WO2023284811A1 - 天线结构及电子设备 - Google Patents

天线结构及电子设备 Download PDF

Info

Publication number
WO2023284811A1
WO2023284811A1 PCT/CN2022/105631 CN2022105631W WO2023284811A1 WO 2023284811 A1 WO2023284811 A1 WO 2023284811A1 CN 2022105631 W CN2022105631 W CN 2022105631W WO 2023284811 A1 WO2023284811 A1 WO 2023284811A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
section
open end
edge
Prior art date
Application number
PCT/CN2022/105631
Other languages
English (en)
French (fr)
Inventor
薛亮
龚贻文
吴伟
王家明
赵方超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22841444.7A priority Critical patent/EP4354655A1/en
Publication of WO2023284811A1 publication Critical patent/WO2023284811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas

Definitions

  • the present application relates to the technical field of communication, in particular to antenna structures and electronic equipment.
  • the present application provides an antenna and an electronic device, aiming at improving the isolation between the antennas, thereby improving the communication effect of the electronic device.
  • the present application provides an antenna structure, which includes a first radiator, a second radiator, a floor, and a decoupling circuit.
  • the floor includes adjacent and intersecting first and second edges.
  • the first radiator includes a first section and a second section intersecting, the first section is located on one side of the first edge of the floor and is spaced apart from the first edge, the The second section is located on one side of the second edge of the floor and is spaced apart from the second edge.
  • the first radiator includes a first open end
  • the second radiator includes a second open end
  • a gap is formed between the first open end and the second open end, and the first radiator as a whole
  • the second radiator is located on one side of the gap, and the second radiator is entirely located on the other side of the gap; the decoupling circuit is connected to the first open end and the second open end.
  • an equivalent capacitance will be formed between the first open end and the second open end of the interval, and by connecting a decoupling circuit between the first open end and the second open end, the decoupling circuit can be connected with the first
  • the equivalent capacitance formed between the open end and the second open end forms a band stop filter, thereby preventing the current coupling between the first antenna and the second antenna, thereby improving the isolation between the first antenna and the second antenna.
  • the first radiator includes a first section and a second section that intersect, and the first section and the second section are respectively located on two adjacent sides of the floor, and the first radiator
  • the ground current generated by the body excitation floor and the ground current generated by the second radiator excitation floor do not have a large area of reverse. Therefore, after connecting the decoupling circuit between the first radiator and the second radiator, after lifting the first antenna At the same time as the isolation between the second antennas, the performance of the first antenna or the second antenna will not be greatly affected.
  • the first radiator includes intersecting first section and second section, so the ground current generated by the first radiator exciting the floor and the ground current generated by the second radiator exciting the floor can intersect at a certain angle instead of The excitation ground generates two opposite currents respectively, so that the isolation between the first antenna and the second antenna can be further improved.
  • the radiation patterns of the first antenna and the second antenna can be complementary, therefore, the envelope correlation coefficient (ECC) between the first antenna and the second antenna can be relatively small.
  • the floor further includes a third edge, the first edge is connected between the second edge and the third edge, and the third edge is adjacent to the first edge and Intersect, wherein the angle at which the first edge intersects with the second edge, and the angle at which the first edge intersects with the third edge are in the range of 80° to 100°.
  • the end of the first radiator includes a first end and a second end, the first end is an end of the first section of the first radiator away from the second section, and the second end It is an end of the second section of the first radiator away from the first section.
  • the first end is the first open end, the second end is connected to the floor or the second end is the third open end of the first radiator.
  • the first end is the first open end, and when the second end is connected to the floor, that is, one end of the first radiator is an open end (that is, the first open end). , not connected to the floor; the other end (that is, the second end) is the ground terminal, connected to the floor.
  • the first antenna can generate an antenna mode of a 1/4 wavelength mode.
  • both ends of the first radiator are open ends (ie, the first open end and the third open end), namely Both ends of the first radiator are not connected to the floor.
  • the first antenna is capable of generating an antenna mode of a 1/4 wavelength mode and an antenna mode of a 1/2 wavelength mode.
  • the second radiator includes the third section and the fourth section intersecting; the third section of the second radiator is located on one side of the first edge and spaced from the first edge, the fourth section of the second radiator is located on one side of the third edge and spaced from the third edge.
  • the end of the second radiator includes a third end and a fourth end, and the third end is the fourth area where the third section of the second radiator is far away from the second radiator.
  • the fourth end is an end of the fourth section of the second radiator that is far away from the third section of the second radiator.
  • the third end is the second open end, the fourth end is connected to the floor or the fourth end is the fourth open end of the second radiator.
  • the first radiator includes intersecting first section and second section
  • the second radiator includes intersecting third section and fourth section
  • one end of the first radiator may be an open end 1.
  • the other end is a structure with a grounding end, or both ends are open ends;
  • the second radiator has a structure with one end being an open end and the other end being a grounding end, or a structure with both ends being open ends.
  • the ground current generated by the first radiator exciting the floor and the ground current generated by the second radiator exciting the floor do not have a large area of reverse. Therefore, after the decoupling circuit is connected between the first radiator and the second radiator, after lifting While the isolation between the first antenna and the second antenna does not have a large impact on the performance of the first antenna or the second antenna.
  • the ground current generated by the first radiator exciting the floor and the ground current generated by the second radiator exciting the floor can intersect at a certain angle, instead of exciting the floor to generate two opposite currents respectively, thus the second radiator can be further improved.
  • the second antenna can also generate an antenna mode of a 1/4 wavelength mode and/or an antenna mode of a 1/2 wavelength mode.
  • the whole of the second radiator is located on one side of the second edge and spaced apart from the second edge, and the second radiator is located on the side of the first radiator.
  • the second section is away from the side of the first section.
  • the end of the first radiator includes a first end and a second end, the first end is an end of the first section of the first radiator away from the second section, and the second end It is an end of the second section of the first radiator away from the first section.
  • the end portion of the second radiator includes a third end and a fourth end, and the third end is closer to the first radiator than the fourth end.
  • the second end of the first radiator is the first open end, and the third end of the second radiator is the second open end.
  • the decoupling circuit is connected to the second terminal of the first radiator and the third terminal of the second radiator.
  • the first radiator includes the intersecting first section and the second section
  • the second radiator is a linear structure.
  • the ground current generated by the first radiator exciting the floor and the ground current generated by the second radiator exciting the floor do not have a large area of reverse. Therefore, after the decoupling circuit is connected between the first radiator and the second radiator, after lifting While the isolation between the first antenna and the second antenna does not have a large impact on the performance of the first antenna or the second antenna.
  • the ground current generated by the first radiator exciting the floor and the ground current generated by the second radiator exciting the floor can intersect at a certain angle, instead of exciting the floor to generate two opposite currents respectively, thus the second radiator can be further improved.
  • the second antenna can also generate an antenna mode of a 1/4 wavelength mode and an antenna mode of a 1/2 wavelength mode.
  • the first radiator further includes a third open end, and the first end is the third open end; the fourth end of the second radiator is connected to the floor.
  • the first radiator is a structure with both ends being open; the second radiator includes an open terminal and a ground terminal.
  • the working frequency band of the first working mode of the first radiator is the same as or less than 1 GHz different from the working frequency band of the second working mode of the second radiator.
  • the working frequency band of the first working mode of the first radiator and the working frequency band of the second working mode of the second radiator are any working frequency band of sub-6G.
  • one of the first radiator or the second radiator includes a first sub-radiator and a second sub-radiator arranged at intervals, and the whole of the first sub-radiator is located at the One side of the second sub-radiator, the whole of the first radiator or the other of the second radiator is located on the other side of the second sub-radiator, the first The sub-radiator is coupled to the second sub-radiator, and an end of the second sub-radiator away from the first sub-radiator is the first open end or the second open end.
  • the first radiator or the second radiator includes the first sub-radiator and the second sub-radiator arranged at intervals.
  • the user's hand or other structures block the first radiator and the second radiator The gap between the antennas, so that when the user's hand or other structure connects the open end of the first radiator to the open end of the second radiator, the isolation between the first antenna and the second antenna will not deteriorate sharply .
  • the electrical length of the second sub-radiator is less than 1/4 of the wavelength of the decoupling frequency band of the antenna structure, and the decoupling frequency band and the first working mode of the first radiator
  • the working frequency band is the same as that of the second radiator, or the same as the working frequency band of the second working mode of the second radiator, so as to avoid the excessive length of the second sub-radiator from affecting the discharge of the first sub-radiator and the second radiator. cloth, to ensure that at least one of the first sub-radiator and the second radiator can include the first section and the second section.
  • the second sub-radiator is provided with a feed point, and the feed point is used to receive signal feed-in, so that the second sub-radiator can perform signal radiation as a separate radiation branch, increasing the working mode of the antenna. .
  • the decoupling circuit is inductive, and the equivalent inductance value of the decoupling circuit is the same as the working frequency band of the first working mode of the first radiator, and/or the second radiator The working frequency band of the second working mode is related.
  • the decoupling circuit includes lumped inductors or distributed inductors.
  • the decoupling circuit includes a first branch and a second branch arranged in parallel, and the equivalent inductance of the first branch is different from the equivalent inductance of the second branch.
  • the first branch is an inductive filter circuit
  • the second branch includes lumped inductance or distributed inductance, so as to ensure that when the operating frequency of the first radiator and the second radiator are changed, , the inductance value of the decoupling circuit connected between the first open end of the first radiator and the second open end of the second radiator can be changed accordingly, so as to ensure that there is always an Better isolation.
  • the first branch includes a capacitor, a first inductor, and a second inductor, and the capacitor is connected in parallel with the first inductor and then connected in series with the second inductor; the second branch includes a third inductor.
  • the decoupling circuit is connected to the first connection point of the first open end, and the first connection point is within a range of 0-2mm from the end face of the first open end, and/or the decoupling The circuit is connected to the second connection point of the second open end, and the distance between the second connection point and the end surface of the second open end is within a range of 0-2 mm.
  • the decoupling circuit respectively connects the ends of the open ends of the two radiators, and the connection points are located within the range of 0-2mm within the end face, which can ensure better isolation between the first antenna and the second antenna, and save the cost of electronic equipment space.
  • the present application also provides an electronic device, which includes a radio frequency front end and the above-mentioned antenna structure, a first feeding point is provided on the first radiator, and a first feeding point is provided on the second radiator. Two feed points, the radio frequency front end is connected to the first feed point and the second feed point. Since the antenna structure of the present application can have better isolation between the first antenna and the second antenna, and the antenna efficiency of a single antenna will not be greatly reduced, thereby ensuring that the antenna of the electronic device of the present application can be designed It is more compact, and the electronic equipment can have better radio frequency signal transmission function.
  • the electronic device includes a metal frame, and the metal frame includes the first radiator and the second radiator, so that the space occupied by the antenna structure in the electronic device can be reduced.
  • the floor includes any one of one or more grounded midplanes, one or more ground planes of circuit boards, one or more grounded metal parts, or any two or more combination.
  • the electronic device includes a mainboard, the mainboard is a circuit board, and the ground layer of the mainboard can be used as a floor.
  • the ground plane of the main board is connected to the mid-plane, and the mid-plane and the ground plane of the main board together serve as a floor.
  • the electronic device further includes a small board, and the small board is also a circuit board, and both the ground layers of the main board and the small board can be used as the floor, or the ground layer of the main board and/or the ground layer of the small board and/or The middle plate serves as the floor.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the internal structure of the electronic device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a topology structure of an antenna structure according to an embodiment of the present application.
  • Fig. 4a is a schematic topology diagram of an antenna structure according to another embodiment of the present application.
  • Fig. 4b is a schematic topology diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of an internal structure of an electronic device according to another embodiment of the present application.
  • Fig. 6a is a schematic structural diagram of a decoupling circuit according to another embodiment of the present application.
  • Fig. 6b is a schematic structural diagram of a decoupling circuit according to another embodiment of the present application.
  • Fig. 6c is a schematic structural diagram of a decoupling circuit according to another embodiment of the present application.
  • FIG. 7 is a return loss curve and an isolation curve of the antenna structure shown in FIG. 3 .
  • FIG. 8 is a comparison diagram of the efficiency of the first antenna when the antenna structure of the embodiment shown in FIG. 3 works and the efficiency of the first antenna working alone.
  • FIG. 9 is a graph comparing the efficiency of the second antenna when the antenna structure of the embodiment shown in FIG. 3 works and the efficiency when the second antenna works alone.
  • FIG. 10 is a radiation pattern diagram of the first antenna of the antenna structure in the embodiment shown in FIG. 3 .
  • FIG. 11 is a radiation pattern diagram of the second antenna of the antenna structure in the embodiment shown in FIG. 3 .
  • FIG. 12 is a schematic topology diagram of an antenna structure according to another implementation manner of the present application.
  • FIG. 13 is a return loss curve diagram and an isolation degree curve diagram of the antenna structure of the embodiment shown in FIG. 12 .
  • FIG. 14 is a comparison diagram of the antenna efficiency of the first antenna when the antenna structure shown in FIG. 12 works and the antenna efficiency when the first antenna works alone.
  • FIG. 15 is a radiation pattern diagram when the working mode of the first antenna of the antenna structure shown in FIG. 12 is the 1/4 wavelength mode.
  • FIG. 16 is a radiation pattern when the working mode of the second antenna of the antenna structure shown in FIG. 12 is the 1/4 wavelength mode.
  • FIG. 17 is a schematic topology diagram of an antenna structure according to another implementation manner of the present application.
  • FIG. 18 is a return loss curve and an isolation curve of the antenna structure shown in FIG. 17 .
  • Fig. 19 is a comparison diagram between the efficiency of the first antenna when the antenna structure shown in Fig. 17 works and the efficiency when the first antenna works alone.
  • FIG. 20 is a graph comparing the efficiency of the second antenna when the antenna structure shown in FIG. 17 works and the efficiency of the second antenna working alone.
  • FIG. 21 is a radiation pattern diagram of the first antenna of the antenna structure in the embodiment shown in FIG. 17 .
  • FIG. 22 is a radiation pattern diagram of the second antenna of the antenna structure in the embodiment shown in FIG. 17 .
  • FIG. 23 is a schematic structural diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 24 is a return loss diagram and an isolation curve diagram of the antenna structure shown in FIG. 23 .
  • FIG. 25 is a graph comparing the antenna efficiency of the first antenna when the antenna structure shown in FIG. 23 works and the antenna efficiency when the first antenna works alone.
  • FIG. 26 is a radiation pattern diagram of the first antenna of the antenna structure in the embodiment shown in FIG. 23 .
  • FIG. 27 is a radiation pattern diagram of the second antenna of the antenna structure in the embodiment shown in FIG. 23 .
  • FIG. 28 is a schematic structural diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 30 is a return loss diagram and an isolation curve diagram of the antenna structure shown in FIG. 28 .
  • FIG. 31 is an antenna efficiency diagram of the first antenna and an antenna efficiency diagram of the second antenna of the antenna structure shown in FIG. 28 .
  • FIG. 32 is a comparison diagram of the antenna efficiency of the first antenna when the antenna structure shown in FIG. 28 works and the antenna efficiency when the first antenna works alone.
  • FIG. 33 is a comparison diagram of the antenna efficiency of the second antenna of the antenna structure shown in FIG. 28 and when the second antenna works alone.
  • Fig. 34 is a radiation pattern diagram of the first antenna of the antenna structure in the embodiment shown in Fig. 28 working in the 1/4 wavelength mode.
  • FIG. 35 is a radiation pattern diagram of the second antenna of the antenna structure in the embodiment shown in FIG. 28 .
  • Fig. 36 is a schematic structural diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 37 is a return loss diagram and an isolation curve diagram of the antenna structure shown in FIG. 36 .
  • FIG. 38 is an antenna efficiency diagram of the first antenna and an antenna efficiency diagram of the second antenna of the antenna structure shown in FIG. 36 .
  • Fig. 39 is a schematic structural diagram of an antenna structure according to another embodiment of the present application.
  • FIG. 40 is a return loss curve and an isolation curve of the antenna structure shown in FIG. 39 .
  • FIG. 41 is an antenna efficiency diagram of the first antenna and an antenna efficiency diagram of the second antenna of the antenna structure shown in FIG. 39 in a free state.
  • FIG. 42 is a graph of return loss and isolation of the antenna structure shown in FIG. 39 when the gap between the first radiator and the second radiator of the antenna structure shown in FIG. 39 is blocked.
  • FIG. 43 is a return loss curve diagram and an isolation curve diagram of the antenna structure when the gap between the first sub-radiator and the second sub-radiator of the first radiator of the antenna structure shown in FIG. 39 is blocked.
  • Fig. 44 is a schematic topology diagram of an antenna structure according to another embodiment of the present application.
  • the present application provides an electronic device, the electronic device includes an antenna, and the electronic device can perform signal transmission through the antenna.
  • the electronic device may be a mobile phone, a tablet computer, a PC, a router, a wearable device, and the like.
  • the electronic device of the present application is described by taking the electronic device as a mobile phone as an example.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application
  • FIG. 2 is a schematic internal structural diagram of the electronic device 1000 shown in FIG. 1
  • the electronic device 1000 includes a middle frame 110, a main board 120, a display screen 130, a rear cover (not shown) and an antenna structure. Both the display screen 130 and the rear cover are fixed to the middle frame 110 .
  • the display screen 130 , the rear cover and the middle frame 110 are fixed to form a storage space, and the main board 120 can be stored in the storage space.
  • the middle frame 110 includes a frame 111 and a middle plate 112 , and the frame 111 is arranged around the middle plate 112 and connected with the middle plate 112 .
  • the frame 111 and the middle plate 112 can be integrally formed as an integral structure; or the frame 111 and the middle plate 112 can also be independent structures formed separately, and connected by screws, buckles, shrapnel, etc. connected or connected by welding, bonding, etc.
  • the protruding piece extending inward from the inner side of the frame 111 can also be used as a connecting piece, or the protruding piece extending from the edge of the middle plate 112 to the frame 111 can be used as a connecting piece, so as to connect the frame 111 through the connecting piece with the middle plate 112 .
  • the main board 120 is fixed to the middle board 112 so that the main board 120 is fixed in the electronic device 1000 .
  • the middle frame 110 may also only include the frame 111 without the middle board 112 , and the main board 120 is fixed in the electronic device 1000 in other ways.
  • the main board 120 is provided with a radio frequency front end 140, and the radio frequency front end 140 can be connected to the antenna structure signal, so as to transmit the processed radio frequency signal to the antenna structure and send it out, or to transmit the radio frequency signal received by the antenna structure deal with.
  • the radio frequency front end 140 may include a transmission path and a reception path.
  • the transmission path includes devices such as power amplification and filtering, which are used to transmit the radio frequency signal to the antenna structure after power amplification, filtering, etc., and send the processed radio frequency signal out through the antenna structure.
  • the receiving path includes low-noise amplifiers, filters and other devices. Through the receiving path, the radio frequency signal received by the antenna structure is processed to ensure that the useful radio frequency signal can be picked up from the space without distortion and sent to the frequency conversion and intermediate frequency amplification of the subsequent stage. Wait for the circuit.
  • FIG. 3 is a schematic topology diagram of an antenna structure 100 according to an embodiment of the present application.
  • the antenna structure 100 includes a first antenna 10 , a second antenna 20 , a decoupling circuit 30 and a floor 40 .
  • the floor 40 can be used as a reference ground of the electronic device 1000 .
  • the floor 40 can be formed by any one of the grounded middle board 112, the ground layer of the circuit board, and the grounding metal parts built in the electronic device 1000, or by the grounded middle board 112, the grounding layer of the circuit board. In the ground layer, two or more ground metal parts built in the electronic device 1000 are formed in combination.
  • the middle plate 112 of the middle frame 110 is grounded, and the middle plate 112 serves as the floor 40 of the antenna structure 100 in this embodiment.
