WO2022110316A1 - 天线组件及移动终端 - Google Patents

天线组件及移动终端 Download PDF

Info

Publication number
WO2022110316A1
WO2022110316A1 PCT/CN2020/135454 CN2020135454W WO2022110316A1 WO 2022110316 A1 WO2022110316 A1 WO 2022110316A1 CN 2020135454 W CN2020135454 W CN 2020135454W WO 2022110316 A1 WO2022110316 A1 WO 2022110316A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal frame
antenna
wiring
resistor
tuning module
Prior art date
Application number
PCT/CN2020/135454
Other languages
English (en)
French (fr)
Inventor
燕永义
安鑫荣
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to US18/254,860 priority Critical patent/US20240006752A1/en
Publication of WO2022110316A1 publication Critical patent/WO2022110316A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and a mobile terminal.
  • the performance of the antenna plays a crucial role in the communication capability of a mobile communication device.
  • the combination configuration of metal frame and full screen has become a major trend of today's mobile communication equipment.
  • modern communication equipment In addition to the characteristics of small size, high integration and mobility, modern communication equipment also needs to be more beautiful in appearance. Therefore, the use of built-in antennas is most in line with the design trend of wireless applications.
  • the space for antenna installation is narrow and the clearance area required by the antenna is insufficient, resulting in the antenna being easily interfered by peripheral circuits.
  • the communication equipment of 5G technology is also compatible with 2/3/4G functions, so that the available space for the antenna inside the communication equipment is less and less, which also leads to the very limited frequency band and bandwidth that the antenna can support.
  • the purpose of this application is to provide an antenna assembly and a mobile terminal that can support more frequency bands and wider bandwidths.
  • Embodiments of the present application provide an antenna assembly and a mobile terminal, which can support more frequency bands and wider bandwidths.
  • An embodiment of the present application provides an antenna assembly, including a metal frame, a matching circuit, an antenna wiring and a tuning module;
  • the metal frame is provided with a feed point, and the matching circuit is connected to the feed point on the metal frame;
  • One end of the antenna wiring is connected to the feed point, and the other end of the antenna wiring is connected to the tuning module.
  • a predetermined distance is spaced between the antenna trace and the metal frame.
  • the antenna assembly further includes a wire support
  • the antenna wiring is arranged on the wiring support.
  • the antenna wiring is an LDS antenna or an FPC antenna
  • the wiring support is an antenna bracket or a printed circuit board.
  • the tuning module is further connected to the metal frame.
  • the metal frame is further provided with a ground point
  • connection point between the tuning module and the metal frame is located between the ground point and the feed point.
  • the metal frame includes a first metal frame, a second metal frame, and a third metal frame;
  • One end of the first metal frame is connected to the second metal frame
  • the other end of the first metal frame is connected to the third metal frame
  • the feed point is arranged on the first metal frame at a position close to the second metal frame;
  • the grounding point is set on the first metal frame at a position close to the third metal frame.
  • the tuning module includes a switch and an RLC circuit
  • the RLC circuit includes a plurality of branches
  • the fixed end of the switch is connected with the antenna wiring
  • the multiple moving ends of the switch are connected to one end of the multiple branches in a one-to-one correspondence, and the other ends of the multiple branches are grounded.
  • the matching circuit includes a first resistor, a second resistor, a third resistor and a fourth resistor;
  • One end of the first resistor is connected to a power supply, the other end of the first resistor is connected to one end of the second resistor, and the other end of the second resistor is connected to the antenna wiring;
  • One end of the fourth resistor is connected to the connection point between the first resistor and the second resistor, and the other end of the fourth resistor is grounded;
  • One end of the third resistor is connected to the antenna trace, and the other end of the third resistor is grounded.
  • the antenna wiring is arranged in parallel or obliquely with respect to the metal frame.
  • the first metal frame, the second metal frame and the third metal frame are located on the same plane.
  • An embodiment of the present application further provides a mobile terminal, including the above-mentioned antenna assembly;
  • the antenna assembly includes a metal frame, a matching circuit, an antenna wiring, and a tuning module;
  • the metal frame is provided with a feed point, and the matching circuit is connected to the feed point on the metal frame;
  • One end of the antenna wiring is connected to the feed point, and the other end of the antenna wiring is connected to the tuning module.
  • a predetermined distance is spaced between the antenna trace and the metal frame.
  • the antenna assembly further includes a wire support
  • the antenna wiring is arranged on the wiring support.
  • the antenna wiring is an LDS antenna or an FPC antenna
  • the wiring support is an antenna bracket or a printed circuit board.
  • the tuning module is further connected to the metal frame.
  • the metal frame is further provided with a ground point
  • connection point between the tuning module and the metal frame is located between the ground point and the feed point.
  • the metal frame includes a first metal frame, a second metal frame, and a third metal frame;
  • One end of the first metal frame is connected to the second metal frame
  • the other end of the first metal frame is connected to the third metal frame
  • the feed point is arranged on the first metal frame at a position close to the second metal frame;
  • the grounding point is set on the first metal frame at a position close to the third metal frame.
  • the tuning module includes a switch and an RLC circuit
  • the RLC circuit includes a plurality of branches
  • the fixed end of the switch is connected with the antenna wiring
  • the multiple moving ends of the switch are connected to one end of the multiple branches in a one-to-one correspondence, and the other ends of the multiple branches are grounded.
  • the mobile terminal includes a middle frame
  • the ground point on the metal frame of the antenna assembly is connected to the middle frame.
  • the antenna assembly and the mobile terminal provided by the present application can set a feed point on the metal frame, the matching circuit is connected to the feed point on the metal frame, one end of the antenna wire is connected to the feed point, and the other end of the antenna wire is connected to the tuning module ;By setting the antenna wiring between the tuning module and the matching circuit, the antenna wiring and the metal frame can be shunted, which is equivalent to shortening the current flow distance between the tuning module and the feed point, thereby improving the tuning range and bandwidth of the antenna
  • the connection of the antenna trace and the tuning module is equivalent to adding a parallel circuit with adjustable impedance at the feed point, which plays the role of impedance tuning, thereby reducing the return loss of the antenna and ensuring the circuit performance.
  • the transmission efficiency can also improve the resonant frequency range of the antenna.
  • FIG. 1 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 2 is another schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 4 is an antenna efficiency diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, “plurality” means two or more. Additionally, the term “comprising” and any variations thereof are intended to cover non-exclusive inclusion.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application, including a metal frame 1 , a matching circuit 2 , an antenna wiring 3 and a tuning module 4 , and a feed point 5 is provided on the metal frame 1 , the matching circuit 2 is connected to the feed point 5 on the metal frame 1, one end of the antenna trace 3 is connected to the feed point 5, and the other end of the antenna trace 3 is connected to the tuning Module 4 is connected.
  • the metal frame 1 is also provided with a grounding point 6; the grounding point 6 and the feeding point 5 can be respectively set close to both ends of the metal frame 1, and the tuning module 4 is arranged between the grounding point 6 and the feeding point 5. between.
