WO2022110527A1 - 一种磁感元件 - Google Patents

一种磁感元件 Download PDF

Info

Publication number
WO2022110527A1
WO2022110527A1 PCT/CN2021/073267 CN2021073267W WO2022110527A1 WO 2022110527 A1 WO2022110527 A1 WO 2022110527A1 CN 2021073267 W CN2021073267 W CN 2021073267W WO 2022110527 A1 WO2022110527 A1 WO 2022110527A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
circuit
magnetic circuit
magnetic induction
induction element
Prior art date
Application number
PCT/CN2021/073267
Other languages
English (en)
French (fr)
Inventor
程明
秦伟
王政
朱新凯
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/608,934 priority Critical patent/US20220399158A1/en
Publication of WO2022110527A1 publication Critical patent/WO2022110527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils

Definitions

  • the invention relates to the field of magnetic circuit theory and application, in particular to the design of magnetic circuit components.
  • the circuit contains a variety of electrical components such as resistance, inductance, capacitance, controlled source, etc.
  • electrical components such as resistance, inductance, capacitance, controlled source, etc.
  • researchers can control the trajectory of each vector in the circuit. and status.
  • the components of the magnetic circuit are relatively simple, including only the permanent magnet (magnetomotive force source) and the magnetoresistance.
  • the modulus value of the magnetic circuit vector can be changed, it is difficult to change the phase of the magnetic circuit vector, and the characteristics of the magnetic circuit vector cannot be fully reflected. Therefore, how to supplement and improve the magnetic circuit components in the magnetic circuit theory is still an extensive research topic by scholars at home and abroad.
  • the technical problem to be solved by the present invention is that, in view of the defects of the background technology, a magnetic induction element is proposed.
  • the magnetic potential is kept constant, by adding or reducing the magnetic induction element in the magnetic circuit, it can not only control the magnetic flux size, and can also control the phase relationship between the magnetic flux and the magnetic potential.
  • the present invention proposes a magnetic induction element for changing the running state and trajectory of a vector in a magnetic circuit.
  • the magnetic induction element is a multi-turn short-circuit coil wound around the magnetic circuit. By selecting different turns, materials, cross-sectional areas and lengths A metal conductor is used to adjust the magnetic induction value of the magnetic induction element to change the amplitude and phase of the magnetic flux in the magnetic circuit; or, by increasing or decreasing the magnetic induction element in the magnetic circuit, the magnetic flux vector state in the magnetic circuit is the same as The target flux vector states are consistent.
  • the magnetic induction element proposed by the present invention the magnetic impedance value in the magnetic circuit Magnetic Impedance Angle in Magnetic Circuit R mc is the magnetoresistance value of the magnetic circuit of the inductance element.
  • j represents the imaginary unit
  • R mc is the magnetic resistance value of the magnetic circuit linked by the inductance element
  • is the angular frequency of the magnetic flux change in the magnetic circuit
  • L mc represents the magnetic inductance value of the magnetic induction element
  • the present invention adopts the above technical scheme, and compared with the prior art, its beneficial effects are:
  • any magnetic circuit topology or magnetic impedance network can be formed by designing the arrangement and combination of magnetic circuit components such as magnetic resistance and magnetic induction.
  • the magnetic impedance value of the magnetic circuit By changing the magnetic impedance value of the magnetic circuit, the magnetic flux in the magnetic circuit can flow according to the designer's wishes.
  • the magnetic induction value of the magnetic circuit By changing the magnetic induction value of the magnetic circuit, the characteristics of the magnetic circuit can be changed, so that the magnetic circuit can run in the target state.
  • the phase relationship between the magnetic potential and the magnetic flux can be accurately observed through the magnetic induction element.
  • the magnetic circuit established by the magnetic induction element as the core The vector model is more consistent with the actual physical situation, which is beneficial to improve the calculation accuracy of magnetic circuit analysis.
  • the equivalent magnetic circuit including the magnetic induction element can concisely express the physical conditions of a single magnetic circuit and multiple circuits, which is useful for engaging in researchers in fields related to magnetic circuit computing have provided a new tool.
  • FIG. 1 is a schematic diagram of a plurality of magnetic induction elements of the present invention when they are connected in series.
  • FIG. 2 is a schematic diagram of a plurality of magnetic induction elements of the present invention when they are connected in parallel.
  • FIG. 3 is a flow chart of the magnetic induction element of the present invention changing the operating state of the magnetic circuit.
  • FIG. 4 is a waveform diagram of the initial excitation current and the initial magnetic flux of the transformer of the present invention.
  • FIG. 5 is an equivalent magnetic circuit diagram of the transformer after adding the magnetic induction element according to the present invention.
  • FIG. 6 is a waveform diagram of the excitation current and magnetic flux of the transformer after adding the magnetic induction element according to the present invention.