  • the main board 120 in the electronic device 1000 includes a grounding layer, and the grounding layer of the main board 120 can be used as the floor 40, or the grounding layer of the main board 120 and the middle board 112 are electrically connected together as the floor 40 at least part of .
  • the electronic device 1000 may include one or more middle boards 112, and/or ground layers of one or more circuit boards, and/or one or more ground metal parts, and the floor in this application may is a combination of any two or more of them.
  • the electronic device 1000 may also include a small board, and the small board is also a circuit board including a ground layer, so the small board in the electronic device 1000 may be used as a ground layer, and the ground layer of the small board is connected to the ground layer or the floor of the main board 120
  • the ground layer of the small board is electrically connected with the ground layer of the main board 120 or the middle board 112 and can serve as the floor 40 of the electronic device 1000 together.
  • the floor 40 includes a first edge 41, a second edge 42 and a third edge 43, the first edge 41 is connected between the second edge 42 and the third edge 43, and the The second edge 42 intersects the first edge 41 , and the third edge 43 intersects the first edge 41 .
  • the floor 40 is a rectangular board.
  • the first edge 41 , the second edge 42 and the third edge 43 are three adjacent sides of the rectangular floor.
  • the first edge 41 is a short side of the floor 40
  • the second edge 42 and the third edge 43 are two opposite long sides of the floor 40 .
  • Both the first edge 42 and the third edge 43 perpendicularly intersect with the first edge 41 .
  • the first edge 41 , the second edge 42 and the third edge 43 in this embodiment are named for the sides of the floor 40 for the convenience of describing the floor 40 .
  • one long side of the floor 40 can also be named as the first edge 41
  • two opposite short sides of the floor 40 can be named as the second edge 42 and the third edge 43 respectively.
  • FIG. 4a and FIG. 4b show a schematic diagram of the topological structure of an antenna structure 100 according to another embodiment of the present application
  • FIG. 4b shows a schematic diagram of an antenna structure 100 according to another embodiment of the present application. Schematic diagram of the topology.
  • one long side of the floor 40 is the first edge 41
  • two opposite short sides of the floor 40 are the second edge 42 and the third edge 43 respectively.
  • the floor 40 being rectangular means that the overall outline of the floor 40 is rectangular, and the edges of the floor 40 can have regular or irregular openings according to actual needs. Slits/grooves or protrusions/protrusions, etc., the first edge 41 to the fourth edge 44 can be formed by multiple bent edges, which is not limited in this application.
  • the overall outline of the floor 40 is introduced as a rectangle. It can be understood that the overall outline of the floor 40 may not be a rectangle, for example, may be other regular or irregular shapes.
  • the floor panel 40 of the present application has three profile edges that intersect in sequence at an angle, and the angles between the edges can be in the range of 80° to 100°. As shown in FIG. 3 , the first edge 41 , the second edge 42 and the third edge 43 are vertical in turn. It should be noted that the perpendicularity mentioned in this application is not 90° in a strict mathematical sense, and a certain deviation is allowed.
  • the first antenna 10 includes a first radiator 11 and a first feeding circuit 12 .
  • the first radiator 11 is provided with a first feed point C, one end of the first feed circuit 12 is connected to the radio frequency front end 140, and the other end is connected to the first feed point C on the first radiator 11, so that the radio frequency front end 140 transmits the processed radio frequency signal to the first radiator 11 , or transmits the radio frequency signal received by the first radiator 11 to the radio frequency front end 140 for signal processing.
  • the first feeding point C is a position where the first feeding circuit 12 on the first radiator 11 is connected to the first radiator 11 .
  • the first feed circuit 12 is a feed cable.
  • the first feeding circuit 12 may also include tuning elements such as capacitors and inductors, so as to adjust the electrical length of the first radiator 11 so that the first radiator 11 can Work in the required working frequency band.
  • the second antenna 20 includes a second radiator 21 and a second feeding circuit 22 .
  • the second radiator 21 is provided with a second feed point D, one end of the second feed circuit 22 is connected to the radio frequency front end 140, and the other end is connected to the second feed point D on the second radiator 21, so that the radio frequency front end 140 transmits the processed radio frequency signal to the second radiator 21 , or transmits the radio frequency signal received by the second radiator 21 to the radio frequency front end 140 for signal processing.
  • the second feeding point D is a position where the second feeding circuit 22 on the second radiator 21 is connected to the second radiator 21 .
  • the second feed circuit 22 is a feed cable.
  • the second feeding circuit 22 may also include tuning elements such as capacitors and inductors, so as to adjust the electrical length of the second radiator 21 so that the second radiator 21 can Work in the required working frequency band.
  • the frame 111 is made of conductive material.
  • the frame 111 is made of metal material.
  • Part of the frame 111 can serve as the first radiator 11 and the second radiator 21 of the antenna structure 100 , thereby reducing the space occupied by the antenna structure 100 in the electronic device 1000 .
  • the frame 111 of the middle frame 110 may also be made of other materials, and the frame 111 may not serve as the first radiator 11 or the second radiator 21 of the antenna structure 100 .
  • FIG. 5 is a schematic diagram of an internal structure of an electronic device 1000 according to another implementation manner of the present application.
  • the frame 111 may be made of non-conductive material.
  • the frame 111 can be made of insulating material, for example, the frame 111 is made of plastic or glass.
  • the frame 111 can be used as an antenna bracket for installing the first radiator 11 and the second radiator 21 of the antenna structure 100, and the first radiator 11 and the second radiator 21 of the antenna structure 100 can be fixedly installed on the frame 111 facing the electronic device 1000.
  • the inner surface of the containment space can be used as an antenna bracket for installing the first radiator 11 and the second radiator 21 of the antenna structure 100, and the first radiator 11 and the second radiator 21 of the antenna structure 100 can be fixedly installed on the frame 111 facing the electronic device 1000.
  • the first radiator 11 and the second radiator 12 both include two opposite ends, wherein the radiator (the first radiator 11 or the second radiator The end of 21) refers to the part of the radiator connected to the end face of the radiator (for example, depending on the length of the radiator, the end of the radiator can be the radiator whose length from the end face is within 5mm, 2mm, or 1mm. body).
  • the end faces refer to the planes at both ends of the radiator. It should be noted that the planes mentioned in this application are not strictly mathematical planes, and certain deviations are allowed.
  • Two ends of the first radiator 11 include at least one open end
  • two ends of the second radiator 21 also include at least one open end.
  • the open end refers to the end of the radiator that is not grounded.
  • “one end that is not grounded” refers to that there is no ground point and no coupled ground area on the radiator with a length of 1/4 wavelength from the end surface of this end.
  • the open end is an end that is not grounded, and is a radiator whose length is within 5 mm, 2 mm, or 1 mm from the end surface.
  • at least one open end of the first radiator 11 includes a first open end
  • at least one open end of the second radiator 21 includes a second open end.
  • the first open end is opposite to the second open end and forms a gap 13. As shown in FIG. The distance between the two open end faces.
  • the decoupling circuit 30 is connected between the first open end and the second open end.
  • one end of the decoupling circuit 30 is connected to the first open end face of the first radiator 11 or the first open end including the end face
  • the other end of the decoupling circuit 30 is connected to the second open end of the second radiator 21 The end face or the second open end including the end face.
  • one end of the decoupling circuit 30 is connected to a position on the first radiator 11 within 5 mm from the first open end surface, for example, a position within 2 mm or 1 mm
  • the other end of the decoupling circuit 30 is connected to the second radiator 21 A position within 5 mm from the second open end surface, for example, a position within 2 mm or 1 mm.
  • the decoupling circuit 30 may include an inductor 31 and a wire 32 connecting the inductor 31 to the first open end and the second open end, or the decoupling circuit 30 may also be an inductive decoupling circuit.
  • the inductance 31 may be a lumped inductance or a distributed inductance.
  • the decoupling circuit 30 may be a band-stop decoupling circuit, and the decoupling circuit 30 can prevent the coupling between the working frequency band generated by the first radiator 11 and the working frequency band generated by the second radiator 21, thereby improving the first The degree of isolation between the antenna 10 and the second antenna 20 .
  • the difference between the resonant frequency band of the first working mode of the first radiator 11 and the working frequency band of the second working mode of the second radiator 21 is less than 1 GHz, for example, the resonant frequency band of the first working mode is different from that of the second working mode
  • the working frequency band is the same.
  • the working frequency band of the first working mode of the first radiator 11 and the working frequency band of the second working mode of the second radiator 21 may be any working frequency band of sub-6G. This will be described in detail in the specific implementation manner of this application, and will not be repeated here.
  • the decoupling circuit 30 may be disposed on the main board 40 .
  • the traces 32 of the band-resistance structure circuit 30 are disposed on the main board 40
  • the inductor 31 is disposed (eg, bonded) on the main board 40 and connected to the traces disposed on the main board 40 .
  • the first open end of the first radiator 11 and the second open end of the second radiator 21 are fixed with elastic pieces 60, and the elastic pieces 60 are connected to the traces 32 on the main board 40, so as to realize the first radiator The first open end of 11 and the second open end of the second radiator 21 are connected to the decoupling circuit 30 .
  • connection between the first open end of the first radiator 11 and the second open end of the second radiator 21 and the decoupling circuit 30 can also be in other ways, here No further elaboration.
  • the decoupling circuit 30 can also be arranged on other substrates, such as a printed circuit board (Printed Circuit Board, which can be called PCB) separated from the main board, or a flexible printed circuit board (Flexible Printed Circuit, which can be called FPC). ), the substrate provided with the decoupling circuit 30 can be electrically connected to the main board through a flexible transmission line, which will not be repeated here.
  • PCB printed circuit board
  • FPC Flexible Printed Circuit
  • a decoupling circuit 30 is connected between the second open end, and the decoupling circuit 30 can form a band stop filter with the equivalent capacitance formed between the end faces of the two open ends, and the band stop filter can prevent the first antenna 10 from connecting with the second antenna 10.
  • the current coupling between the antennas 20 further improves the isolation between the first antenna 10 and the second antenna 20 .
  • the inductance value of the inductor 31 included in the decoupling circuit 30 or the inductance value of the inductive decoupling circuit can be regarded as the equivalent inductance value of the decoupling circuit 30 .
  • the equivalent capacitance value between the endpoint of the first open end and the endpoint of the second open end of different sizes can be set according to the operating frequency bands of the first antenna 10 and the second antenna 20, thereby obtaining the first antenna 10 and the second antenna 20 Better isolation at its operating frequency.
  • the operating frequency bands of the first antenna 10 and the second antenna 20 include any frequency band in sub-6G, for example, the first antenna 10 and the second antenna 20 can be in the low frequency band (500MHz ⁇ 1GHz), and/or Or work in the mid-frequency band (1GHz-3GHz), and/or the high-frequency band (3GHz-6GHz).
  • at least one operating frequency band of the first antenna 10 is the same as or differs from at least one operating frequency band of the second antenna 20 by less than 1 GHz.
  • the coupling circuit 30 can improve the isolation between the first antenna 10 and the second antenna 20 .
  • "the same working frequency band" can be understood as "same frequency”.
  • the at least one working frequency band of the second antenna 20 may also enable the electronic device 1000 to support the first frequency band, instead of the first antenna 10 and the second antenna 20 having at least one completely identical working frequency range.
  • the difference between the working frequency band of the first radiator 11 and the working frequency band of the second radiator 21 may be less than 1 GHz.
  • the working frequency band of the first radiator 11 and the working frequency band of the second radiator 21 may differ by 0.9 GHz or 0.5 GHz. It should be understood that the difference between the working frequency band of the first radiator 11 and the working frequency band of the second radiator 21 is the center frequency of the working frequency band of the first radiator 11 and the center frequency of the working frequency band of the second radiator 21 difference between.
  • the isolation between the first antenna 10 and the second antenna 20 can be improved by connecting the first open end of the first radiator 11 and the second open end of the second radiator 21 by the decoupling circuit 30
  • the center frequency of the working frequency band of the first radiator 11 or the center frequency of the working frequency band of the second radiator 21 is the decoupling frequency of the antenna structure 100 of the present application.
  • both the first radiator 11 and the second radiator 21 can have multiple working frequency bands, when the multiple working frequency bands of the first radiator 11 and the second radiator 21 are the same
  • the antenna structure 100 may also have a plurality of decoupling frequencies when the frequency is at or close to each other.
  • the lumped inductor when the inductor 31 included in the decoupling circuit 30 is a lumped inductor, the lumped inductor may be a component represented by the inductor 30 in FIG. 3 .
  • the distributed inductance may be an inductance formed by wires and/or windings.
  • FIG. 6a is a schematic structural diagram of a decoupling circuit 30 according to another embodiment of the present application.
  • the inductance 31 included in the decoupling circuit 30 of the embodiment shown in FIG. 6 a represents a distributed inductance formed by winding metal wires.
  • the inductive decoupling circuit 30 when the decoupling circuit 30 is an inductive decoupling circuit, the inductive decoupling circuit may be formed by connecting one or more inductors and one or more capacitors in parallel and/or in series.
  • FIG. 6b is a schematic structural diagram of a decoupling circuit 30 according to another embodiment of the present application.
  • the decoupling circuit 30 of the embodiment shown in Figure 6b is an inductive decoupling circuit, including a first branch A1 and a second branch A2 arranged in parallel, the first branch A1 is an inductive filter circuit, so
  • the second branch A2 includes lumped inductance or distributed inductance.
  • the inductance value of the first branch A1 is different from the inductance value of the second branch A2.
  • the inductance values of the decoupling circuits are different. Therefore, when the operating frequency of the antenna structure 100 (that is, the operating frequency of the first radiator 11 and the second radiator 21) is changed, the first open end connected to the first radiator 11 and the second open end of the second radiator 21 The inductance value of the decoupling circuit 30 between the two terminals can be changed accordingly, so as to ensure a good isolation between the first antenna 10 and the second antenna 20 all the time.
  • the decoupling circuit 30 includes three inductors and one capacitor 33, and the three inductors are respectively a first inductor 31a, a second inductor 31b, and a third inductor 31c.
  • the first branch A1 includes a capacitor 33 , a first inductor 31 a and a second inductor 31 b.
  • the capacitor 33 is connected in parallel with the first inductor 31 a and then connected in series with the second inductor 31 b.
  • the first branch circuit A1 formed by connecting the first inductor 31 a in parallel with the capacitor 33 and connecting the second inductor 31 b in series is equivalent to a filter circuit.
  • the second branch A2 includes a third inductor 31c, the second branch A2 is connected in parallel with the first branch A1, and the equivalent inductance value of the filter circuit of the first branch A1 is different from that of the second branch A2. Furthermore, in this embodiment, the equivalent inductance of the filter circuit is different from the inductance value of the third inductor 31c.
  • the filter circuit can allow the signal of the first radiator 11 to be transmitted to The second radiator 21.
  • Equivalent to the size of the inductance connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 is the size of the equivalent inductance of the filter circuit, so as to ensure that the first radiator 11 and the second radiator
  • the inductance value of the decoupling circuit connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 can be changed accordingly, so as to ensure the first Better isolation can always be guaranteed between the antenna 10 and the second antenna 20 .
  • the working frequency of the first antenna 10 is the frequency of the signal generated by the resonance of the first radiator 11 .
  • the working frequency of the second antenna 20 is the frequency of the signal generated by the resonance of the second radiator 21 .
  • FIG. 6c is a schematic structural diagram of a decoupling circuit 30 according to another embodiment of the present application.
  • the decoupling circuit 30 may also include a plurality of inductors 311, 312, 313 with different inductance values and a switch 34.
  • the switch 34 can be switched to connect to different inductances, so as to ensure that the first antenna 10 and the second antenna 20 can always have better isolation when the operating frequency of the first radiator 11 and the second radiator 21 is changed.
  • the decoupling circuit 30 includes three inductors with different inductance values, the three inductors are arranged in parallel, and the switching switch 34 is a single-pole three-throw switch, which can be switched to any one of the three inductors as required.
  • both the first radiator 11 and the second radiator 21 have only one open end.
  • the first end 111 is the first open end of the first radiator 11
  • the third end 211 is the second open end of the second radiator 21
  • the first end 111 is opposite to the third end 211 and the first end 111 is opposite to the third end.
  • the decoupling circuit 30 is connected to the first terminal 111 and the third terminal 211 .
  • Both the second end 112 and the fourth end 212 are connected to the floor 40 , that is, both the second end 112 and the fourth end 212 are grounding ends.
  • the elastic piece 60 can be fixed on the second end 112 and the fourth end 212, and the elastic piece 60 is connected to the floor 40; or, by setting (for example, bonding) a metal sheet, the metal sheet is connected to the second end 112 and the second end 212.
  • the floor 40 and connect the fourth end 212 with the floor 40 ; or, connect to the floor 40 through the protrusion of the first radiator 11 at the second end 112 and the protrusion of the second radiator 12 at the fourth end 212 .
  • both the first radiator 11 and the second radiator 21 include an open end and a ground end.
  • the first radiator 11 may include two open ends, that is, the first end 111 and the second end 112 may both be open ends; the second radiator 21 may also include The two open ends, that is, the third end 211 and the fourth end 212 can also be both open ends.
  • the first radiator 11 is an "L"-shaped structure
  • the first radiator 11 of the "L"-shaped structure includes a first section and a second section, and the first section and the second section Intersect in an "L" shape.
  • the first section and the second section of the "L"-shaped structure are respectively located on adjacent two sides (eg, two adjacent edges) of the floor 40 .
  • the first section is located on one side of the first edge 41 and spaced apart from the first edge 41
  • the second section is located on one side of the second edge 42 and is spaced from the second edge 42. interval setting.
  • the ground current generated by the first radiator 11 exciting the floor 40 is the same as the ground current generated by the second radiator 11 exciting the floor 40.
  • the current does not reverse in a large area. Therefore, in this embodiment, after the decoupling circuit 30 is connected between the first radiator 11 and the second radiator 21, the distance between the first antenna 10 and the second antenna 20 is increased. While improving the isolation, the performance of the first antenna 10 or the second antenna 20 will not be greatly affected.
  • the first radiator 11 is an "L"-shaped structure, so the ground current generated by the first radiator 11 to excite the floor 40 and the ground current generated by the second radiator 21 to excite the floor 40 can intersect at a certain angle, instead of exciting The floor 40 respectively generates two opposite currents, so the isolation between the first antenna 10 and the second antenna 20 can be further improved.
  • the angle at which the ground current generated by the first radiator 11 to excite the floor 40 intersects the ground current generated by the second radiator 21 to excite the floor 40 is in the range of 60-120° (for example, orthogonal), so that Good isolation can be provided between the first antenna 10 and the second antenna 20 .
  • the radiation patterns of the first antenna 10 and the second antenna 20 can be complementary, therefore, the envelope correlation coefficient (ECC) between the first antenna 10 and the second antenna 20 can be small.
  • both the first radiator 11 and the second radiator 21 are in an "L" shape.
  • the first radiator 11 includes a first section 11 a and a second section 11 b arranged intersectingly
  • the second radiator 21 includes a third section 21 a and a fourth section 21 b arranged intersecting.
  • the end of the first section 11 a away from the second section 11 b is the first end 111
  • the end of the second section 11 b away from the first section 11 a is the second end 112 .
  • An end of the third section 21 a away from the fourth section 21 b is a third end 211
  • an end of the fourth section 21 b away from the third section 21 a is a fourth end 212 .
  • both the first section 11a and the third section 21a are located on one side of the first edge 41 of the floor 40, the second section 11b is located on one side of the second edge 42 of the floor 40, and the fourth section 21b is located on the side of the third edge 43 of the floor 40 .
  • FIG. 3 Please continue to refer to FIG. 3 .
  • the arrows in FIG. 3 show the direction diagram of the current generated when the antenna structure 100 according to the embodiment of the present application is in operation.
  • the arrow a shows the equivalent current direction of the ground current generated by the first radiator 11 exciting the floor 40
  • the arrow b shows the equivalent current direction of the ground current generated by the second radiator 21 exciting the floor 40
  • the equivalent current direction a of the ground current generated by the first radiator 11 exciting the floor 40 and the equivalent current direction b of the ground current generated by the second radiator 21 exciting the floor 40 intersect at a certain angle, such as 60°-120°, for example 80-10°, and for example 90°, so that the first antenna 10 and the second antenna 20 can have better isolation.
  • a certain angle such as 60°-120°, for example 80-10°, and for example 90°
  • FIG. 7 shows a return loss curve and an isolation curve of the antenna structure 100 in the embodiment shown in FIG. 3 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • the unit is dB.
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB.
  • the structure of the first radiator 11 and the second radiator 21 are basically the same, and the first radiator 11 and the second radiator 21 are symmetrically arranged on both sides of the floor 40, so the first antenna 10 and the second antenna
  • the working frequency bands of the antennas 20 are basically the same.
  • the length of the first edge 41 of the floor 40 is about 80mm.