  • the antenna resonates between the metal frame 1 and the grounding point 6 .
  • the antenna wiring 3 and the metal frame 1 are shunted, which is equivalent to shortening the current flow distance between the tuning module 4 and the feed point 5, thereby The tuning range and bandwidth of the antenna are improved.
  • the connection between the antenna trace 3 and the tuning module 4 is equivalent to adding a parallel circuit with adjustable impedance at the feed point 5, which plays the role of impedance tuning and reduces the number of antennas.
  • the return loss can improve the resonant frequency range of the antenna while ensuring the transmission efficiency of the circuit.
  • the metal frame 1 includes a first metal frame 11 , a second metal frame 12 and a third metal frame 13 .
  • one end of the first metal frame 11 is connected to the second metal frame 12 , and the other end of the first metal frame 11 is connected to the third metal frame 13 .
  • connection positions of the metal frame 1 in FIG. 2 are as follows: the positions of the first metal frame 11 are perpendicular to the second metal frame 12 and the third metal frame 13 respectively, and the first metal frame 11 and the second metal frame 12 are The third metal frame 13 is located on the same plane, and the second metal frame 12 and the third metal frame 13 are located on the same side of the first metal frame 11 . It should be pointed out that the specific embodiment should not be limited to this type of positional connection.
  • the metal frame 1 refers to the metal frame of the mobile terminal, and the metal frame 1 is the pure metal frame or the top metal frame of the in-mold metal frame.
  • the lengths of the first metal frame 11 , the second metal frame 12 and the third metal frame 13 are preferably in the range of 30-100 mm.
  • the distance between the antenna trace 3 and the first metal frame 11 is a preset distance, and the position of the antenna trace 3 and the position of the first metal frame 11 can be arranged in parallel or obliquely.
  • the shortest distance and the longest distance between the two must be within the preset distance range; when the distance between the antenna trace 3 and the first metal frame 11 is less than 1 mm, The distance between the antenna trace 3 and the first metal frame 11 will cause signal interference, thereby affecting the working efficiency of the antenna assembly; and when the distance between the antenna trace 3 and the first metal frame 11 is greater than 20mm, the antenna The distance between the trace 3 and other components inside the communication equipment is too close, which may cause the placement space of other devices to be limited, and even cause signal interference.
  • the preset distance between the antenna trace 3 and the first metal frame 11 is obtained.
  • the optimal range is 1-20mm.
  • the antenna assembly further includes a wire support 7 , and the antenna wire 3 is arranged on the wire support 7 .
  • the antenna trace 3 may be an LDS (Laser-Direct-structuring, laser direct structuring) antenna or an FPC (Flexible-Printed-circuit, flexible printed circuit) antenna, and the trace support 7 may be an antenna bracket or a printed circuit board ;
  • the LDS antenna can be lasered on the antenna bracket by laser direct molding technology, or the FPC antenna can be fixed on the antenna bracket;
  • the selected wiring support 7 is a printed circuit board, in order to prevent the printed circuit board from causing the antenna wiring Signal interference, the antenna trace 3 should be set in the clearance area on the printed circuit board.
  • the tuning module 4 includes a switch 41 and an RLC circuit 42 .
  • the RLC circuit 42 includes a plurality of shunts 43, and the non-moving end of the switch 41 is connected to one end of the antenna wiring 3; One ends of the branches 43 are connected in a one-to-one correspondence, and the other ends of the plurality of branches 43 are grounded.
  • the multiple branches of the RLC circuit 42 are provided with a number of resistors, inductors and capacitors, and the resistance, inductance and/or capacitor values of each branch are different, and the switch 41 can be connected to different shunt, thereby changing the parameters of the access circuit, and then realizing the effect of changing the resonant frequency of the antenna.
  • each branch 43 includes an inductance, and the inductance values of the multiple branches 43 are all different.
  • the first metal frame 11 is also provided with a grounding point 6 ; the tuning module 4 is connected to the first metal frame 11 in the metal frame 1 ; the tuning module 4 is connected to The connection point of the first metal frame 11 is located between the ground point 6 and the feed point 5, that is, the tuning module 4 is arranged between the ground point 6 and the feed point 5, and at the same time, In order to prevent the antenna performance from being affected, the location of the tuning module 4 cannot be too close to the ground point 6 or the matching circuit 2 .
  • the tuning module 4 when the tuning module 4 is not connected to the first metal frame 11 , the second metal frame 12 , the first metal frame 11 and the ground point 6 are paths for generating resonance; and when the tuning module 4 is connected to the first metal frame 11 , most of the current flowing through the first metal frame 11 will flow to the tuning module 4, that is, the second metal frame 12, the first metal frame 11 and the tuning module 4 are paths for generating resonance, that is, the resonance is changed through aperture tuning.
  • connection between the tuning module 4 and the antenna trace 3 is equivalent to adding a parallel circuit with adjustable impedance at the feed point 5, which plays the role of impedance tuning, that is, when the tuning module 4 is connected to the first metal
  • aperture tuning and impedance tuning work together to further improve the resonant frequency range of the antenna.
  • the feed point 5 is set on the first metal frame 11 at a position close to the second metal frame 12 ; the ground point 6 is set on the first metal frame 11 at a position close to the third metal frame 13 .
  • one end of the matching circuit 2 is connected to the feed point 5 on the metal frame 1, and the other end of the matching circuit 2 is connected to the power supply.
  • the matching circuit 2 The current is transmitted to the metal frame 1, and during the transmission process, the matching circuit 2 can change the impedance in the circuit, thereby widening the bandwidth of the antenna.
  • the matching circuit 2 is provided with a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4, one end of the first resistor R1 is connected to the power supply, the other end is connected to one end of the second resistor R2, and the second resistor The other end of R2 is connected to the antenna trace 3; one end of the fourth resistor R4 is connected to the connection point between the first resistor R1 and the second resistor R2, and the other end is grounded; one end of the third resistor R3 is connected to the antenna trace 3, and the other end ground.
  • the tuning module and the matching circuit are usually connected at different positions on the metal frame, and the two are not connected by other antenna lines, which is likely to be unsatisfactory due to the fact that only the matching circuit is used to achieve impedance matching. , that is, the impedance does not match, resulting in return loss when the antenna is working, which in turn affects the transmission efficiency of the signal.
  • the return loss also known as the reflection loss
  • the return loss is the reflection generated by the impedance mismatch of the cable link, which leads to the confusion of the signal.
  • the return loss is usually caused by the non-uniformity of the characteristic impedance over the length of the cable. In the final analysis, it is Caused by the inhomogeneity of the cable structure. Due to the reflection of the signal at different locations in the cable, the signal arriving at the receiving end is equivalent to the multipath effect in the propagation of the wireless channel, thereby causing time dispersion and frequency selective fading of the signal. The pulses overlap and cannot be judged.
