WO2022110277A1 - 一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置 - Google Patents
一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置 Download PDFInfo
- Publication number
- WO2022110277A1 WO2022110277A1 PCT/CN2020/133913 CN2020133913W WO2022110277A1 WO 2022110277 A1 WO2022110277 A1 WO 2022110277A1 CN 2020133913 W CN2020133913 W CN 2020133913W WO 2022110277 A1 WO2022110277 A1 WO 2022110277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inverter
- motor
- voltage
- current
- winding
- Prior art date
Links
- 238000004804 winding Methods 0.000 title claims abstract description 89
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 19
- 239000013598 vector Substances 0.000 claims abstract description 170
- 230000009471 action Effects 0.000 claims abstract description 10
- 238000013178 mathematical model Methods 0.000 claims abstract description 7
- 230000004044 response Effects 0.000 claims abstract description 4
- 101150110971 CIN7 gene Proteins 0.000 claims description 18
- 101150110298 INV1 gene Proteins 0.000 claims description 18
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 15
- 230000003068 static effect Effects 0.000 claims description 13
- 101100286980 Daucus carota INV2 gene Proteins 0.000 claims description 12
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 claims description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000004907 flux Effects 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 10
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/22—Multiple windings; Windings for more than three phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the invention belongs to the application field of open-winding topology systems of multi-phase motors, in particular to a model prediction decomposition control method and device for open-winding five-phase permanent magnet synchronous motors.
- Five-phase permanent magnet synchronous motors have the advantages of high efficiency, high power density, wide speed regulation range, low torque ripple and strong fault tolerance, and have been widely concerned and applied in the fields of aerospace, electric vehicles, and ship propulsion systems.
- the open-winding motor topology system has excellent characteristics such as high output power, diverse power supply modes and voltage vector modulation methods, flexible control, redundancy and fault tolerance.
- the Chinese invention patent "A Model Prediction Current Control Method for Open-winding Permanent Magnet Synchronous Motors" (Patent No.: CN201910583770.6) discloses a control method for model prediction of open-winding permanent magnet synchronous motors, because the method uses a single power supply Supplying power, although cost-effective, inevitably generates zero-sequence currents and does not take full advantage of the flexibility of an open-winding system.
- the Chinese invention patent "An Optimal Model Prediction Control Method for Dual Inverter Open-winding Induction Motor” discloses a control method for optimizing the model prediction of dual-inverter open-winding induction motor, Since this method only acts on one voltage vector per cycle, it is easy to implement but has poor steady-state performance. Therefore, most of the existing open-winding model prediction methods use the same modulation method as the non-open-winding topology system, and fail to take full advantage of the flexibility of the open-winding motor drive system and the advantages of diverse voltage vectors.
- a model predictive decomposition control method and device for an open-winding five-phase permanent magnet synchronous motor are proposed, and the two inverters of the open-winding topology system are regarded as two An independent unit, starting from the voltage vector that the inverter 1 can provide, selects different inverter switching sequences according to the requirements of the open-winding system under different working conditions, and can effectively reduce the open-winding performance on the premise of ensuring the effective performance.
- the winding five-phase permanent magnet synchronous motor controls the switching times of the system to reduce the switching loss of the inverter.
- a model predictive decomposition control method for an open-winding five-phase permanent magnet synchronous motor comprising the following steps:
- Step 1) obtaining the fundamental wave space alternating and direct axis currents of the open-winding five-phase permanent magnet synchronous motor in the rotating coordinate system as the given of the control system;
- Step 2 construct the virtual voltage vector table under the static coordinate system of the open-winding five-phase permanent magnet synchronous motor, calculate the label of the virtual voltage vector acting in the previous control cycle, calculate the voltage under the static coordinate system and obtain according to the mathematical model of the motor The back EMF of the motor;
- Step 3 using the prediction equation of Euler's forward difference to obtain the AC-direction current under the current cycle rotating coordinate system;
- Step 4) Take the voltage vector generated by inverter 1 as a given of the current sampling period, substitute it into the prediction model and the cost function, and obtain the AC-direction current of the rotating coordinate system in the next cycle given by the control system. If the voltage vector provided by the inverter 1 can meet the demand of the drive system, the inverter 2 is closed; otherwise, the inverter 1 is clamped to the maximum voltage vector provided, and the inverter 2 increases the increment of the remaining part;
- Step 5 Input the selected voltage vector and its corresponding duty cycle signal into the open-winding inverter to complete the closed-loop control of the drive system.
- step 2) includes:
- Step 2.1) Build the virtual voltage vector table of the open-winding five-phase permanent magnet synchronous motor:
- the voltage vector generated by the five-phase voltage source inverter in the static coordinate system can be expressed as:
- U dc is the DC bus voltage
- u s is the voltage vector value in the static coordinate system
- Step 2.2) The voltage vector obtained in step 1 is divided into a large vector u B , a medium vector u M , a small vector u L and a zero vector u 0 according to the size of the modulus length, and is constructed according to the principle of making the harmonic subspace equivalent to zero Open winding five-phase permanent magnet synchronous virtual voltage vector:
- VV i (u B , u L ) 0.618 ⁇ u M +(1-0.618) ⁇ u B
- the scale factor of 0.618 can make the two voltage vectors equivalent to zero in the harmonic subspace voltage vector of the five-phase permanent magnet synchronous motor
- Step 2.3) Calculate the voltage vector output value of the previous sampling period (k-1):
- Ls is the quadrature inductance of the motor, is the permanent magnet flux linkage of the motor
- iq* is the reference value of the quadrature axis current in the rotating coordinate system
- id* is the reference value of the quadrature axis current in the rotating coordinate system.
- step 3 includes:
- Step 3.1) The voltage equation in the rotating coordinate system of the five-phase permanent magnet synchronous motor is:
- Ls is the quadrature-axis inductance of the motor
- Rs is the stator resistance of the motor
- ud is the voltage on the motor 's direct axis
- uq is the voltage on the motor's quadrature axis
- id is the motor's direct-axis current
- iq is The current on the quadrature axis of the motor
- ⁇ e is the electrical angle of the motor, is the permanent magnet flux linkage of the motor
- Step 3.2) Use the Euler forward difference method to find the alternating and direct axis currents in the rotating coordinate system at time k+1:
- u d (k) is the voltage on the direct axis of the motor at time k
- u q (k) is the voltage on the quadrature axis of the motor at time k
- id (k) is the current on the direct axis of the motor
- i q (k) is The current on the quadrature axis of the motor
- EMF d (k) is the direct axis back EMF of the motor at time k
- EMF q (k) is the quadrature axis back EMF of the motor at time k.
- step 4) comprise:
- Step 4.1 According to the mathematical model of the open-winding five-phase permanent magnet synchronous motor, the AC-direction current in the rotating coordinate system at time k+1 can be expressed as the sum of the two inverters, namely:
- Step 4.2 Define the voltage vectors that can be provided by inverter 1 and inverter 2 as:
- a vector can be represented as:
- DR0 INV1 is the scaling factor of the sum of the effective voltage vectors in inverter 1
- DR INV1 is the two effective voltage vectors in inverter 1.
- the alternating and direct axis currents of the motor in the rotating coordinate system at time k+2 can be expressed as:
- inverter 1 like and less than the required increment at the current moment and It means that the voltage vector provided by inverter 1 can no longer meet the needs of the current state of the motor, and inverter 2 needs to output the remaining increment to meet the needs of motor conditions. Inverter 1 outputs its The largest increment that can be output and Inverter 2 acts on multiple voltage vectors in the current cycle, and the voltage vector in the rotating coordinate system generated in the current sampling cycle can be expressed as:
- the alternating and direct axis currents of the motor in the rotating coordinate system at time k+2 can be expressed as:
- Step 4.4 According to the two different working conditions in step 4.3), the quadrature-axis current in the motor rotating coordinate system at time k+2 is substituted into the cost function to obtain the expected voltage vector:
- step 5 includes:
- Step 5.1) According to step 4), find the index number i of the optimal voltage vector, the scaling factors DR0 INV1 and DR INV1 in inverter 1, and the scaling factors DR0 INV2 and DR INV2 in inverter 2, combined with step 2.