  • the first section 11a of the first radiator 11 And the third section 21a of the second radiator 21 is located on the side of the first edge 41 of the floor 40, the second section 11b of the first radiator 11 is located on the side of the second edge 42 of the floor 40, the second radiator The fourth section 21 b of the body 21 is located on one side of the third edge 43 of the floor 40 , and the radiation apertures of the first radiator 11 and the second radiator 21 are larger.
  • the operating frequency of the resonant generation signal of the first radiator 11 and the second radiator 21 in this embodiment is the low frequency in sub-6G. In this embodiment, the central operating frequencies of the first radiator 11 and the second radiator 21 are both about 0.8 GHz.
  • 0.8 GHz is the decoupling frequency of the antenna structure 100 of the present application, that is, the decoupling circuit 30 can prevent the antenna pattern generated by the first radiator 11 with a working frequency of about 0.8 GHz from being generated by the second radiator 21.
  • the working frequency band is the coupling of the antenna mode of about 0.8 GHz, thereby improving the isolation between the first antenna 10 and the second antenna 20 .
  • the first antenna 10 and the second antenna 20 can be used as multiple-input multiple-output system (Multiple-Input Multiple-Output, MIMO) antennas of the electronic device 1000, and the electronic device 1000 can perform MIMO transmission of signals.
  • MIMO Multiple-Input Multiple-Output
  • the size of the floor 40 can be changed, the size and grounding position of the first radiator 11 and the second radiator 21 can also be changed, and the operating frequency of the first radiator 11
  • the operating frequency of the second radiator 21 may be the same as or different from that of the second radiator 21 .
  • the radiation apertures of the first radiator 11 and the second radiator 21 can also be changed according to actual needs, so that the working frequency of the signal generated by the resonance of the first radiator 11 and the second radiator 21 can also be the intermediate frequency in sub-6G or high frequency.
  • the isolation between the first antenna 10 and the second antenna 20 at the center operating frequency is about -15dB, that is, the first antenna 10 and the second antenna 20 can have the same operating frequency band, and the first antenna There can be good isolation between the antenna 10 and the second antenna 20 .
  • the first section 11a of the first radiator 11 and the third section 21a of the second radiator 21 are located on one side of the first edge 41 of the floor 40
  • the second section of the first radiator 11 is located on the side of the second edge 42 of the floor 40
  • the fourth section 21b of the second radiator 21 is located on the side of the third edge 43 of the floor 40.
  • the first radiator 11 and the second radiator 21 can not only excite the floor 40 to generate a horizontal current mode, but also can excite the floor 40 to generate a vertical current mode, and the first radiator 11 is in the same direction as the longitudinal current mode generated by the second radiator 21 exciting the floor 40 , which can improve the performance of the first antenna 10 and the second antenna 20 .
  • the first radiator 11 and the second radiator 21 can not only excite the floor 40 to generate a reverse horizontal current mode, but also can excite the floor 40 to generate a longitudinal current mode in the same direction, therefore, in the first opening of the first radiator 11
  • the decoupling circuit 30 is connected between the end and the second open end of the second radiator 21, the floor current can still be fully excited, so that the antenna efficiency of the first antenna 10 and the second antenna 20 will not be seriously deteriorated.
  • a decoupling circuit 30 is connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 to improve the connection between the first antenna 10 and the second antenna 20. At the same time, the antenna efficiency of the first antenna 10 and the second antenna 20 will not be seriously deteriorated.
  • the envelope correlation coefficient (ECC) between the first antenna 10 and the second antenna 20 in the embodiment of the present application is compared It may be better in terms of the solution that the first radiator 11 and the second radiator 21 are located on one side of the floor 40 .
  • FIG. 8 is a comparison chart of the efficiency of the first antenna 10 when the antenna structure 100 of the embodiment shown in FIG. 3 works and the efficiency of the first antenna 10 working alone.
  • the abscissa of FIG. 8 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 8 is the efficiency curve of the first antenna 10 of the antenna structure 100 in this embodiment
  • curve b in FIG. 8 is the curve when the first antenna 10 works alone.
  • the antenna efficiency of the first antenna 10 of the antenna structure 100 in this embodiment is reduced by about 0.2 dB compared with the antenna efficiency when the first antenna 10 works alone.
  • FIG. 9 is a comparison chart of the efficiency of the second antenna 20 when the antenna structure 100 of the embodiment shown in FIG. 3 works and the efficiency of the second antenna 20 working alone.
  • Curve a in FIG. 9 is an efficiency curve of the second antenna 20 of the antenna structure 100 of this embodiment, and curve b in FIG. 9 is a curve when the second antenna 20 works alone.
  • the antenna efficiency of the second antenna 20 of the antenna structure 100 in this embodiment is reduced by about 0.2 dB compared with the antenna efficiency when the second antenna 20 works alone.
  • the antenna working efficiency of the first antenna 10 and the second antenna 20 will decrease by about 0.2dB, but the relative Compared with the solution in which the first radiator 11 and the second radiator 21 are located on the same side of the floor 40, in this embodiment, after the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, the second The degree of decrease in working efficiency of the first antenna 10 and the second antenna 20 is relatively small. That is, in this embodiment, the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, so that the isolation between the first antenna 10 and the second antenna 20 can be improved, and at the same time, it is possible to avoid damage to the first antenna 10. Work efficiency with the second antenna 20 has a big influence.
  • Fig. 10 shows the radiation pattern of the first antenna 10 of the antenna structure 100 in the embodiment shown in Fig. 3, and Fig. 11 shows the antenna structure 100 in the embodiment shown in Fig. 3
  • the radiation pattern of the second antenna 20 is complementary, therefore, the envelope correlation coefficient (envelope correlation coefficient, ECC) of the first antenna 10 and the second antenna 20 in this embodiment can be better.
  • ECC envelope correlation coefficient
  • FIG. 12 is a schematic topology diagram of an antenna structure 100 according to another implementation manner of the present application.
  • the difference between the antenna structure 100 and the antenna structure 100 shown in FIG. 3 is that in this embodiment, both ends of the first radiator 11 and the second radiator 21 of the antenna structure 100 are open. end.
  • the two open ends included in the first radiator 11 are respectively a first open end and a third open end
  • the two open ends included in the second radiator 21 are respectively a second open end and a fourth open end.
  • the first end 111 of the first radiator 11 is a first open end
  • the second end 112 is a third open end.
  • the third end 211 of the second radiator 21 is a second open end
  • the fourth end 212 is a fourth open end.
  • neither the first end 111 nor the second end 112 of the first radiator 11 is connected to the floor 40
  • neither the third end 211 nor the fourth end 212 of the second radiator 21 is connected to the floor. 40 connections.
  • the open end the first end 111 , the second end 112 , the third end 211 , the fourth end 212 and the end faces, reference may be made to the foregoing embodiments, and details are not repeated here.
  • the decoupling circuit 30 is connected between the first open end and the second open end, that is, the decoupling circuit 30 is connected to the first end 111 of the first radiator 11 and the third end 211 of the second radiator 21 .
  • the position of the point is located between the first end 111 and the second end 112
  • the position of the ground point of the second radiator 21 is located between the third end 211 and the fourth end 212 .
  • the section between the first grounding point A of the first radiator 11 and the end face of the first radiator 11 close to the first end 111 can generate resonance in the 1/4 wavelength mode
  • the first radiator 11 The section between the end face close to the first end 111 and the end face close to the second end 112 can generate a resonance of a 1/2 wavelength mode.
  • the first radiator 11 in this embodiment can generate resonance signals with wavelengths in two different modes.
  • the arrow direction of the dotted line near the first radiator 11 in Fig. 12 indicates the schematic direction of the current when the first radiator 11 works to generate resonance in the 1/4 wavelength mode
  • the arrow direction of the dotted line indicates the first radiator 11
  • the direction of the electric current at the time of resonance of the working generation 1/2 wavelength mode is indicated.
  • the second radiator 21 and the first radiator 11 are symmetrical structures arranged on both sides of the floor 40 .
  • the section between the second grounding point B of the second radiator 21 and the end face of the second radiator 21 close to the third end 211 can generate a resonance of the 1/4 wavelength mode, and the resonance generated by the second radiator 21
  • the resonant frequency band of the 1/4 wavelength mode is substantially the same as the resonant frequency band of the first radiator 11 generating the 1/4 wavelength mode.
  • the section between the end face near the third end 211 and the end face near the fourth end 212 of the second radiator 21 in this embodiment can generate 1/2 wavelength mode resonance, and the second radiator 21
  • the resonance frequency of the generated 1/2 wavelength mode is substantially the same as the resonance frequency of the 1/2 wavelength mode generated by the first radiator 11 .
  • both the first antenna 10 and the second antenna 20 of this embodiment can form in-band double resonance, and both the first antenna 10 and the second antenna 20 can generate resonance in the 1/4 wavelength mode with substantially the same operating frequency and the resonance of the 1/2 wavelength mode, thereby improving the bandwidth and efficiency of the antenna structure 100 of the present embodiment during operation.
  • the arrow direction of the dotted line near the second radiator 12 in Fig. 12 indicates the schematic direction of the current when the first radiator 11 works to generate resonance in the 1/4 wavelength mode
  • the arrow direction of the dotted line indicates the second radiator 12
  • the direction of the electric current at the time of resonance of the working generation 1/2 wavelength mode is indicated.
  • the first radiator 11 and the second radiator 21 have a "symmetrical structure" means that the first radiator 11 and the second radiator 21 can be basically symmetrical along a virtual axis of symmetry, basically symmetrical It is to allow a certain angle error and/or size error, rather than absolute symmetry in the strict mathematical sense. It can be understood that, in other embodiments of the present application, the first radiator 11 and the second radiator 21 may also have an asymmetric structure, by adjusting the structure of the first radiator 11 or the second radiator 21, adding tuning elements Alternatively, by changing the positions of the first ground point A and the second ground point B, the first radiator 11 and the second radiator 21 can generate different resonance modes.
  • the first radiator 11 and the second radiator 21 can also be made 21 generates two other identical resonant modes to realize in-band double resonance between the first antenna 10 and the second antenna 20 .
  • the distance between the first open end of the first radiator 11 and the second open end of the second radiator 21 is about 20mm
  • the inductance of the decoupling circuit 30 is about 65nH
  • the first antenna 10 and The second antennas 20 have better isolation effect.
  • both the first antenna 10 and the second antenna 20 have two resonance modes, thereby forming an in-band double resonance.
  • FIG. 13 is a return loss curve and an isolation curve of the antenna structure 100 shown in FIG. 12 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • the unit is dB.
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB.
  • the operating frequency band of the 1/4 wavelength mode of the first antenna 10 is basically the same as that of the 1/4 wavelength mode of the second antenna 20, and the central operating frequency is about 0.81. GHz;
  • the working frequency band of the 1/2 wavelength mode of the first antenna 10 is basically the same as the working frequency band of the 1/2 wavelength mode of the second antenna 20, and the central working frequency is about 0.87 GHz.
  • the isolation of the 1/4 wavelength mode generated by the first antenna 10 and the second antenna 20 at the center operating frequency is about -22dB, and the 1/2 wavelength mode generated by the first antenna 10 and the second antenna 20
  • the isolation at the center operating frequency is about -11dB. That is, the first antenna 10 and the second antenna 20 have better isolation in the 1/4 wavelength mode and the 1/2 wavelength mode.
  • both the first antenna 10 and the second antenna 20 include two working modes of 1/4 wavelength mode and 1/2 wavelength mode.
  • the working modes of the first antenna 10 and the second antenna 20 can also be other working modes.
  • the working modes of the first antenna 10 and the second antenna 20 The working mode can also be 3/4 wavelength mode, composite left and right hand antenna mode (CRLH antenna mode) and so on.
  • the first antenna 10 and the second antenna 20 can produce more working modes.
  • the first antenna 10 and the second antenna 20 can also produce three working modes.
  • FIG. 14 is a comparison chart of the antenna efficiency of the first antenna 10 when the antenna structure 100 shown in FIG. 12 is working and the antenna efficiency of the first antenna 10 working alone.
  • the abscissa in FIG. 14 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 14 is the efficiency curve of the first antenna 10 of the antenna structure 100 shown in FIG. 12
  • curve b in FIG. 14 is the curve when the first antenna 10 works alone.
  • the antenna efficiency of the first antenna 10 in the 1/4 wavelength mode operation mode is lower than the antenna efficiency in the 1/4 wavelength mode operation mode when the first antenna 10 works alone. 0.8dB.
  • the antenna working efficiency of the first antenna 10 will decrease by about 0.8 dB, compared with the first radiator 11
  • the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20
  • the working efficiency of the first antenna 10 decreases. to a lesser extent.
  • the degree of decrease in the working efficiency of the second antenna 20 is small.
  • the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, so that the isolation between the first antenna 10 and the second antenna 20 can be improved, and at the same time, it is possible to avoid damage to the first antenna 10. Work efficiency with the second antenna 20 has a big influence.
  • FIG. 15 shows the radiation pattern when the working mode of the first antenna 10 of the antenna structure 100 shown in FIG. 12 is the 1/4 wavelength mode
  • FIG. 16 shows the antenna shown in FIG.
  • the radiation pattern of the second antenna 20 of the structure 100 when the working mode is 1/4 wavelength mode.
  • the radiation pattern of the radiation area of the 1/4 wavelength mode of the first antenna 10 is complementary to the radiation pattern of the radiation area of the 1/4 wavelength mode of the second antenna 20, therefore, the first antenna of this embodiment
  • the antenna 10 and the second antenna 20 can have a small envelope correlation coefficient (envelope correlation coefficient, ECC), and the ECC is about 0.001.
  • envelope correlation coefficient envelope correlation coefficient
  • FIG. 17 is a schematic topology diagram of an antenna structure 100 according to another embodiment of the present application.
  • the difference between the antenna structure 100 and the antenna structure 100 shown in FIG. The distance between the end surface of the first radiator 11 close to the second end 112 and the first grounding point A in the embodiment shown in FIG. 12 is smaller than that.
  • the first radiator 11 of this embodiment can only The resonance of the 1/4 wavelength mode is generated, and the resonance of the 1/4 wavelength mode is the resonance generated in the section between the first ground point A of the first radiator 11 and the end face of the first radiator 11 close to the first end 111 .
  • the distance between the end surface of the second radiator 21 near the second end 212 and the second ground point B is smaller than that of the second radiator 21 near the second end in the embodiment shown in FIG. 12 .
  • both ends of the first radiator 11 and the second radiator 21 are open ends, but both the first radiator 11 and the second radiator 21 in this embodiment can only A wavelength mode resonance is produced.
  • the open end the first end 111 , the second end 112 , the third end 113 , the fourth end 114 and the end faces, reference can be made to the foregoing embodiments, and details are not repeated here.
  • the distance between the first open end of the first radiator 11 and the second open end of the second radiator 21 is about 20mm
  • the inductance of the decoupling circuit 30 is about 70nH
  • the first antenna 10 and The second antennas 20 have better isolation effect.
  • FIG. 18 is a return loss curve and an isolation curve of the antenna structure 100 shown in FIG. 17 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • the unit is dB.
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB. It can be seen from FIG.
  • both the first antenna 10 and the second antenna 20 can only generate resonance in one working mode, and the working frequency bands generated by the first antenna 10 and the second antenna 20 are basically the same, and
  • the central working frequency is about 0.81GHz.
  • the isolation between the first antenna 10 and the second antenna 20 at the center operating frequency is about -26dB, that is, the first antenna 10 and the second antenna 20 can have better isolation.
  • FIG. 19 is a comparison diagram between the efficiency of the first antenna 10 when the antenna structure 100 shown in FIG. 17 works and the efficiency of the first antenna 10 when it works alone.
  • the abscissa of FIG. 17 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 19 is the efficiency curve of the first antenna 10 of the antenna structure 100 of this embodiment
  • curve b in FIG. 19 is the curve when the first antenna 10 works alone.
  • the antenna efficiency of the first antenna 10 in the 1/4 wavelength mode operation mode is lower than the antenna efficiency in the 1/4 wavelength mode operation mode when the first antenna 10 works alone. 0.3dB.
  • FIG. 20 is a comparison chart of the efficiency of the second antenna 20 when the antenna structure 100 shown in FIG. 17 works and the efficiency of the second antenna 20 working alone.
  • Curve a in FIG. 20 is the efficiency curve of the second antenna 20 of the antenna structure 100 of this embodiment, and curve b in FIG. 20 is the curve when the second antenna 20 works alone.
  • the antenna efficiency of the second antenna 20 in the antenna structure 100 of the present embodiment in the 1/4 wavelength mode operation mode is lower than the antenna efficiency in the 1/4 wavelength mode operation mode when the second antenna 20 works alone. 0.3dB.
  • the decoupling circuit 30 after the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, the working efficiency of the first antenna 10 and the second antenna 20 in the 1/4 wavelength mode working mode will drop by about 0.3dB, but compared to the solution where the first radiator 11 and the second radiator 21 are located on the same side of the floor 40, in this embodiment, between the first antenna 10 and the second antenna 20 After the decoupling circuit 30 is connected, the working efficiencies of the first antenna 10 and the second antenna 20 decrease to a lesser extent. That is, in this embodiment, the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, so that the isolation between the first antenna 10 and the second antenna 20 can be improved, and at the same time, it is possible to avoid damage to the first antenna 10. Work efficiency with the second antenna 20 has a big influence.
  • Fig. 21 shows the radiation pattern of the first antenna 10 of the antenna structure 100 in the embodiment shown in Fig. 17, and Fig. 22 shows the antenna structure 100 in the embodiment shown in Fig. 17
  • the radiation pattern of the second antenna 20 is complementary to the radiation pattern of the radiation area of the second antenna 20, therefore, the envelope correlation coefficient (envelope correlation coefficient) of the first antenna 10 and the second antenna 20 of the present embodiment is complementary , ECC) is better, and the ECC is about 0.11.
  • FIG. 23 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 23 and the antenna structure 100 of the embodiment shown in FIG. 3 is that in this embodiment, the size of the first edge 41 of the floor 40 is smaller than that of the first edge 41 of the floor 40 of the embodiment shown in FIG. 3 .
  • the size of the radiator is narrow, so that when the first radiator 11 and the second radiator 21 have an "L" shape structure, the first radiator 11 and the second radiator 21 can be designed to have a smaller electrical length, so that the first antenna
  • the working frequency bands of 10 and the second antenna 20 can be in the middle frequency band or the high frequency band, for example, the middle frequency band or the high frequency band in the sub-6G frequency band.
  • the size of the first edge 41 of the floor 40 is about 30 mm.
  • the inductance of the decoupling circuit 30 is about 20nH, and the isolation effect between the first antenna 10 and the second antenna 20 is relatively good.
  • FIG. 24 is a return loss diagram and isolation curve diagram of the antenna structure 100 shown in FIG. 23 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency
  • the unit is GHz
  • the ordinate represents the return loss coefficient
  • the unit is dB.
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB.
  • the operating frequency bands generated by the first antenna 10 and the second antenna 20 are basically the same, and the central operating frequency is about 2 GHz, that is, the operating frequency bands of the first antenna 10 and the second antenna 20 The frequency band is at high frequency.
  • the isolation between the first antenna 10 and the second antenna 20 at the central operating frequency is about -15 dB, that is, there can be a relatively good isolation between the first antenna 10 and the second antenna 20 .
  • FIG. 25 is a comparison diagram between the antenna efficiency of the first antenna 10 when the antenna structure 100 shown in FIG. 23 works and the antenna efficiency when the first antenna 10 works alone.
  • the abscissa of Fig. 25 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 25 is the efficiency curve of the first antenna 10 of the antenna structure 100 shown in FIG. 23
  • curve b in FIG. 25 is the curve when the first antenna 10 works alone.
  • the antenna efficiency of the first antenna 10 of the antenna structure 100 in this embodiment is reduced by about 0.5 dB compared with the antenna efficiency in the working mode when the first antenna 10 works alone.
  • the antenna working efficiency of the first antenna 10 will decrease by about 0.5 dB, compared with the first radiator 11
  • the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20
  • the working efficiency of the first antenna 10 decreases. to a lesser extent.
  • the degree of decrease in the working efficiency of the second antenna 20 can also be small.
  • the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, so that the isolation between the first antenna 10 and the second antenna 20 can be improved, and at the same time, it is possible to avoid damage to the first antenna 10. Work efficiency with the second antenna 20 has a big influence.
  • Fig. 26 shows the radiation pattern of the first antenna 10 of the antenna structure 100 in the embodiment shown in Fig. 23, and Fig. 27 shows the antenna structure 100 in the embodiment shown in Fig. 23
  • the radiation pattern of the second antenna 20 is complementary to the radiation pattern of the second antenna 20. Therefore, the envelope correlation coefficient (envelope correlation coefficient, ECC) of the first antenna 10 and the second antenna 20 in this embodiment is ) is better, and the ECC is about 0.01.
  • ECC envelope correlation coefficient
  • FIG. 28 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 28 and the embodiment shown in FIG. 12 is that in this embodiment, only the first radiator 11 has an "L"-shaped structure, the second radiator 21 has a linear structure, and the first radiator The first section 11a of the body 11 is located on the side of the first edge 41, the second section 11b of the first radiator 11 is located on the side of the second edge 42, and the second radiator 21 is also located on the side of the second edge 42 .
  • the second radiator 21 may also have an "L"-shaped structure, and the first radiator 11 may have a linear structure.