  • the multiple reflections of the signal in the cable also lead to the attenuation of the signal power, which affects the signal-to-noise ratio at the receiving end, resulting in an increase in the bit error rate, which in turn limits the transmission speed of the signal.
  • Impedance matching is a problem that must be considered in the electromagnetic wave transmission circuit. Only when the output impedance and the load impedance are matched can the non-reflection transmission of the electromagnetic wave signal be realized and the maximum power utilization can be realized. If there is a mismatch in the electromagnetic wave transmission circuit, it will cause serious reflection, so that a standing wave will be formed on the transmission line, and a large amount of power will be wasted on the reflected power. The increased failure rate also reduces the energy utilization rate, and even causes the antenna components to fail to work properly in severe cases.
  • the switch 41 in the tuning module 4 is connected to the multiple branches 43 in the RLC circuit 42 , which is equivalent to adding a parallel circuit with adjustable impedance at the position of the feed point 5 , plays the role of impedance tuning, thereby reducing the return loss of the antenna, and improving the resonant frequency range of the antenna while ensuring the transmission power of the circuit.
  • the antenna trace 3 and the first metal frame 11 both receive a current signal , that is, the antenna wiring 3 and the first metal frame 11 divide the current into two branches, which is equivalent to shortening the current flow distance between the tuning module 4 and the feed point 5, thereby improving the The resonant frequency range of the antenna.
  • FIG. 3 is a schematic structural diagram of another embodiment of the antenna assembly provided by the present application.
  • the difference between this embodiment and the embodiment in FIG. 2 is that the tuning module 4 It is not connected to the first metal frame 11.
  • the connection between the tuning module 4 and the antenna wiring 3 is equivalent to adding a parallel circuit with adjustable impedance at the feed point, which plays the role of impedance tuning.
  • the resonant frequency range of the antenna is improved; at the same time, the position of the tuning module 4 can be moved moderately within a preset range, so the position of the tuning module 4 can be appropriately adjusted according to the actual situation , so that the limited range of the placement space of other devices in the communication equipment can be improved to a greater extent, and the situation of mutual interference between other devices and between the antenna assembly and other devices can be avoided in practical applications.
  • FIG. 4 is an antenna efficiency diagram of the antenna assembly provided by the embodiment of the present application.
  • the antenna efficiency shown in Figure 4 refers to the ratio of the power radiated by the antenna (that is, the power that effectively converts the electromagnetic wave part) to the active power input to the antenna, in decibels (dB).
  • the inductance value of the access circuit is changed by changing the shunt in the RLC circuit connected to the switch 41, and an actual test is carried out.
  • the inductance value in the first branch is 100nH, that is, the inductance value connected to the tuning module 4 is 100nH.
  • the antenna produces three resonances, in which the low frequency efficiency peak is -5.5dB, the high frequency efficiency peak is -5dB, and the ultra high frequency efficiency peak is -6dB.
  • the inductance value in the second branch is 12nH, that is, the inductance value connected to the tuning module 4 is 12nH, and the antenna generates Three resonances, in which the low frequency efficiency peak is -6dB, the high frequency efficiency peak is -4.5dB, and the ultra high frequency efficiency peak is -6dB.
  • the inductance value in the third branch is 6.8nH, that is, the inductance value connected to the tuning module 4 is 6.8nH.
  • the antenna generates three resonances, in which the peak efficiency of low frequency is -5.2dB, the peak efficiency of high frequency is -4.5dB, and the peak efficiency of ultra-high frequency is -5dB.
  • Series 1 is the three resonances generated by the antenna when the access inductance value is 100 nH
  • Series 2 is the three resonances generated by the antenna when the access inductance value is 12 nH
  • Series 3 is the three resonances generated by the antenna when the access inductance value is 12 nH.
  • the three resonances generated by the antenna at a value of 6.8nH.
  • the three resonances generated in each embodiment are, from left to right, low frequency resonance, high frequency resonance, and ultra-high frequency resonance, respectively.
  • the frequency coverage of the low frequency band is 600-1200MHz; the frequency coverage of the high frequency band is 1800-2200MHz; the frequency coverage of the ultra-high frequency band is 3300-4200MHz. It can be seen that the embodiments of the present application improve the frequency coverage of each frequency band, in which the frequency coverage of the low frequency band is significantly improved (from the 700-1000MHz coverage that can be achieved by the prior art to 600-1200MHz).
  • the antenna assembly provided by the present application can set a feed point on the metal frame, the matching circuit is connected to the feed point on the metal frame, one end of the antenna wiring is connected to the feed point, and the other end of the antenna wiring is connected to the tuning module;
  • the antenna wiring is arranged between the tuning module and the matching circuit, so that the antenna wiring and the metal frame can be shunted, which is equivalent to shortening the current flow distance between the tuning module and the feed point, thereby improving the antenna tuning range and bandwidth.
  • the connection between the antenna wiring and the tuning module is equivalent to adding a parallel circuit with adjustable impedance at the feed point, which plays the role of impedance tuning, thereby reducing the return loss of the antenna and ensuring the transmission efficiency of the circuit.
  • the resonant frequency range of the antenna can be improved.
  • FIG. 5 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application, and the mobile terminal 80 includes the antenna assembly in the foregoing embodiment.
  • the antenna assembly includes a metal frame 1 , a matching circuit 2 , an antenna wiring 3 and a tuning module 4 ; One end of the antenna line 3 is connected to the feed point 5 , and the other end of the antenna line 3 is connected to the tuning module 4 .
  • the mobile terminal further includes a casing, and an accommodating space is formed in the casing, and the antenna assembly is arranged in the accommodating space and is close to the top area or the bottom area of the mobile terminal.
  • a predetermined distance is spaced between the antenna trace and the metal frame.
  • the purpose of setting the preset distance is to: avoid signal interference due to the close distance between the antenna trace and the metal frame when the antenna assembly is in the working state, thereby affecting the working efficiency of the antenna assembly; If the distance between the frames is too far, the distance between the antenna trace and other components inside the communication equipment is too close, resulting in limited placement space for other components, and even causing signal interference.
  • the antenna assembly further includes a wire support; the antenna wire is arranged on the wire support.
  • the antenna wiring is an LDS antenna or an FPC antenna; wherein, the LDS antenna uses a laser-direct-structuring technology, using a computer to control the movement of the laser according to the trajectory of the conductive pattern, The laser is projected on the formed antenna bracket, and then the metal antenna is formed directly on the antenna bracket by using the laser laser technology.
  • the FPC antenna flexible patch panel module antenna
  • the FPC antenna is composed of the engraved circuit diagram and the material of the module sheet.
  • the FPC antenna is generally used for built-in, acting on the inside of the Internet of Things router, circuit board network card, etc., with a thickness of 0.1mm , in a square or rectangular state, the tin-plated welding position is determined according to the needs of the actual application, usually it can be the middle or the lower left corner, the tail is generally an IPEX terminal or a peeled tin-plated welding interface, the wire size and wire length can be customized according to the actual situation .