- the constructed virtual voltage vector table of the open-winding five-phase permanent magnet synchronous motor outputs the duty cycle of each phase of the open-winding inverter:
- Step 5.2 The duty cycle of inverter 1 and the duty cycle of inverter 2 obtained in step 5.1) are output through the PWM pulse width modulation unit to the drive chip of the inverter, and the corresponding voltage is output to the motor through the IGBT.
- the technical scheme of the device of the present invention is: a model prediction decomposition control device for an open-winding five-phase permanent magnet synchronous motor, which mainly includes:
- the data acquisition unit uses the Hall type current sensor ACS758 to sample the phase current of the motor; uses the relative position type radio and television encoder to obtain the electrical angle and speed of the motor.
- the electric angular velocity ⁇ and electric angle ⁇ of the open-winding five-phase permanent magnet synchronous motor are calculated by the enhanced capture unit in the DSP; the current id and iq are obtained by sampling and transforming the ADC module in the DSP.
- the command input unit uses TI's TMS320F28377S as the controller. After the motor speed is given, the program in the DSP calculates and obtains the AC and direct axis current reference values iq* and id* in the rotating coordinate system;
- the incremental judgment unit is used to judge whether the voltage vector provided by the current inverter 1 can meet the current demand of the motor drive system
- Inverter 1 acts as a separate unit, judged by the program inside the DSP and Is it greater than the current reference value. If the voltage vector provided by inverter 1 and greater than the current reference value, inverter 1 outputs the duty cycle alone Inverter 2 has a duty cycle of 0;
- the superposition action unit is judged by the program inside the DSP and Is it greater than the current reference value. If the voltage vector provided by inverter 1 and greater than the current reference value, inverter 1 outputs the duty cycle alone Inverter 2 output duty cycle
- PWM output unit uses a voltage source inverter, modulates the duty cycle output by inverter 1 and inverter 2 through a triangular carrier wave, and outputs a PWM wave, which drives the IGBT after passing through the 1ED020F12 isolation driver chip. , generate the corresponding voltage.
- the data acquisition unit processes the sampled data through DSP.
- the DSP performs control according to the command input from the command voltage input power supply and the data acquired by the data acquisition unit to calculate and obtain the given value at the current moment.
- the incremental judging unit judges the given value at the current moment, judges between the independent action unit and the superimposed action unit of the inverter 1, and selects the mode suitable for the current state to output.
- the PWM output unit outputs the PWM signal calculated by the above unit, and acts on the motor winding to generate current. Then through the data acquisition unit to collect and calculate, thus forming a complete closed-loop control system of hardware and software.
- the present invention is based on the five-phase permanent magnet synchronous motor model prediction control method, and has the advantages of good dynamic performance, simple structure and easy implementation.
- Fig. 1 Open winding topology and peripheral device circuit
- Figure 3 is the space voltage vector distribution diagram generated by a single inverter; (a) is the voltage vector distribution in the fundamental wave subspace; (b) is the voltage vector distribution in the third harmonic subspace;
- Fig. 5 virtual space voltage vector distribution of open-winding five-phase permanent magnet synchronous motor
- Figure 6 decomposes the increments of inverter 1 and inverter 2 (taking the quadrature axis as an example);
- Figure 8 The superposition of inverter 1 and inverter 2;
- Figure 11 Inverter 1 acts on the A-phase current waveform alone
- Figure 12 Inverter 1 acts on output torque alone
- Figure 13 Inverter 1 acts on the speed alone
- FIG. 17 Inverters 1 and 2 act on the duty cycle of phase A alone; (a) Inverter 1 acts on the duty cycle of phase A alone; (b) Inverter 2 acts on the duty cycle of phase A alone;
- FIG. 18 Inverter 1 and inverter 2 superimpose the duty cycle of phase A; (a) Inverter 1 acts alone on the duty cycle of phase A; (b) Inverter 2 acts alone on the duty cycle of phase A;
- Fig. 19 Changes of A-phase duty cycle under working condition switching; (a) Inverter 1 acts solely on A-phase duty cycle; (b) Inverter 2 acts solely on A-phase duty cycle.
- the present invention proposes a model predictive decomposition control method and device for an open-winding five-phase permanent magnet synchronous motor.
- the two inverters of the open-winding topology system as two independent units, starting from the voltage vector provided by inverter 1, select different inverter switches according to the requirements of the open-winding system under different operating conditions
- the sequence on the premise of ensuring the effective performance, can effectively reduce the switching times of the open-winding five-phase permanent magnet synchronous motor control system and reduce the switching loss of the inverter.
- Figure 1 shows the internal implementation flow of the proposed model prediction decomposition control device.
- the specific implementation steps of the proposed model predictive decomposition control method for an open-winding five-phase permanent magnet synchronous motor include:
- Step 1) obtaining the fundamental wave space alternating and direct axis currents of the open-winding five-phase permanent magnet synchronous motor in the rotating coordinate system as the given of the control system;
- Step 2 construct the virtual voltage vector table under the static coordinate system of the open-winding five-phase permanent magnet synchronous motor, calculate the label of the virtual voltage vector acting in the previous control cycle, calculate the voltage under the static coordinate system, and obtain the motor according to the mathematical model of the motor back EMF.
- Step 2.1) Build the virtual voltage vector table of the open-winding five-phase permanent magnet synchronous motor:
- the voltage vector generated by the five-phase voltage source inverter in the static coordinate system can be expressed as:
- U dc is the DC bus voltage
- u s is the voltage vector value in the static coordinate system
- Step 2.2 According to the principle that the third harmonic space voltage is equivalent to 0, the voltage vector is synthesized in the fundamental wave sub-plane, and the synthesis principle is as follows:
- VV i (u B , u L ) 0.618 ⁇ u M +(1-0.618) ⁇ u B
- the scale factor of 0.618 can make the two voltage vectors equivalent to zero in the harmonic subspace voltage vector of the five-phase permanent magnet synchronous motor.
- the synthesized virtual voltage vector is shown in Figure 4:
- the space voltage vector distribution of the open-winding five-phase permanent magnet synchronous motor is shown in Figure 5.
- the voltage vector in the figure is obtained by subtracting the virtual voltage vector provided by inverter 1 and inverter 2.
- the obtained voltage vector, such as 3-9 ' means: the virtual voltage vector under the open-winding topology obtained by subtracting the virtual voltage vector of No. 3 of inverter 1 and the virtual voltage vector of No. 9 of inverter 2.
- Table 2 Open-winding five-phase permanent magnet synchronous motor virtual voltage vector table
- Step 2.3) Calculate the voltage vector output value of the previous sampling period.
- the instantaneous value of the AC and direct-axis back electromotive force of the open-winding five-phase permanent magnet synchronous motor in the rotating coordinate system at this time is calculated.
- Ls is the quadrature inductance of the motor, is the permanent magnet flux linkage of the motor
- iq* is the reference value of the quadrature axis current in the rotating coordinate system
- id* is the reference value of the quadrature axis current in the rotating coordinate system.
- Step 3 Using the prediction equation of Euler's forward difference to obtain the AC-direction current in the current periodic rotating coordinate system.