  • the invention proposes a magnetic induction element, the core content of which is to purposefully change the running state and trajectory of the vector in the magnetic circuit by adding or reducing the magnetic induction element in the magnetic circuit. For example, when the magnetic potential in the magnetic circuit is stable, by adding a magnetic induction element in the magnetic circuit, the magnitude of the magnetic flux in the magnetic circuit and the phase angle between the magnetic potential and the magnetic flux are changed, so that the state of the magnetic flux vector in the magnetic circuit is the same as that of the magnetic flux.
  • the target flux vector states are consistent.
  • the physical form of the magnetic induction element is a multi-turn short-circuit coil wound on a magnetic circuit, its symbol is L mc , and the meaning of the subscript is the abbreviation of the English word magnetic circuit.
  • L mc Dual to the inductive element in the circuit, the magnetic induction L mc has a hindering effect on the alternating magnetic flux, but has no hindering effect on the constant magnetic flux.
  • the calculation formula of the magnetic induction element R r is the resistance of the short-circuit coil, and the unit of the magnetic inductive element is ⁇ -1 , which is dual to the relationship between the inductive element and the magnetic resistance in the circuit, namely R mc is the magnetoresistance value of the magnetic circuit of the inductance element.
  • the magnitude of the magnetic induction value is related to the number of turns of the short-circuit coil and the resistance of the short-circuit coil.
  • the magnetic induction value of the magnetic induction element can be adjusted by selecting metal conductors with different turns, materials, cross-sectional areas and lengths. When the frequency of the magnetic flux in the magnetic circuit is high, the resistance value of the magnetic induction element changes due to the skin effect. At this time, the AC resistance value should be used to calculate the magnetic induction value.
  • the definition formula of the magnetoresistance in the magnetic circuit is l m is the equivalent length of the magnetic flux flowing in the magnetic circuit, s m is the equivalent cross-sectional area of the magnetic circuit magnetic flux flowing through the magnetic circuit, and ⁇ m is the magnetic permeability of the material constituting the magnetic circuit.
  • Magnetoresistance represents the constant resistance of the magnetic circuit to the magnetic flux, which hinders both the alternating magnetic flux and the constant magnetic flux. In a magnetic circuit without a magnetic induction element, when the magnetic potential is constant, the magnetoresistance can change the magnitude of the magnetic flux, but does not change its phase.
  • the magnetoresistance and the magnetoresistance constitute the magnetoresistance, and the magnetoresistance value in the magnetic circuit can be calculated by Calculation, the magnetoresistance angle in the magnetic circuit can be given by calculate. Magnetic reactance and reluctance can also be determined by the formula and formula calculate.
  • the magnetic circuit topology composed of four magnetic circuit elements of magnetic potential, magnetic flux, magnetic resistance and magnetic induction satisfies Ohm's law of magnetic circuit, namely
  • the magnetic induction value The number of turns N r of the short-circuit coil and the resistance R r are selected, and the material, length, and cross-sectional area of the short-circuit coil are selected according to the resistance value R r of the short-circuit coil.
  • the magnetic induction elements are connected in series or in parallel in the magnetic circuit, and the magnetic induction elements on the magnetic circuit are added. If the magnetic circuit contains many branches, a magnetic induction element can be added to each branch according to the actual needs of each branch.
  • the target magnetic flux amplitude As Target Magnetic Impedance Angle
  • the initial magnetic circuit is changed to the target magnetic circuit by increasing the magnetic induction in the magnetic circuit, and its flow chart is shown in Figure 3.
  • First, set the excitation frequency of the transformer as f 1 50Hz, and the excitation voltage as When the transformer runs stably, the excitation current and magnetic flux
  • the waveform is shown in Figure 4.
  • the multi-turn short-circuit coils By arranging and combining the turns, materials, lengths, and cross-sectional areas of the multi-turn short-circuit coils, multiple groups of qualified multi-turn short-circuit coils can be obtained.
  • one turn of a copper wire with a cross-sectional diameter of 0.5 mm is selected as a magnetic induction element to be connected in series to the magnetic circuit.
  • the selected short-circuit coil is measured by a milliohm meter, and the measured resistance value is 14.63m ⁇ .
  • the magnetic induction value is 68.353 ⁇ -1 , which meets the requirements of the required magnetic induction components.
  • the present invention provides a magnetic induction element.
  • the above descriptions are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, but any equivalent modifications or changes made by those of ordinary skill in the art according to the contents disclosed in the present invention should be included in the The scope of protection described in the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本发明提出了一种磁感元件,涉及磁路理论及应用领域,尤其涉及磁路元件的设计。所述磁感元件为一个缠绕在磁路的多匝短路线圈,通过选择不同匝数、材料、横截面积、长度的金属导体来调节磁感元件的磁感值,以改变磁路磁通的幅值及相位。本发明通过在磁路中增加或减少磁感元件的方式,有目的地改变磁路中矢量的运行状态及轨迹,使得磁路中的磁通矢量状态与目标磁通矢量状态一致;相比于纯磁阻磁路,由磁感元件为核心所建立的磁路矢量模型与物理实际情况更吻合,有利提高磁路分析计算精度。

