CN109575557B (zh) 用于三维打印的pc/abs混合料及其制备方法和直接打印方法
CN111892770A (zh) 一种熔喷聚丙烯材料及其制备设备与方法
CN108047552A (zh) 用于汽车管道的吹塑玻纤增强聚丙烯复合材料及制备方法
JPS6260257B2 (zh)
CN102127260A (zh) 强韧型长玻纤增强聚丙烯组合物板状材料及其制备方法
CN113459466A (zh) 利用连续长纤维在线增强聚丙烯材料的生产装置及工艺
CN102320117A (zh) 一种玻纤增强as树脂的制备方法
EP1419041B1 (en) Mixing and kneading device for polymer compositions
JP2014051088A (ja) 熱可塑性樹脂組成物の溶融混練方法
CN103878897B (zh) 一种制备聚合物共混材料的方法
US20080081876A1 (en) Methods for making fiber reinforced polystyrene composites
CN109575502B (zh) 用于三维打印的pc/abs复合物丝材及其制备方法和打印方法
US20080214703A1 (en) Pellet and fiber length for polyester fiber reinforced polypropylene composites
CN207808439U (zh) 一种高cti阻燃pa66的双螺杆挤出机
CN100425646C (zh) 一种热流道注塑成型用聚丙烯树脂组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2023)