- Step 3.1 According to the voltage equation in the rotating coordinate system of the five-phase permanent magnet synchronous motor:
- Ls is the quadrature-axis inductance of the motor
- Rs is the stator resistance of the motor
- ud is the voltage on the motor 's direct axis
- uq is the voltage on the motor's quadrature axis
- id is the motor's direct-axis current
- iq is The current on the quadrature axis of the motor
- ⁇ e is the electrical angle of the motor
- ⁇ e is the permanent magnet flux linkage of the motor.
- Step 3.2) Use the Euler forward difference method to find the alternating and direct axis currents in the rotating coordinate system at time k+1:
- u d (k) is the AC-DC axis voltage on the inverter in the last cycle calculated in step 2.3), and the us in step 2.3) is obtained by the change from static to rotation.
- Step 4) Take the voltage vector generated by inverter 1 as the given current sampling period, substitute it into the prediction model and the cost function, and obtain the AC-direction current of the rotating coordinate system in the next period given by the control system. If the voltage vector provided by inverter 1 can meet the demand of the drive system, inverter 2 is turned off; otherwise, inverter 1 is clamped to the maximum voltage vector provided, and inverter 2 provides the remainder of the increment.
- the specific steps can be divided into:
- Step 4.1 According to the mathematical model of the open-winding five-phase permanent magnet synchronous motor, the AC-direct-axis current in the rotating coordinate system at time k+1 can be expressed as the sum of the two inverters:
- Step 4.2 Define the voltage vector that inverter 1 and inverter 2 can provide:
- Step 4.3 traverse the virtual voltage vector generated by inverter 1, and predict the alternating and direct axis currents under the rotating coordinate system of the five-phase permanent magnet synchronous motor at time k+2:
- the voltage vector in the rotating coordinate system generated in the current sampling cycle can be expressed as:
- DR0 INV1 is the scaling factor of the sum of the effective voltage vectors in inverter 1
- DR INV1 is the two effective voltage vectors in inverter 1.
- the alternating and direct axis currents of the motor in the rotating coordinate system at time k+2 can be expressed as:
- V is the AC-DC axis voltage in the rotating coordinate system provided by the inverter 1 .
- the virtual voltage vector provided by the inverter can already satisfy the state of the motor at the current moment, and the inverter 2 will be shut down immediately, thereby reducing the loss of the system.
- Inverter 1 outputs the largest increment it can output in the current cycle and Inverter 2 acts on multiple voltage vectors in the current cycle, and the voltage vector in the rotating coordinate system generated in the current sampling cycle can be expressed as:
- the alternating and direct axis currents of the motor in the rotating coordinate system at time k+2 can be expressed as:
- the virtual voltage vector provided by inverter 1 can no longer satisfy the state of the motor at the current moment.
- Inverter 1 outputs the maximum voltage vector provided, and inverter 2 supplements the remaining current increment. , so as to achieve the expected given value.
- Step 4.4 According to the two different working conditions in step 4.3), the quadrature-axis current in the motor rotating coordinate system at time k+2 is substituted into the cost function to obtain the expected voltage vector:
- Step 5 Input the selected voltage vector and its corresponding duty cycle signal into the open-winding inverter to complete the closed-loop control of the drive system.
- Step 5.1) According to step 4), the index number i of the optimal voltage vector, the scaling factors DR0 INV1 and DR INV1 in inverter 1, and the scaling factors DR0 INV1 and DR INV1 in inverter 2 are obtained. Combined with the virtual voltage vector table of the open-winding five-phase permanent magnet synchronous motor constructed in step 2, the duty cycle of each phase of the open-winding inverter is output:
- the switching sequence on the left is the switching sequence of inverter 1
- the switching sequence on the right is the switching sequence of inverter 2.
- the inverter 1 outputs normally, and the switch output of the inverter 2 is low, so as to reduce the overall switching loss of the drive system.