Description

一种磁感元件 技术领域
本发明涉及磁路理论及应用领域,尤其涉及磁路元件的设计。
背景技术
在目前的教材和科研论文中,电路中包含电阻、电感、电容、受控源等多种电气元件,科研人员通过在电路中增加或减少电路元件的方式,可以控制电路中各个矢量的运行轨迹以及状态。与电路中的电气元件相比,磁路的组成元件较为简单,仅包含了永磁体(磁动势源)、磁阻这两种元件。通过增加或减少磁路元件的方式仅能改变磁路矢量的模值,难以改变磁路矢量的相位,无法完全体现出磁路矢量的特性。因此,如何补充与完善磁路理论中的磁路元件仍是国内外学者广泛研究的课题。
围绕磁路元件的构建与磁路的设计有许多研究工作。在哈尔滨理工大学的汤蕴璆教授的《电机学》中对磁路的基本定理与磁路元件进行了阐述,通过磁势、磁通、磁阻三个磁路物理量对无分支的变压器铁心磁路进行了建模。沈阳工业大学的唐任远院士在《现代永磁电机理论与设计》一书通过“场化路”的方法,将磁场的计算转化为磁路的计算,由定义的磁通源等效磁路和磁动势源等效磁路完成了对永磁电机等效磁路的构建。类比于电网络理论,阿克伦大学学者Vlado Ostovic根据鼠笼式感应电机的几何结构和磁通走向,把磁场区域划分为若干串联或并联支路,每条支路由磁阻或者磁势源等单元组成,构成了饱和鼠笼感应电机的磁网络模型。英国谢菲尔德大学诸自强等学者通过非线性自适应的集总参数磁阻模型搭建了开关磁阻电机模型。现有的磁路理论或磁网络理论中,仅存在磁势、磁通、磁阻三个物理量,未考虑到磁通与磁势相位关系的变化。如何主动改变磁路矢量之间的相位关系,使得磁路矢量能够按照人们的意愿进行改变,这个问题尚未得到解决。
发明内容
本发明所要解决的技术问题在于,针对背景技术的缺陷,提出了一种磁感元件,当磁势保持恒定时,通过在磁路中添加或减少磁感元件的方式,不仅能够控制磁通的大小,而且还可以控制磁通与磁势之间相位关系。
本发明提出一种改变磁路中矢量的运行状态及轨迹的磁感元件,所述磁感元件为一个缠绕在磁路的多匝短路线圈,通过选择不同匝数、材料、横截面积、长度的金属导体来调节磁感元件的磁感值,以改变磁路磁通的幅值及相位;或者,通过在磁路中增加或减少该磁感元件,使得磁路中的磁通矢量状态与目标磁通矢量状态一致。
进一步,本发明所提出的磁感元件,磁感元件磁感值的大小L mc与短路线圈的匝数N r和短路线圈的电阻R r有关,即
Figure PCTCN2021073267-appb-000001
磁感的单位为Ω -1;当n个磁感元件串联时,等效磁感值的表达式为L mceq=L mc1+L mc2+...+L mcn-1+L mcn,当n个磁感元件并联时,等效磁感值的表达式为
Figure PCTCN2021073267-appb-000002
进一步,本发明所提出的磁感元件,磁感元件对交变磁通有阻碍作用,对于恒定磁通无阻碍作用,定义磁抗的表达式为X mc=ωL mc,来描述磁感元件对于交变磁通阻碍作用的大小,ω为磁路中磁通变化的角频率。
进一步,本发明所提出的磁感元件,磁路中的磁阻抗值
Figure PCTCN2021073267-appb-000003
磁路中的磁阻抗角
Figure PCTCN2021073267-appb-000004
R mc为电感元件所匝链磁路的磁阻值。
进一步,本发明所提出的磁感元件,由磁路的欧姆定律,来验证所设置的磁感值是否与理论值相符;
所述磁路的欧姆定律表达式为
Figure PCTCN2021073267-appb-000005
其中,j表示虚数单位,R mc为电感元件所匝链磁路的磁阻值,ω为磁路中磁通变化的角频率,L mc表示磁感元件的磁感值,
Figure PCTCN2021073267-appb-000006
表示磁路中的磁通矢量,
Figure PCTCN2021073267-appb-000007
表示磁路中的磁势矢量。
本发明采用以上技术方案,与现有技术相比其有益效果为:
1.在磁路设计时,通过设计磁阻、磁感等磁路元件排列组合可以构成任意磁路拓扑或磁阻抗网络。通过改变磁路的磁阻抗值,使得磁路中的磁通可以按照设计人员意愿进行流动。通过改变磁路的磁感值,可以改变磁路的特性,使磁路 可以在目标状态运行。
2.在磁路建模时,通过所构成磁感元件能够准确地观测磁势与磁通之间的相位关系,相比于纯磁阻磁路,由磁感元件为核心所建立的磁路矢量模型与物理实际情况更吻合,有利提高磁路分析计算精度。
3.在磁路计算时,不同于电路理论中计算等效电路所采用的复杂操作,包含磁感元件的等效磁路能够对单一磁路多个电路的物理情况进行简洁地表达,为从事磁路计算相关领域的科研人员提供了一种新的工具。
附图说明
图1为本发明的多个磁感元件串联时的示意图。
图2为本发明的多个磁感元件并联时的示意图。
图3为本发明的磁感元件改变磁路运行状态的流程图。
图4为本发明的变压器初始励磁电流与初始磁通的波形图。
图5为本发明的加入磁感元件后变压器等效磁路图。
图6为本发明的加入磁感元件后变压器励磁电流与磁通的波形图。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明。
本发明提出了一种磁感元件,其核心内容是通过在磁路中增加或减少磁感元件的方式,有目的地改变磁路中矢量的运行状态及轨迹。例如,当磁路中磁势稳定时,通过在磁路中增加磁感元件的方式,改变磁路中磁通大小以及磁势与磁通的相位角,使得磁路中的磁通矢量状态与目标磁通矢量状态一致。
磁感元件在物理形式上表现为一个缠绕在磁路的多匝短路线圈,其符号为L mc,下标表示的含义为英文单词magnetic circuit的缩写。对偶于电路中的电感元件,磁感L mc对交变磁通有阻碍作用,对于恒定磁通无阻碍作用。
进一步,磁感元件的计算式
Figure PCTCN2021073267-appb-000008
R r为短路线圈的电阻,磁感元件的单位为Ω -1,对偶于电路中电感元件与磁阻的关系,即
Figure PCTCN2021073267-appb-000009
R mc为电感元件所匝链磁路的磁阻值。磁感值的大小与短路线圈的匝数和短路线圈的电阻有关, 可以通过选择不同匝数、材料、横截面积、长度的金属导体调节磁感元件的磁感值。当磁路中磁通频率较高时,磁感元件的电阻值由于集肤效应发生变化,此时应采用交流电阻值计算磁感值。
进一步,与电路中的电感元件对偶,n个磁感元件串联时,如图1所示,等效磁感值的表达式为L mceq=L mc1+L mc2+...+L mcn-1+L mcn,n个磁感元件并联时,如图2所示,等效磁感值的表达式为
Figure PCTCN2021073267-appb-000010
进一步,为了描述磁感元件对于交变磁通阻碍作用的大小,定义磁抗的表达式为X mc=ωL mc,ω为磁路中磁通变化的角频率。
进一步,磁路中的磁阻的定义式为
Figure PCTCN2021073267-appb-000011
l m为磁路中磁通流经的等效长度,s m为磁路磁通流经磁路的等效横截面积,μ m为构成磁路材料的磁导率。磁阻表示磁路对磁通的恒定阻碍作用,它既阻碍交变磁通,也阻碍恒定磁通。在无磁感元件的磁路中,当磁势恒定时,磁阻可以改变磁通的大小,但不改变其相位。
进一步,对偶于电路中的阻抗定义,磁阻与磁抗构成磁阻抗,磁路中的磁阻抗值可由
Figure PCTCN2021073267-appb-000012
计算,磁路中的磁阻抗角可由
Figure PCTCN2021073267-appb-000013
计算。磁抗和磁阻也可由公式
Figure PCTCN2021073267-appb-000014
和公式
Figure PCTCN2021073267-appb-000015
计算。
进一步,由磁势、磁通、磁阻、磁感四个磁路元件组成的磁路拓扑满足磁路的欧姆定律,即
Figure PCTCN2021073267-appb-000016
本发明通过增加磁感元件改变磁路状态的过程如下:
设定磁路中磁通幅值(有效值)恒定
Figure PCTCN2021073267-appb-000017