  • the first radiator 11 includes a first end 111 and a second end 112, and the first end 111 is located in the first section 11a of the first radiator 11 and is far away from the second section. 11b, the second end 112 is located at the end of the second section 11b of the first radiator 11 away from the first section 11a; the second radiator 21 includes a third end 211 and a fourth end 212, the third end 211 is closer to the first radiator 11 relative to the fourth end 212; the first end 111 and the second end of the first radiator 11 112 are open ends, the third end 211 of the second radiator 21 is an open end, and the fourth end 212 of the second radiator 21 is connected to the floor 40 .
  • the second end 112 of the first radiator 11 is the first open end of the first radiator 11
  • the first end 111 of the first radiator 11 is the third open end of the first radiator 11
  • the third end 211 of the second radiator 21 is a second open end
  • the second end 112 of the first radiator 11 is opposite to the third end 211 of the second radiator 21 and forms a gap 13
  • the decoupling circuit 30 is connected to the second terminal 112 of the first radiator 11 and the third terminal 211 of the second radiator 21 .
  • the first radiator 11 may have only one open end, and the second radiator 21 may have two open ends.
  • FIG. 29 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application. The structural difference between the antenna structure 100 in this embodiment and the antenna structure 100 shown in FIG. 28 is that in this embodiment, the first radiator 11 includes only one open end, and the second radiator 21 includes two open ends. Specifically, the second end 112 of the first radiator 11 is the first open end of the first radiator 11 , and the first end 111 of the first radiator 11 is connected to the floor 40 .
  • Both the third end 211 and the fourth end 212 of the second radiator 21 are open ends, wherein the third end 211 of the second radiator 21 is a second open end, and the fourth end 212 is a fourth open end.
  • the end surface of the first radiator 11 close to the second end 112 is opposite to the end surface of the second radiator 21 close to the third end 211 to form a gap 13, and the decoupling circuit 30 is connected to the first radiator The second end 112 of 11 and the third end 211 of the second radiator 21 .
  • the direction of the dotted arrow near the first radiator 11 in FIG. 28 is the schematic direction of the current when the first radiator 11 generates resonance in the 1/4 wavelength mode.
  • the point near the first radiator 11 in FIG. 28 The direction of the dashed arrow is the schematic direction of the current when the first radiator 11 generates resonance in the 1/2 wavelength mode.
  • the section between the first ground point A of the first radiator 11 and the end face of the first radiator 11 close to the first end 111 can generate resonance in the 1/4 wavelength mode
  • the first The section of the radiator 11 between the end surface close to the first end 111 and the end surface close to the second end 112 can generate resonance in a 1/2 wavelength mode.
  • the first radiator 11 in this embodiment can generate resonance signals with wavelengths in two different modes.
  • the section of the second radiator 21 between the end surface close to the third end 211 and the end surface close to the fourth end 212 (that is, the second radiator 21 ) can also generate 1/4 wavelength mode resonance, and the resonance of the 1/4 wavelength mode generated by the second radiator 21 in this embodiment has the same working frequency band as the resonance of the 1/4 wavelength mode generated by the first radiator 11 .
  • FIG. 30 is a return loss diagram and isolation curve diagram of the antenna structure 100 shown in FIG. 28 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • the unit is dB.
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB. It can be seen from FIG.
  • the working frequency band of the first antenna 10 in the 1/4 wavelength mode is basically the same as that of the second antenna 20 , and the central working frequency is about 0.81 GHz.
  • the isolation between the first antenna 10 and the second antenna 20 at the central operating frequency of the 1/4 wavelength mode is about -15dB, that is, between the first antenna 10 and the second antenna 20 Can have better isolation.
  • FIG. 31 is an antenna efficiency diagram of the first antenna 10 and an antenna efficiency diagram of the second antenna 20 of the antenna structure 100 shown in FIG. 28 .
  • the abscissa in FIG. 31 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in Fig. 31 is the efficiency curve diagram of the first antenna 10 of the antenna structure 100 shown in Fig. 28 in the free state
  • curve b in Fig. 31 is the efficiency curve diagram of the second antenna 20 of the antenna structure 100 in the free state .
  • the working efficiency of the first antenna 10 of the antenna structure 100 in the free state of this embodiment is about -4dBi, and the working efficiency of the second antenna 20 of the antenna structure 100 in the free state is less than -3.3dBi. In other words, both the first antenna 10 and the second antenna 20 of this embodiment can have better working efficiency.
  • FIG. 32 is a graph comparing the antenna efficiency of the first antenna 10 when the antenna structure 100 shown in FIG. 28 works and the antenna efficiency when the first antenna 10 works alone.
  • the abscissa of FIG. 32 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 32 is the efficiency curve of the first antenna 10 of the antenna structure 100 in this embodiment
  • curve b in FIG. 32 is the curve when the first antenna 10 works alone.
  • the antenna efficiency of the first antenna 10 of the antenna structure 100 in this embodiment is reduced by about 0.5 dB compared with the antenna efficiency when the first antenna 10 works alone.
  • FIG. 33 is a comparison diagram of the antenna efficiency of the second antenna 20 of the antenna structure 100 shown in FIG. 28 and when the second antenna 20 works alone. The abscissa in Fig.
  • Curve a in FIG. 33 is the efficiency curve of the second antenna 20 of the antenna structure 100 of this embodiment
  • curve b in FIG. 33 is the curve when the second antenna 20 works alone.
  • the antenna efficiency of the second antenna 20 of the antenna structure 100 in this embodiment is lowered by about 1 dB compared with the antenna efficiency when the second antenna 20 works alone.
  • the antenna structure 100 in this embodiment compared with the antenna structure in which the first radiator 11 and the second radiator 21 are located on the same side of the floor 40, in this embodiment, the first antenna After the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20 , the working efficiency of the first antenna 10 and the second antenna 20 decrease to a small extent. That is, in this embodiment, the decoupling circuit 30 is connected between the first antenna 10 and the second antenna 20, so that the isolation between the first antenna 10 and the second antenna 20 can be improved, and at the same time, it is possible to avoid damage to the first antenna 10. Work efficiency with the second antenna 20 has a big influence.
  • FIG. 34 shows the radiation pattern of the first antenna 10 of the antenna structure 100 in the embodiment shown in FIG. 28 working in the 1/4 wavelength mode
  • FIG. A radiation pattern of the second antenna 20 of the antenna structure 100 in the embodiment is shown.
  • the radiation pattern of the first antenna 10 working in the 1/4 wavelength mode is complementary to the radiation pattern of the second antenna 20. Therefore, the envelopes of the first antenna 10 and the second antenna 20 in this embodiment are The correlation coefficient (envelope correlation coefficient, ECC) is good, and the ECC is about 0.15.
  • ECC envelope correlation coefficient
  • the first antenna 10 and the second antenna 20 can be used as a multiple-input multiple-output system (Multiple-Input Multiple-Output, MIMO) of the electronic device 1000, and the first antenna 10 and the second antenna 20 can also be used as A main antenna and a diversity antenna of the electronic device 1000 .
  • MIMO Multiple-Input Multiple-Output
  • FIG. 36 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application.
  • the first radiator 11 and the second radiator 21 both include an open end, and the first radiator 11 and the second radiator Each body 21 can produce two different working modes.
  • the decoupling filter circuit 30 is an inductive decoupling circuit. When the first radiator 11 and the second radiator 21 switch between different operating frequencies, the decoupling filter circuit 30 can also present decoupling inductances of different sizes.
  • the first end 111 of the first radiator 11 is connected to the floor 40, and the second end 112 is an open end; the third end 211 of the second radiator 21 is an open end, The fourth end 212 of the second radiator 21 is connected to the floor 40 .
  • the second end 112 of the first radiator 11 is opposite to the third end 211 of the second radiator 21 and forms a gap 13, and the decoupling circuit 30 is connected to the second end 112 of the first radiator 11 and the between the third ends 211 of the second radiator 21 .
  • the decoupling circuit 30 is an inductive decoupling circuit as shown in FIG. 6b.
  • the inductance value of the first inductor 31a is about 29nH
  • the inductance value of the second inductor 31b is about 15nH
  • the inductance value of the third inductor 31c is about 72nH
  • the capacitance value of the capacitor 33 is about 0.6pF
  • the effective inductance is about 6.2nH, which is different from the inductance value of the third inductor 31c.
  • both the first radiator 11 and the second radiator 21 can generate two working modes.
  • the direction of the dotted arrow near the first radiator 11 and the second radiator 21 in Fig. 36 is the schematic direction of the current when the first radiator 11 and the second radiator 21 generate resonance in the 1/4 wavelength mode.
  • the direction of the dotted line arrow near the radiator 11 and the second radiator 21 is the schematic direction of the current when the first radiator 11 and the second radiator 21 generate resonance in the 1/2 wavelength mode.
  • the section between the first feeding point C of the first radiator 11 and the end face of the first radiator 11 near the second end 112 can generate a resonance of 1/4 wavelength mode.
  • a section of the radiator 11 between the end surface close to the first end 111 and the end surface close to the second end 112 can generate a resonance of a 1/2 wavelength mode.
  • the first radiator 11 in this embodiment can generate resonance signals with wavelengths in two different modes.
  • the section between the second feeding point D of the second radiator 21 and the end face of the second radiator 11 near the third end 113 can generate a resonance of the 1/4 wavelength mode, and this embodiment
  • the working frequency band of the resonance of the 1/4 wavelength mode generated by the second radiator 21 is basically the same as that of the resonance of the 1/4 wavelength mode generated by the first radiator 11 .
  • the section of the second radiator 21 between the end surface close to the fourth end 212 and the end surface close to the third end 213 can also generate 1/2 wavelength mode resonance, and the second radiator in this embodiment
  • the working frequency band of the resonance of the 1/2 wavelength mode generated by 21 and the resonance of the 1/2 wavelength mode generated by the first radiator 11 is basically the same.
  • FIG. 37 is a return loss diagram and isolation curve diagram of the antenna structure 100 shown in FIG. 36 .
  • curve a is the return loss curve of the first antenna 10
  • curve b is the return loss curve of the second antenna 20
  • the abscissa of curve a and curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB. It can be seen from FIG.
  • the operating frequency band of the first antenna 10 in the 1/4 wavelength mode is basically the same as that of the second antenna 20 in the 1/4 wavelength mode, and the center operating frequencies are about 2.5GHz.
  • the working frequency band of the first antenna 10 in the 1/2 wavelength mode is basically the same as that of the second antenna 20 in the 1/2 wavelength mode, and the central working frequency is about 0.85 GHz.
  • the operating frequencies of the first antenna 10 and the second antenna 20 are relatively high, both about 2.5 GHz, which can be applied to 2.4GWIFi or N41 working frequency band.
  • the decoupling frequency of the antenna module 100 is about 2.5 GHz, which can allow the signal of the first radiator 11 to be transmitted to the second radiator 21 .
  • Equivalent to the size of the inductance connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 is the size of the equivalent inductance of the filter circuit (about 6.2nH), thereby ensuring the first
  • the antenna 10 in the 1/4 wavelength mode can have good isolation from the second antenna 20 in the 1/4 wavelength mode.
  • the isolation between the first antenna 10 in the 1/4 wavelength mode and the second antenna 20 in the 1/4 wavelength mode is about -13 dB.
  • the working frequencies of the first antenna 10 and the second antenna 20 are relatively low, both about 0.85 GHz.
  • the decoupling frequency of the antenna module 100 is about 0.85 GHz
  • the filter circuit is equivalent to an open circuit. It is equivalent to connecting the third inductor 31c (about 72nH) between the first open end of the first radiator 11 and the second open end of the second radiator 21, so as to ensure that the first antenna 10 operates in the 1/2 wavelength mode It can have good isolation from the second antenna 20 in the 1/2 wavelength mode.
  • the isolation between the first antenna 10 in the 1/2 wavelength mode and the second antenna 20 in the 1/2 wavelength mode is about -13 dB.
  • an inductive decoupling circuit 30 is connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 to ensure that the first radiation
  • the inductance value of the equivalent inductance connected between the first open end of the first radiator 11 and the second open end of the second radiator 21 can change accordingly, In order to ensure that there is always a good isolation between the first antenna 10 and the second antenna 20 .
  • FIG. 38 is an antenna efficiency diagram of the first antenna 10 and an antenna efficiency diagram of the second antenna 20 of the antenna structure 100 shown in FIG. 36 .
  • the abscissa of Fig. 38 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 38 is the efficiency curve diagram of the first antenna 10 of the antenna structure 100 shown in FIG. 36 in the free state
  • curve b in FIG. 38 is the efficiency curve diagram of the second antenna 20 of the antenna structure 100 in the free state .
  • the working efficiency of the first antenna 10 of the antenna structure 100 in the free state of this embodiment is less than -3.8dBi, and the working efficiency of the second antenna 20 of the antenna structure 100 in the free state is less than -4.7dBi. In other words, both the first antenna 10 and the second antenna 20 of this embodiment can have better working efficiency.
  • one of the first radiator 11 and the second radiator 21 includes a first sub-radiator and a second sub-radiator arranged at intervals, wherein the first sub-radiator The whole of the second radiator is located on one side of the second sub-radiator, and the whole of the other one of the first radiator and the second radiator is located on the other side of the second sub-radiator.
  • the end of the second sub-radiator away from the first sub-radiator is the open end of the first radiator 11 or the second radiator 21, and one end of the coupling circuit is connected to the end of the second sub-radiator away from the first sub-radiator. Connected at one end.
  • the first radiator 11 or the second radiator 21 includes a first sub-radiator and a second sub-radiator arranged at intervals.
  • the user's hands or other structures block the The gap 13 between the first radiator 11 and the second radiator 21, so that when the user's hand or other structure connects the open end of the first radiator 11 and the open end of the second radiator 21, the first antenna 10 and the second radiator 21
  • the isolation between the second antennas 20 does not deteriorate sharply.
  • FIG. 39 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application.
  • the first radiator 11 includes a first sub-radiator 113 and a second sub-radiator 114 arranged at intervals, wherein the second The sub-radiator 114 is closer to the second radiator 21 than the first sub-radiator 113 , and the first sub-radiator 113 and the second sub-radiator 114 can be coupled to each other.
  • the first sub-radiator 113 and the second sub-radiator 114 are respectively located on two sides of the gap 14 .
  • both the grounding position A and the feeding position of the first radiator 11 are located on the first sub-radiator 113 .
  • the end of the second sub-radiator 114 away from the first sub-radiator 113 is the first open end of the first radiator 11, and one end of the band-stop coupling circuit 30 in this embodiment is connected to the second The other end of the second radiator 114 is connected to the second radiator 21 .
  • the first radiator 11 and the second radiator 21 are both "L" shaped structures, part of the first section 11a of the first radiator 11 is the second sub-radiator 114, the first radiator 11 Part of the first section 11 a and the second section 11 b form the first sub-radiator 113 .
  • the first sub-radiator 113 and the second radiator 21 have a symmetrical structure, and are symmetrically arranged on two opposite sides of the floor 40 .
  • the first sub-radiator 113 of the first radiator 11 has the same structure as the second radiator 21 (including the same shape and size), and the second section of the first radiator 11 11b and the fourth section 21b of the second radiator 21 are respectively arranged on one side of the second edge 42 and one side of the third edge 43 of the floor 40, and the first sub-radiator 113 includes part of the first section 11a, Both the second sub-radiator 114 and the fourth section 21 b of the second radiator 21 are disposed on one side of the first edge 41 of the floor 40 .
  • the first sub-radiator 113 and the second radiator 21 have a "symmetrical structure" means that the first sub-radiator 113 and the second radiator 21 can be substantially symmetrical along a virtual axis of symmetry, Basic symmetry allows a certain angle error and/or dimensional error, rather than absolute symmetry in the strict mathematical sense.
  • FIG. 40 is a return loss curve and isolation curve of the antenna structure 100 shown in FIG. 39 .
  • the curve a is the return loss curve of the first antenna 10
  • the curve b is the return loss curve of the second antenna 20
  • the abscissa of the curve a and the curve b represents the frequency, and the unit is GHz
  • the ordinate represents the return loss coefficient
  • Curve c is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB.
  • the working frequency bands of the first antenna 10 and the second antenna 20 are basically the same, and the central working frequency is about 0.8 GHz.
  • the isolation between the first antenna 10 and the second antenna 20 at the central operating frequency is about -21 dB, that is, the isolation between the first antenna 10 and the second antenna 20 is relatively good.
  • FIG. 41 is an antenna efficiency diagram of the first antenna 10 and an antenna efficiency diagram of the second antenna 20 of the antenna structure 100 shown in FIG. 39 in a free state.
  • the abscissa in FIG. 41 is frequency, and the unit is GHz; the ordinate is efficiency, and the unit is dBi.
  • Curve a in FIG. 41 is the efficiency curve of the first antenna 10 of the antenna structure 100 shown in FIG. 12 in the free state
  • curve b in FIG. 41 is the efficiency curve of the second antenna 20 of the first antenna 10 in the free state picture.
  • the working efficiency of the first antenna 10 is less than -5.6 dBi, and the working efficiency of the second antenna 20 of the antenna structure 100 in the free state is less than -7.4 dBi.
  • both the first antenna 10 and the second antenna 20 can have better working efficiency.
  • FIG. 42 shows the return loss of the antenna structure 100 in this embodiment when the gap 13 between the first radiator 11 and the second radiator 21 of the antenna structure 100 shown in FIG. 39 is blocked.
  • FIG. 43 shows the gap 14 between the first sub-radiator 113 and the second sub-radiator 114 of the first radiator 11 of the antenna structure 100 shown in FIG. 39 .
  • the return loss curve and isolation curve of the antenna structure 100 shown in FIG. wherein, the curve a in Fig. 42 and Fig. 43 is the return loss curve of the first antenna 10, the curve b in Fig. 42 and Fig.
  • Curve c in FIG. 42 and FIG. 43 is the isolation curve between the first antenna 10 and the second antenna 20, the abscissa represents the frequency, the unit is GHz; the ordinate represents the isolation coefficient, the unit is dB.
  • the second antenna 20 when the gap 13 between the first radiator 11 and the second radiator 21 is blocked by the user's hand or other structures, the second antenna 20 will generate a frequency offset, and the first antenna 10 and the second antenna 20 The isolation between them can be about -15dB; when the gap 14 between the first sub-radiator 113 and the second sub-radiator 114 of the first radiator 11 is blocked by the user's hand or other structures, the first antenna 10 Frequency offset will occur, and the isolation between the first antenna 10 and the second antenna 20 can be about -12.5dB. Compared with when the gap 13 between the first radiator 11 and the second radiator 21 of the embodiment shown in FIG. 3 is blocked, the isolation between the first antenna 10 and the second antenna 20 is only about -6dB.
  • the first antenna 10 as a structure including the first sub-radiator 113 and the second sub-radiator 114 arranged at intervals, it is possible to alleviate the problem caused by blocking the first radiator by the user's hand or other structures.
  • the gap 14 between the first radiator 113 and the second radiator 114 of 11 or the gap 13 between the first radiator 11 and the second radiator 21 is blocked, the gap between the first antenna 10 and the second antenna 20
  • the reduction of the isolation degree ensures that the first antenna 10 and the second antenna 20 can always have a better isolation degree.
  • the electrical length of the second sub-radiator 114 is less than 1/4 of the wavelength of the decoupling frequency band of the antenna structure 100, so as to prevent the length of the second sub-radiator 11 from being too long and affecting the first sub-radiator.
  • the arrangement of the radiator 113 and the second radiator 21 ensures that at least one of the first sub-radiator 113 and the second radiator 21 can have an "L"-shaped structure.
  • the decoupling frequency band is the same working frequency band of the first radiator 11 and the second radiator 21 or a working frequency band with a difference of less than 1 GHz.
  • the operating frequency bands of the first radiator 11 and the second radiator 21 are both 0.8 GHz, that is, the decoupling frequency band of the antenna structure 100 in this embodiment is 0.8 GHz, and the electrical length of the second sub-radiator 114 is That is, it is less than 1/4 of the wavelength of the antenna mode with an operating frequency of 0.8 GHz.
  • FIG. 39 the difference between FIG. 39 and FIG. 3 can also be applied to the foregoing embodiments.
  • a feed point may also be provided on the second sub-radiator 114 located between the first sub-radiator 113 and the second radiator 21, and the RF front-end 140 may be connected to the feed point,
  • the second sub-radiator 114 can be fed with power, so that the second sub-radiator 114 can perform signal radiation as a single radiation branch, increasing the working mode of the antenna.
  • FIG. 44 is a schematic structural diagram of an antenna structure 100 according to another embodiment of the present application. The difference between the antenna structure 100 in this embodiment and the antenna structure 100 shown in FIG.
  • the second sub-radiator 114 and the feed point on the second radiator 21 are connected to feed the first sub-radiator 113, the second sub-radiator 114 and the second radiator 21, so that the first sub-radiator
  • the body 113 and the second radiator 21 can generate a low-frequency working frequency band (such as a low-frequency frequency band in sub-6G), and the second sub-radiator 114 can generate a high-frequency working frequency band (such as a high-frequency frequency band in sub-6G).
  • the isolation between the first antenna 10 and the second antenna 20 can be improved.
  • at least one of the first radiator 11 and the second radiator 21 is an "L"-shaped structure, and the first section and the second section of the first radiator 11 or the second radiator 21 of the "L"-shaped structure
  • the sections are respectively located on adjacent two sides of the floor 40 (such as one side of the first edge 41 and one side of the second edge 42, or one side of the first edge 41 and one side of the third edge 43), which can further Improve the isolation between the first antenna 10 and the second antenna 20, and reduce the envelope correlation coefficient between the first antenna 10 and the second antenna 20, and can alleviate the first opening of the first radiator 11
  • the first radiator 11 or the second radiator 21 is set to include the first sub-radiator 113 and the second sub-radiator 114 arranged at intervals, so that the user's hand or other When the structure blocks the gap 13 between the first radiator 11 and the second radiator 21 , the isolation between the first antenna 10 and the second antenna 20 is greatly reduced.