  • the wiring support is an antenna bracket or a printed circuit board.
  • the common material of the antenna bracket is usually molded three-dimensional plastic, and the common raw materials of the printed circuit board are bakelite, glass fiber board, and various plastic boards; in order to prevent the printed circuit board from causing signal interference to the antenna wiring, the antenna Traces should be placed within the clearance area on the printed circuit board.
  • the tuning module is further connected to the metal frame. Further, considering the problem of limited placement space for internal components of communication equipment in practical applications, the tuning module and the metal frame may not be connected, so that the location of the tuning module can be within a preset range. Make appropriate adjustments within the device to avoid signal interference between devices in practical applications.
  • the metal frame is further provided with a ground point
  • connection point between the tuning module and the metal frame is located between the ground point and the feed point.
  • the metal frame includes a first metal frame, a second metal frame, and a third metal frame;
  • One end of the first metal frame is connected to the second metal frame
  • the other end of the first metal frame is connected to the third metal frame
  • the feed point is arranged on the first metal frame at a position close to the second metal frame;
  • the grounding point is set on the first metal frame at a position close to the third metal frame.
  • the tuning module includes a switch and an RLC circuit
  • the RLC circuit includes a plurality of branches; wherein, the RLC circuit 42 (RLC tuned circuit) is a circuit composed of resistance, inductance and capacitance.
  • the resistance, inductance and/or capacitance values of each shunt are different.
  • the switch 41 can be connected to different shunts according to the actual work requirements, thereby changing the Access the parameters of the circuit, and then realize the effect of changing the resonant frequency of the antenna.
  • the fixed end of the switch is connected with the antenna wiring
  • the multiple moving ends of the switch are connected to one end of the multiple branches in a one-to-one correspondence, and the other ends of the multiple branches are grounded.
  • An embodiment of the present application further provides a mobile terminal, including the above-mentioned antenna assembly.
  • the mobile terminal includes a middle frame
  • the ground point on the metal frame of the antenna assembly is connected to the middle frame.
  • the material of the middle frame is usually steel and aluminum alloy.
  • the mobile terminal provided by the present application can set a feed point on the metal frame, the matching circuit is connected to the feed point on the metal frame, one end of the antenna wiring is connected to the feed point, and the other end of the antenna wiring is connected to the tuning module;
  • the antenna wiring is arranged between the tuning module and the matching circuit, so that the antenna wiring and the metal frame can be shunted, which is equivalent to shortening the current flow distance between the tuning module and the feed point, thereby improving the antenna tuning range and bandwidth.
  • the connection between the antenna wiring and the tuning module is equivalent to adding a parallel circuit with adjustable impedance at the feed point, which plays the role of impedance tuning, thereby reducing the return loss of the antenna and ensuring the transmission efficiency of the circuit.
