WO2022109993A1 - 一种制备高硬度耐腐蚀轮毂涂层的工艺方法 - Google Patents

一种制备高硬度耐腐蚀轮毂涂层的工艺方法 Download PDF

Info

Publication number
WO2022109993A1
WO2022109993A1 PCT/CN2020/132154 CN2020132154W WO2022109993A1 WO 2022109993 A1 WO2022109993 A1 WO 2022109993A1 CN 2020132154 W CN2020132154 W CN 2020132154W WO 2022109993 A1 WO2022109993 A1 WO 2022109993A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel hub
alxfenisiti
entropy alloy
alloy powder
coating
Prior art date
Application number
PCT/CN2020/132154
Other languages
English (en)
French (fr)
Inventor
万金华
彭桂云
王飞
茆文
夏程强
张彤
周金凤
黄宁宁
董琦
彭亚珍
Original Assignee
江苏珀然股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏珀然股份有限公司 filed Critical 江苏珀然股份有限公司
Publication of WO2022109993A1 publication Critical patent/WO2022109993A1/zh
Priority to ZA2022/09056A priority Critical patent/ZA202209056B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to the technical field of automobile wheel hubs, in particular to a process method for preparing a high-hardness corrosion-resistant wheel hub coating.
  • Electroplating mainly includes spray plating, water plating and vacuum plating.
  • the cost of the spray coating process is low, but the adhesion between the prepared coating and the wheel hub is poor, and the coating is prone to peeling off, so the coating life is short.
  • the adhesion of the coating prepared by the water electroplating process is better than that of the spray plating, but the coating peeling phenomenon is more extreme, and the overall coating peeling phenomenon is prone to occur, and the water electroplating will inevitably generate waste water and cause environmental pollution.
  • the coating prepared by vacuum plating has the best adhesion, long life and no pollution.
  • vacuum plating equipment is expensive, and the number of pieces produced is small due to the volume of the equipment, so the production efficiency is low, and it is difficult to achieve mass production.
  • vacuum plating has high requirements on the original surface quality of the plated parts, and usually needs to be additionally repaired on the surface of the plated parts before vacuum plating.
  • chromium metal coating Due to the good hardness and corrosion resistance of chromium metal, for general aluminum alloy wheels, chromium metal coating is a coating with excellent performance.
  • chromium is a heavy metal with high toxicity, and when it enters human cells, it will cause damage to internal organs such as liver and kidney and DNA, resulting in cancer. Therefore, the pollution caused by the preparation of chromium metal coating in the traditional electroplating process is more serious.
  • this solution proposes a process method for preparing a high-hardness corrosion-resistant wheel hub coating, which can achieve the above-mentioned technical purpose and bring about a number of other technical effects due to the adoption of the following technical features.
  • the present invention proposes a process method for preparing a high-hardness corrosion-resistant wheel hub coating, comprising the following steps:
  • the AlxFeNiSiTi high-entropy alloy powder and stainless steel shot peening are sprayed onto the surface of the wheel hub using inert gas, and the AlxFeNiSiTi high-entropy alloy powder is uniformly attached to the surface of the wheel hub as the nozzle moves to form a coating.
  • x in the AlxFeNiSiTi high-entropy alloy powder ranges from 0.2 to 1.0.
  • the diameter of the AlxFeNiSiTi high-entropy alloy powder particles is 15-60 um.
  • the content of the stainless steel shot peening is 40-60% vol.
  • the diameter of the stainless steel shot peening particles is 150-300um.
  • the AlxFeNiSiTi high-entropy alloy powder and the stainless steel shot blasting are sprayed onto the surface of the wheel hub by using an inert gas, and the AlxFeNiSiTi high-entropy alloy powder is uniformly attached to the surface of the wheel hub along with the movement of the spray head.
  • the coating Before forming the coating, it also includes:
  • the inert gas is heated to a predetermined temperature.
  • the predetermined temperature is 300°C ⁇ 400°C.
  • the spray pressure of the spray head is 2.0-2.5Mpa.
  • the distance between the nozzle and the surface of the hub is maintained at 15-30um.
  • the thickness of the coating is 60-100 um.
  • AlxFeNiSiTi high entropy alloy as coating material, which has the advantages of high hardness and corrosion resistance.