磁势与磁通之间的相位为
Figure PCTCN2021073267-appb-000018
当磁路稳定运行时,由公式
Figure PCTCN2021073267-appb-000019
计算出磁路中磁阻值R mc与初始的磁感值L mc0。由所计算出的磁阻值R mc和设计的目标磁阻抗角
Figure PCTCN2021073267-appb-000020
根据公式
Figure PCTCN2021073267-appb-000021
计算出目标磁感值L mc1。由初始磁感值与目标磁感值的差值计算出磁路上需要增加的磁感值L mc2=L mc1-L mc0。根据磁感值的计算公式
Figure PCTCN2021073267-appb-000022
选择短路线圈的匝数N r以及电阻R r,根据短路线圈的电阻值R r选择短路线圈的材质、长度、横截面积。根据所选择的短路线圈的物理性质,将磁感元件串联或并联在磁路中,磁路上的磁感元件添加完成。如果磁路中包含较多支路,可以根据每条支路的实际需求对每条支路分别添加磁感元件。
在变压器所构成的磁路中,设定目标磁通幅值为
Figure PCTCN2021073267-appb-000023
目标磁阻抗角
Figure PCTCN2021073267-appb-000024
通过在磁路中增加磁感的方式将初始磁路变化成目标磁路,其流程图如图3所示。首先,设定变压器的励磁频率为f 1=50Hz,励磁电压为
Figure PCTCN2021073267-appb-000025
当变压器运行稳定时,励磁电流
Figure PCTCN2021073267-appb-000026
和磁路磁通
Figure PCTCN2021073267-appb-000027
的波形如图4所示。由公式
Figure PCTCN2021073267-appb-000028
可以求解出磁路磁阻值R mc,初始磁感值L mc0=43.34Ω -1,由
Figure PCTCN2021073267-appb-000029
可以得到初始磁阻抗角度为
Figure PCTCN2021073267-appb-000030
由于磁路磁阻值R mc与磁路的励磁频率f 1和磁路磁通
Figure PCTCN2021073267-appb-000031
有关,当二者保持不变时,磁阻R mc基本不变。由目标磁阻抗角
Figure PCTCN2021073267-appb-000032
和公式
Figure PCTCN2021073267-appb-000033
能够得到目标磁感值为L mc1=111.7Ω -1,所以在磁路中应该增加的磁感值为L mc2=L mc1-L mc0=68.35Ω -1
通过对多匝短路线圈的匝数、材料、长度、横截面积的排列组合,可以获取多组符合条件的多匝短路线圈。本发明选取1匝横截面直径为0.5mm的铜质导线作为磁感元件串联到磁路中。对所选用的短路线圈通过毫欧表进行测定,所测电阻值为14.63mΩ,根据磁感计算式
Figure PCTCN2021073267-appb-000034
可得,磁感值大小为68.353Ω -1,满足所需要的磁感元件的要求。
加入磁感后的等效磁路图如图5所示,当励磁电压
Figure PCTCN2021073267-appb-000035
稳定时,变压器磁路中的磁通保持不变。加入增加磁感元件之后,变压器磁路中的磁势F N1与磁通
Figure PCTCN2021073267-appb-000036
的波形图如图6所示,可以看到此时变压器磁路的磁阻抗角达到目标磁阻抗角
Figure PCTCN2021073267-appb-000037
磁通达到目标磁通
Figure PCTCN2021073267-appb-000038
总之,本发明提出了一种磁感元件。以上所述仅为本发明的较佳实施方式, 本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围。