- the switching sequence on the left is the switching sequence of inverter 1
- the switching sequence on the right is the switching sequence of inverter 2.
- the inverter 1 outputs the maximum voltage vector, and only two switches are performed in each control cycle, and the inverter 2 outputs the switching waveform normally, thereby reducing the overall switching loss of the drive system.
- Step 5.2 The duty cycle of inverter 1 and the duty cycle of inverter 2 obtained in step 5.1) are output through the PWM pulse width modulation unit to the drive chip of the inverter, and the corresponding voltage is output to the motor through the IGBT.
- Figures 11 to 13 respectively show the simulation waveforms of the A-phase current, output torque and rotational speed when the inverter 1 acts alone.
- Figures 14 to 16 respectively show the simulation waveforms of the A-phase current, output torque, and rotational speed when the inverter 1 and the inverter 2 are superimposed.
- Figure 17 and Figure 18 respectively show the change of the A-phase duty cycle of the inverter 1 when the inverter 1 acts alone and when the inverter 1 and the inverter 2 act together.
- Figure 19 shows the change of the A-phase duty cycle of the inverter 1 when the open-winding five-phase permanent magnet synchronous motor switches from the single action of the inverter 1 to the superimposed action of the inverter 1 and the inverter 2.
- the model predictive decomposition control method and device for an open-winding five-phase permanent magnet synchronous motor proposed by the present invention can reduce system losses; maximize the flexibility of the open-winding drive system; The 144 vector traversal times are reduced to 24 times, reducing the amount of computation.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置。方法包括在转子磁场定向下获得静止坐标系下的电压分量;根据电压源逆变器下的五相永磁同步电机矢量分布合成出能够抵消谐波空间电压的虚拟电压矢量;将五相永磁同步电机开绕组拓扑等效为两个逆变器独立作用的叠加;将一个单独逆变器可以产生的电压矢量通过电机的数学模型进行预测获取预期的增量作为判断条件,决定开绕组系统是使用两个中的一个逆变器保持开绕组系统的正常运转,或者是第一个逆变器钳位,第二个逆变器产生剩下的增量。装置包括方法步骤所对应的程序单元。该控制方法和装置能够有效地降低开绕组驱动系统的开关损耗,提高控制系统的动态响应。
Description
本发明属于多相电机开绕组拓扑系统应用领域,尤其是涉及一种用与开绕组五相永磁同步电机的模型预测分解控制方法及装置。
五相永磁同步电机具有高效率、高功率密度、宽调速范围、低转矩脉动和强容错能力等优点,在航空航天、电动汽车、舰船推进系统等领域得到广泛关注和应用。同时,开绕组电机拓扑系统具有输出功率高、供电模式和电压矢量调制方式多样、控制灵活、冗余性和容错性等优良特性。
国内外学者对开绕组拓扑下的五相永磁同步电机模型预测控制方法已经取得了一定的成果。中国发明专利《一种开绕组永磁同步电动机的模型预测电流控制方法》(专利号:CN201910583770.6)公开了一种针对开绕组永磁同步电机模型预测的控制方法,由于该方法使用单电源进行供电,虽然节省了成本,但势必会产生零序电流,同时没有充分利用开绕组系统的灵活性。中国发明专利《一种双逆变器开绕组感应电机的优化模型预测控制方法》(专利号:CN201910207446.4)公开了一种针对双逆变器开绕组感应电机模型预测进行优化的控制方法,由于该方法每个周期只作用一个电压矢量,易于实现但稳态性能差。因此,目前现有的开绕组模型预测方法大多采用与非开绕组拓扑系统相同的调制方式,没能够充分利用开绕组电机驱动系统的灵活性与多样电压矢量的优点。同时,随着电机相数的增加,特别是开绕组五相永磁同步电机拓扑系统,中性点打开后驱动系统的开关损耗翻倍、控制虽灵活但变得复杂。因此,在保持开绕组五相永磁同步电机系统灵活与自由的前提下,降低逆变器的开关损耗,并减少开绕组模型预测的计算是指的研究的课题。
发明内容
发明目的:针对现有技术中存在的问题,提出了一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置,将开绕组拓扑系统的两个逆变器看作两个独立的单元,以逆变器1所能提供的电压矢量为起点,针对开绕组系统不同工况下的需求选择不同的逆变器开关序列,在保证有口性能的前提下,能够有效降低开绕组五相永磁同步电机控制系统的开关次数,降低逆变器的开关损耗。
技术方案:为实现上述发明目的,本发明所采用的技术方案如下:
一种用于开绕组五相永磁同步电机的模型预测分解控制方法,包括以下步骤:
步骤1)获得开绕组五相永磁同步电机在旋转坐标系的基波空间交、直轴电流作为控制系统的给定;
步骤2)构建开绕组五相永磁同步电机静止坐标系下的虚拟电压矢量表,计算前一个控制周期作用虚拟电压矢量的标号,计算出静止坐标系下的电压并根据电机的数学模型求得电机的反电动势;
步骤3)采用欧拉前向差分的预测方程求出当前周期旋转坐标系下的交直轴电流;
步骤4)将逆变器1所产生的电压矢量作为当前采样周期的给定,代入预测模型与代价函数,求出符合控制系统给定的下个周期的旋转坐标系的交直轴电流,如果逆变器1提供的电压矢量能够满足驱动系统的需求,则逆变器2关闭;否则,逆变器1钳位至所提供的最大电压矢量,逆变器2提升剩余部分的增量;
步骤5)将所选择好的电压矢量与其对应的占空比信号输入到开绕组逆变器中,完成驱动系统的闭环控制。
进一步,步骤1)的具体步骤包括:实时计算给定转速n
*与电机的实际转速n之间的转速误差,通过PI调节器,得到所需的交轴电流的参考值i
q
*,直轴电流参考值i
d
*=0。
进一步,步骤2)的具体步骤包括:
步骤2.1)构建开绕组五相永磁同步电机虚拟电压矢量表:
五相电压源逆变器在静止坐标系下所产生的电压矢量可表示为:
式中,U
dc是直流母线电压;u
s是静止坐标系下的电压向量值;s
i(i=a,b,c,d,e)是每个桥臂的开关函数;当上桥臂导通s
i=1,下桥臂导通s
i=0;
步骤2.2)由步骤1所得的电压矢量按照模长的大小分为大矢量u
B、中矢量u
M、小矢量u
L和零矢量u
0,根据使得谐波子空间等效为零的原则构建开绕组五相永磁同步虚拟电压矢量:
VV
i(u
B,u
L)=0.618×u
M+(1-0.618)×u
B
式中,0.618的比例因子可以使得两个电压矢量在五相永磁同步电机谐波子空间电压矢量等效为零;
步骤2.3)计算前一个采样周期(k-1)的电压矢量输出值:
并通过步骤1中计算出的i
q
*与电机的实际转速ω计算出开绕组五相永磁同步电机在此时旋转坐标系下的交、直轴反电动势瞬时值:
进一步,步骤3)的具体步骤包括:
步骤3.1)五相永磁同步电机旋转坐标系下的电压方程为:
步骤3.2)采用欧拉前向差分的方式求出k+1时刻旋转坐标系下的交、直轴电流:
式中,u
d(k)为k时刻电机直轴上的电压、u
q(k)为k时刻电机交轴上的电压,i
d(k)是电机直轴电流、i
q(k)是电机交轴上的电流、EMF
d(k)为k时刻电机的直轴反电动势、EMF
q(k)为k时刻电机的交轴反电动势。
进一步,步骤4)的具体步骤包括:
步骤4.1)根据开绕组五相永磁同步电机的数学模型,k+1时刻旋转坐标系下的交直轴电流可以表示为两个逆变器之和,即:
式中,
为k+1时刻逆变器1所提供旋转坐标系下直轴电压,
为k+1 时刻逆变器1所提供旋转坐标系下交轴电压;
为k+1时刻逆变器2所提供旋转坐标系下直轴电压,
为k+1时刻逆变器2所提供旋转坐标系下交轴电压。
步骤4.2)定义逆变器1、逆变器2所能提供的电压矢量分别为:
式中,
和
是通过逆变器1所产生的旋转坐标系下交、直轴电流,Rs为电机绕组的相电阻,Ts是控制器的控制周期,Ls是电机的定子电感;EMF
d(k+1)为k+1时刻电机的直轴反电动势、EMF