  • the resonant frequency range of the antenna can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请公开了一种天线组件及移动终端。所述天线组件包括金属边框、匹配电路、天线走线和调谐模块;所述金属边框上设有馈点,所述匹配电路与所述金属边框上的所述馈点连接;所述天线走线的一端与所述馈点相连,所述天线走线的另一端与所述调谐模块连接;天线走线和调谐模块的连接等效于在馈点加入一个阻抗可调的并联电路。

Description

天线组件及移动终端
本申请要求于2020年11月27日提交中国专利局、申请号为202011364945.3、发明名称为“天线组件及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及移动终端。
背景技术
在移动通信领域中,作为无线信号发射和接收链路重要的一环,天线性能的好坏对一款移动通讯设备的通信能力起着至关重要的作用。金属边框和全面屏的组合配置已成为现今移动通讯设备的一大趋势,而且现代通讯设备除了需要具备尺寸小、集成度高和可移动的特性外,为了让产品的外形更加美观,还对产品的工业设计有了更高的要求,因此,采用内置天线是最符合无线应用设计潮流的。然而,正是由于通讯设备尺寸小、集成度高的特性,造成了天线安装的空间范围狭小、天线所要求的净空区域不足的情况,导致天线容易被周边电路干扰,再加上目前市面上支持5G技术的通讯设备还兼容了2/3/4G功能,使得通讯设备内部留给天线的可用空间越来越少,这也导致天线能够支持的频段以及带宽非常有限。
技术问题
本申请的目的在于提供一种天线组件及移动终端,能支持更多频段和更宽的带宽。
技术解决方案
本申请实施例提供一种天线组件及移动终端,能支持更多频段和更宽的带宽。
本申请实施例提供了一种天线组件,包括金属边框、匹配电路、天线走线和调谐模块;
所述金属边框上设有馈点,所述匹配电路与所述金属边框上的所述馈点连接;
所述天线走线的一端与所述馈点相连,所述天线走线的另一端与所述调谐模块连接。
在本申请一些实施例中,所述天线走线与所述金属边框之间间隔预设距离。
在本申请一些实施例中,所述天线组件还包括走线支撑物;
所述天线走线设置在所述走线支撑物上。
在本申请一些实施例中,所述天线走线为LDS天线或者FPC天线;
所述走线支撑物为天线支架或印刷电路板。
在本申请一些实施例中,所述调谐模块还与所述金属边框连接。
在本申请一些实施例中,所述金属边框上还设置有接地点;
所述调谐模块与所述金属边框的连接点位于所述接地点和所述馈点之间。
在本申请一些实施例中,所述金属边框包括第一金属边框、第二金属边框、第三金属边框;
所述第一金属边框的一端与所述第二金属边框连接;
所述第一金属边框的另一端与所述第三金属边框连接;
所述馈点设于所述第一金属边框上靠近所述第二金属边框的位置处;
所述接地点设于所述第一金属边框上靠近所述第三金属边框的位置处。
在本申请一些实施例中,所述调谐模块包括切换开关和RLC电路;
所述RLC电路包括多个分路;
所述切换开关的不动端与所述天线走线连接;
所述切换开关的多个动端与所述多个分路的一端一一对应连接,所述多个分路的另一端接地。
在本申请一些实施例中,所述匹配电路包括第一电阻、第二电阻、第三电阻和第四电阻;
所述第一电阻的一端连接电源,所述第一电阻的另一端连接所述第二电阻的一端,所述第二电阻的另一端连接所述天线走线;
所述第四电阻的一端连接所述第一电阻与所述第二电阻之间的连接点,所述第四电阻的另一端接地;
所述第三电阻的一端连接所述天线走线,所述第三电阻的另一端接地。
在本申请一些实施例中,所述天线走线相对于所述金属边框平行设置或者倾斜设置。
在本申请一些实施例中,所述第一金属边框、所述第二金属边框与所述第三金属边框位于同一平面。
本申请实施例还提供了一种移动终端,包括上述天线组件;天线组件包括金属边框、匹配电路、天线走线和调谐模块;
所述金属边框上设有馈点,所述匹配电路与所述金属边框上的所述馈点连接;
所述天线走线的一端与所述馈点相连,所述天线走线的另一端与所述调谐模块连接。
在本申请一些实施例中,所述天线走线与所述金属边框之间间隔预设距离。
在本申请一些实施例中,所述天线组件还包括走线支撑物;
所述天线走线设置在所述走线支撑物上。
在本申请一些实施例中,所述天线走线为LDS天线或者FPC天线;
所述走线支撑物为天线支架或印刷电路板。
在本申请一些实施例中,所述调谐模块还与所述金属边框连接。
在本申请一些实施例中,所述金属边框上还设置有接地点;
所述调谐模块与所述金属边框的连接点位于所述接地点和所述馈点之间。
在本申请一些实施例中,所述金属边框包括第一金属边框、第二金属边框、第三金属边框;
所述第一金属边框的一端与所述第二金属边框连接;
所述第一金属边框的另一端与所述第三金属边框连接;
所述馈点设于所述第一金属边框上靠近所述第二金属边框的位置处;
所述接地点设于所述第一金属边框上靠近所述第三金属边框的位置处。
在本申请一些实施例中,所述调谐模块包括切换开关和RLC电路;
所述RLC电路包括多个分路;
所述切换开关的不动端与所述天线走线连接;
所述切换开关的多个动端与所述多个分路的一端一一对应连接,所述多个分路的另一端接地。
在本申请一些实施例中,所述移动终端包括中框;
所述天线组件的金属边框上的接地点与所述中框连接。
有益效果
本申请提供的天线组件及移动终端,能够在金属边框上设置馈点,匹配电路与金属边框上的馈点连接,天线走线的一端与馈点相连,天线走线的另一端与调谐模块连接;通过在调谐模块与匹配电路之间设置天线走线,使天线走线与金属边框实现分流,等效于缩短了电流在调谐模块与馈点之间的流通距离,从而改善天线调谐范围与带宽宽度,与此同时,天线走线和调谐模块的连接等效于在馈点处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而减少了天线回波损耗,在保障了电路的传输效率的同时还可改善天线的谐振频率范围。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的天线组件的结构示意图;
图2为本申请实施例提供的天线组件的另一结构示意图;
图3为本申请实施例提供的天线组件的又一结构示意图;
图4为本申请实施例提供的天线组件的天线效率图;
图5为本申请实施例提供的移动终端的结构示意图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
如图1所示,图1是本申请实施例提供的天线组件的结构示意图,包括金属边框1、匹配电路2、天线走线3和调谐模块4,所述金属边框1上设有馈点5,所述匹配电路2与所述金属边框1上的所述馈点5连接,所述天线走线3的一端与所述馈点5相连,所述天线走线3的另一端与所述调谐模块4连接。
所述金属边框1上还设置有接地点6;接地点6和馈点5可以分别靠近金属边框1的两端设置,所述调谐模块4设置在所述接地点6和所述馈点5之间。其中,天线在金属边框1和接地点6之间产生谐振。
通过在调谐模块4与匹配电路2之间设置天线走线3,使天线走线3与金属边框1实现分流,等效于缩短了电流在调谐模块4与馈点5之间的流通距离,从而改善天线调谐范围与带宽宽度,与此同时,天线走线3和调谐模块4的连接等效于在馈点5处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而减少了天线回波损耗,在保障了电路的传输效率的同时还可改善天线的谐振频率范围。
如图2所示,图2是本申请提供的天线组件的另一实施例的结构示意图,所述金属边框1包括第一金属边框11、第二金属边框12和第三金属边框13。
具体地,所述第一金属边框11的一端与所述第二金属边框12连接,所述第一金属边框11的另一端与所述第三金属边框13连接。
例如,图2中金属边框1的连接位置为:第一金属边框11的所处位置分别与第二金属边框12、第三金属边框13垂直,且第一金属边框11、第二金属边框12与第三金属边框13位于同一平面,第二金属边框12与第三金属边框13位于第一金属边框11的同一侧,在此需要指出的是具体实施方式中应不仅限于该种位置连接形式。当天线组件应用于移动终端时,金属边框1是指移动终端的金属边框,将纯金属边框或者模内注塑金属边框中的顶部金属边框作为所述金属边框1。
进一步地,为保证天线组件的工作效率,所述第一金属边框11、所述第二金属边框12和所述第三金属边框13的长度优选范围为30-100mm。
其中,天线走线3与第一金属边框11之间间隔预设距离,天线走线3的位置与第一金属边框11的位置可以为平行设置或者倾斜设置,当天线走线3的位置与第一金属边框的位置为倾斜设置时,两者之间最短的距离和最长的距离均需在预设距离范围内;当天线走线3与第一金属边框11之间间隔距离小于1mm时,天线走线3与第一金属边框11之间会由于距离过近造成信号干扰,从而影响天线组件的工作效率;而当天线走线3与第一金属边框11之间间隔距离大于20mm时,天线走线3与通讯设备内部其他器件距离过近,容易造成其他器件的摆放空间受限,甚至造成信号干扰,经过测试,得出天线走线3与第一金属边框11之间的预设距离的最优范围为1-20mm。