Abstract

本申请提供一种天线结构及包括该天线结构的电子设备。该天线结构包括第一辐射体及第二辐射体,第一辐射体的第一开放端与第二辐射体的第二开放端相对且间隔。通过在第一开放端与第二开放端之间连接解耦电路,能够提高第一天线与第二天线之间的隔离度。第一辐射体包括相交的第一区段及第二区段,且第一区段及第二区段分别位于地板的相邻两侧,能够进一步提高第一天线与第二天线之间的隔离度。

Description

天线结构及电子设备
本申请要求于2021年07月16日提交中国专利局、申请号为202110810416.X、申请名称为“天线结构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及天线结构及电子设备。
背景技术
随着通信技术的不断发展,需要在手机等电子设备内布局更多的天线,而手机内部器件如摄像头、电池规格等的提升使得它们所占空间越来越大,因此天线的可用空间会进一步被压缩,因此多天线的紧凑化设计成为近几年亟需解决的问题,而多天线紧凑化设计的首要技术难点是如何实现天线间隔离度问题。
发明内容
本申请提供一种天线及电子设备,旨在提高天线之间的隔离度,进而提高电子设备的通信效果。
第一方面,本申请提供一种天线结构,该天线结构包括第一辐射体、第二辐射体、地板及解耦电路。所述地板包括相邻且相交的第一边缘和第二边缘。所述第一辐射体包括相交的第一区段及第二区段,所述第一区段位于所述地板的所述第一边缘的一侧并与所述第一边缘间隔设置,所述第二区段位于所述地板的所述第二边缘的一侧并与所述第二边缘间隔设置。所述第一辐射体包括第一开放端,所述第二辐射体包括第二开放端,所述第一开放端与所述第二开放端之间形成有间隙,所述第一辐射体整体位于所述间隙的一侧,所述第二辐射体整体位于所述间隙的另一侧;所述解耦电路连接所述第一开放端及所述第二开放端。
本申请中,间隔的第一开放端与所述第二开放端之间会形成等效电容,通过在第一开放端与第二开放端之间连接解耦电路,解耦电路能够与第一开放端与第二开放端之间形成的等效电容形成带阻滤波器,从而阻止第一天线与第二天线之间的电流耦合,进而提高第一天线与第二天线之间的隔离度。
并且,本申请中,第一辐射体包括相交的第一区段及第二区段,且第一区段及所述第二区段分别位于所述地板的相邻的两侧,第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流没有大面积的反向,因此,在第一辐射体与第二辐射体之间连接解耦电路以后,在提升第一天线与第二天线之间的隔离度的同时,也不会对第一天线或第二天线的性能造成大的影响。
并且,第一辐射体包括相交的第一区段及第二区段,因而第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流能够相交呈一定的角度,而不是激励地板分别产生背向相反的两个电流,因而能够进一步的提高第一天线与第二天线的之间的隔离度。并且,本申请实施方式中,第一天线与第二天线的辐射方向图能够互补,因此,第一天线与第二天线之间的包络相关系数(ECC)能够较小。
一些实施方式中,所述地板还包括第三边缘,所述第一边缘连接于所述第二边缘与所述第三边缘之间,且所述第三边缘与所述第一边缘相邻且相交,其中所述第一边缘和所述第二 边缘相交的角度,和所述第一边缘和所述第三边缘相交的角度在80°至100°的范围内。
所述第一辐射体的端部包括第一端及第二端,所述第一端为所述第一辐射体的第一区段远离所述第二区段的一端,所述第二端为所述第一辐射体的所述第二区段远离所述第一区段的一端。所述第一端为所述第一开放端,所述第二端与所述地板连接或者所述第二端为所述第一辐射体的第三开放端。
本申请实施方式中,所述第一端为所述第一开放端,所述第二端与所述地板连接时,即所述第一辐射体的一端为开放端(即第一开放端),不与地板连接;另一端(即第二端)为接地端,与地板连接。本申请一些实施方式中,第一天线能够产生1/4波长模式的天线模式。所述第一端为所述第一开放端,所述第二端为第三开放端时,第一辐射体的两端均为开放端(即第一开放端及第三开放端),即第一辐射体的两端均不与地板连接。本申请一些实施方式中,第一天线能够产生1/4波长模式的天线模式及1/2波长模式的天线模式。
一些实施方式中,所述第二辐射体包括相交的所述第三区段及所述第四区段;所述第二辐射体的所述第三区段位于所述第一边缘的一侧并与所述第一边缘间隔设置,所述第二辐射体的所述第四区段位于所述第三边缘的一侧并与所述第三边缘间隔设置。所述第二辐射体的端部包括第三端及第四端,所述第三端为所述第二辐射体的所述第三区段远离所述第二辐射体的所述第四区段的一端,所述第四端为所述第二辐射体的所述第四区段远离所述第二辐射体的所述第三区段的一端。所述第三端为所述第二开放端,所述第四端与所述地板连接或者所述第四端为所述第二辐射体的第四开放端。
本申请实施方式中,第一辐射体包括相交的第一区段及第二区段,第二辐射体包括相交的第三区段及第四区段,第一辐射体可以为一端为开放端、另一端为接地端的结构,也可以为两端均为开放端的结构;第二辐射体为一端为开放端、另一端为接地端的结构,也可以为两端均为开放端的结构。第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流没有大面积的反向,因此,在第一辐射体与第二辐射体之间连接解耦电路以后,在提升第一天线与第二天线之间的隔离度的同时,也不会对第一天线或第二天线的性能造成大的影响。并且,第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流能够相交呈一定的角度,而不是激励地板分别产生背向相反的两个电流,因而能够进一步的提高第一天线与第二天线的之间的隔离度。本申请一些实施方式中,第二天线也能够产生1/4波长模式的天线模式和/或1/2波长模式的天线模式。
一些实施方式中,所述第二辐射体的整体均位于所述第二边缘的一侧并与所述第二边缘间隔设置,且所述第二辐射体位于所述第一辐射体的所述第二区段远离所述第一区段的一侧。所述第一辐射体的端部包括第一端及第二端,所述第一端为所述第一辐射体的第一区段远离所述第二区段的一端,所述第二端为所述第一辐射体的所述第二区段远离所述第一区段的一端。所述第二辐射体的端部包括第三端及第四端,所述第三端相对所述第四端靠近所述第一辐射体。所述第一辐射体的所述第二端为所述第一开放端,所述第二辐射体的所述第三端为所述第二开放端。所述解耦电路连接所述第一辐射体的所述第二端及所述第二辐射体的所述第三端。
本申请实施方式中,仅有第一辐射体包括相交的第一区段及第二区段,第二辐射体为直线状的结构。第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流没有大面积的反向,因此,在第一辐射体与第二辐射体之间连接解耦电路以后,在提升第一天线与第二天线之间的隔离度的同时,也不会对第一天线或第二天线的性能造成大的影响。并且,第一辐射体激励地板产生的地电流与第二辐射体激励地板产生的地电流能够相交呈一定的角 度,而不是激励地板分别产生背向相反的两个电流,因而能够进一步的提高第一天线与第二天线的之间的隔离度。本申请一些实施方式中,第二天线也能够产生1/4波长模式的天线模式及1/2波长模式的天线模式。
一些实施方式中,所述第一辐射体还包括第三开放端,所述第一端为所述第三开放端;所述第二辐射体的所述第四端与所述地板连接。本实施方式中,第一辐射体为两端均为开放端的结构;第二辐射体为包括一个开放端及一个接地端。
一些实施方式中,所述第一辐射体的第一工作模式的工作频段,与所述第二辐射体的第二工作模式的工作频段相同或相差小于1GHz。
一些实施方式中,所述第一辐射体的所述第一工作模式的工作频段,和第二辐射体的所述第二工作模式的工作频段是sub-6G的任一工作频段。一些实施方式中,所述第一辐射体或所述第二辐射体中的一个辐射体包括间隔设置的第一子辐射体及第二子辐射体,所述第一子辐射体的整体位于所述第二子辐射体的一侧,所述所述第一辐射体或所述第二辐射体中的另一个辐射体的整体位于所述第二子辐射体的另一侧,所述第一子辐射体与所述第二子辐射体耦合,所述第二子辐射体远离所述第一子辐射体的一端为所述第一开放端或所述第二开放端。
本申请实施方式中,第一辐射体或所述第二辐射体包括间隔设置的第一子辐射体及第二子辐射体,当用户的手或者其它的结构遮挡第一辐射体与第二辐射体之间的间隙,从而用户的手或者其它的结构连接第一辐射体的开放端与第二辐射体的开放端时,第一天线与第二天线之间的隔离度不会产生急剧的恶化。
一些实施方式中,所述第二子辐射体的电长度小于所述天线结构的解耦频段的波长的1/4,所述解耦频段与所述第一辐射体的所述第一工作模式的工作频段相同,或与所述第二辐射体的所述第二工作模式的工作频段相同,从而避免第二子辐射体的长度过长而影响第一子辐射体及第二辐射体的排布,保证第一子辐射体、第二辐射体中至少一者可以包括第一区段及第二区段。
一些实施方式中,所述第二子辐射体上设有馈电点,馈电点用于接收信号馈入,使得第二子辐射体能够作为单独的辐射枝节进行信号辐射,增加天线的工作模式。
一些实施方式中,所述解耦电路呈感性,所述解耦电路的等效电感值与所述第一辐射体的所述第一工作模式的工作频段,和/或所述第二辐射体的所述第二工作模式的工作频段相关。
一些实施方式中,所述解耦电路包括集总电感、或分布式电感。一些实施方式中,所述解耦电路包括并联设置的第一支路及第二支路,所述第一支路的等效电感值与所述第二支路的等效电感值大小不同。一些实施方式中,所述第一支路为呈感性的滤波电路,所述第二支路包括集总电感或者分布式电感,从而保证在第一辐射体与第二辐射体的工作频率变换时,连接于第一辐射体的第一开放端与第二辐射体的第二开放端之间的解耦电路的电感值能够相应变化,以保证第一天线与第二天线之间始终能够保证有较好的隔离度。
一些实施方式中,所述第一支路包括电容、第一电感及第二电感,所述电容与所述第一电感并联后与所述第二电感串联;第二支路包括第三电感。
一些实施方式中,所述解耦电路连接所述第一开放端的第一连接点,所述第一连接点距离所述第一开放端的端面在0-2mm范围内,和/或所述解耦电路连接所述第二开放端的第二连接点,所述第二连接点距离所述第二开放端的端面在0-2mm范围内。解耦电路分别连接两个辐射体的开放端的末端,并且连接点都位于端面以内0-2mm的范围内,可以保证第一天线和第二天线之间较好的隔离度,并节省电子设备的空间。
第二方面,本申请还提供一种电子设备,该电子设备包括射频前端及上述的天线结构, 所述第一辐射体上设有第一馈电点,所述第二辐射体上设有第二馈电点,所述射频前端连接所述第一馈电点及所述第二馈电点。由于本申请的天线结构的第一天线与第二天线之间能够有较好的隔离度,且单个天线的天线效率不会有大的降低,从而保证本申请的电子设备的个天线能够设计的更加的紧凑,且电子设备能够有较好的射频信号传输功能。
一些实施方式中,所述电子设备包括金属边框所述金属边框包括所述第一辐射体及所述第二辐射体,从而能够减小天线结构在电子设备中占用的空间。
一些实施方式中,所述地板包括一个或多个接地的中板、一个或多个电路板的接地层、一个或多个接地金属件中的任一种,或者任两个或两个以上的组合。
一些实施方式中,电子设备包括主板,主板为电路板,主板的接地层可以作为地板。或者,一些其它实施方式中,主板的接地层与中板连接,中板与主板的接地板共同作为地板。或者,一些实施方式中,电子设备还包括小板,小板也为电路板,主板与小板的接地层均可以作为地板,或者,主板的接地层和/或小板的接地层和/或中板作为地板。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1为本申请的一种实施方式的电子设备的结构示意图。
图2为图1所示的电子设备的内部结构示意图。
图3为本申请一种实施方式的天线结构的拓扑结构示意图。
图4a为本申请的另一种实施方式的天线结构的拓扑结构示意图。
图4b为本申请的另一种实施方式的天线结构的拓扑结构示意图。
图5为本申请的另一种实施方式的电子设备的内部结构示意图。
图6a为本申请的另一种实施方式的解耦电路的结构示意图。
图6b为本申请的另一种实施方式的解耦电路的结构示意图。
图6c为本申请的另一种实施方式的解耦电路的结构示意图。
图7为图3所示实施方式的天线结构的回波损耗曲线图及隔离度曲线图。
图8为图3所示实施方式的天线结构工作时的第一天线的效率与第一天线单独工作时的效率的对比图。
图9为图3所示实施方式的天线结构工作时的第二天线的效率与第二天线单独工作时的效率的对比图。
图10为图3所示实施方式中的天线结构的第一天线的辐射方向图。
图11为图3所示实施方式中的天线结构的第二天线的辐射方向图。
图12为本申请的另一种实施方式的天线结构的拓扑结构示意图。
图13为图12所示实施方式的天线结构的回波损耗曲线图及隔离度曲线图。
图14为图12所示的天线结构工作时的第一天线的天线效率与第一天线单独工作时的天线效率的对比图。
图15为图12所示天线结构的第一天线的工作模式为1/4波长模式时的辐射方向图。
图16为图12所示天线结构的第二天线的工作模式为1/4波长模式时的辐射方向图。
图17为本申请的另一种实施方式的天线结构的拓扑结构示意图。
图18为图17所示的天线结构的回波损耗曲线图及隔离度曲线图。
图19为图17所示的天线结构工作时的第一天线的效率与第一天线单独工作时的效率的 对比图。
图20为图17所示的天线结构工作时的第二天线的效率与第二天线单独工作时的效率的对比图。
图21为图17所示实施方式中的天线结构的第一天线的辐射方向图。
图22为图17所示实施方式中的天线结构的第二天线的辐射方向图。
图23为本申请另一实施方式的天线结构的结构示意图。
图24为图23所示的天线结构的回波损耗图及隔离度曲线图。
图25为图23所示的天线结构工作时的第一天线的天线效率与第一天线单独工作时的天线效率的对比图。
图26为图23所示实施方式中的天线结构的第一天线的辐射方向图。
图27为图23所示实施方式中的天线结构的第二天线的辐射方向图。
图28为本申请另一实施方式的天线结构的结构示意图。
图29为本申请的另一种实施方式的天线结构的结构示意图。
图30为图28所示的天线结构的回波损耗图及隔离度曲线图。
图31为图28所示的天线结构的第一天线的天线效率图与第二天线的天线效率图。
图32为图28所示的天线结构工作时的第一天线的天线效率与第一天线单独工作时的天线效率的对比图。
图33为图28所示的天线结构的第二天线与第二天线单独工作时的天线效率的对比图。
图34为图28所示实施方式中的天线结构的第一天线在1/4波长模式下工作的辐射方向图。
图35为图28所示实施方式中的天线结构的第二天线的辐射方向图。
图36为本申请另一种实施方式的天线结构的结构示意图。
图37为图36所示的天线结构的回波损耗图及隔离度曲线图。
图38为图36所示的天线结构的第一天线的天线效率图与第二天线的天线效率图。
图39为本申请另一种实施方式的天线结构的结构示意图。
图40为图39所示的天线结构的回波损耗曲线图及隔离度曲线图。
图41为图39所示的天线结构在自由状态下的第一天线的天线效率图与第二天线的天线效率图。
图42为遮挡图39所示的天线结构的第一辐射体与第二辐射体之间的间隙时,天线结构的回波损耗曲线图及隔离度曲线图。
图43为遮挡图39所示的天线结构的第一辐射体的第一子辐射体与第二子辐射体之间的间隙时,天线结构的回波损耗曲线图及隔离度曲线图。
图44为本申请另一种实施方式的天线结构的拓扑结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请中提供一种电子设备,该电子设备包括天线,电子设备能够通过天线进行信号传输。本申请中,电子设备可以为手机、平板电脑、PC、路由器、可穿戴设备等。本申请中,以电子设备为手机为例,对本申请的电子设备进行说明。
请参阅图1及图2,图1所示为本申请的一种实施方式的电子设备1000的结构示意图, 图2所示为图1所示的电子设备1000的内部结构示意图。本实施方式中,电子设备1000包括中框110、主板120、显示屏130、后盖(未示出)及天线结构。显示屏130和后盖都与中框110固定。显示屏130、后盖与中框110固定能够形成收容空间,主板120能够收容于收容空间内。本实施方式中,中框110包括边框111及中板112,边框111围绕中板112设置并与中板112连接。本申请一些实施方式中,边框111与中板112可以为一体成型得到的一体结构;或者边框111与中板112也可以为分别成型得到的独立结构,并通过螺钉、卡扣、弹片等连接件连接或通过焊接、粘接等方式连接。一些实施方式中,也可以将边框111的内侧面向内延伸的凸出件作为连接件,或者将中板112的边缘向边框111延伸的凸出件作为连接件,以通过该连接件连接边框111与中板112。本实施方式中,主板120与中板112固定,以使主板120固定于电子设备1000中。可以理解的是,本申请的其它一些实施方式中,中框110也可以仅包括边框111,而没有中板112,主板120以其它的方式固定于电子设备1000中。
本申请一些实施方式中,主板120上设有射频前端140,射频前端140能够与天线结构信号连接,以将处理后的射频信号传输至天线结构并发送出去,或者将天线结构接收的射频信号进行处理。具体的,本申请一些实施方式中,射频前端140可以包括发射通路和接收通路。发射通路包括功率放大、滤波之类的器件,用于将射频信号进行功率放大、滤波等处理后传输至天线结构,并经天线结构将处理后的射频信号发送出去。接收通路包括低噪声放大器、滤波器等器件,通过接收通路将天线结构接收的射频信号进行处理,以保证有用的射频信号能完整不失真地从空间拾取出来并输送给后级的变频、中频放大等电路。
请一并参阅图2及图3,图3所示为本申请一种实施例的天线结构100的拓扑结构示意图。该天线结构100包括第一天线10、第二天线20、解耦电路30及地板40。
本申请中,地板40能够作为电子设备1000的参考地。本申请一些实施方式中,地板40可以由接地的中板112、电路板的接地层、电子设备1000内置的接地金属件中的任一个形成,或由接地的中板112、所述电路板的接地层中、所述电子设备1000内置的接地金属件的两个或两个以上组合形成。本实施方式中,中框110的中板112接地,中板112作为本实施方式的天线结构100的地板40。或者,本申请其它的一些实施方式中,电子设备1000中的主板120包括接地层,则主板120的接地层可以作为地板40,或者,主板120的接地层与中板112电连接共同作为地板40的至少一部分。或者,一些实施方式中,电子设备1000可以包括一个或多个中板112、和/或一个或多个电路板的接地层、和/或一个或多个接地金属件,本申请中的地板可以是其中任两个或两个以上的组合。举例说明,电子设备1000中还可以包括小板,小板也为包括接地层的电路板,则电子设备1000中的小板可以作为接地层,小板的接地层与主板120的接地层或地板40电连接时,小板的接地层与主板120的接地层或中板112电连接可以共同作为电子设备1000的地板40。本申请实施方式中,地板40包括第一边缘41、第二边缘42及第三边缘43,所述第一边缘41连接于所述第二边缘42与所述第三边缘43之间,且所述第二边缘42与所述第一边缘41相交,所述第三边缘43与所述第一边缘41相交。本申请一种实施方式中,地板40为矩形板。其中,第一边缘41、第二边缘42及第三边缘43为矩形地板的相邻的三条边。本实施方式中,第一边缘41为地板40的一条短边,第二边缘42及第三边缘43分别为地板40的相对的两条长边。第一边缘42及第三边缘43均与第一边缘41垂直相交。需要说明的是,本实施方式的第一边缘41、第二边缘42及第三边缘43为方便对地板40描述而对地板40的边进行的命名。可以理解的是,本申请的其它实施方式中,也可以命名地板40的一条长边为第一边缘41,命名地板40的相对的两条短边分别为第二边 缘42及第三边缘43。例如,请参阅图4a及图4b,图4a所示为本申请的另一种实施方式的天线结构100的拓扑结构示意图,图4b所示为本申请的另一种实施方式的天线结构100的拓扑结构示意图。图4a及图4b所示实施方式中,地板40的一条长边为第一边缘41,地板40的相对的两条短边分别为第二边缘42及第三边缘43。需要说明的是,本申请实施方式中,地板40为矩形指的是地板40的整体轮廓呈矩形,该地板40的边缘可以根据实际需要,矩形轮廓的四个边缘可以具有规则或不规则的开缝/开槽或凸起/突出等,第一边缘41到第四边缘44可以由多条弯折边缘形成,本申请不做限定。
本申请以地板40的整体轮廓呈矩形进行介绍,可以理解的是,地板40的整体轮廓可以不是矩形,例如可以为其他规则或不规则的图形。本申请的地板40具有呈角度依次相交的三条轮廓边缘,边缘与边缘之间相交的角度可以在80°至100°的范围内。如图3中所示的第一边缘41、第二边缘42及第三边缘43依次垂直。需要说明的是,本申请中所述的垂直不是严格数学意义的90°,可允许一定偏差。
本申请中,第一天线10包括第一辐射体11及第一馈电电路12。第一辐射体11上设有第一馈电点C,第一馈电电路12的一端连接射频前端140,另一端连接至第一辐射体11上的第一馈电点C,以将射频前端140处理后的射频信号传输至第一辐射体11,或将第一辐射体11接收到的射频信号传输至射频前端140进行信号处理。需要说明的是,本实施方式中,第一馈电点C为第一辐射体11上的第一馈电电路12与第一辐射体11连接的位置。本实施方式中,第一馈电电路12为馈电线缆。可以理解的是,本申请的其它实施方式中,第一馈电电路12也可以包括电容、电感等调谐元件,从而调整第一辐射体11的电长度,以使得第一辐射体11能够在所需的工作频段下工作。
第二天线20包括第二辐射体21及第二馈电电路22。第二辐射体21上设有第二馈电点D,第二馈电电路22的一端连接射频前端140,另一端连接至第二辐射体21上的第二馈电点D,以将射频前端140处理后的射频信号传输至第二辐射体21,或将第二辐射体21接收到的射频信号传输至射频前端140进行信号处理。需要说明的是,本实施方式中,第二馈电点D为第二辐射体21上的第二馈电电路22与第二辐射体21连接的位置。本实施方式中,第二馈电电路22为馈电线缆。可以理解的是,本申请的其它实施方式中,第二馈电电路22也可以包括电容、电感等调谐元件,从而调整第二辐射体21的电长度,以使得第二辐射体21能够在所需的工作频段下工作。
本实施方式中,边框111为导电材料制成。例如,边框111为金属材料。边框111的一部分能够作为天线结构100的第一辐射体11及第二辐射体21,从而能够减小天线结构100在电子设备1000中占用的空间。并且,本实施方式中,边框111中作为第一辐射体11及第二辐射体21的部分与作为地板40的中板112之间有一定的间距,从而保证第一天线10及第二天线20能够有一定的净空,保证第一天线10及第二天线20能够具有良好的天线效率。
可以理解的是,本申请的其它一些实施方式中,中框110的边框111也可以为其它材质制成,边框111可以不作为天线结构100的第一辐射体11或第二辐射体21。请参阅图5,图5所示为本申请的另一种实施方式的电子设备1000的内部结构示意图。图5所示实施方式中,边框111可以为非导电材料制成。边框111可以为绝缘材料,例如边框111为塑料或玻璃材质。边框111可以作为安装天线结构100的第一辐射体11及第二辐射体21的天线支架,天线结构100的第一辐射体11、第二辐射体21可以固定安装于边框111朝向电子设备1000的收容空间的内表面。
请重新参阅图2及图3,本申请实施方式中,第一辐射体11及第二辐射体12均包括相 对的两个端部,其中,辐射体(第一辐射体11或第二辐射体21)的端部是指连接至辐射体的端面的部分辐射体(例如根据辐射体的长度不同,辐射体的端部可以为辐射体的从端面开始长度为5mm、2mm、或1mm以内的辐射体)。其中,端面是指辐射体的两端的平面,需要说明的是,本申请中所述的平面不是严格数学意义的平面,可允许一定偏差。第一辐射体11的两个端部中包括至少一个开放端,第二辐射体21的两个端部中也包括至少一个开放端。其中,开放端是指辐射体不接地的一端的端部。在本申请的实施方式中,“不接地的一端”指的是从这一端的端面开始长度为四分之一波长的辐射体上没有接地点,也没有耦合的接地区域。本实施方式中,开放端为不接地的一端,从端面开始长度在5mm、2mm、或1mm以内的辐射体。本申请实施方式中,第一辐射体11的至少一个开放端中包括第一开放端,第二辐射体21的至少一个开放端中包括第二开放端。所述第一开放端与所述第二开放端相对并形成间隙13,如图3所示,间隙13的尺寸d为第一辐射体11的第一开放端端面至第二辐射体21的第二开放端端面之间的距离。解耦电路30连接于第一开放端及第二开放端之间。例如,解耦电路30的一端连接于第一辐射体11的第一开放端端面或者包括端面的第一开放端上,解耦电路30的另一端连接于第二辐射体21的第二开放端端面或者包括端面的第二开放端上。又例如,解耦电路30的一端连接于第一辐射体11上距离第一开放端端面5mm以内的位置,例如2mm或1mm以内的位置,解耦电路30的另一端连接于第二辐射体21上距离第二开放端端面5mm以内的位置,例如2mm或1mm以内的位置。本申请实施方式中,解耦电路30可以包括电感31及将电感31与第一开放端及第二开放端连接的走线32,或者,解耦电路30也可以为呈感性的解耦电路。其中,电感31可以为集总电感或分布式电感。本申请实施方式中,解耦电路30可以是带阻解耦电路,解耦电路30能够阻止第一辐射体11产生的工作频段与第二辐射体21产生的工作频段的耦合,从而提高第一天线10与第二天线20之间的隔离度。
本申请实施方式中,第一辐射体11的第一工作模式的谐振频段与第二辐射体21的第二工作模式的工作频段相差小于1GHz,例如第一工作模式的谐振频段与第二工作模式的工作频段相同。其中,第一辐射体11的第一工作模式的工作频段,和第二辐射体21的第二工作模式的工作频段可以都是sub-6G的任一工作频段。在本申请的具体实施方式中将对此进行详细的描述,此处不再赘述。
本申请实施方式中,解耦电路30可以设置于主板40上。一些实施方式中,带阻结构电路30的走线32设于主板40上,电感31设置(例如,键合)于主板40上,并与设于主板40上的走线连接。一些实施方式中,第一辐射体11的第一开放端及第二辐射体21的第二开放端上固定有弹片60,弹片60连接至主板40上的走线32,从而实现第一辐射体11的第一开放端及第二辐射体21的第二开放端与解耦电路30的连接。可以理解的是,本申请的其它实施方式中,第一辐射体11的第一开放端及第二辐射体21的第二开放端与解耦电路30的连接也可以为其它的方式,在此不进行赘述。可以理解的是,解耦电路30还可以设置于其他基板上,例如和主板分离的印制电路板(Printed Circuit Board,可称为PCB),或柔性电路板(Flexible Printed Circuit,可称为FPC),设置有解耦电路30的基板可以通过柔性传输线与主板电连接,在此不进行赘述。
本申请中,所述第一开放端的端面与所述第二开放端的端面之间有间隙13,第一开放端的端面与第二开放端的端面之间可以形成等效电容,通过在第一开放端与第二开放端之间连接解耦电路30,解耦电路30能够与两个开放端的端面之间形成的等效电容形成带阻滤波器,带阻滤波器能够阻止第一天线10与第二天线20之间的电流耦合,进而提高第一天线10与第二天线20之间的隔离度。
本申请实施方式中,解耦电路30包括的电感31的电感值的大小或呈感性的解耦电路的电感值的大小可以看作解耦电路30的等效电感值。当第一天线10的第一辐射体11与第二天线20的第二辐射体21之间的间隙13的宽度不同时,第一开放端的端点与第二开放端的端点之间的等效电容值的大小不同。解耦电路30的等效电感值和开放端之间的等效电容值的设置,可以根据第一天线10与第二天线20的工作频段来设置,从而获得第一天线10及第二天线20在其工作频率下较好的隔离度。本实施方式中的,第一天线10与第二天线20的工作频段包括sub-6G中的任一频段,例如第一天线10与第二天线20可以在低频频段(500MHz~1GHz)、和/或中频频段(1GHz~3GHz)、和/或高频频段(3GHz~6GHz)下进行工作。在本申请一个实施例中,第一天线10的至少一种工作频段与第二天线20的至少一种工作频段相同或者相差小于1GHz,通过在第一开放端与第二开放端之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度。本申请中的“工作频段相同”可以理解为“同频”,应可理解,“工作频段相同”和“同频”指的是第一天线10的至少一种工作频段使得电子设备1000支持第一频段,第二天线20的至少一种工作频段也可以使得电子设备1000支持该第一频段,而不是指第一天线10和第二天线20具有至少一种完全相同的工作频率区间。一些实施方式中,第一辐射体11的工作频段与第二辐射体21的工作频段可以相差小于1GHz以内。例如,一些实施方式中,第一辐射体11的工作频段与第二辐射体21的工作频段可以相差0.9GHz,也可以相差0.5GHz。应可理解,第一辐射体11的工作频段与第二辐射体21的工作频段之间的差值为第一辐射体11的工作频段的中心频率与第二辐射体21的工作频段的中心频率之间的差值。
需要说明的是,本申请实施方式中,当第一辐射体11的工作频段与第二辐射体21的工作频段相同,或者第一辐射体11的工作频段与第二辐射体21的工作频段之间的差值较小时,通过连接第一辐射体11的第一开放端与第二辐射体21的第二开放端的解耦电路30来实现提高第一天线10与第二天线20之间的隔离度,第一辐射体11的工作频段的中心频率或第二辐射体21的工作频段的中心频率即为本申请方式的天线结构100的解耦频率。可以理解的是,本申请的一些实施方式中,第一辐射体11及第二辐射体21均可以有多种工作频段,当第一辐射体11与第二辐射体21的多种工作频段同频或者接近时,天线结构100也可以有多个解耦频率。