  • the Al element inside AlxFeNiSiTi high entropy alloy enables it to have better adhesion with aluminum alloy wheels when used as a coating .
  • AlxFeNiSiTi high-entropy alloy When AlxFeNiSiTi high-entropy alloy is used as coating material, it can be adjusted to have better corrosion resistance or corrosion resistance by changing the proportion of Al element, i.e. the value of x, to adapt to different corrosion environments, while ensuring hardness Stable within 900 ⁇ 1000HV.
  • the coating preparation method does not require high surface quality of the initial wheel hub. Some surface defects generated during the processing of the wheel hub will not affect the preparation process of the high-entropy alloy coating. On the contrary, in The process of coating formation will additionally repair some surface defects, so part of the surface treatment process preset for the coating preparation process and wheel hub surface repair can be omitted.
  • the coating preparation method can be carried out in an open environment without external factors such as vacuum, liquid or protective gas, so the production speed is fast, the equipment cost is low, and low-cost mass production can be realized.
  • the coating preparation method will not produce waste water or harmful gas during the preparation process, and the uncoated AlxFeNiSiTi high-entropy alloy powder and stainless steel shot peening will be separated from the surface of the wheel hub and eventually recycled and reused. Therefore, the entire preparation process No pollutants are produced, and the preparation process is green and environmentally friendly.
  • FIG. 1 is a flow chart of a process method for a high-entropy alloy wheel hub coating according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of spraying of a high-entropy alloy coating according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a process of a high-entropy alloy coating according to an embodiment of the present invention.
  • the present invention proposes a process method for preparing a high-hardness corrosion-resistant wheel hub coating, as shown in Figure 1, comprising the following steps:
  • the AlxFeNiSiTi high-entropy alloy powder and stainless steel shot peening are sprayed onto the surface of the wheel hub using inert gas, and the AlxFeNiSiTi high-entropy alloy powder is uniformly attached to the surface of the wheel hub as the nozzle moves to form a coating.
  • AlxFeNiSiTi high-entropy alloy powder is used as the coating material to mix with stainless steel shot blasting in a certain proportion, and after uniform mixing, it is heated to a predetermined temperature, and is sprayed onto the surface of the wheel hub with an inert gas. With the movement of the nozzle, the coating material is evenly attached to the surface of the wheel hub to form a coating.
  • the shot peening effect caused by shot peening can make the coating material better adhere to the surface of the wheel hub, improve its adhesion and density, and repair some surface defects of the wheel hub, and finally form a high hardness and corrosion resistance. Dense AlxFeNiSiTi high-entropy alloy coating.
  • the Al content in the AlxFeNiSiTi high-entropy alloy can be changed to adjust its hardness and corrosion resistance.
  • the method has fast production speed, low environmental requirements, low equipment requirements, and can be mass-produced. At the same time, any form of pollutants will not be generated during the preparation process of the coating, so the environment will not be polluted, and the preparation process method is green and environmentally friendly.
  • x in the AlxFeNiSiTi high-entropy alloy powder is in the range of 0.2 to 1.0; AlxFeNiSiTi high-entropy alloy is selected as the coating material, and x is the proportion of Al element in the high-entropy alloy.
  • the value of x can be changed to adjust the coating properties according to different usage conditions.
  • the range of x is 0.2 to 1.0.
  • the value of x is small, the self-corrosion potential of the alloy is higher, so the coating has better corrosion resistance; when the value of x is high, the self-corrosion current of the alloy is lower, so the coating is resistant to The corrosion capacity is reduced, but the corrosion rate is low, and the coating has better corrosion resistance.
  • the x range is changed, the hardness of AlxFeNiSiTi high entropy alloy remains at 900-1000HV, so the coating has stable high hardness and corrosion resistance.