进一步地,如图2所示,所述天线组件还包括走线支撑物7,所述天线走线3设置在所述走线支撑物7上。
其中,天线走线3可以是LDS(Laser-Direct-structuring,激光直接成型技术)天线或者FPC(Flexible-Printed-circuit,柔性印刷电路)天线,走线支撑物7可以是天线支架或者印刷电路板;可通过激光直接成型技术将LDS天线镭射于天线支架上,或将FPC天线固定在天线支架上;当所选走线支撑物7为印刷电路板时,为防止印刷电路板对天线走线产生信号干扰,天线走线3应当设置在印刷电路板上的净空区域内。
进一步地,如图2所示,所述调谐模块4包括切换开关41和RLC电路42。
具体地,所述RLC电路42包括多个分路43,所述切换开关41的不动端与所述天线走线3的一端连接;所述切换开关41的多个动端与所述多个分路43的一端一一对应连接,所述多个分路43的另一端接地。
其中,RLC电路42的多个分路上设有若干电阻、电感、电容,每条分路的阻值、电感值和/或电容值均不同,可根据实际的工作需求将切换开关41连接到不同的分路,从而改变接入电路的参数,进而实现改变天线谐振频率的效果。例如图2所示,每个分路43包括电感,且多个分路43中电感值均不相同。
进一步地,如图2所示,所述第一金属边框11上还设置有接地点6;所述调谐模块4与所述金属边框1中的第一金属边框11连接;所述调谐模块4与所述第一金属边框11的连接点位于所述接地点6和所述馈点5之间,也即将所述调谐模块4设置在所述接地点6和所述馈点5之间,同时,为了防止天线性能受到影响,所述调谐模块4所处位置不能与所述接地点6或者所述匹配电路2过近。
其中,当调谐模块4未与第一金属边框11连接时,第二金属边框12、第一金属边框11和接地点6为产生谐振的路径;而当调谐模块4与第一金属边框11连接后,流经第一金属边框11的大部分电流会流向调谐模块4,即此时第二金属边框12、第一金属边框11和调谐模块4为产生谐振的路径,也即通过孔径调谐改变了谐振的长度;与此同时,调谐模块4与天线走线3的连接等效于在馈点5处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,即当调谐模块4与第一金属边框11连接时,孔径调谐与阻抗调谐共同作用,进一步改善天线的谐振频率范围。
其中,馈点5设于第一金属边框11上靠近第二金属边框12的位置处;接地点6设于第一金属边框11上靠近第三金属边框13的位置处。
进一步地,所述匹配电路2的一端与所述金属边框1上的所述馈点5连接,所述匹配电路2的另一端与电源连接,当天线组件处于工作状态时,所述匹配电路2将电流传输至所述金属边框1,在该传输过程中,所述匹配电路2可以改变电路中的阻抗大小,从而起到拓宽天线带宽的效果。
其中,匹配电路2中设置有第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4,第一电阻R1的一端连接电源,另一端连接第二电阻R2的一端,第二电阻R2的另一端连接天线走线3;第四电阻R4的一端连接第一电阻R1与第二电阻R2之间的连接点,另一端接地;第三电阻R3的一端连接天线走线3,另一端接地。
在现有技术中,通常将调谐模块和匹配电路连接在金属边框的不同位置,两者之间不通过其他天线走线进行连接,很有可能会由于仅通过匹配电路实现阻抗匹配的效果不理想,即造成阻抗不匹配,导致天线工作时产生回波损耗,进而影响信号的传输效率。
其中,回波损耗又称为反射损耗,是电缆链路由于阻抗不匹配所产生的反射,导致信号产生混乱,回波损耗通常是由于电缆长度上特性阻抗的不均匀性引起的,归根到底是由于电缆结构的不均匀性所引起的。由于信号在电缆中的不同地点引起的反射,到达接收端的信号相当于在无线信道传播中的多径效应,从而引起信号的时间扩散和频率选择性衰落,时间扩散导致脉冲展宽,使接收端信号脉冲重叠而无法判决。信号在电缆中的多次反射也导致信号功率的衰减,影响接收端的信噪比,导致误码率的增加,进而还会限制信号的传输速度。
阻抗匹配是电磁波传输电路必须考虑的问题,只有实现了输出阻抗与负载阻抗匹配,才能实现电磁波信号的无反射传输,实现最大功率化利用。如果电磁波传输电路中出现不匹配就会引起严重的反射,这样传输线上将形成驻波,大量的功率浪费在反射功率上,同时,还会由于反射功率过大造成元器件的损坏,使得发射机故障率上升,也使得能量利用率降低,严重时甚至还会导致天线组件无法正常工作。
本申请将所述调谐模块4中的所述切换开关41与所述RLC电路42中的多个分路43连接,等效于在所述馈点5的位置加入了一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而减少了天线回波损耗,在保障了电路的传输功率的同时还可改善天线的谐振频率范围。
进一步地,如图2所示,当所述切换开关41与所述RLC电路42中的多个分路43连接时,所述天线走线3和所述第一金属边框11都接收到电流信号,即所述天线走线3与所述第一金属边框11将电流分为了两路支流,等效于缩短了电流在所述调谐模块4与所述馈点5之间的流通距离,从而提升天线的谐振频率范围。
如图3所示,图3是本申请提供的天线组件的又一实施例的结构示意图,考虑到实际应用情景,本实施例与图2中的实施例的区别点在于:所述调谐模块4不与所述第一金属边框11连接,此时所述调谐模块4与所述天线走线3的连接等效于在馈点处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而改善了天线的谐振频率范围;与此同时,所述调谐模块4所处的位置在预设范围内可进行适度的移动,因此,所述调谐模块4的位置可根据实际情况进行适当地调整,从而可以更大程度地改善通讯设备内其他器件摆放空间的受限范围,避免在实际应用中出现其他器件之间、天线组件与其他器件之间产生相互干扰的情况。
对本申请实施例提供的天线组件进行实际测试,如图4所示,图4为本申请实施例提供的天线组件的天线效率图。
其中,图4中所示的天线效率是指天线辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比,单位为分贝(dB)。为了更直观地了解到本实施例产生的技术效果,通过改变与所述切换开关41连接的所述RLC电路中的分路,从而改变接入电路的电感值,并进行了实际测试。
例如,在将所述切换开关41与所述RLC电路42的第一个分路连接时,第一个分路中的电感值为100nH,即调谐模块4接入的电感值为100nH,此时天线产生三个谐振,其中低频效率峰值为-5.5dB,高频效率峰值为-5dB,超高频效率峰值为-6dB。
在将所述切换开关41与所述RLC电路42的第二个分路连接时,第二个分路中的电感值为12nH,即调谐模块4接入的电感值为12nH,此时天线产生三个谐振,其中低频效率峰值为-6dB,高频效率峰值为-4.5dB,超高频效率峰值为-6dB。
在将所述切换开关41与所述RLC电路42的第三个分路连接时,第三个分路中的电感值为6.8nH,即调谐模块4接入的电感值为6.8nH,此时天线产生三个谐振,其中低频效率峰值为-5.2dB,高频效率峰值为-4.5dB,超高频效率峰值为-5dB。
如图4所示,Series1为当接入电感值为100 nH时天线产生的三个谐振,Series 2为当接入电感值为12 nH时天线产生的三个谐振,Series 3为当接入电感值为6.8nH时天线产生的三个谐振。具体地,如图4所示,每个实施例产生的三个谐振自左到右分别是低频谐振、高频谐振、超高频谐振。
由此可以看出,每种谐振的覆盖范围:
低频频段的频率覆盖范围为600-1200MHz;高频频段的频率覆盖范围为1800-2200MHz;超高频频段的频率覆盖范围为3300-4200MHz。由此可见,本申请实施例提高了各个频段的频率覆盖范围,其中显著提升了低频段的频率覆盖范围(由现有技术能达到的覆盖范围700-1000MHz提升至600-1200MHz)。
本申请提供的天线组件,能够在金属边框上设置馈点,匹配电路与金属边框上的馈点连接,天线走线的一端与馈点相连,天线走线的另一端与调谐模块连接;通过在调谐模块与匹配电路之间设置天线走线,使天线走线与金属边框实现分流,等效于缩短了电流在调谐模块与馈点之间的流通距离,从而改善天线调谐范围与带宽宽度,与此同时,天线走线和调谐模块的连接等效于在馈点处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而减少了天线回波损耗,在保障了电路的传输效率的同时还可改善天线的谐振频率范围。