本申请实施方式中,解耦电路30包括的电感31为集总电感时,集总电感可以为图3中电感30所表示的元器件。解耦电路30包括的电感31为分布式电感时,分布式电感可以为走线和/或绕线形成的电感。例如,请参阅图6a,图6a所示为本申请的另一种实施方式的解耦电路30的结构示意图。图6a所示实施方式的解耦电路30包括的电感31表示金属走线卷绕形成的分布式电感。
本申请一些实施方式中,解耦电路30为呈感性的解耦电路时,呈感性的解耦电路可以为一个或者多个电感与一个或者多个电容通过并联和/或串联形成得到。请参阅图6b,图6b所示为本申请的另一种实施方式的解耦电路30的结构示意图。图6b所示实施方式的解耦电路30为呈感性的解耦电路,包括并联设置的第一支路A1及第二支路A2,所述第一支路A1为呈感性的滤波电路,所述第二支路A2包括集总电感或者分布式电感。所述第一支路A1的电感值与所述第二支路A2的电感值大小不同。在所述天线结构100的解耦频率分别大于阈值和小于阈值时,所述解耦电路的电感值不同。因此,天线结构100的工作频率(即第一辐射体11与第二辐射体21的工作频率)变换时,连接于第一辐射体11的第一开放端与第二辐射体21的第二开放端之间的解耦电路30的电感值能够相应变化,以保证第一天线10与第二天线20 之间始终能够保证有较好的隔离度。具体的,本申请一些实施方式中,解耦电路30包括三个电感及一个电容33,三个电感分别为第一电感31a、第二电感31b及第三电感31c。第一支路A1包括电容33、第一电感31a及第二电感31b,电容33与第一电感31a并联后与第二电感31b串联。本实施方式中,第一电感31a与电容33并联后与第二电感31b串联形成的第一支路A1等效于滤波电路。第二支路A2包括第三电感31c,第二支路A2与第一支路A1并联,第一支路A1的滤波电路等效的电感值与第二支路A2的电感值不同。并且,本实施方式中,滤波电路的等效电感与第三电感31c的电感值不同。本实施方式的解耦电路30的两端分别与第一辐射体11的第一开放端及第二辐射体21的第二开放端连接时,当第一辐射体11与第二辐射体21的工作频率在阈值范围内时(或者说,所述天线结构100的解耦频率小于阈值时),滤波电路相当于断路。相当于在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接第三电感31c。当第一辐射体11与第二辐射体21的工作频率超出阈值范围时(或者说,所述天线结构100的解耦频率大于阈值时),滤波电路能够允许第一辐射体11的信号传输至第二辐射体21。相当于在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接的电感大小为滤波电路的等效电感的大小,从而保证在第一辐射体11与第二辐射体21的工作频率变换时,连接于第一辐射体11的第一开放端与第二辐射体21的第二开放端之间的解耦电路的电感值能够相应变化,以保证第一天线10与第二天线20之间始终能够保证有较好的隔离度。
需要说明的是,本申请实施方式中,第一天线10的工作频率为第一辐射体11谐振产生的信号的频率。同样的,第二天线20的工作频率为第二辐射体21谐振产生的信号的频率。
请参阅图6c,图6c所示为本申请的另一种实施方式的解耦电路30的结构示意图。本申请实施方式中,解耦电路30还可以包括多个电感值大小不同的电感311、312、313以及切换开关34,当在第一辐射体11与第二辐射体21的工作频率变换时,切换开关34能够切换连接至不同电感,从而保证第一辐射体11与第二辐射体21的工作频率变换时,第一天线10与第二天线20能够始终有较好的隔离度。本实施方式中,解耦电路30包括三个电感值大小不同的电感,三个电感并联设置,切换开关34为单刀三掷开关,能够根据需要切换连接至三个电感中的任一个电感。
请重新参阅图2及图3,图2及图3所示的实施方式中,第一辐射体11包括的两个端部分别为第一端111及第二端112,第二辐射体21包括的两个端部分别为第三端211及第四端212。第一辐射体11的第二端112相对于第一端111远离第二辐射体21,第二辐射体21的第四端212相对于第一端111远离第一辐射体11。本实施方式中,第一辐射体11及第二辐射体21均只有一个开放端。第一端111为第一辐射体11的第一开放端,第三端211为第二辐射体21的第二开放端,第一端111与第三端211相对且第一端111与第三端211之间有间隙13。解耦电路30连接第一端111及第三端211。第二端112与第四端212均与地板40连接,即第二端112与第四端212均为接地端。本实施方式中,可以在第二端112及第四端212上固定弹片60,弹片60连接至地板40;或者,通过设置(例如,键合)金属片,将金属片连接第二端112与地板40,及连接第四端212与地板40;或者,通过第一辐射体11在第二端112的突出部,及第二辐射体12在第四端212的突出部,连接至地板40。可以理解的是,本申请的其它实施方式中,也可以通过金属线键合等其它的方式实现第二端112与第四端212与地板40的连接。本实施方式中,第一辐射体11及第二辐射体21均包括一个开放端及一个接地端。可以理解的是,本申请的其它实施方式中,第一辐射体11可以包括两个开放端,即第一端111及第二端112也可以均为开放端;第二辐射体21也可以包括两个开放端,即第三 端211及第四端212也可以均为开放端。
本申请实施方式中,第一辐射体11为“L”形结构,且“L”形结构的第一辐射体11包括第一区段及第二区段,第一区段与第二区段相交呈“L”形结构。“L”形结构的第一区段及第二区段分别位于地板40的相邻的两侧(例如,相邻的两条边缘)。具体的,本申请一种实施方式中,第一区段位于第一边缘41的一侧并与第一边缘41间隔设置,第二区段位于第二边缘42的一侧并与第二边缘42间隔设置。相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,第一辐射体11激励地板40产生的地电流与第二辐射体11激励地板40产生的地电流没有大面积的反向,因此,本实施方式中,在第一辐射体11与第二辐射体21之间连接解耦电路30以后,在提升第一天线10与第二天线20之间的隔离度的同时,也不会对第一天线10或第二天线20的性能造成大的影响。并且,第一辐射体11为“L”形结构,因而第一辐射体11激励地板40产生的地电流与第二辐射体21激励地板40产生的地电流能够相交呈一定的角度,而不是激励地板40分别产生背向相反的两个电流,因而能够进一步的提高第一天线10与第二天线20的之间的隔离度。本申请一些实施方式中,第一辐射体11激励地板40产生的地电流与第二辐射体21激励地板40产生的地电流相交的角度在60-120°的范围(例如,正交),从而第一天线10与第二天线20之间能够具有良好的隔离度。并且,本申请实施方式中,第一天线10与第二天线20的辐射方向图能够互补,因此,第一天线10与第二天线20之间的包络相关系数(ECC)能够较小。
本实施方式中,第一辐射体11及第二辐射体21均为“L”形结构。第一辐射体11包括相交设置的第一区段11a及第二区段11b,第二辐射体21包括相交设置的第三区段21a及第四区段21b。本实施方式中,第一区段11a远离第二区段11b的一端为第一端111,第二区段11b远离第一区段11a的一端为第二端112。第三区段21a远离第四区段21b的一端为第三端211,第四区段21b远离第三区段21a的一端为第四端212。本实施方式中,第一区段11a与第三区段21a均位于地板40的第一边缘41的一侧,第二区段11b位于地板40的第二边缘42的一侧,第四区段21b位于地板40的第三边缘43的一侧。
请继续参阅图3,图3中箭头所示为本申请实施方式的天线结构100工作时产生电流的方向图。其中,箭头a所示为第一辐射体11激励地板40产生的地电流的等效电流方向,箭头b所示为第二辐射体21激励地板40产生的地电流的等效电流方向。第一辐射体11激励地板40产生的地电流的等效电流方向a与第二辐射体21激励地板40产生的地电流的等效电流方向b相交呈一定角度,例如60°-120°,例如80-10°,又例如90°,从而第一天线10与第二天线20之间能够具有较好的隔离度。具体的,请参阅图7,图7所示为图3所示实施方式的天线结构100的回波损耗曲线图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。本实施方式中,第一辐射体11与第二辐射体21的结构基本相同,且第一辐射体11与第二辐射体21对称设置于地板40的两侧,因而第一天线10与第二天线20的工作频段基本相同。本实施方式中,地板40的第一边缘41的长度约为80mm,为了让第一辐射体11与第二辐射体21均为“L”型结构,第一辐射体11的第一区段11a及第二辐射体21的第三区段21a位于地板40的第一边缘41的一侧,第一辐射体11的第二区段11b位于地板40的第二边缘42的一侧,第二辐射体21的第四区段21b位于地板40的第三边缘43的一侧,第一辐射体11及第二辐射体21的辐射口径会较大。本实施方式的第一辐射体11及第二辐射体21的谐振产生信号的 工作频率为sub-6G中的低频频率。本实施方式中,第一辐射体11与第二辐射体21的中心工作频率均约为0.8GHz。本实施方式中,0.8GHz即为本申请的天线结构100的解耦频率,即解耦电路30能够阻止第一辐射体11产生的工作频率为0.8GHz左右的天线模式与第二辐射体21产生的工作频段为0.8GHz左右的天线模式的耦合,从而提高第一天线10与第二天线20之间的隔离度。本实施方式中,第一天线10及第二天线20能够作为电子设备1000的多入多出系统(Multiple-Input Multiple-Output,MIMO)天线,电子设备1000能够进行信号的MIMO传输。可以理解的是,本申请的其它实施方式中,地板40的尺寸可以变化,第一辐射体11与第二辐射体21的尺寸、接地位置等也可以进行变化,第一辐射体11的工作频率与第二辐射体21的工作频率可以相同也可以不同。第一辐射体11及第二辐射体21的辐射口径也可以根据实际需求进行变化,从而第一辐射体11及第二辐射体21谐振产生信号的工作频率也可以为sub-6G中的中频频率或高频频率。
本实施方式中,第一天线10与第二天线20在中心工作频率下的隔离度约为-15dB,即第一天线10与第二天线20之间能够具有相同的工作频段,且第一天线10与第二天线20之间能够具有良好的隔离度。
本实施方式中,由于第一辐射体11的第一区段11a与第二辐射体21的第三区段21a均位于地板40的第一边缘41的一侧,第一辐射体11的第二区段11b位于地板40的第二边缘42的一侧,第二辐射体21的第四区段21b位于地板40的第三边缘43的一侧,相较于第一辐射体11及第二辐射体21均位于地板40的一侧的方案来说,第一辐射体11及第二辐射体21不止能够激励地板40产生水平电流模式,还能够激励地板40产生纵向电流模式,且第一辐射体11与第二辐射体21激励地板40产生的纵向电流模式同向,能够提升第一天线10及第二天线20的性能。由于第一辐射体11及第二辐射体21不止能够激励地板40产生反向的水平电流模式,还能够激励地板40产生同向的纵向电流模式,因此,在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接解耦电路30后,仍然能够充分激励出地板电流,从而第一天线10及第二天线20的天线效率不会产生严重的恶化。本申请的实施方式中,在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接解耦电路30,以提高第一天线10与第二天线20之间的隔离度的同时,第一天线10与第二天线20的天线效率也不会产生严重的恶化。本申请实施方式中,由于第一天线10与第二天线20的辐射方向图互补,因此,本申请实施方式的第一天线10与第二天线20之间的包络相关系数(ECC)相较于第一辐射体11及第二辐射体21均位于地板40的一侧的方案来说能够更好。
具体的,请参阅图8,图8为图3所示实施方式的天线结构100工作时的第一天线10的效率与第一天线10单独工作时的效率的对比图。其中,图8的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图8中曲线a为本实施方式的天线结构100的第一天线10的效率曲线图,图8中曲线b为第一天线10单独工作时的曲线图。本实施方式的天线结构100的第一天线10的天线效率相较于第一天线10单独工作时的天线效率下降约0.2dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的天线工作效率会下降约0.2dB,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的工作效率下降的程度较小。请参阅图9,图9为图3所示实施方式的天线结构100工作时的第二天线20的效率与第二天线20单独工作时的效率的对比图。图9的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图9中曲线a为本实施方式的天线结构100的第二天线20的效率曲线图,图9中曲线b为第二天线20单独工作时的曲线图。本实施方式的天 线结构100的第二天线20的天线效率相较于第二天线20单独工作时的天线效率下降约0.2dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10及第二天线20的天线工作效率均会下降约0.2dB,但相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10及第二天线20的工作效率下降的程度均较小。即本实施方式中,在第一天线10与第二天线20之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度,同时又能够避免对第一天线10与第二天线20的工作效率带来大的影响。
请参阅图10及图11,图10所示为图3所示实施方式中的天线结构100的第一天线10的辐射方向图,图11所示为图3所示实施方式中的天线结构100的第二天线20的辐射方向图。本实施方式中,第一天线10与第二天线20的辐射方向图互补,因此,本实施方式的第一天线10与第二天线20的包络相关系数(envelope correlation coefficient,ECC)能够较好,ECC约为0.06。
请参阅图12,图12所示为本申请的另一种实施方式的天线结构100的拓扑结构示意图。本实施方式中,天线结构100与图3中所示的天线结构100的差别在于:本实施方式中,天线结构100的第一辐射体11及第二辐射体21的两个端部均为开放端。其中,第一辐射体11包括的两个开放端分别为第一开放端及第三开放端,第二辐射体21包括的两个开放端分别为第二开放端及第四开放端。具体的,本实施方式中,第一辐射体11的第一端111为第一开放端,第二端112为第三开放端。第二辐射体21的第三端211为第二开放端,第四端212为第四开放端。换句话说,本实施方式中,第一辐射体11的第一端111及第二端112均不与地板40连接,第二辐射体21的第三端211及第四端212均不与地板40连接。关于开放端、第一端111、第二端112、第三端211、第四端212和端面的定义可以参照前述实施例,此处不再赘述。本实施方式中,解耦电路30连接于第一开放端及第二开放端之间,即解耦电路30连接第一辐射体11的第一端111及第二辐射体21的第三端211。本实施方式中,所述第一辐射体11的所述第一端111与所述第二端112之间有第一接地点A,所述第二辐射体21的所述第三端211与所述第四端212之间有第二接地点B,所述第一接地点A与及所述第二接地点B与所述地板40连接,即本实施方式的第一辐射体11的接地点的位置位于第一端111与第二端112之间,第二辐射体21的接地点的位置位于第三端211与第四端212之间。
本实施方式中,第一辐射体11的第一接地点A与第一辐射体11在靠近第一端111的端面之间的区段能够产生1/4波长模式的谐振,第一辐射体11在靠近第一端111的端面至靠近所述第二端112的端面之间的区段能够产生1/2波长模式的谐振。换句话说,本实施方式的第一辐射体11能够产生波长为两种不同模式的谐振信号。请参阅图12,图12中第一辐射体11附近的虚线箭头方向表示第一辐射体11工作产生1/4波长模式的谐振时的电流示意方向,点划线箭头方向表示第一辐射体11工作产生1/2波长模式的谐振时的电流示意方向。本实施方式中,第二辐射体21与第一辐射体11为设于地板40两侧的对称的结构。第二辐射体21的第二接地点B至第二辐射体21的靠近所述第三端211的端面之间的区段能够产生1/4波长模式的谐振,且第二辐射体21产生的1/4波长模式的谐振频段与第一辐射体11的产生1/4波长模式的谐振频段基本相同。并且,本实施方式的第二辐射体21的靠近第三端211的端面至靠近所述第四端212的端面之间的区段能够产生1/2波长模式的谐振,且第二辐射体21产生的1/2波长模式的谐振频率与第一辐射体11产生1/2波长模式的谐振频率基本相同。换句话说,本实施方式的第一天线10与第二天线20均能够形成带内双谐振,且第一天线10与第二天线20均能够产生工作频率基本相同的1/4波长模式的谐振和1/2波长模式的谐振,从而 提升本实施方式的天线结构100的天线工作时的带宽和效率。请参阅图12,图12中第二辐射体12附近的虚线箭头方向表示第一辐射体11工作产生1/4波长模式的谐振时的电流示意方向,点划线箭头方向表示第二辐射体12工作产生1/2波长模式的谐振时的电流示意方向。在本申请实施例中,第一辐射体11与第二辐射体21为“对称的结构”指的是第一辐射体11与第二辐射体21能够沿一虚拟的对称轴基本对称,基本对称是允许一定的角度误差和/或尺寸误差,而不是严格的数学意义上的绝对对称。可以理解的是,本申请的其它实施方式中,第一辐射体11与第二辐射体21也可以为非对称结构,通过调整第一辐射体11或第二辐射体21的结构、增加调谐元件或者改变第一接地点A及第二接地点B的位置,第一辐射体11与第二辐射体21能够产生不同的谐振模式。或者,通过调整第一辐射体11及第二辐射体21的结构、增加调谐元件或者改变第一接地点A及第二接地点B的位置,也能够使第一辐射体11与第二辐射体21产生另外的两种相同的谐振模式,实现第一天线10与第二天线20之间的带内双谐振。
本实施方式中,第一辐射体11的第一开放端与第二辐射体21的第二开放端之间的距离约为20mm,解耦电路30的电感值约为65nH,第一天线10与第二天线20之间具有较好的隔离效果。
本实施方式中,第一天线10及第二天线20均具有两种谐振模式,从而形成带内双谐振。请参阅图13,图13为图12所示实施方式的天线结构100的回波损耗曲线图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图13可以看出,本实施方式中,第一天线10的1/4波长模式的工作频段与第二天线20的1/4波长模式的工作频段基本相同,且中心工作频率均约为0.81GHz;第一天线10的1/2波长模式的工作频段与第二天线20的1/2波长模式的工作频段基本相同,且中心工作频率均约为0.87GHz。
本实施方式中,第一天线10与第二天线20产生的1/4波长模式在中心工作频率下的隔离度约为-22dB,第一天线10与第二天线20产生的1/2波长模式在中心工作频率下的隔离度约为-11dB。即第一天线10与第二天线20在1/4波长模式下与在1/2波长模式下均有较好的隔离度。
本实施方式中,第一天线10与第二天线20均包括1/4波长模式和1/2波长模式两种工作模式。可以理解的是,本申请的其它实施方式中,第一天线10与第二天线20的工作模式也可以为其它的工作模式,例如,一些实施方式中,第一天线10与第二天线20的工作模式也可以为3/4波长模式,复合左右手天线模式(CRLH天线模式)等。并且,本申请的其它一些实施方式中,通过调整第一天线10与第二天线20的结构,第一天线10与第二天线20能够产生的工作模式可以为更多种,例如,一些实施方式中,第一天线10及第二天线20也能够产生三种工作模式。
请参阅图14,图14为图12所示的天线结构100工作时的第一天线10的天线效率与第一天线10单独工作时的天线效率的对比图。其中,图14的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图14中曲线a为图12所示的天线结构100的第一天线10的效率曲线图,图14中曲线b为第一天线10单独工作时的曲线图。本实施方式的天线结构100的第一天线10在1/4波长模式的工作模式下的天线效率相较于第一天线10单独工作时在1/4波长模式的工作模式下的天线效率下降约0.8dB。换句话说,本实施方式中,在第一天线10 与第二天线20之间连接解耦电路30后,第一天线10的天线工作效率会下降约0.8dB,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的工作效率下降的程度较小。同样的,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第二天线20的工作效率下降的程度较小。即本实施方式中,在第一天线10与第二天线20之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度,同时又能够避免对第一天线10与第二天线20的工作效率带来大的影响。
请参阅图15及图16,图15所示为图12所示天线结构100的第一天线10的工作模式为1/4波长模式时的辐射方向图,图16所示为图12所示天线结构100的第二天线20的工作模式为1/4波长模式时的辐射方向图。本实施方式中,第一天线10的1/4波长模式的辐射区的辐射方向图与第二天线20的1/4波长模式的辐射区的辐射方向图互补,因此,本实施方式的第一天线10与第二天线20能够有较小的包络相关系数(envelope correlation coefficient,ECC),ECC约为0.001。
请参阅图17,图17所示为本申请另一种实施方式的天线结构100的拓扑结构示意图。本实施方式中,天线结构100与图12中所示的天线结构100的差别在于:本实施方式中,第一辐射体11的靠近第二端112的端面至第一接地点A之间的距离小于图12所示实施方式中的第一辐射体11的靠近所述第二端112的端面至第一接地点A之间的距离。并且,本实施方式中,第一辐射体11的靠近第二端112的端面至靠近第一端111的端面之间不会产生另外的谐振模式,即本实施方式的第一辐射体11只能够产生1/4波长模式的谐振,该1/4波长模式的谐振为第一辐射体11的第一接地点A至第一辐射体11靠近第一端111的端面之间的区段产生的谐振。同样的,本实施方式中,第二辐射体21的靠近第二端212的端面至第二接地点B之间的距离小于图12所示实施方式中的第二辐射体21的靠近第二端212的端面至第二接地点B之间的距离,第二辐射体21的靠近第三端211的端面至靠近第四端212的端面之间不会产生另外的谐振模式,即本实施方式的第二辐射体21只能够产生1/4波长模式的谐振,该1/4波长模式的谐振为第二辐射体21的第二接地点B至第二辐射体21的靠近第三端211的端面之间的区段产生的谐振。换句话说,本实施方式中,第一辐射体11及第二辐射体21的两个端部都是开放端,但是,本实施方式的第一辐射体11及第二辐射体21均只能够产生一种波长模式的谐振。关于开放端、第一端111、第二端112、第三端113、第四端114和端面的定义可以参照前述实施例,此处不再赘述。
本实施方式中,第一辐射体11的第一开放端与第二辐射体21的第二开放端之间的距离约为20mm,解耦电路30的电感值约为70nH,第一天线10与第二天线20之间具有较好的隔离效果。
请参阅图18,图18为图17所示的天线结构100的回波损耗曲线图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图18可以看出,本实施方式中,第一天线10与第二天线20均只能产生一种工作模式的谐振,第一天线10与第二天线20的产生的工作频段基本相同,且中心工作频率均约为0.81GHz。本实施方式中,第一天线10与第二天线20在中心工作频率下的隔离度约为-26dB,即第一天线10与第二天线20中间能够有较好的隔离度。
请参阅图19,图19为图17所示的天线结构100工作时的第一天线10的效率与第一天 线10单独工作时的效率的对比图。其中,图17的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图19中曲线a为本实施方式的天线结构100的第一天线10的效率曲线图,图19中曲线b为第一天线10单独工作时的曲线图。本实施方式的天线结构100的第一天线10在1/4波长模式的工作模式下的天线效率相较于第一天线10单独工作时在1/4波长模式的工作模式下的天线效率下降约0.3dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10在1/4波长模式的工作模式下的工作效率会下降约0.3dB,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的工作效率下降的程度较小。请参阅图20,图20为图17所示的天线结构100工作时的第二天线20的效率与第二天线20单独工作时的效率的对比图。图20的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图20中曲线a为本实施方式的天线结构100的第二天线20的效率曲线图,图20中曲线b为第二天线20单独工作时的曲线图。本实施方式的天线结构100的第二天线20在1/4波长模式的工作模式下的天线效率相较于第二天线20单独工作时在1/4波长模式的工作模式下的天线效率下降约0.3dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10及第二天线20在1/4波长模式的工作模式下的工作效率会下降约0.3dB,但相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10及第二天线20的工作效率下降的程度均较小。即本实施方式中,在第一天线10与第二天线20之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度,同时又能够避免对第一天线10与第二天线20的工作效率带来大的影响。
请参阅图21及图22,图21所示为图17所示实施方式中的天线结构100的第一天线10的辐射方向图,图22所示为图17所示实施方式中的天线结构100的第二天线20的辐射方向图。本实施方式中,第一天线10的辐射方向图与第二天线20辐射区的辐射方向图互补,因此,本实施方式的第一天线10与第二天线20的包络相关系数(envelope correlation coefficient,ECC)较好,ECC约为0.11。
请参阅图23,图23所示为本申请另一种实施方式的天线结构100的结构示意图。图23所示的实施方式与图3所示实施方式的天线结构100差别在于:本实施方式中,地板40的第一边缘41的尺寸较图3所示实施方式的地板40的第一边缘41的尺寸较窄,从而第一辐射体11与第二辐射体21为“L”型结构时,第一辐射体11及第二辐射体21能够设计得到较小的电长度,以使第一天线10及第二天线20的工作频段能够处于中频频段或高频频段,例如sub-6G频段中的中频频段或高频频段。本实施方式中,地板40的第一边缘41的尺寸约为30mm。
本实施方式中,解耦电路30的电感值约为20nH,第一天线10与第二天线20之间具有较好的隔离效果。请参阅图24,图24为图23所示的天线结构100的回波损耗图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图24可以看出,本实施方式中,第一天线10与第二天线20的产生的工作频段基本相同,且中心工作频率均约为2GHz,即第一天线10与第二天线20的工作频段处于高频。本实施方式中,第一天线10与第二天线20在中心工作频率下的隔离度约为-15dB,即第一天线10与第二天线20中间能够有较好的隔离度。
请参阅图25,图25为图23所示的天线结构100工作时的第一天线10的天线效率与第 一天线10单独工作时的天线效率的对比图。其中,图25的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图25中曲线a为图23所示的天线结构100的第一天线10的效率曲线图,图25中曲线b为第一天线10单独工作时的曲线图。本实施方式的天线结构100的第一天线10的天线效率相较于第一天线10单独工作时的工作模式下的天线效率下降约0.5dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的天线工作效率会下降约0.5dB,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的工作效率下降的程度较小。同样的,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第二天线20的工作效率下降的程度同样能够较小。即本实施方式中,在第一天线10与第二天线20之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度,同时又能够避免对第一天线10与第二天线20的工作效率带来大的影响。