q(k+1)为k+1时刻电机的交轴反电动势;步骤4.3)遍历逆变器1所产生的虚拟电压矢量,预测k+2时刻的五相永磁同步电机旋转坐标系下的交、直轴电流:
若
和
大于等于当前时刻所需要的增量
和
意味着逆变器1所提供的电压矢量已经可满足电机当前状态的需求,逆变器2关闭,通过在一个周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可表示为:
式中,
和
分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;
和
分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部;
和
分别是逆变器1当前时刻待选两个电压矢量的虚部和虚部;DR0
INV1是逆变器1中有效电压矢量之和作用的比例因子,DR
INV1是逆变器1中两个有效电压矢量之间的比例因子;当逆变器1所提供的增量满足当前需要时,逆变器1和逆变器2的比例因子满足:
电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:
若
和
小于当前时刻所需要的增量
和
意味着逆变器1所提供的电压矢量已经无法满足电机当前状态的需求,需要逆变器2额外输出剩余部分的增量来满足电机工况的需求,逆变器1在当前周期内输出其所能输出的最大的增量
和
逆变器2则在当前周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可以表示为:
式中,
和
分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;
和
分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部;
和
是逆变器2第1个待选电压矢量的实部和虚部;
和
分别是逆变器2第2个待选电压矢量的实部和虚部;DR0
INV2是有效电压矢量之和作用的比例因子,DR
INV2是两个有效电压矢量之间的比例因子;当逆变器1所提供的增量不满足当前需要时,逆变器1和逆变器2的比例因子满足:
电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:
步骤4.4)根据步骤4.3)中两种不同工况下求出的k+2时刻电机旋转坐标系下交直轴电流代入代价函数求出预期电压矢量:
进一步,步骤5)的具体步骤包括:
步骤5.1)根据步骤4)求出最优电压矢量的索引号i、逆变器1中的比例因子DR0
INV1和DR
INV1、逆变器2中的比例因子DR0
INV2和DR
INV2,结合步骤2中所构建的开绕组五相永磁同步电机虚拟电压矢量表,输出开绕组逆变器各相的占空比:
式中,
是通过所提算法计算出来的数值,用于逆变器1产生相应占空比的波形。
用于逆变器2缠上相应占空比的波形,
是逆变器1所选的第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
是逆变器1所选第2个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
式中,
是通过所提算法计算出来的数值,用于逆变器1产生响应占空比的波形,
用于逆变器2缠上相应占空比的波形,
是逆变器2所选虚拟电 压矢量的开关函数,其中x=a,b,c,d,e;
是逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
步骤5.2)将步骤5.1)所求出的逆变器1占空比与逆变器2占空比经PWM脉宽调制单元输出值逆变器的驱动芯片,相应的电压经由IGBT输出至电机。
本发明装置的技术方案为:一种用于开绕组五相永磁同步电机的模型预测分解控制装置,主要包括:
数据采集单元,数据采集单元使用霍尔型电流传感器ACS758采样电机的相电流;使用相对位置型广电编码器获取电机的电角度和转速。使用DSP中的增强型捕获单元计算出开绕组五相永磁同步电机的电角速度ω、电角度θ;使用DSP中的ADC模块采样变换得到旋转坐标系下交、直轴电流id和iq。
指令电压输入单元,指令输入单元使用TI公司的TMS320F28377S作为控制器,给定电机转速后通过DSP中的程序计算获得旋转坐标系下的交、直轴电流参考值iq*和id*;
增量判断单元,用于判断当前逆变器1所提供的电压矢量是否额能够满足电机驱动系统当前的需求;
PWM输出单元,PWM输出单元使用电压源型逆变器,将逆变器1、逆变器2输出的占空比通过三角载波进行调制,输出为PWM波,经过1ED020F12型隔离驱动芯片后驱动IGBT,产生相应的电压。
数据采集单元作为系统的输入,将采样得到的数据通过DSP进行处理。DSP根据指令电压输入电源输入到的指令进行控制和数据采集单元获取的到的数据进行计算求出当前时刻的给定值。增量判断单元通过判断当前时刻的给定值,在逆变器1单独作用单元和叠加 作用单元之间进行判断,选择适合当前状态的模式进行输出。PWM输出单元将上述单元运算后的PWM信号进行输出,作用在电机绕组上产生电流。再通过数据采集单元进采集计算,从而形成一个完整的硬件和软件的闭环控制系统。
本发明的有益效果:
1)本发明基于五相永磁同步电机电机模型预测控制方法,具有动态性能好,结构简单易于实现的优点。
2)通过对开绕组五相永磁同步电机系统进行分解,分解为两个独立逆变器的叠加,能够使得开绕组拓扑系统的灵活性大幅提升。
3)采用双逆变器分解控制这一方法,嫩巩固有效降低逆变器的开关次数,从而降低五相开绕永磁同步电机系统的整体开关损耗。
4)所提出的开绕组分解控制方法具有通用性,且易于实现,有利于新理论的工程化和实用化。
图1开绕组拓扑结构及外围装置电路;
图2装置内部的实现流程;
图3单个逆变器所产生的空间电压矢量分布图;(a)为基波子空间的电压矢量分布;(b)为三次谐波子空间的电压矢量分布;
图4单逆变器虚拟电压矢量合成;
图5开绕组五相永磁同步电机虚拟空间电压矢量分布;
图6分解逆变器1和逆变器2的增量(以交轴为例);
图7逆变器1单独作用;
图8逆变器1和逆变器2叠加作用;
图9逆变器1单独作用时双逆变器输出的开关序列;
图10逆变器1和逆变器2叠加作用时的开关波形;
图11逆变器1单独作用A相电流波形;
图12逆变器1单独作用输出转矩;
图13逆变器1单独作用转速;
图14逆变器1和逆变器2叠加作用A相电流;
图15逆变器1和逆变器2叠加作用输出转矩;
图16逆变器1和逆变器2叠加作用转速;
图17逆变器1、2单独作用A相占空比;(a)逆变器1单独作用A相占空比;(b)逆变器2单独作用A相占空比;
图18逆变器1和逆变器2叠加作用A相占空比;(a)逆变器1单独作用A相占空比;(b)逆变器2单独作用A相占空比;
图19工况切换下的A相占空比变化;(a)逆变器1单独作用A相占空比;(b)逆变器2单独作用A相占空比。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
如图1和图2所示,本发明提出一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置。将开绕组拓扑系统的两个逆变器看作两个独立的单元,以逆变器1所能提供的电压矢量为起点,针对开绕组系统不同工况下的需求选择不同的逆变器开关序列,在保证有口性能的前提下,能够有效降低开绕组五相永磁同步电机控制系统的开关次数,降低逆变器的开关损耗。
其中,所采用的双电源开绕组拓扑结构以及装置外围的电路如图1所示。图2是所提模型预测分解控制装置内部的实现流程。
所提出的用于开绕组五相永磁同步电机的模型预测分解控制方法具体实施步骤包括:
步骤1)获得开绕组五相永磁同步电机在旋转坐标系的基波空间交、直轴电流作为控制系统的给定;
1.1)实时计算给定转速n
*与电机的实际转速n之间的转速误差,通过PI调节器,得到所需的交轴电流的参考值i
q
*,直轴电流参考值i
d
*=0;
1.2)采样五相相电流,从五相自然坐标系ABCDE到两相旋转坐标系,再通过五相静止坐标系到两相旋转坐标系的坐标变换,得到交直轴电流i
d和i
q。
五相自然坐标系ABCDE到两相旋转坐标系的变换矩阵表示为:
式中,α=0.4π,θ
e为电机的电角度。
1.3)交直轴电压经过两相旋转坐标系到两相静止坐标系的坐标变换,得到静止坐标系下的电压分量i
α和i
β。
两相旋转坐标系到两相静止坐标系的变换矩阵表示为:
步骤2)构建开绕组五相永磁同步电机静止坐标系下的虚拟电压矢量表,计算前一个控制周期作用虚拟电压矢量的标号计算出静止坐标系下的电压并根据电机的数学模型求得电机的反电动势。
步骤2.1)构建开绕组五相永磁同步电机虚拟电压矢量表:
五相电压源逆变器在静止坐标系下所产生的电压矢量可表示为:
式中,U
dc是直流母线电压;u
s是静止坐标系下的电压向量值;s
i(i=a,b,c,d,e)是每个桥臂的开关函数;当上桥臂导通s
i=1,下桥臂导通s
i=0。
五相开绕组系统单个逆变器空间电压矢量分布图如图3所示:
单个逆变器空间电压矢量分布表如表1所示:
表1单个逆变器空间电压矢量分布表
步骤2.2)根据三次谐波空间电压等效为0的原则,在基波子平面进行电压矢量的合成,合成原则如下:
VV
i(u
B,u
L)=0.618×u
M+(1-0.618)×u
B
式中,0.618的比例因子可以使得两个电压矢量在五相永磁同步电机谐波子空间电压矢量等效为零。
合成后的虚拟电压矢量如图4所示:
根据开绕组拓扑结构原理,开绕组五相永磁同步电机的空间电压矢量分布如图5所示,图中电压矢量是由逆变器1与逆变器2所提供的虚拟电压矢量相减后的到电压矢量,如3-9
’的含义为:逆变器1的3号虚拟电压矢量与逆变器2的9号虚拟电压矢量相减后得到的开绕组拓扑下的虚拟电压矢量。
开绕组五相永磁同步电机所有的虚拟空间电压矢量分布如表2所示:
表2开绕组五相永磁同步电机虚拟电压矢量表
步骤2.3)计算前一个采样周期的电压矢量输出值。
并通过步骤1中计算出的i
q
*与电机的实际转速ω计算出开绕组五相永磁同步电机在此时旋转坐标系下的交、直轴反电动势瞬时值。
步骤3)采用欧拉前向差分的预测方程求出当前周期旋转坐标系下的交直轴电流。
步骤3.1)根据五相永磁同步电机旋转坐标系下的电压方程:
步骤3.2)采用欧拉前向差分的方式求出k+1时刻旋转坐标系下的交、直轴电流:
式中,u