  • the AlxFeNiSiTi high-entropy alloy powder particles have a diameter of 15-60 um.
  • the content of the stainless steel shot peening is 40-60% vol.
  • the diameter of the stainless steel shot peening particles is 150-300um
  • using shot peening and high-entropy alloy powder to mix and heat and spray it on the surface of the wheel hub can increase the adhesion of the high-entropy alloy and the surface of the wheel hub, and make the combination of the coating and the wheel hub more firmly;
  • the shot peening effect caused by the impact allows the high-entropy alloy powder to densify in the process of forming the coating.
  • the inert gas is nitrogen, and nitrogen is used as a pressurized acceleration gas, which is heated together with high-entropy alloy and stainless steel shot peening and sprayed on the surface of the wheel hub.
  • Nitrogen as an inert shielding gas can bring a stable environment to the process of forming the high-entropy alloy coating, and the cost of using nitrogen is low.
  • the AlxFeNiSiTi high-entropy alloy powder and the stainless steel shot blasting are sprayed onto the surface of the wheel hub by using an inert gas, and the AlxFeNiSiTi high-entropy alloy powder is uniformly attached to the surface of the wheel hub along with the movement of the spray head.
  • the inert gas is heated to a predetermined temperature, so that the effect of spraying is better.
  • the predetermined temperature is 300°C to 400°C.
  • nitrogen, high-entropy alloy powder and shot blasting need to be heated to 300°C before spraying.
  • the wheel hub is a steel wheel hub and an aluminum alloy wheel hub.
  • the aluminum alloy wheel hub is mostly 6061 aluminum alloy, and its melting point is 600-650 ° C, which is relatively low, but still higher than 300 ° C, so the preparation process will not cause damage to the wheel hub itself.
  • the process of forming the coating from the high-entropy alloy powder will additionally repair some of the surface defects created during the machining of the wheel hub.
  • the spray pressure of the spray head is 2.0-2.5Mpa.
  • the distance between the nozzle and the surface of the hub is maintained at 15-30um.
  • the thickness of the coating is 60-100 um.
  • the supply rate of the mixture is 35 to 45 g ⁇ min ⁇ 1 .
  • the moving speed of the nozzle is 80-110 mm ⁇ min ⁇ 1 .
  • the coating density is > 99.5%.
  • AlxFeNiSiTi high entropy alloy as coating material, which has the advantages of high hardness and corrosion resistance.
  • the Al element inside AlxFeNiSiTi high entropy alloy enables it to have better adhesion with aluminum alloy wheels when used as a coating .
  • AlxFeNiSiTi high-entropy alloy When AlxFeNiSiTi high-entropy alloy is used as coating material, it can be adjusted to have better corrosion resistance or corrosion resistance by changing the proportion of Al element, i.e. the value of x, to adapt to different corrosion environments, while ensuring hardness Stable within 900 ⁇ 1000HV.
  • the coating preparation method does not require high surface quality of the initial wheel hub. Some surface defects generated during the processing of the wheel hub will not affect the preparation process of the high-entropy alloy coating. On the contrary, in The process of coating formation will additionally repair some surface defects, so part of the surface treatment process preset for the coating preparation process and wheel hub surface repair can be omitted.
  • the coating preparation method can be carried out in an open environment without external factors such as vacuum, liquid or protective gas, so the production speed is fast, the equipment cost is low, and low-cost mass production can be realized.
  • the coating preparation method will not produce waste water or harmful gas during the preparation process, and the uncoated AlxFeNiSiTi high-entropy alloy powder and stainless steel shot peening will be separated from the surface of the wheel hub and eventually recycled and reused. Therefore, the entire preparation process No pollutants are produced, and the preparation process is green and environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种制备高硬度耐腐蚀轮毂涂层的工艺方法,包括如下步骤:制备AlxFeNiSiTi高熵合金粉末;将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸按照比例进行混合,混合均匀后将其加热至预定温度;使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层。该工艺方法可以使涂层材料更好的附着在轮毂表面,提高其粘附性与致密度,同时可对轮毂的一些表面缺陷进行修复,而且能够针对不同轮毂与不同使用情况,可改变AlxFeNiSiTi高熵合金中Al的含量,以调整其硬度与耐腐蚀能力。