请参阅图26及图27,图26所示为图23所示实施方式中的天线结构100的第一天线10的辐射方向图,图27所示为图23所示实施方式中的天线结构100的第二天线20的辐射方向图。本实施方式中,第一天线10的辐射方向图与第二天线20的辐射方向图互补,因此,本实施方式的第一天线10与第二天线20的包络相关系数(envelope correlation coefficient,ECC)较好,ECC约为0.01。
请参阅图28,图28所示为本申请另一种实施方式的天线结构100的结构示意图。图28所示的实施方式与图12所示实施方式的差别在于:本实施方式中,仅有第一辐射体11为“L”型结构,第二辐射体21为线状结构,第一辐射体11的第一区段11a位于第一边缘41的一侧,第一辐射体11的第二区段11b位于第二边缘42一侧,且第二辐射体21也位于第二边缘42一侧。可以理解的是,本申请的其它一些实施方式中,也可以第二辐射体21为“L”型结构,第一辐射体11为线状结构。本实施方式中,所述第一辐射体11包括第一端111及第二端112,所述第一端111位于所述第一辐射体11的第一区段11a远离所述第二区段11b的一端,所述第二端112位于所述第一辐射体11的所述第二区段11b远离所述第一区段11a的一端;所述第二辐射体21包括相对设置的第三端211及第四端212,所述第三端211相对所述第四端212靠近所述第一辐射体11;所述第一辐射体11的所述第一端111及所述第二端112均为开放端,所述第二辐射体21的所述第三端211为开放端,所述第二辐射体21的所述第四端212与地板40连接。关于开放端、第一端111、第二端112、第三端211、第四端212和端面的定义可以参照前述实施例,此处不再赘述。本实施方式中,第一辐射体11的第二端112为第一辐射体11的第一开放端,第一辐射体11的第一端111为第一辐射体11的第三开放端。第二辐射体21的所述第三端211为第二开放端,所述第一辐射体11的所述第二端112与第二辐射体21的所述第三端211相对并形成间隙13,解耦电路30连接所述第一辐射体11的所述第二端112及所述第二辐射体21的所述第三端211。
可以理解的是,本申请的其它实施方式中,第一辐射体11可以仅有一个开放端,第二辐射体21可以有两个开放端。例如,请参阅图29,图29所示为本申请的另一种实施方式的天线结构100的结构示意图。本实施方式的天线结构100与图28所示的天线结构100的结构差别在于:本实施方式中,第一辐射体11仅包括一个开放端,第二辐射体21包括两个开放端。具体的,第一辐射体11的第二端112为第一辐射体11的第一开放端,第一辐射体11的第一端111与地板40连接。第二辐射体21的所述第三端211及第四端212均为开放端,其中,第二辐射体21的第三端211为第二开放端,第四端212为第四开放端。所述第一辐射体11 的靠近所述第二端112的端面与第二辐射体21的靠近所述第三端211的端面相对并形成间隙13,解耦电路30连接所述第一辐射体11的所述第二端112及所述第二辐射体21的所述第三端211。
请重新参阅图28,图28中第一辐射体11附近的虚线箭头方向为第一辐射体11产生1/4波长模式的谐振时的电流示意方向,图28中第一辐射体11附近的点划线箭头方向为第一辐射体11产生1/2波长模式的谐振时的电流示意方向。图28所示实施方式中,第一辐射体11的第一接地点A至第一辐射体11在靠近第一端111的端面之间的区段能够产生1/4波长模式的谐振,第一辐射体11在靠近第一端111的端面至靠近第二端112的端面之间的区段能够产生1/2波长模式的谐振。换句话说,本实施方式的第一辐射体11能够产生波长为两种不同模式的谐振信号。本实施方式中,第二辐射体21在靠近所述第三端211的端面至所述靠近第四端212的端面之间的区段(即第二辐射体21)也能够产生1/4波长模式的谐振,且本实施方式的第二辐射体21产生的1/4波长模式的谐振与第一辐射体11产生的1/4波长模式的谐振的工作频段相同。
请参阅图30,图30为图28所示的天线结构100的回波损耗图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图30可以看出,本实施方式中,第一天线10在1/4波长模式下的工作频段与第二天线20的产生的工作频段基本相同,且中心工作频率均约为0.81GHz。本实施方式中,第一天线10在1/4波长模式的中心工作频率下与第二天线20在中心工作频率下的隔离度约为-15dB,即第一天线10与第二天线20之间能够有较好的隔离度。
请参阅图31,图31为图28所示的天线结构100的第一天线10的天线效率图与第二天线20的天线效率图。其中,图31的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图31中曲线a为图28所示的天线结构100在自由状态下的第一天线10的效率曲线图,图31中曲线b为天线结构100在自由状态下的第二天线20的效率曲线图。本实施方式的天线结构100在自由状态下的第一天线10的工作效率约为-4dBi,天线结构100在自由状态下的第二天线20的工作效率小于-3.3dBi。换句话说,本实施方式的第一天线10与第二天线20均能够有较好的工作效率。
请参阅图32,图32为图28所示的天线结构100工作时的第一天线10的天线效率与第一天线10单独工作时的天线效率的对比图。其中,图32的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图32中曲线a为本实施方式的天线结构100的第一天线10的效率曲线图,图32中曲线b为第一天线10单独工作时的曲线图。本实施方式的天线结构100的第一天线10的天线效率相较于第一天线10单独工作时的天线效率下降约0.5dB。换句话说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的天线工作效率会下降约0.5dB,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10的工作效率下降的程度较小。请参阅图33,图33为图28所示的天线结构100的第二天线20与第二天线20单独工作时的天线效率的对比图。图33的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图33中曲线a为本实施方式的天线结构100的第二天线20的效率曲线图,图33中曲线b为第二天线20单独工作时的曲线图。本实施方式的天线结构100的第二天线20的天线效率相较于第二天线20单独工作时的天线效率下降约1dB。换 句话说,本实施方式的天线结构100,相较于第一辐射体11与第二辐射体21均位于地板40的同一侧的天线结构的方案来说,本实施方式中,在第一天线10与第二天线20之间连接解耦电路30后,第一天线10及第二天线20的工作效率下降的程度均较小。即本实施方式中,在第一天线10与第二天线20之间连接解耦电路30,能够提高第一天线10与第二天线20之间的隔离度,同时又能够避免对第一天线10与第二天线20的工作效率带来大的影响。
请参阅图34及图35,图34所示为图28所示实施方式中的天线结构100的第一天线10在1/4波长模式下工作的辐射方向图,图35所示为图28所示实施方式中的天线结构100的第二天线20的辐射方向图。本实施方式中,第一天线10在1/4波长模式下工作的辐射方向图与第二天线20的辐射方向图互补,因此,本实施方式的第一天线10与第二天线20的包络相关系数(envelope correlation coefficient,ECC)较好,ECC约为0.15。
本申请实施方式中,第一天线10及第二天线20可以作为电子设备1000的多入多出系统(Multiple-Input Multiple-Output,MIMO),第一天线10及第二天线20也可以分别作为电子设备1000的主集天线及分集天线。
请参阅图36,图36所示为本申请另一种实施方式的天线结构100的结构示意图。图36所示的实施方式与图28所示实施方式的差别在于:本实施方式中,第一辐射体11及第二辐射体21均包括一个开放端,且第一辐射体11及第二辐射体21均能够产生两种不同的工作模式。并且,本实施方式中,解耦滤波电路30为呈感性的解耦电路。第一辐射体11及第二辐射体21切换不同的工作频率时,解耦滤波电路30也能够呈现不同大小的解耦电感。
本实施方式中,所述第一辐射体11的所述第一端111与地板40连接,第二端112为开放端;所述第二辐射体21的所述第三端211为开放端,所述第二辐射体21的所述第四端212与地板40连接。第一辐射体11的第二端112与第二辐射体21的第三端211相对并形成间隙13,解耦电路30连接于所述第一辐射体11的所述第二端112及所述第二辐射体21的所述第三端211之间。
本实施方式中,解耦电路30为图6b所示的呈感性的解耦电路。具体地,第一电感31a的电感值约为29nH,第二电感31b的电感值约为15nH,第三电感31c的电感值约为72nH,电容33的电容值约为0.6pF,滤波电路的等效电感约为6.2nH,与第三电感31c的电感值不同。
本实施方式中,第一辐射体11及第二辐射体21均能够产生两种工作模式。图36中第一辐射体11及第二辐射体21附近的虚线箭头方向为第一辐射体11及第二辐射体21产生1/4波长模式的谐振时的电流示意方向,图36中第一辐射体11及第二辐射体21附近的点划线箭头方向为第一辐射体11及第二辐射体21产生1/2波长模式的谐振时的电流示意方向。图36所示实施方式中,第一辐射体11的第一馈电点C至第一辐射体11在靠近第二端112的端面之间的区段能够产生1/4波长模式的谐振,第一辐射体11在靠近第一端111的端面至靠近第二端112的端面之间的区段能够产生1/2波长模式的谐振。换句话说,本实施方式的第一辐射体11能够产生波长为两种不同模式的谐振信号。本实施方式中,第二辐射体21的第二馈电点D至第二辐射体11在靠近第三端113的端面之间的区段能够产生1/4波长模式的谐振,且本实施方式的第二辐射体21产生的1/4波长模式的谐振与第一辐射体11产生的1/4波长模式的谐振的工作频段基本相同。第二辐射体21在靠近所述第四端212的端面至所述靠近第三端213的端面之间的区段也能够产生1/2波长模式的谐振,且本实施方式的第二辐射体21产生的1/2波长模式的谐振与第一辐射体11产生的1/2波长模式的谐振的工作频段基本相同。
请参阅图37,图37为图36所示的天线结构100的回波损耗图及隔离度曲线图。其中, 曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图37可以看出,本实施方式中,第一天线10在1/4波长模式下的工作频段与第二天线20在1/4波长模式下的工作频段基本相同,且中心工作频率均约为2.5GHz。第一天线10在1/2波长模式下的工作频段与第二天线20在1/2波长模式下的工作频段基本相同,且中心工作频率均约为0.85GHz。
本实施方式中,第一天线10与第二天线20的工作模式均为1/4波长模式时,第一天线10与第二天线20的工作频率较高,均约为2.5GHz,能够适用于2.4GWIFi或N41的工作频段。此时,天线模组100的解耦频率即为约2.5GHz,能够允许第一辐射体11的信号传输至第二辐射体21。相当于在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接的电感大小为滤波电路的等效电感的大小(约为6.2nH),从而保证第一天线10在1/4波长模式下与第二天线20在1/4波长模式能够有良好的隔离度。具体的,本实施方式中,第一天线10在1/4波长模式下与第二天线20在1/4波长模式下之间的隔离度约为-13dB。
第一天线10与第二天线20的工作模式均为1/2波长模式时,第一天线10与第二天线20的工作频率较低,均约为0.85GHz。此时,天线模组100的解耦频率即为约0.85GHz,滤波电路相当于断路。相当于在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接第三电感31c(约为72nH),从而保证第一天线10在1/2波长模式下与第二天线20在1/2波长模式能够有良好的隔离度。具体的,本实施方式中,第一天线10在1/2波长模式下与第二天线20在1/2波长模式下之间的隔离度约为-13dB。
本实施方式中,本实施方式中,通过在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接呈感性的解耦电路30,从而保证在第一辐射体11与第二辐射体21的工作频率变换时,连接于第一辐射体11的第一开放端与第二辐射体21的第二开放端之间的等效电感的电感值能够相应变化,以保证第一天线10与第二天线20之间始终能够保证有较好的隔离度。
请参阅图38,图38为图36所示的天线结构100的第一天线10的天线效率图与第二天线20的天线效率图。其中,图38的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图38中曲线a为图36所示的天线结构100在自由状态下的第一天线10的效率曲线图,图38中曲线b为天线结构100在自由状态下的第二天线20的效率曲线图。本实施方式的天线结构100在自由状态下的第一天线10的工作效率小于-3.8dBi,天线结构100在自由状态下的第二天线20的工作效率小于-4.7dBi。换句话说,本实施方式的第一天线10与第二天线20均能够有较好的工作效率。
本申请一些实施方式中,所述第一辐射体11和所述第二辐射体21中的一个辐射体包括间隔设置的第一子辐射体及第二子辐射体,其中,第一子辐射体的整体位于第二子辐射体的一侧,第一辐射体和第二辐射体中的另一个辐射体的整体位于第二子辐射体的另一侧。第二子辐射体远离所述第一子辐射体的一端为第一辐射体11或第二辐射体21的所述开放端,耦合电路的一端与第二子辐射体远离第一子辐射体的一端连接。且第二子辐射体不接地,第一辐射体11或第二辐射体21的接地位置位于第一子辐射体上。本申请实施方式中,第一辐射体11或所述第二辐射体21包括间隔设置的第一子辐射体及第二子辐射体,当使用电子设备1000时,用户的手或者其它的结构遮挡第一辐射体11与第二辐射体21之间的间隙13,从而用户的手或者其它的结构连接第一辐射体11的开放端与第二辐射体21的开放端时,第一天 线10与第二天线20之间的隔离度不会产生急剧的恶化。
例如,请参阅图39,图39所示为本申请另一种实施方式的天线结构100的结构示意图。图39所示的实施方式与图3所示实施方式的差别在于:本实施方式中,第一辐射体11包括间隔设置的第一子辐射体113及第二子辐射体114,其中,第二子辐射体114相对第一子辐射113靠近第二辐射体21,且第一子辐射体113与第二子辐射体114之间能够相互耦合。第一子辐射体113及第二子辐射体114分别位于间隙14的两侧。本实施方式中,第一辐射体11的接地位置A及馈电位置均位于第一子辐射体113上。本实施方式中,所述第二子辐射体114远离所述第一子辐射体113的一端为第一辐射体11的第一开放端,本实施方式的带阻耦合电路30的一端连接于第二子辐射体114,另一端连接至第二辐射体21。本实施方式中,第一辐射体11及第二辐射体21均为“L”型结构,第一辐射体11的部分第一区段11a为第二子辐射体114,第一辐射体11的部分第一区段11a及第二区段11b形成第一子辐射体113。本实施方式中,第一子辐射体113与第二辐射体21为对称的结构,且对称设置于地板40的相对的两侧。具体的,本实施方式中,第一辐射体11的第一子辐射体113与第二辐射体21的结构相同(包括形状、尺寸等均相同),且第一辐射体11的第二区段11b与第二辐射体21的第四区段21b分别设置与地板40的第二边缘42的一侧及第三边缘43的一侧,第一子辐射体113包括的部分第一区段11a、第二子辐射体114及第二辐射体21的第四区段21b均设于地板40的第一边缘41的一侧。在本申请实施例中,第一子辐射体113与第二辐射体21为“对称的结构”指的是第一子辐射体113与第二辐射体21能够沿一虚拟的对称轴基本对称,基本对称是允许一定的角度误差和/或尺寸误差,而不是严格的数学意义上的绝对对称。请参阅图40,图40为图39所示的天线结构100的回波损耗曲线图及隔离度曲线图。其中,曲线a为第一天线10的回波损耗曲线,曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。从图40可以看出,本实施方式中,第一天线10的工作频段与第二天线20的工作频段基本相同,且中心工作频率均约为0.8GHz。本实施方式中,第一天线10与第二天线20在中心工作频率下的隔离度约为-21dB,即第一天线10与第二天线20之间具有较好的隔离度。
请参阅图41,图41为图39所示的天线结构100在自由状态下的第一天线10的天线效率图与第二天线20的天线效率图。其中,图41的横坐标为频率,单位为GHz;纵坐标为效率,单位为dBi。图41中曲线a为图12所示的天线结构100在自由状态下的第一天线10的效率曲线图,图41中曲线b为第一天线10在自由状态下的第二天线20的效率曲线图。本实施方式的天线结构100在自由状态下的第一天线10的工作效率小于-5.6dBi,天线结构100在自由状态下的第二天线20的工作效率小于-7.4dBi。换句话说,本实施方式中,天线结构100在自由状态下,第一天线10与第二天线20均能够有较好的工作效率。
请参阅图42及图43,图42为遮挡图39所示的天线结构100的第一辐射体11与第二辐射体21之间的间隙13时,本实施方式的天线结构100的回波损耗曲线图及隔离度曲线图,图43为遮挡图39所示的天线结构100的第一辐射体11的第一子辐射体113与第二子辐射体114之间的间隙14时,本实施方式的天线结构100的回波损耗曲线图及隔离度曲线图。其中,图42及图43中的曲线a为第一天线10的回波损耗曲线,图42及图43中的曲线b为第二天线20的回波损耗曲线,曲线a及曲线b的横坐标表示频率,单位为GHz;纵坐标表示回波损耗系数,单位为dB。图42及图43中的曲线c为第一天线10与第二天线20之间的隔离度曲线,横坐标表示频率,单位为GHz;纵坐标表示隔离度系数,单位为dB。本实施方式中,当 通过用户的手或其它结构遮挡第一辐射体11与第二辐射体21之间的间隙13时,第二天线20会产生频偏,第一天线10与第二天线20之间的隔离度能够约为-15dB;当通过用户的手或其它结构遮挡第一辐射体11的第一子辐射体113与第二子辐射体114之间的间隙14时,第一天线10会产生频偏,第一天线10与第二天线20之间的隔离度能够约为-12.5dB。相较于遮挡图3中所示实施方式的第一辐射体11与第二辐射体21之间的间隙13时,第一天线10与第二天线20之间的隔离度仅约为-6dB来说,本实施方式中,通过将第一天线10设置为包括间隔设置的第一子辐射体113与第二子辐射体114的结构,可以减轻由于通过用户的手或其它结构遮挡第一辐射体11的第一子辐射体113与第二子辐射体114之间的间隙14或遮挡第一辐射体11与第二辐射体21之间的间隙13时,第一天线10与第二天线20之间隔离度的下降,保证第一天线10与第二天线20之间能够始终有较好的隔离度。
本申请的一些实施方式中,第二子辐射体114电长度小于所述天线结构100的解耦频段的波长的1/4,从而避免第二子辐射体11的长度过长而影响第一子辐射体113及第二辐射体21的排布,保证第一子辐射体113、第二辐射体21中至少一者可以为“L”型结构。本申请实施方式中,所述解耦频段为第一辐射体11的与所述第二辐射体21的相同的工作频段或相差小于1GHz的工作频段。本实施方式中,第一辐射体11与所述第二辐射体21的工作频段均为0.8GHz,即本实施方式的天线结构100的解耦频段为0.8GHz,第二子辐射体114电长度即小于工作频率为0.8GHz的天线模式的波长的1/4。
需要说明的是,本申请实施方式中,图39与图3不同之处也可以应用于前述实施例中。换句话说,本申请的图3至图39所示的实施方式的天线结构100的第一辐射体11或者第二辐射体21也可以设置为包括第一子辐射体113及第二子辐射体114的结构。
本申请的其它一些实施方式中,位于第一子辐射体113与第二辐射体21之间的第二子辐射体114上还可以设置馈电点,射频前端140可以与馈电点进行连接,以向第二子辐射体114进行馈电,使得第二子辐射体114能够作为单独的辐射枝节进行信号辐射,增加天线的工作模式。例如,请参阅图44,图44所示为本申请的另一种实施方式的天线结构100的结构示意图。本实施方式中的天线结构100与图39所示的天线结构100的差别在于:本实施方式中,第二子辐射体114上设有馈电点E,射频前端140与第一子辐射体113、第二子辐射体114及第二辐射体21上馈电点进行连接,以向第一子辐射体113、第二子辐射体114及第二辐射体21进行馈电,使得第一子辐射体113、第二辐射体21能够产生低频的工作频段(例如sub-6G中的低频频段),第二子辐射体114能够产生高频的工作频段(例如sub-6G中的高频频段)。
本申请中,通过在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间设置解耦电路30,能够提高第一天线10与第二天线20之间的隔离度。并且,第一辐射体11、第二辐射体21中至少一者为“L”型结构,且“L”型结构的第一辐射体11或第二辐射体21的第一区段及第二区段分别位于地板40的相邻的两侧(如第一边缘41的一侧与第二边缘42的一侧,或第一边缘41的一侧与第三边缘43的一侧),能够进一步的提高第一天线10与第二天线20之间的隔离度,并降低第一天线10与第二天线20之间的包络相关系数,并且,能够减轻在第一辐射体11的第一开放端与第二辐射体21的第二开放端之间连接解耦电路30对第一天线10及第二天线20的工作效率的影响。并且,一些实施方式中,将第一辐射体11或第二辐射体21设置为包括间隔设置的第一子辐射体113及第二子辐射体114的结构,从而能够避免用户的手部或者其他结构遮挡第一辐射体11与第二辐射体21之间的间隙13时,第一天线10与第二天线20之间隔离度大幅的下降的问题。
以上所述为本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说, 在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线结构,其特征在于,包括第一辐射体、第二辐射体、地板及解耦电路;
    所述地板包括相邻且相交的第一边缘和第二边缘;
    所述第一辐射体包括相交的第一区段及第二区段,所述第一区段位于所述地板的所述第一边缘的一侧并与所述第一边缘间隔设置,所述第二区段位于所述地板的所述第二边缘的一侧并与所述第二边缘间隔设置;
    所述第一辐射体包括第一开放端,所述第二辐射体包括第二开放端,所述第一开放端与所述第二开放端之间形成有间隙,所述第一辐射体整体位于所述间隙的一侧,所述第二辐射体整体位于所述间隙的另一侧;
    所述解耦电路连接所述第一开放端及所述第二开放端。
  2. 如权利要求1所述的天线结构,其特征在于,所述地板还包括第三边缘,所述第一边缘连接于所述第二边缘与所述第三边缘之间,且所述第三边缘与所述第一边缘相邻且相交,其中所述第一边缘和所述第二边缘相交的角度,和所述第一边缘和所述第三边缘相交的角度在80°至100°的范围内。
  3. 如权利要求2所述的天线结构,其特征在于,所述第一辐射体的端部包括第一端及第二端,所述第一端为所述第一辐射体的第一区段远离所述第二区段的一端,所述第二端为所述第一辐射体的所述第二区段远离所述第一区段的一端;
    所述第一端为所述第一开放端,所述第二端与所述地板连接或者所述第二端为所述第一辐射体的第三开放端。
  4. 如权利要求3所述的天线结构,其特征在于,所述第二辐射体包括相交的第三区段及第四区段;所述第二辐射体的所述第三区段位于所述第一边缘的一侧并与所述第一边缘间隔设置,所述第二辐射体的所述第四区段位于所述第三边缘的一侧并与所述第三边缘间隔设置;
    所述第二辐射体的端部包括第三端及第四端,所述第三端为所述第二辐射体的所述第一区段远离所述第二辐射体的所述第二区段的一端,所述第四端为所述第二辐射体的所述第二区段远离所述第二辐射体的所述第一区段的一端;
    所述第三端为所述第二开放端,所述第四端与所述地板连接或者所述第四端为所述第二辐射体的第四开放端。
  5. 如权利要求1或2所述的天线结构,其特征在于,所述第二辐射体的整体均位于所述第二边缘的一侧并与所述第二边缘间隔设置,且所述第二辐射体位于所述第一辐射体的所述第二区段远离所述第一区段的一侧;
    所述第一辐射体的端部包括第一端及第二端,所述第一端为所述第一辐射体的第一区段远离所述第二区段的一端,所述第二端为所述第一辐射体的所述第二区段远离所述第一区段的一端;
    所述第二辐射体的端部包括第三端及第四端,所述第三端相对所述第四端靠近所述第一辐射体;
    所述第一辐射体的所述第二端为所述第一开放端,所述第二辐射体的所述第三端为所述第二开放端;
    所述解耦电路连接所述第一辐射体的所述第二端及所述第二辐射体的所述第三端。
  6. 如权利要求5所述的天线结构,其特征在于,所述第一辐射体还包括第三开放端,所述第一端为所述第三开放端;所述第二辐射体的所述第四端与所述地板连接。
  7. 如权利要求1-6任一项所述的天线结构,其特征在于,所述第一辐射体的第一工作模式的工作频段与所述第二辐射体的第二工作模式的工作频段相同或相差小于1GHz。
  8. 如权利要求7所述的天线结构,其特征在于,所述第一辐射体的所述第一工作模式的工作频段,和第二辐射体的所述第二工作模式的工作频段是sub-6G的任一工作频段。
  9. 如权利要求7所述的天线结构,其特征在于,所述第一辐射体或所述第二辐射体中的一个辐射体包括间隔设置的第一子辐射体及第二子辐射体,所述第一子辐射体的整体位于所述第二子辐射体的一侧,所述第一辐射体或所述第二辐射体中的另一个辐射体的整体位于所述第二子辐射体的另一侧,所述第一子辐射体与所述第二子辐射体耦合,所述第二子辐射体远离所述第一子辐射体的一端为第一开放端或所述第二开放端。
  10. 如权利要求9所述的天线结构,其特征在于,所述第二子辐射体的电长度小于所述天线结构的解耦频段的波长的1/4,所述解耦频段与所述第一辐射体的所述第一工作模式的工作频段相同,或与所述第二辐射体的所述第二工作模式的工作频段相同。
  11. 如权利要求9或10所述的天线结构,其特征在于,所述第二子辐射体上设有馈电点,所述馈电点用于接收信号馈入。
  12. 如权利要求7-11任一项所述的天线组件结构,其特征在于,所述解耦电路呈感性,所述解耦电路的等效电感值与所述第一辐射体的所述第一工作模式的工作频段,和/或所述第二辐射体的所述第二工作模式的工作频段相关。
  13. 如权利要求11所述的天线结构,其特征在于,所述解耦电路包括集总电感、或分布式电感。
  14. 如权利要求12或13所述的天线结构,其特征在于,所述解耦电路包括并联设置的第一支路及第二支路,所述第一支路的等效电感值与所述第二支路的等效电感值大小不同。
  15. 如权利要求14所述的天线结构,其特征在于,所述第一支路为呈感性的滤波电路,所述第二支路包括集总电感或者分布式电感。
  16. 如权利要求14或15所述的天线结构,其特征在于,所述第一支路包括电容、第一电感及第二电感,所述电容与所述第一电感并联后与所述第二电感串联;所述第二支路包括第三电感。
  17. 如权利要求1-16任一项所述的天线结构,其特征在于,所述解耦电路连接所述第一开放端的第一连接点,所述第一连接点距离所述第一开放端的端面在0-2mm范围内,和/或所述解耦电路连接所述第二开放端的第二连接点,所述第二连接点距离所述第二开放端的端面在0-2mm范围内。
  18. 一种电子设备,其特征在于,包括射频前端及如权利要求1-17任一项所述的天线结构,所述第一辐射体上设有第一馈电点,所述第二辐射体上设有第二馈电点,所述射频前端连接所述第一馈电点及所述第二馈电点。
  19. 如权利要求18所述的电子设备,其特征在于,所述电子设备包括金属边框,所述金属边框包括所述第一辐射体及所述第二辐射体。
  20. 如权利要求18或19所述的电子设备,其特征在于,所述地板包括一个或多个接地的中板、一个或多个电路板的接地层、一个或多个接地金属件中的任一个,或者任两个或两个以上的组合。
PCT/CN2022/105631 2021-07-16 2022-07-14 天线结构及电子设备 WO2023284811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22841444.7A EP4354655A1 (en) 2021-07-16 2022-07-14 Antenna structure and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110810416.X 2021-07-16
CN202110810416.XA CN115621730A (zh) 2021-07-16 2021-07-16 天线结构及电子设备