Claims (5)

  1. 一种磁感元件,其特征在于,所述磁感元件为一个缠绕在磁路的多匝短路线圈,通过选择不同匝数、材料、横截面积、长度的金属导体来调节磁感元件的磁感值,以改变磁路磁通的幅值及相位;或者,通过在磁路中增加或减少该磁感元件,使得磁路中的磁通矢量状态与目标磁通矢量状态一致。
  2. 权利要求1所述的磁感元件,其特征在于,磁感元件磁感值的大小L mc与短路线圈的匝数N r和短路线圈的电阻R r有关,即
    Figure PCTCN2021073267-appb-100001
    磁感的单位为Ω -1;当n个磁感元件串联时,等效磁感值的表达式为L mceq=L mc1+L mc2+...+L mcn-1+L mcn,当n个磁感元件并联时,等效磁感值的表达式为
    Figure PCTCN2021073267-appb-100002
  3. 如权利要求1所述的磁感元件,其特征在于,磁感元件对交变磁通有阻碍作用,对于恒定磁通无阻碍作用,定义磁抗的表达式为X mc=ωL mc,来描述磁感元件对于交变磁通阻碍作用的大小,ω为磁路中磁通变化的角频率。
  4. 如权利要求3所述的磁感元件,其特征在于,磁路中的磁阻抗值
    Figure PCTCN2021073267-appb-100003
    磁路中的磁阻抗角
    Figure PCTCN2021073267-appb-100004
    R mc为电感元件所匝链磁路的磁阻值。
  5. 如权利要求1所述的磁感元件,其特征在于,由磁路的欧姆定律,来验证所设置的磁感值是否与理论值相符;
    所述磁路的欧姆定律表达式为
    Figure PCTCN2021073267-appb-100005
    其中,j表示虚数单位,R mc为电感元件所匝链磁路的磁阻值,ω为磁路中磁通变化的角频率,L mc表示磁感元件的磁感值,
    Figure PCTCN2021073267-appb-100006
    表示磁路中的磁通矢量,
    Figure PCTCN2021073267-appb-100007
    表示磁路中的磁势矢量。
PCT/CN2021/073267 2020-11-26 2021-01-22 一种磁感元件 WO2022110527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/608,934 US20220399158A1 (en) 2020-11-26 2021-01-22 Magnetic-inductance component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011350276.4A CN112489963B (zh) 2020-11-26 2020-11-26 一种磁感元件
CN202011350276.4 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022110527A1 true WO2022110527A1 (zh) 2022-06-02