d(k)为步骤2.3)中计算出的上个周期作用再逆变器上的交直轴电压,将步骤2.3)中的us通过静止到旋转的变化获得。
步骤4)将逆变器1所产生的电压矢量作为当前采样周期的给定,代入预测模型与代价函数,求出符合控制系统给定的下个周期的旋转坐标系的交直轴电流。如果逆变器1提供的电压矢量能够满足驱动系统的需求,则逆变器2关闭;否则,逆变器1钳位至所提供的最大电压矢量,逆变器2提供剩余部分的增量。具体步骤可分为:
步骤4.1)根据开绕组五相永磁同步电机的数学模型,k+1时刻旋转坐标系下的交直轴电流可以表示为两个逆变器之和即:
步骤4.2)定义逆变器1、逆变器2所能提供的电压矢量:
如图6所示,采用旋转坐标系下交轴电流无差拍的原则,k+1时刻的交轴电流与交轴的参考电流的差值记为:
步骤4.3)遍历逆变器1所产生的虚拟电压矢量,预测k+2时刻的五相永磁同步电机旋 转坐标系下的交、直轴电流:
若
和
大于等于当前时刻所需要的增量
和
意味着逆变器1所提供的电压矢量已经可满足电机当前状态的需求,逆变器2关闭。通过在一个周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可表示为:
式中,
和
分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;
和
分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部;
和
分别是逆变器1当前时刻待选两个电压矢量的虚部和虚部;DR0
INV1是逆变器1中有效电压矢量之和作用的比例因子,DR
INV1是逆变器1中两个有效电压矢量之间的比例因子;当逆变器1所提供的增量满足当前需要时,逆变器1和逆变器2的比例因子满足:
电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:
如图7所示,逆变器所提供的虚拟电压矢量已经能够满足电机在当前时刻的状态,逆变器2就会及进行关闭,从而降低系统的损耗。
若
和
小于当前时刻所需要的增量
和
意味着逆变器1所提供的电压矢量已经无法满足电机当前状态的需求,需要逆变器2额外输出剩余部分的增量来满足电 机工况的需求。逆变器1在当前周期内输出其所能输出的最大的增量
和
逆变器2则在当前周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可以表示为:
式中,
和
分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;
和
分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部;
和
是逆变器2第1个待选电压矢量的实部和虚部;
和
分别是逆变器2第2个待选电压矢量的实部和虚部;DR0
INV2是有效电压矢量之和作用的比例因子,DR
INV2是两个有效电压矢量之间的比例因子;当逆变器1所提供的增量不满足当前需要时,逆变器1和逆变器2的比例因子满足:
电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:
如图8所示,逆变器1所提供的虚拟电压矢量已经无法满足电机在当前时刻的状态,逆变器1输出所提供的最大电压矢量,逆变器2补充剩下部分的电流增量,从而达到预期的给定值。
步骤4.4)根据步骤4.3)中两种不同工况下求出的k+2时刻电机旋转坐标系下交直轴电流代入代价函数求出预期电压矢量:
步骤5)将所选择好的电压矢量与其对应的占空比信号输入到开绕组逆变器中,完成驱动系统的闭环控制。
步骤5.1)根据步骤4)求出最优电压矢量的索引号i、逆变器1中的比例因子DR0
INV1和DR
INV1、逆变器2中的比例因子DR0
INV1和DR
INV1。结合步骤2中所构建的开绕组五相永磁同步电机虚拟电压矢量表,输出开绕组逆变器各相的占空比:
式中,
是通过所提算法计算出来的数值,用于逆变器1产生相应占空比的波形。
用于逆变器2缠上相应占空比的波形。
是逆变器1所选的第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
是逆变器1所选第2个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
如图9所示,左侧的开关序列是逆变器1的开关序列,右侧是逆变器2的开关序列。在当前工况下,逆变器1正常输出,逆变器2的开关输出低电平,以降低驱动系统整体的开关损耗。
式中,
是通过所提算法计算出来的数值,用于逆变器1产生响应占空比的波形。
用于逆变器2缠上相应占空比的波形。
是逆变器2所选虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
是逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;
如图10所示,左侧的开关序列是逆变器1的开关序列,右侧是逆变器2的开关序列。在当前工况下,逆变器1输出最大电压矢量,每个控制周期只进行两次开关,逆变器2正常输出开关波形,从而使得驱动系统整体的开关损耗得到降低。
步骤5.2)将步骤5.1)所求出的逆变器1占空比与逆变器2占空比经PWM脉宽调制单元输出值逆变器的驱动芯片,相应的电压经由IGBT输出至电机。
图11~13分别给出了逆变器1单独作用时的A相电流、输出转矩、转速的仿真波形。
图14~16分别给出了逆变器1和逆变器2叠加作用时的A相电流、输出转矩、转速的仿真波形。
图17、图18分别给出了逆变器1单独作用时和逆变器1和逆变器2叠加作用时逆变器1的A相占空比变化。
图19给出了开绕组五相永磁同步电机从逆变器1单独作用切换到逆变器1和逆变器2叠加作用时逆变器1的A相占空比变化。
从上述仿真波形可以看出,本发明所提出的一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置具有降低系统损耗;最大化开绕组驱动系统的灵活性;同时将144次的矢量遍历降低为24次,减小了计算量。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (7)
- 一种用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,包括以下步骤:步骤1)获得开绕组五相永磁同步电机在旋转坐标系的基波空间交、直轴电流作为控制系统的给定;步骤2)构建开绕组五相永磁同步电机静止坐标系下的虚拟电压矢量表,计算前一个控制周期作用虚拟电压矢量的标号,计算出静止坐标系下的电压并根据电机的数学模型求得电机的反电动势;步骤3)采用欧拉前向差分的预测方程求出当前周期旋转坐标系下的交直轴电流;步骤4)将逆变器1所产生的电压矢量作为当前采样周期的给定,代入预测模型与代价函数,求出符合控制系统给定的下个周期的旋转坐标系的交直轴电流,如果逆变器1提供的电压矢量能够满足驱动系统的需求,则逆变器2关闭;否则,逆变器1钳位至所提供的最大电压矢量,逆变器2提升剩余部分的增量;步骤5)将所选择好的电压矢量与其对应的占空比信号输入到开绕组逆变器中,完成驱动系统的闭环控制。
- 根据权利要求1所述的用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,步骤1)的具体步骤包括:实时计算给定转速n *与电机的实际转速n之间的转速误差,通过PI调节器,得到所需的交轴电流的参考值i q *,直轴电流参考值i d *=0。
- 根据权利要求1所述的用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,步骤2)的具体步骤包括:步骤2.1)构建开绕组五相永磁同步电机虚拟电压矢量表:五相电压源逆变器在静止坐标系下所产生的电压矢量可表示为:式中,U dc是直流母线电压;u s是静止坐标系下的电压向量值;s i(i=a,b,c,d,e)是每个桥臂的开关函数;当上桥臂导通s i=1,下桥臂导通s i=0;步骤2.2)由步骤1所得的电压矢量按照模长的大小分为大矢量u B、中矢量u M、小矢量u L和零矢量u 0,根据使得谐波子空间等效为零的原则构建开绕组五相永磁同步虚拟电压 矢量:VV i(u B,u L)=0.618×u M+(1-0.618)×u B式中,0.618的比例因子可以使得两个电压矢量在五相永磁同步电机谐波子空间电压矢量等效为零;步骤2.3)计算前一个采样周期(k-1)的电压矢量输出值:并通过步骤1中计算出的i q *与电机的实际转速ω计算出开绕组五相永磁同步电机在此时旋转坐标系下的交、直轴反电动势瞬时值:
- 根据权利要求1所述的用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,步骤3)的具体步骤包括:步骤3.1)五相永磁同步电机旋转坐标系下的电压方程为:步骤3.2)采用欧拉前向差分的方式求出k+1时刻旋转坐标系下的交、直轴电流:式中,u d(k)为k时刻电机直轴上的电压、u q(k)为k时刻电机交轴上的电压,i d(k)是电机直轴电流、i q(k)是电机交轴上的电流、EMF d(k)为k时刻电机的直轴反电动势、EMF q(k) 为k时刻电机的交轴反电动势。