Description

一种制备高硬度耐腐蚀轮毂涂层的工艺方法 技术领域
本发明涉及汽车轮毂技术领域,尤其涉及一种制备高硬度耐腐蚀轮毂涂层的工艺方法。
背景技术
近年来,随着铝合金制备技术的发展,高性能的铝合金轮毂已经逐步代替钢制轮毂进入市场。相较于钢制轮毂,铝合金轮毂强度高、密度小、散热性好,故其应用性更为广泛。但铝合金轮毂的耐腐蚀性相对较差且其硬度相对较低,因此不管是在加工生产还是在实际使用中,铝合金轮毂表面都不可避免的出现各种缺陷。因此针对其硬度与耐腐蚀性进行表面处理对于提高铝合金轮毂性能和寿命都十分重要。
对于铝合金轮毂的表面处理通常使用电镀的方式,电镀处理主要有喷镀、水电镀和真空镀。喷镀工艺成本较低,但其制备的涂层与轮毂之间的黏附能力较差,易产生涂层脱落现象,故涂层寿命较短。水电镀工艺制备的涂层粘附能力较喷镀好,但涂层脱落现象较为极端,易出现涂层整体脱落现象,且水电镀不可避免的会产生废水造成环境污染。真空镀制备的涂层粘附性最好且寿命长,也不会产生污染,但真空镀设备昂贵,受设备容积影响其出件数量少,故生产效率低,难以实现批量化生产。同时真空镀对镀件原始表面质量要求较高,通常需要在真空镀之前额外对镀件表面进行修复。
由于铬金属的硬度与耐腐蚀性能较好,对于一般的铝合金轮毂而言,铬金属涂层是一种性能优异的涂层。但铬属于重金属毒性较大的,进入人体细胞会对肝、肾等内脏器官和DNA造成损伤致使癌变。因此在传统的电镀工艺中制备铬金属涂层产生的污染较为严重。
发明内容
本方案针对上文提出的问题和需求,提出一种制备高硬度耐腐蚀轮毂涂层的工艺方法,由于采取了如下技术特征而能够实现上述技术目的,并带来其他多项技术效果。
本发明提出一种制备高硬度耐腐蚀轮毂涂层的工艺方法,包括如下步骤:
制备AlxFeNiSiTi高熵合金粉末;
将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸按照比例进行混合,混合均匀后将其加热至预定温度;
使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层。
在本发明的一个示例中,所述AlxFeNiSiTi高熵合金粉末中x的范围为0.2~1.0。
在本发明的一个示例中,所述AlxFeNiSiTi高熵合金粉末颗粒的直径为15~60um。
在本发明的一个示例中,所述不锈钢喷丸的含量为40~60%vol。
在本发明的一个示例中,所述不锈钢喷丸颗粒的直径为150~300um。
在本发明的一个示例中,使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层之前还包括:
将所述惰性气体加热至预定温度。
在本发明的一个示例中,所述预定温度为300℃~400℃。
在本发明的一个示例中,在使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面的过程中,喷头的喷射气压为2.0~2.5Mpa。
在本发明的一个示例中,所述喷头距离轮毂表面的距离维持在15~30um。
在本发明的一个示例中,所述涂层的厚度为60~100um。
本发明相对于现有技术中具有如下有益效果:
1、使用AlxFeNiSiTi高熵合金作为涂层材料,其本身具有高硬度、耐腐蚀的优点,同时AlxFeNiSiTi高熵合金内部的Al元素使得其作为涂层时能够与铝合金轮毂有更好的粘附性。
2、AlxFeNiSiTi高熵合金作为涂层材料时可通过改变其中Al元素的占比即 x的数值以适应的不同的腐蚀环境,调整使其具有更好的耐腐蚀能力或抗腐蚀能力,同时保证硬度稳定在900~1000HV之内。
3、不使用锈钢小球作为喷丸与AlxFeNiSiTi高熵合金粉末均匀混合后进行喷射,可通过喷丸效应提高高熵合金涂层的致密程度,同时降低其在达到同等致密程度所需的加热温度与喷射压力。
4、该涂层制备方法相较于电镀法对初始轮毂的表面质量要求不高,轮毂在加工过程中产生的一些表面缺陷并不会影响高熵合金涂层的制备工艺过程,相反的,在涂层形成的过程将额外地修复一些表面缺陷,因此可省去部分针对涂层制备工艺与轮毂表面修复而预设的表面处理工序。
5、该涂层制备方法可在开放的环境下进行,不需要借助真空、液体或保护气体等外部因素,因此其生产速度快,设备成本低,可实现低成本批量生产。
6、该涂层制备方法在制备过程中不会产生废水或有害气体,且未形成涂层的AlxFeNiSiTi高熵合金粉末以及不锈钢喷丸将脱离轮毂表面,最终被回收和反复利用,因此整个制备过程不会产生任何污染物,制备工艺方法绿色环保。
下文中将结合附图对实施本发明的最优实施例进行更加详尽的描述,以便能容易理解本发明的特征和优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下文中将对本发明实施例的附图进行简单介绍。其中,附图仅仅用于展示本发明的一些实施例,而非将本发明的全部实施例限制于此。
图1为根据本发明实施例的高熵合金轮毂涂层的工艺方法的流程图;