本申请实施例还提供了一种移动终端,如图5所示,图5为本申请实施例提供的移动终端的结构示意图,所述移动终端80包括上述实施例中的天线组件。具体地,天线组件包括金属边框1、匹配电路2、天线走线3和调谐模块4;所述金属边框1上设有馈点,所述匹配电路2与所述金属边框1上的所述馈点5连接;所述天线走线3的一端与所述馈点5相连,所述天线走线3的另一端与所述调谐模块4连接。
其中,移动终端还包括外壳,外壳内构成一个容纳空间,天线组件设置在容纳空间内,且靠近移动终端的顶部区域或底部区域。
在本申请一些实施例中,所述天线走线与所述金属边框之间间隔预设距离。其中,设置预设距离的目的在于:避免天线组件处于工作状态时,由于天线走线与金属边框之间的距离过近造成信号干扰,从而影响天线组件的工作效率;或者由于天线走线与金属边框之间的距离过远,导致天线走线与通讯设备内部其他器件距离过近,造成其他器件的摆放空间受限,甚至会造成信号干扰。
在本申请一些实施例中,所述天线组件还包括走线支撑物;所述天线走线设置在所述走线支撑物上。
在本申请一些实施例中,所述天线走线为LDS天线或者FPC天线;其中,LDS天线是通过激光直接成型技术(Laser-Direct-structuring),利用计算机按照导电图形的轨迹控制激光的运动,将激光投照到成型的天线支架上,再利用激光镭射技术直接在天线支架上化镀形成金属天线。其中,FPC天线(柔性贴片平板模块天线),是由刻印上去的线路图和模块片材质构成的,FPC天线一般用于内置,作用于物联网路由器、线路板网卡内部等,厚度为0.1mm,为正方形或长方形状态,镀锡焊接位置根据实际应用的需求来确定,通常可以是中间或者左下角,其尾部一般是IPEX端子或者剥皮镀锡焊接接口,线材大小和线长可根据实际情况定制。
所述走线支撑物为天线支架或印刷电路板。
其中,天线支架常见的材质通常为模塑成型的三维塑料,印刷电路板常见的原料为电木板、玻璃纤维板,以及各式的塑胶板;为防止印刷电路板对天线走线产生信号干扰,天线走线应当设置在印刷电路板上的净空区域内。
在本申请一些实施例中,所述调谐模块还与所述金属边框连接。进一步地,考虑到实际应用中通讯设备内部器件摆放空间受限的问题,所述调谐模块与所述金属边框之间可以不进行连接,使得所述调谐模块的所处位置可以在预设范围内进行适当的调整,从而避免在实际应用中出现器件之间信号相互干扰的情况。
在本申请一些实施例中,所述金属边框上还设置有接地点;
所述调谐模块与所述金属边框的连接点位于所述接地点和所述馈点之间。
在本申请一些实施例中,所述金属边框包括第一金属边框、第二金属边框、第三金属边框;
所述第一金属边框的一端与所述第二金属边框连接;
所述第一金属边框的另一端与所述第三金属边框连接;
所述馈点设于所述第一金属边框上靠近所述第二金属边框的位置处;
所述接地点设于所述第一金属边框上靠近所述第三金属边框的位置处。
在本申请一些实施例中,所述调谐模块包括切换开关和RLC电路;
所述RLC电路包括多个分路;其中,RLC电路42( RLC tuned circuit)是由电阻,电感,电容组成的电路,每条分路的阻值、电感值和/或电容值均不同,可根据实际的工作需求将切换开关41连接到不同的分路,从而改变接入电路的参数,进而实现改变天线谐振频率的效果。
所述切换开关的不动端与所述天线走线连接;
所述切换开关的多个动端与所述多个分路的一端一一对应连接,所述多个分路的另一端接地。
本申请实施例还提供了一种移动终端,包括上述天线组件。
在本申请一些实施例中,所述移动终端包括中框;
所述天线组件的金属边框上的接地点与所述中框连接。其中,中框的材质通常采用的是钢铝合金。
本申请提供的移动终端,能够在金属边框上设置馈点,匹配电路与金属边框上的馈点连接,天线走线的一端与馈点相连,天线走线的另一端与调谐模块连接;通过在调谐模块与匹配电路之间设置天线走线,使天线走线与金属边框实现分流,等效于缩短了电流在调谐模块与馈点之间的流通距离,从而改善天线调谐范围与带宽宽度,与此同时,天线走线和调谐模块的连接等效于在馈点处加入一个阻抗可调的并联电路,起到了阻抗调谐的作用,从而减少了天线回波损耗,在保障了电路的传输效率的同时还可改善天线的谐振频率范围。
综上,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,对于本领域的普通技术人员,在不脱离本申请的精神和范围内,在具体实施方式及应用范围上均会有改变之处,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种天线组件,包括金属边框、匹配电路、天线走线和调谐模块;
    所述金属边框上设有馈点,所述匹配电路与所述金属边框上的所述馈点连接;
    所述天线走线的一端与所述馈点相连,所述天线走线的另一端与所述调谐模块连接。
  2. 根据权利要求1所述的天线组件,其中,所述天线走线与所述金属边框之间间隔预设距离。
  3. 根据权利要求1所述的天线组件,其中,所述天线组件还包括走线支撑物;
    所述天线走线设置在所述走线支撑物上。
  4. 根据权利要求3所述的天线组件,其中,所述天线走线为LDS天线或者FPC天线;
    所述走线支撑物为天线支架或印刷电路板。
  5. 根据权利要求1所述的天线组件,其中,所述调谐模块还与所述金属边框连接。
  6. 根据权利要求5所述的天线组件,其中,所述金属边框上还设置有接地点;
    所述调谐模块与所述金属边框的连接点位于所述接地点和所述馈点之间。
  7. 根据权利要求6所述的天线组件,其中,所述金属边框包括第一金属边框、第二金属边框、第三金属边框;
    所述第一金属边框的一端与所述第二金属边框连接;
    所述第一金属边框的另一端与所述第三金属边框连接;
    所述馈点设于所述第一金属边框上靠近所述第二金属边框的位置处;
    所述接地点设于所述第一金属边框上靠近所述第三金属边框的位置处。
  8. 根据权利要求1所述的天线组件,其中,所述调谐模块包括切换开关和RLC电路;
    所述RLC电路包括多个分路;
    所述切换开关的不动端与所述天线走线连接;
    所述切换开关的多个动端与所述多个分路的一端一一对应连接,所述多个分路的另一端接地。
  9. 根据权利要求1所述的天线组件,其中,所述匹配电路包括第一电阻、第二电阻、第三电阻和第四电阻;
    所述第一电阻的一端连接电源,所述第一电阻的另一端连接所述第二电阻的一端,所述第二电阻的另一端连接所述天线走线;
    所述第四电阻的一端连接所述第一电阻与所述第二电阻之间的连接点,所述第四电阻的另一端接地;
    所述第三电阻的一端连接所述天线走线,所述第三电阻的另一端接地。
  10. 根据权利要求1所述的天线组件,其中,所述天线走线相对于所述金属边框平行设置或者倾斜设置。
  11. 根据权利要求7所述的天线组件,其中,所述第一金属边框、所述第二金属边框与所述第三金属边框位于同一平面。
  12. 一种移动终端,包括天线组件;天线组件包括金属边框、匹配电路、天线走线和调谐模块;
    所述金属边框上设有馈点,所述匹配电路与所述金属边框上的所述馈点连接;
    所述天线走线的一端与所述馈点相连,所述天线走线的另一端与所述调谐模块连接。
  13. 根据权利要求12所述的移动终端,其中,所述天线走线与所述金属边框之间间隔预设距离。
  14. 根据权利要求12所述的移动终端,其中,所述天线组件还包括走线支撑物;
    所述天线走线设置在所述走线支撑物上。
  15. 根据权利要求14所述的移动终端,其中,所述天线走线为LDS天线或者FPC天线;
    所述走线支撑物为天线支架或印刷电路板。
  16. 根据权利要求12所述的天线组件,其中,所述调谐模块还与所述金属边框连接。
  17. 根据权利要求16所述的移动终端,其中,所述金属边框上还设置有接地点;
    所述调谐模块与所述金属边框的连接点位于所述接地点和所述馈点之间。
  18. 根据权利要求17所述的移动终端,其中,所述金属边框包括第一金属边框、第二金属边框、第三金属边框;
    所述第一金属边框的一端与所述第二金属边框连接;
    所述第一金属边框的另一端与所述第三金属边框连接;
    所述馈点设于所述第一金属边框上靠近所述第二金属边框的位置处;
    所述接地点设于所述第一金属边框上靠近所述第三金属边框的位置处。
  19. 根据权利要求12所述的移动终端,其中,所述调谐模块包括切换开关和RLC电路;
    所述RLC电路包括多个分路;
    所述切换开关的不动端与所述天线走线连接;
    所述切换开关的多个动端与所述多个分路的一端一一对应连接,所述多个分路的另一端接地。