- 根据权利要求1所述的用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,步骤4)的具体步骤包括:步骤4.1)根据开绕组五相永磁同步电机的数学模型,k+1时刻旋转坐标系下的交直轴电流可以表示为两个逆变器之和,即:式中, 为k+1时刻逆变器1所提供旋转坐标系下直轴电压, 为k+1时刻逆变器1所提供旋转坐标系下交轴电压; 为k+1时刻逆变器2所提供旋转坐标系下直轴电压, 为k+1时刻逆变器2所提供旋转坐标系下交轴电压。步骤4.2)定义逆变器1、逆变器2所能提供的电压矢量分别为:式中, 和 是通过逆变器1所产生的旋转坐标系下交、直轴电流,Rs为电机绕组的相电阻,Ts是控制器的控制周期,Ls是电机的定子电感;EMF d(k+1)为k+1时刻电机的直轴反电动势、EMF q(k+1)为k+1时刻电机的交轴反电动势;步骤4.3)遍历逆变器1所产生的虚拟电压矢量,预测k+2时刻的五相永磁同步电机旋转坐标系下的交、直轴电流:若 和 大于等于当前时刻所需要的增量 和 意味着逆变器1所提供的电压矢量已经可满足电机当前状态的需求,逆变器2关闭,通过在一个周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可表示为:式中, 和 分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;real(VV i INV1)和imag(VV i INV1)分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部; 和 分别是逆变器1当前时刻待选两个电压矢量的虚部和虚部;DR0 INV1是逆变器1中有效电压矢量之和作用的比例因子,DR INV1是逆变器1中两个有效电压矢量之间的比例因子;当逆变器1所提供的增量满足当前需要时,逆变器1和逆变器2的比例因子满足:电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:若 和 小于当前时刻所需要的增量 和 意味着逆变器1所提供的电压矢量已经无法满足电机当前状态的需求,需要逆变器2额外输出剩余部分的增量来满足电机工况的需求,逆变器1在当前周期内输出其所能输出的最大的增量 和 逆变器2则在当前周期内作用多个电压矢量,在当前采样周期内产生的旋转坐标系下的电压矢量可以表示为:式中, 和 分别是逆变器1和逆变器2所选择电压矢量的实部和虚部,通过上标进行区分;real(VV i INV1)和imag(VV i INV1)分别是逆变器1当前时刻待选虚拟电压矢量的实部和虚部;real(VV i INV2)和imag(VV i INV2)是逆变器2第1个待选电压矢量的 实部和虚部; 和 分别是逆变器2第2个待选电压矢量的实部和虚部;DR0 INV2是有效电压矢量之和作用的比例因子,DR INV2是两个有效电压矢量之间的比例因子;当逆变器1所提供的增量不满足当前需要时,逆变器1和逆变器2的比例因子满足:电机在k+2时刻旋转坐标系下的交、直轴电流可以表示为:步骤4.4)根据步骤4.3)中两种不同工况下求出的k+2时刻电机旋转坐标系下交直轴电流代入代价函数求出预期电压矢量:
- 根据权利要求1所述的用于开绕组五相永磁同步电机的模型预测分解控制方法,其特征在于,步骤5)的具体步骤包括:步骤5.1)根据步骤4)求出最优电压矢量的索引号i、逆变器1中的比例因子DR0 INV1和DR INV1、逆变器2中的比例因子DR0 INV2和DR INV2,结合步骤2中所构建的开绕组五相永磁同步电机虚拟电压矢量表,输出开绕组逆变器各相的占空比:式中, 是通过所提算法计算出来的数值,用于逆变器1产生相应占空比的波形, 用于逆变器2缠上相应占空比的波形, 是逆变器1所选的第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e; 是逆变器1所选第2个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;式中, 是通过所提算法计算出来的数值,用于逆变器1产生响应占空比的波形, 用于逆变器2缠上相应占空比的波形, 是逆变器2所选虚拟电压矢量的开关函数,其中x=a,b,c,d,e; 是逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e; 逆变器2所选第1个虚拟电压矢量的开关函数,其中x=a,b,c,d,e;步骤5.2)将步骤5.1)所求出的逆变器1占空比与逆变器2占空比经PWM脉宽调制单元输出值逆变器的驱动芯片,相应的电压经由IGBT输出至电机。
- 一种用于开绕组五相永磁同步电机的模型预测分解控制装置,其特征在于,主要包括:数据采集单元,使用相对位置型广电编码器获取电机的电角度和转速,使用DSP中的增强型捕获单元计算出开绕组五相永磁同步电机的电角速度ω、电角度θ;使用DSP中的ADC模块采样变换得到旋转坐标系下交、直轴电流id和iq;指令电压输入单元,给定电机转速后通过DSP中的程序计算获得旋转坐标系下的交、直轴电流参考值iq*和id*;增量判断单元,用于判断当前逆变器1所提供的电压矢量是否额能够满足电机驱动系统当前的需求;PWM输出单元,PWM输出单元使用电压源型逆变器,将逆变器1、逆变器2输出的 占空比通过三角载波进行调制,输出为PWM波,经过1ED020F12型隔离驱动芯片后驱动IGBT,产生相应的电压;数据采集单元作为系统的输入,将采样得到的数据通过DSP进行处理,DSP根据指令电压输入电源输入到的指令进行控制和数据采集单元获取的到的数据进行计算求出当前时刻的给定值,增量判断单元通过判断当前时刻的给定值,在逆变器1单独作用单元和叠加作用单元之间进行判断,选择适合当前状态的模式进行输出,PWM输出单元将上述单元运算后的PWM信号进行输出,作用在电机绕组上产生电流,再通过数据采集单元进采集计算,从而形成一个完整的硬件和软件的闭环控制系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/639,336 US12003203B2 (en) | 2020-11-26 | 2020-12-04 | Model predictive decomposition control method and device for open-winding five-phase permanent magnet synchronous motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011347430.2A CN112436772B (zh) | 2020-11-26 | 2020-11-26 | 一种五相永磁同步电机的模型预测分解控制方法及装置 |
CN202011347430.2 | 2020-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022110277A1 true WO2022110277A1 (zh) | 2022-06-02 |
Family
ID=74697706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133913 WO2022110277A1 (zh) | 2020-11-26 | 2020-12-04 | 一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12003203B2 (zh) |
CN (1) | CN112436772B (zh) |
WO (1) | WO2022110277A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050731A (zh) * | 2021-10-21 | 2022-02-15 | 西安理工大学 | 一种电压源变换器直接功率控制方法 |
CN115276489A (zh) * | 2022-08-04 | 2022-11-01 | 西北工业大学 | 一种双冗余永磁同步电机电流均衡控制系统 |
CN115864929A (zh) * | 2022-12-27 | 2023-03-28 | 江西安百川电气有限公司 | 一种永磁同步电机转子失步检测方法及其装置 |
CN116455288A (zh) * | 2023-06-12 | 2023-07-18 | 国网上海能源互联网研究院有限公司 | 一种电力机车无参数预测控制方法、装置、设备和介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113315436B (zh) * | 2021-06-05 | 2023-01-13 | 青岛大学 | 一种基于虚拟矢量的九相开绕组永磁同步电机模型预测控制方法 |
CN113422558B (zh) * | 2021-06-30 | 2022-12-02 | 北京理工大学 | 一种可变开绕组电机拓扑驱动电路及其控制方法 |
CN113489406B (zh) * | 2021-07-16 | 2023-09-26 | 青岛大学 | 一种应用于九相开端绕组电机的svpwm谐波抑制方法 |
CN113659892B (zh) * | 2021-07-21 | 2024-05-14 | 江苏大学 | 用于开绕组五相永磁同步电机逆变器故障重构后的容错控制方法及其实现装置 |
CN114759854B (zh) * | 2022-04-24 | 2024-06-28 | 北京理工大学 | 一种隔离母线型开绕组永磁同步电机的电压调制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227709A (en) * | 1990-10-09 | 1993-07-13 | Seagate Technology, Inc. | Closed loop single step response by open winding voltage feedback system and method for multiple phase step motors |
CN104753382A (zh) * | 2015-04-10 | 2015-07-01 | 东南大学 | 一种电动车辆用双电源五相开绕组系统故障容错逆变器电路 |
CN105958885A (zh) * | 2016-04-28 | 2016-09-21 | 东南大学 | 双定子双凸极复合励磁电机驱动系统及其控制方法 |
CN107196573A (zh) * | 2017-06-07 | 2017-09-22 | 东南大学 | 基于五相开绕组ftfscw‑ipm电机驱动系统的零序电流抑制方法 |
CN110707975A (zh) * | 2019-10-14 | 2020-01-17 | 华中科技大学 | 一种多相带悬浮电容电机驱动拓扑的控制方法 |
CN110729935A (zh) * | 2019-10-29 | 2020-01-24 | 天津大学 | 开绕组五相永磁同步电机a相断路容错控制svpwm生成方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103501149B (zh) * | 2013-10-13 | 2016-06-01 | 中国船舶重工集团公司第七一二研究所 | 一种多相感应电机指定次谐波电流抑制方法 |