Publications (1)

Publication Number Publication Date
WO2023284811A1 true WO2023284811A1 (zh) 2023-01-19

Family

ID=84855850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105631 WO2023284811A1 (zh) 2021-07-16 2022-07-14 天线结构及电子设备

Country Status (3)

Country Link
EP (1) EP4354655A1 (zh)
CN (1) CN115621730A (zh)
WO (1) WO2023284811A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256800A1 (en) * 2009-12-14 2012-10-11 Reetta Kuonanoja Multiband antenna structure and methods
CN107257016A (zh) * 2017-05-31 2017-10-17 维沃移动通信有限公司 一种终端多天线结构及移动终端
TWM571056U (zh) * 2018-09-05 2018-12-01 雙天線元件
CN111276806A (zh) * 2020-02-14 2020-06-12 维沃移动通信有限公司 一种天线和电子设备
CN113451771A (zh) * 2020-03-25 2021-09-28 中兴通讯股份有限公司 天线装置及通信终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256800A1 (en) * 2009-12-14 2012-10-11 Reetta Kuonanoja Multiband antenna structure and methods
CN107257016A (zh) * 2017-05-31 2017-10-17 维沃移动通信有限公司 一种终端多天线结构及移动终端
TWM571056U (zh) * 2018-09-05 2018-12-01 雙天線元件
CN111276806A (zh) * 2020-02-14 2020-06-12 维沃移动通信有限公司 一种天线和电子设备
CN113451771A (zh) * 2020-03-25 2021-09-28 中兴通讯股份有限公司 天线装置及通信终端

Also Published As

Publication number Publication date
EP4354655A1 (en) 2024-04-17
CN115621730A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
KR102455333B1 (ko) 안테나 시스템 및 단말 기기
CN110741506B (zh) 一种移动终端的天线及移动终端
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
EP3855567B1 (en) Coupled antenna device and electronic device
US7847737B2 (en) Antenna apparatus
US8098211B2 (en) Antenna structure and radio communication apparatus including the same
EP1164656A2 (en) Antenna system and radio unit using the same
CN112928456A (zh) 天线组件及电子设备
CN107919525B (zh) 天线系统
US11431085B2 (en) Antenna structure and wireless communication device using same
CN112421211A (zh) 天线及电子设备
US20230261370A1 (en) Antenna decoupling structure, mimo antenna, and terminal
US11342669B2 (en) Antenna structure and wireless communication device using same
TWI765599B (zh) 天線結構與電子裝置
US11637361B2 (en) Antenna structure and wireless communication device
CN116995414A (zh) 电子设备
WO2023284811A1 (zh) 天线结构及电子设备
WO2022237346A1 (zh) 天线组件及电子设备
WO2022199307A1 (zh) 天线组件及电子设备
CN113036405B (zh) 天线结构及电子设备
CN114792885A (zh) 一种双频自解耦的mimo天线对
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
TWI821856B (zh) 天線系統
CN114899585B (zh) 一种基于介质谐振器的滤波天线阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841444

Country of ref document: EP

Effective date: 20240108

NENP Non-entry into the national phase

Ref country code: DE