图2为根据本发明实施例的高熵合金涂层喷射的原理图;
图3为根据本发明实施例的高熵合金涂层的过程示意图。
具体实施方式
为了使得本发明的技术方案的目的、技术方案和优点更加清楚,下文中将结合本发明具体实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。附图中相同的附图标记代表相同部件。需要说明的是,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域 普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出一种制备高硬度耐腐蚀轮毂涂层的工艺方法,如图1所示,包括如下步骤:
制备AlxFeNiSiTi高熵合金粉末;
将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸按照比例进行混合,混合均匀后将其加热至预定温度;
使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层。
具体地,以AlxFeNiSiTi高熵合金粉末作为涂层材料与不锈钢喷丸按一定比例进行混合,均匀混合后将其加热至预定温度,并使用惰性气体将其喷射至轮毂表面。随着喷头的移动将涂层材料均匀的附在轮毂表面形成涂层。其中借助喷丸撞击引起的喷丸效应,可以使涂层材料更好的附着在轮毂表面,提高其粘附性与致密度,同时可对轮毂的一些表面缺陷进行修复,最终形成高硬度耐腐蚀的致密AlxFeNiSiTi高熵合金涂层。针对不同轮毂与不同使用情况,可改变AlxFeNiSiTi高熵合金中Al的含量,以调整其硬度与耐腐蚀能力。该方法生产速度快、对环境要求低、设备要求低、可批量生产。同时在涂层的制备过程中不会产生任何形式的污染物,因此不会对环境造成污染,制备工艺方法绿色环保。
在本发明的一个示例中,所述AlxFeNiSiTi高熵合金粉末中x的范围为0.2~1.0;选用AlxFeNiSiTi高熵合金作为涂层材料,x为Al元素在高熵合金内的占比,根据不同轮毂与不同使用情况可改变x的数值以调整涂层性能。x范围为0.2~1.0,当x数值较小时合金的自腐蚀电位较高,故涂层具有更好的抗腐蚀能力;当x数值较高时合金的自腐蚀电流较低,故涂层虽抗腐蚀能力降低,但腐蚀速率低,涂层具有更好的耐腐蚀能力。而当x范围变化时,AlxFeNiSiTi高熵合金的硬度保持在900-1000HV,故涂层具有稳定的高硬度耐腐蚀能力。
在本发明的一个示例中,所述AlxFeNiSiTi高熵合金粉末颗粒的直径为15~60um。
在本发明的一个示例中,所述不锈钢喷丸的含量为40~60%vol。
在本发明的一个示例中,所述不锈钢喷丸颗粒的直径为150~300um;
由于不锈钢喷丸的颗粒直径远大于高熵合金颗粒的直径,因此,在设定的喷射压力与速度下,在高熵合金粉末形成涂层的过程中不会有不锈钢喷丸夹杂其中,故不会改变高熵合金涂层的成分。如图3所示,喷丸与高熵合金粉末伴随着轮毂的转动均匀的喷射到轮毂表面,而后喷丸以及未形成涂层的高熵合金粉末将脱离轮毂表面,最终被回收和反复利用;
如图3所示,使用喷丸与高熵合金粉末进行混合加热后喷射在轮毂表面,可加高熵合金与轮毂表面的粘附程度,使涂层与轮毂的结合更牢固;同时在喷丸撞击时引起的喷丸效应可使得高熵合金粉末在形成涂层的过程中实现致密化。
在本发明的一个示例中,所述惰性气体为氮气,使用氮气作为加压加速气体,将其与高熵合金、不锈钢喷丸共同加热后喷射在轮毂表面。氮气作为惰性保护气体可给形成高熵合金涂层的过程带来稳定的环境,同时使用氮气成本较低。
在本发明的一个示例中,使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层之前还包括:将所述惰性气体加热至预定温度,这样喷涂的效果更佳。
在本发明的一个示例中,所述预定温度为300℃~400℃,例如,在喷射之前需将氮气、高熵合金粉末与喷丸加热到300℃,一般轮毂为钢质轮毂和铝合金轮毂,其中铝合金轮毂多为6061铝合金,其熔点为600-650℃,相对较低,但仍高于300℃,因此该制备工艺过程不会对轮毂本身产生损伤。相反的,高熵合金粉末形成涂层的过程将额外地修复轮毂加工过程中产生的一些表面缺陷。
在本发明的一个示例中,在使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面的过程中,喷头的喷射气压为2.0~2.5Mpa。
在本发明的一个示例中,所述喷头距离轮毂表面的距离维持在15~30um。
在本发明的一个示例中,所述涂层的厚度为60~100um。
在本发明的一个示例中,混合物的供给速度为35~45g·min -1
在本发明的一个示例中,喷头移动速度为80~110mm·min -1
在本发明的一个示例中,涂层致密度≥99.5%。
本发明相对于现有技术中具有如下有益效果:
1、使用AlxFeNiSiTi高熵合金作为涂层材料,其本身具有高硬度、耐腐蚀 的优点,同时AlxFeNiSiTi高熵合金内部的Al元素使得其作为涂层时能够与铝合金轮毂有更好的粘附性。
2、AlxFeNiSiTi高熵合金作为涂层材料时可通过改变其中Al元素的占比即x的数值以适应的不同的腐蚀环境,调整使其具有更好的耐腐蚀能力或抗腐蚀能力,同时保证硬度稳定在900~1000HV之内。
3、不使用锈钢小球作为喷丸与AlxFeNiSiTi高熵合金粉末均匀混合后进行喷射,可通过喷丸效应提高高熵合金涂层的致密程度,同时降低其在达到同等致密程度所需的加热温度与喷射压力。
4、该涂层制备方法相较于电镀法对初始轮毂的表面质量要求不高,轮毂在加工过程中产生的一些表面缺陷并不会影响高熵合金涂层的制备工艺过程,相反的,在涂层形成的过程将额外地修复一些表面缺陷,因此可省去部分针对涂层制备工艺与轮毂表面修复而预设的表面处理工序。
5、该涂层制备方法可在开放的环境下进行,不需要借助真空、液体或保护气体等外部因素,因此其生产速度快,设备成本低,可实现低成本批量生产。
6、该涂层制备方法在制备过程中不会产生废水或有害气体,且未形成涂层的AlxFeNiSiTi高熵合金粉末以及不锈钢喷丸将脱离轮毂表面,最终被回收和反复利用,因此整个制备过程不会产生任何污染物,制备工艺方法绿色环保。
上文中参照优选的实施例详细描述了本发明所提出的制备高硬度耐腐蚀轮毂涂层的工艺方法的示范性实施方式,然而本领域技术人员可理解的是,在不背离本发明理念的前提下,可以对上述具体实施例做出多种变型和改型,且可以对本发明提出的各种技术特征、结构进行多种组合,而不超出本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,包括如下步骤:
    制备AlxFeNiSiTi高熵合金粉末;
    将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸按照比例进行混合,混合均匀后将其加热至预定温度;
    使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层。
  2. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述AlxFeNiSiTi高熵合金粉末中x的范围为0.2~1.0。
  3. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述AlxFeNiSiTi高熵合金粉末颗粒的直径为15~60um。
  4. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述不锈钢喷丸的含量为40~60%vol。
  5. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述不锈钢喷丸颗粒的直径为150~300um。
  6. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面,随着喷头的移动将AlxFeNiSiTi高熵合金粉末均匀地附着在轮毂表面形成涂层之前还包括:将所述惰性气体加热至预定温度。
  7. 根据权利要求1或6所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述预定温度为300℃~400℃。
  8. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,在使用惰性气体将AlxFeNiSiTi高熵合金粉末与不锈钢喷丸喷射至轮毂表面的过程中,喷头的喷射气压为2.0~2.5Mpa。
  9. 根据权利要求8所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述喷头距离轮毂表面的距离维持在15~30um。
  10. 根据权利要求1所述的制备高硬度耐腐蚀轮毂涂层的工艺方法,其特征在于,所述涂层的厚度为60~100um。
PCT/CN2020/132154 2020-11-26 2020-11-27 一种制备高硬度耐腐蚀轮毂涂层的工艺方法 WO2022109993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/09056A ZA202209056B (en) 2020-11-26 2022-08-12 Technological method for preparing high-hardness corrosion-resistant wheel hub coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349201.4 2020-11-26
CN202011349201.4A CN112593225A (zh) 2020-11-26 2020-11-26 一种制备高硬度耐腐蚀轮毂涂层的工艺方法