US10523148B2 (en) * | 2018-05-08 | 2019-12-31 | Ford Global Technologies, Llc | Reconfigurable winding connection for five-phase permanent magnet electric machine |
CN108964547B (zh) * | 2018-07-20 | 2022-06-21 | 江苏大学 | 五相永磁同步电机两相开路故障的容错控制方法 |
CN109672384B (zh) * | 2018-12-26 | 2020-10-23 | 天津大学 | 开绕组永磁同步电机预测容错控制器的设计方法 |
CN109995287A (zh) | 2019-03-19 | 2019-07-09 | 淮海工学院 | 一种双逆变器开绕组感应电机的优化模型预测控制方法 |
CN110299882B (zh) * | 2019-06-21 | 2020-11-24 | 浙江大学 | 混合供电型开绕组永磁同步电机三矢量模型预测控制方法 |
CN110311600A (zh) | 2019-07-01 | 2019-10-08 | 哈尔滨理工大学 | 一种开绕组永磁同步电动机的模型预测电流控制方法 |
CN111510040B (zh) * | 2020-04-10 | 2023-10-10 | 江苏大学 | 用于五相永磁同步电机的无权重系数的双虚拟电压矢量预测转矩控制方法 |
-
2020
- 2020-11-26 CN CN202011347430.2A patent/CN112436772B/zh active Active
- 2020-12-04 US US17/639,336 patent/US12003203B2/en active Active
- 2020-12-04 WO PCT/CN2020/133913 patent/WO2022110277A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227709A (en) * | 1990-10-09 | 1993-07-13 | Seagate Technology, Inc. | Closed loop single step response by open winding voltage feedback system and method for multiple phase step motors |
CN104753382A (zh) * | 2015-04-10 | 2015-07-01 | 东南大学 | 一种电动车辆用双电源五相开绕组系统故障容错逆变器电路 |
CN105958885A (zh) * | 2016-04-28 | 2016-09-21 | 东南大学 | 双定子双凸极复合励磁电机驱动系统及其控制方法 |
CN107196573A (zh) * | 2017-06-07 | 2017-09-22 | 东南大学 | 基于五相开绕组ftfscw‑ipm电机驱动系统的零序电流抑制方法 |
CN110707975A (zh) * | 2019-10-14 | 2020-01-17 | 华中科技大学 | 一种多相带悬浮电容电机驱动拓扑的控制方法 |
CN110729935A (zh) * | 2019-10-29 | 2020-01-24 | 天津大学 | 开绕组五相永磁同步电机a相断路容错控制svpwm生成方法 |
Non-Patent Citations (1)
Title |
---|
ZHAO WENXIANG; CHEN ZHONGHUA; XU DEZHI; JI JINGHUA; ZHAO PENG: "Unity Power Factor Fault-Tolerant Control of Linear Permanent-Magnet Vernier Motor Fed by a Floating Bridge Multilevel Inverter With Switch Fault", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 65, no. 11, 1 November 2018 (2018-11-01), USA , pages 9113 - 9123, XP011685925, ISSN: 0278-0046, DOI: 10.1109/TIE.2018.2793224 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050731A (zh) * | 2021-10-21 | 2022-02-15 | 西安理工大学 | 一种电压源变换器直接功率控制方法 |
CN115276489A (zh) * | 2022-08-04 | 2022-11-01 | 西北工业大学 | 一种双冗余永磁同步电机电流均衡控制系统 |
CN115276489B (zh) * | 2022-08-04 | 2024-04-02 | 西北工业大学 | 一种双冗余永磁同步电机电流均衡控制系统 |
CN115864929A (zh) * | 2022-12-27 | 2023-03-28 | 江西安百川电气有限公司 | 一种永磁同步电机转子失步检测方法及其装置 |
CN115864929B (zh) * | 2022-12-27 | 2023-06-06 | 江西安百川电气有限公司 | 一种永磁同步电机转子失步检测方法及其装置 |
CN116455288A (zh) * | 2023-06-12 | 2023-07-18 | 国网上海能源互联网研究院有限公司 | 一种电力机车无参数预测控制方法、装置、设备和介质 |
CN116455288B (zh) * | 2023-06-12 | 2023-08-29 | 国网上海能源互联网研究院有限公司 | 一种电力机车无参数预测控制方法、装置、设备和介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112436772B (zh) | 2022-10-28 |
CN112436772A (zh) | 2021-03-02 |
US20230163710A1 (en) | 2023-05-25 |
US12003203B2 (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022110277A1 (zh) | 一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置 | |
CN107565868B (zh) | 一种五相永磁同步电机开路故障下的容错控制系统及方法 | |
WO2021203495A1 (zh) | 用于五相永磁同步电机的无权重系数的双虚拟电压矢量预测转矩控制方法 | |
CN108964547B (zh) | 五相永磁同步电机两相开路故障的容错控制方法 | |
CN113271048B (zh) | 五相永磁容错电机控制驱动系统的开路统一容错控制方法 | |
CN101442289B (zh) | 阶梯波反电势无刷直流电机直接转矩控制方法 | |
CN103401503B (zh) | 一种在谐波平面在线辨识双三相电机参数的方法及装置 | |
CN107623479B (zh) | 一种电机容错故障控制方法及装置 | |
CN101917158B (zh) | 一种用于电压源逆变器的死区补偿方法 | |
CN108667389A (zh) | 一种基于虚拟电压矢量模型预测容错控制方法 | |
CN110299882B (zh) | 混合供电型开绕组永磁同步电机三矢量模型预测控制方法 | |
CN109347386B (zh) | 一种基于svpwm的五相永磁电机最大转矩电流比容错控制方法 | |
CN110112979B (zh) | 基于标幺化的永磁同步电机无权重系数预测转矩控制方法 | |
CN111726046B (zh) | 一种计及占空比优化的非对称六相pmsm模型预测磁链控制方法 | |
CN110504889B (zh) | 一种五相永磁同步电机容错直接转矩控制方法 | |
CN110120763B (zh) | 一种永磁同步电机无权重系数预测转矩控制方法 | |
CN112436776B (zh) | 用于五相分数槽集中绕组容错电机的开路容错直接转矩控制方法 | |
CN110829926B (zh) | 一种用于五相永磁容错电机的svpwm容错控制方法及装置 | |
CN111431453A (zh) | 基于逆变器单相故障的开绕组永磁同步电机容错控制方法 | |
CN112260605B (zh) | 五相永磁同步电机缺一相故障直接转矩控制方法 | |
Feng et al. | Cascaded Model Predictive Control of Six-Phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability | |
CN115276501A (zh) | 一种永磁同步电机无差拍预测电流控制方法 | |
CN113992095A (zh) | 一种低复杂度的双三相永磁同步发电机pmsg模型预测直接功率控制方法 | |
Lang et al. | Research on Space Vector Modulation method for improving the torque ripple of Direct Torque Control | |
CN201435710Y (zh) | 一种永磁同步电机的直接转矩控制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20963165 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20963165 Country of ref document: EP Kind code of ref document: A1 |