Family

ID=74935255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073267 WO2022110527A1 (zh) 2020-11-26 2021-01-22 一种磁感元件

Country Status (3)

Country Link
US (1) US20220399158A1 (zh)
CN (1) CN112489963B (zh)
WO (1) WO2022110527A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173664A (zh) * 2022-07-15 2022-10-11 东南大学 基于时变磁感原理的发电装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315982A1 (en) * 2007-06-08 2008-12-25 Intersil Americas Inc. Coupled-inductor core for unbalanced phase currents
CN104319075A (zh) * 2014-09-19 2015-01-28 南方电网科学研究院有限责任公司 一种用于多电平电压源换流器的连接电抗器
CN105742047A (zh) * 2015-12-30 2016-07-06 国网智能电网研究院 一种高频变压器本体电感参数的控制方法
CN107992663A (zh) * 2017-11-27 2018-05-04 中国矿业大学 一种考虑铁耗的开关磁阻电机动态电路建模方法
CN207834098U (zh) * 2017-12-13 2018-09-07 美商泛技股份有限公司 非耦合式多相位电感
CN207993649U (zh) * 2017-01-30 2018-10-19 发那科株式会社 多相铁芯电抗器
CN111566917A (zh) * 2017-12-12 2020-08-21 斐斯塔恩有限责任公司 变压电路相位控制功率参数调整方法及应用装置
CN111711368A (zh) * 2020-06-08 2020-09-25 北京达佳互联信息技术有限公司 电压变换装置和三相电压变换装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653107A (en) * 1926-06-11 1927-12-20 Gen Electric Single-phase transformer
US6844802B2 (en) * 2003-06-18 2005-01-18 Advanced Energy Industries, Inc. Parallel core electromagnetic device
JP2008205466A (ja) * 2007-02-17 2008-09-04 Zhejiang Univ 磁気部品
DE102010020970A1 (de) * 2010-05-19 2011-11-24 Panasonic Electronic Devices Europe Gmbh Vorrichtung und Verfahren zur Steuerung kontaktloser Übertragung von elektrischer Energie
JP5714528B2 (ja) * 2012-03-19 2015-05-07 株式会社豊田中央研究所 電力変換器および電源システム
JP5977773B2 (ja) * 2014-02-24 2016-08-24 株式会社豊田中央研究所 複合磁気部品の使用方法および電源システム
CN104637659A (zh) * 2015-02-11 2015-05-20 华为技术有限公司 耦合电感和交错并联直流变换器
US20180061562A1 (en) * 2015-03-23 2018-03-01 Ntn Corporation Inductor and protection circuit
EP3133614B1 (en) * 2015-08-18 2019-11-20 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component
CN107134358A (zh) * 2016-02-26 2017-09-05 艾默生网络能源有限公司 一种电感绕制方法及装置
US10504645B2 (en) * 2016-05-05 2019-12-10 Ut-Battelle, Llc Gapless core reactor
CN206322578U (zh) * 2016-12-12 2017-07-11 福建工程学院 一种开关控制可调电感器
US10867745B2 (en) * 2017-07-19 2020-12-15 Futurewei Technologies, Inc. Inductor structure and method for forming the same
CN207250270U (zh) * 2017-10-17 2018-04-17 台达电子企业管理(上海)有限公司 一种多线圈电感
CN108648899B (zh) * 2018-03-27 2022-02-11 华为数字能源技术有限公司 一种磁集成器件、变换器、功率因数校正电路及方法
CN111554471A (zh) * 2020-05-25 2020-08-18 台达电子企业管理(上海)有限公司 三相电感及功率模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315982A1 (en) * 2007-06-08 2008-12-25 Intersil Americas Inc. Coupled-inductor core for unbalanced phase currents
CN104319075A (zh) * 2014-09-19 2015-01-28 南方电网科学研究院有限责任公司 一种用于多电平电压源换流器的连接电抗器
CN105742047A (zh) * 2015-12-30 2016-07-06 国网智能电网研究院 一种高频变压器本体电感参数的控制方法
CN207993649U (zh) * 2017-01-30 2018-10-19 发那科株式会社 多相铁芯电抗器
CN107992663A (zh) * 2017-11-27 2018-05-04 中国矿业大学 一种考虑铁耗的开关磁阻电机动态电路建模方法
CN111566917A (zh) * 2017-12-12 2020-08-21 斐斯塔恩有限责任公司 变压电路相位控制功率参数调整方法及应用装置
CN207834098U (zh) * 2017-12-13 2018-09-07 美商泛技股份有限公司 非耦合式多相位电感
CN111711368A (zh) * 2020-06-08 2020-09-25 北京达佳互联信息技术有限公司 电压变换装置和三相电压变换装置