  20. 根据权利要求12所述的移动终端,其中,所述移动终端包括中框;
    所述天线组件的金属边框上的接地点与所述中框连接。
PCT/CN2020/135454 2020-11-27 2020-12-10 天线组件及移动终端 WO2022110316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/254,860 US20240006752A1 (en) 2020-11-27 2020-12-10 Antenna assembly and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011364945.3A CN112531321B (zh) 2020-11-27 2020-11-27 天线组件及移动终端
CN202011364945.3 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022110316A1 true WO2022110316A1 (zh) 2022-06-02

Family

ID=74994703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135454 WO2022110316A1 (zh) 2020-11-27 2020-12-10 天线组件及移动终端

Country Status (3)

Country Link
US (1) US20240006752A1 (zh)
CN (1) CN112531321B (zh)
WO (1) WO2022110316A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629395B (zh) * 2021-10-11 2022-01-25 深圳市中天迅通信技术股份有限公司 一种用于移动终端的天线系统及移动终端
CN114142220A (zh) * 2021-11-30 2022-03-04 维沃移动通信有限公司 天线结构和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342794A1 (en) * 2017-05-23 2018-11-29 Apple Inc. Electronic Device Antennas Having Multi-Band Tuning Capabilities
CN208299054U (zh) * 2018-06-28 2018-12-28 珠海市魅族科技有限公司 天线及移动终端
CN109888461A (zh) * 2019-03-04 2019-06-14 维沃移动通信有限公司 一种天线结构及通信终端
CN111029729A (zh) * 2019-12-24 2020-04-17 西安易朴通讯技术有限公司 天线组件及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188313B1 (en) * 2014-09-25 2018-11-21 Huawei Technologies Co., Ltd. Multi-band antenna and communication terminal
CN104300215A (zh) * 2014-11-03 2015-01-21 惠州硕贝德无线科技股份有限公司 一种金属边框4g天线
CN204189957U (zh) * 2014-11-18 2015-03-04 惠州硕贝德无线科技股份有限公司 一种应用于智能手机的可调谐lte金属边框天线
CN105932408B (zh) * 2015-12-18 2018-09-11 广东工业大学 一种高隔离度的金属边框lte调谐天线
CN105977614B (zh) * 2016-05-30 2020-02-07 北京小米移动软件有限公司 通信天线、通信天线的控制方法、装置及终端
CN205723955U (zh) * 2016-06-12 2016-11-23 深圳市信维通信股份有限公司 一种全金属底部开缝lte频段手机天线
US10020562B2 (en) * 2016-07-19 2018-07-10 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN107403996B (zh) * 2017-07-07 2020-12-29 青岛海信移动通信技术股份有限公司 一种金属边框多耦合终端天线以及移动终端设备
CN109638455B (zh) * 2018-12-12 2021-04-27 维沃移动通信有限公司 天线结构及通信终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342794A1 (en) * 2017-05-23 2018-11-29 Apple Inc. Electronic Device Antennas Having Multi-Band Tuning Capabilities
CN208299054U (zh) * 2018-06-28 2018-12-28 珠海市魅族科技有限公司 天线及移动终端
CN109888461A (zh) * 2019-03-04 2019-06-14 维沃移动通信有限公司 一种天线结构及通信终端
CN111029729A (zh) * 2019-12-24 2020-04-17 西安易朴通讯技术有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
US20240006752A1 (en) 2024-01-04
CN112531321B (zh) 2022-05-06
CN112531321A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
JP4680905B2 (ja) チューニング可能な寄生共振器
KR101133860B1 (ko) 핸드헬드 전자장치용 안테나
US7903039B2 (en) Broadband multi-loop antenna for mobile communication device
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
EP1573856B1 (en) Multiple-band antenna with patch and slot structures
KR101205196B1 (ko) 슬롯화된 다중 대역 안테나
US6031731A (en) Mobile communication apparatus having a selecting plate mounted on circuit board
WO2006098089A1 (ja) アンテナ装置およびそれを用いた無線通信機
US20080129644A1 (en) Built-in type antenna apparatus for mobile terminal
WO2022110316A1 (zh) 天线组件及移动终端
WO2018148973A1 (zh) 一种支持多进多出技术的通信设备
EP2763238B1 (en) Printed antenna and mobile communication device
CN110336112B (zh) 天线馈电单元、调谐单元与显示屏组件结合的电子设备
WO2024045759A1 (zh) 一种电子设备
JPH07202774A (ja) 無線装置
TWI571002B (zh) 天線裝置及應用其之通訊裝置
JP2002152353A (ja) 携帯端末機
CN113871851B (zh) 移动终端设备
GB2328082A (en) Antenna matching circuit for cordless telephone
CN211126056U (zh) 一种天线组件及电子设备
TWI776303B (zh) 天線結構及具有該天線結構的無線通訊裝置
KR102219260B1 (ko) 통합 무선 통신 모듈
US20070146205A1 (en) Antenna array
WO2023284811A1 (zh) 天线结构及电子设备
WO2023169040A1 (zh) 天线组件、双频宽带天线和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963204

Country of ref document: EP

Kind code of ref document: A1