Also Published As

Publication number Publication date
US20220399158A1 (en) 2022-12-15
CN112489963A (zh) 2021-03-12
CN112489963B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN107612256A (zh) 一种磁极分段型表贴式永磁同步电机的优化设计方法
WO2022110527A1 (zh) 一种磁感元件
CN107977485A (zh) 一种考虑高频涡流效应的绕组损耗半解析计算方法
Ghabeli et al. Optimization of distributive ratios of apportioned winding configuration in HTS power transformers for hysteresis loss and leakage flux reduction
Wu et al. Combined impact of asymmetric critical current and flux diverters on AC loss of a 6.5 MVA/25 kV HTS traction transformer
Iqbal et al. Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK
CN107015115B (zh) 一种同塔双回输电线路的故障测距方法
CN105720874B (zh) 基于分布参数的电机气隙磁场建模方法及其应用
WO2022110528A1 (zh) 一种磁路功率的计算方法
Hong et al. Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes
CN110287588A (zh) 一种高温超导电缆内部带材磁场的计算方法
Liu et al. Design and optimization of high frequency transformer with nanocrystalline core
CN109239544A (zh) 一种振荡波系统用空心电抗器设计方法
Dong et al. Study of axial-flux-type superconducting eddy-current couplings
CN107607871A (zh) 一种交流电机定子同心绕组端部漏感测定方法
Zhao et al. 3-D Analytical model of racetrack HTS coil subject to travelling magnetic fields
Kaur et al. Analysis of effect of core material on the performance of single phase transformer using FEM
CN210324808U (zh) 一种新型多功能电磁实验装置
Saied et al. Determination of deep bar cage rotor induction machine parameters based on finite element approach
Gao et al. Finite-element modeling and impedance characteristics analysis of two parallel cables in aircraft power system
CN104834789B (zh) 一种建立电力线路π等效模型的方法
Liu et al. Research on Leakage Inductance and Eddy Current Loss of Nanocrystalline High-Frequency Transformers
Li et al. Analysis of magnetic field characteristics and no-load losses of three-dimensional wound core transformer
Wang et al. Shape Optimization of Conductor-Ferromagnetic Material Interface in Eddy Current System Using Continuum Sensitivity With Level-Set Method
Mechkov et al. Electromagnetic field modelling using FEM of the active part of oil-immersed transformers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896047

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896047

Country of ref document: EP

Kind code of ref document: A1