Publications (1)

Publication Number Publication Date
WO2022109993A1 true WO2022109993A1 (zh) 2022-06-02

Family

ID=75184350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132154 WO2022109993A1 (zh) 2020-11-26 2020-11-27 一种制备高硬度耐腐蚀轮毂涂层的工艺方法

Country Status (3)

Country Link
CN (1) CN112593225A (zh)
WO (1) WO2022109993A1 (zh)
ZA (1) ZA202209056B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836746B (zh) * 2022-03-28 2023-11-21 江苏珀然股份有限公司 一种汽车轮毂表面梯度涂层的制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710521A (zh) * 2009-12-18 2010-05-19 浙江大学 抗电磁干扰铁基纳米晶软磁合金及其制备方法
CN107685184A (zh) * 2016-08-04 2018-02-13 本田技研工业株式会社 多材料部件及其制造方法
CN109207985A (zh) * 2018-09-05 2019-01-15 太原科技大学 一种镁合金表面高熵合金膜层的制备方法
CN111926280A (zh) * 2020-09-03 2020-11-13 昆明理工大学 一种艾萨炉冶炼长寿命喷枪之高熵合金涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828139A (zh) * 2012-09-28 2012-12-19 安徽工业大学 一种喷涂用高熵合金粉末
CN105018923B (zh) * 2014-04-29 2018-10-02 宝山钢铁股份有限公司 一种覆钛低碳钢复合板制备方法
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
TWI674334B (zh) * 2018-11-13 2019-10-11 國立臺灣科技大學 高熵合金塗層的製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710521A (zh) * 2009-12-18 2010-05-19 浙江大学 抗电磁干扰铁基纳米晶软磁合金及其制备方法
CN107685184A (zh) * 2016-08-04 2018-02-13 本田技研工业株式会社 多材料部件及其制造方法
CN109207985A (zh) * 2018-09-05 2019-01-15 太原科技大学 一种镁合金表面高熵合金膜层的制备方法
CN111926280A (zh) * 2020-09-03 2020-11-13 昆明理工大学 一种艾萨炉冶炼长寿命喷枪之高熵合金涂层及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG, W.J. LIN, J.P. WANG, Y.L. CHEN, G.L.: "The corrosion of intermetallic alloys in liquid zinc", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 428, no. 1-2, 27 December 2006 (2006-12-27), CH , pages 237 - 243, XP005816255, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2006.02.072 *
XIN LIU; HUANWEN XIE; LEI WANG; JIEWEN LUO; YIXIANG CAI;: "Production of Fe-Si-Al-Ni-Ti soft magnetic alloy powder by inert-gas atomization", PROCEDIA ENGINEERING, ELSEVIER BV, NL, vol. 27, NL , pages 1426 - 1433, XP028458185, ISSN: 1877-7058, DOI: 10.1016/j.proeng.2011.12.604 *
ZHANG, SONG, CHENLIANG WU, CHAO WANG, JUNZHEN YI, CHUNHUA ZHANG: "SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY", ACTA METALLURGICA SINICA, 1 May 2014 (2014-05-01), pages 555 - 560, XP055934923, [retrieved on 20220623], DOI: 10.3724/SP.J.1037.2014.00006 *

Also Published As

Publication number Publication date
ZA202209056B (en) 2022-11-30
CN112593225A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN104162662B (zh) 表面改性的非晶合金涂层及其制备方法
CN109778105A (zh) 一种非晶复合涂层及其制备方法
CN105132908A (zh) 燃气轮机叶片热障涂层粘结层及其制备方法
CN105441857A (zh) 一种锂电池极片轧辊机轧辊表面超音速火焰喷涂的方法
CN108546891B (zh) 一种铁基非晶/氧化铝陶瓷复合粉末及其制备方法与应用
CN110195203A (zh) 一种高耐蚀铁基非晶复合材料及其制备方法与应用
WO2022109993A1 (zh) 一种制备高硬度耐腐蚀轮毂涂层的工艺方法
CN113373400B (zh) 一种耐磨陶瓷涂层的制备方法及耐磨陶瓷涂层
CN105648296A (zh) 一种含Re的抗高温碳化钨基金属陶瓷复合粉末、涂层及其制备工艺
CN110983277A (zh) 一种用于钕铁硼永磁材料的旋转稀土靶材及制备方法和修复方法
CN103526135A (zh) WC-Co增强的铁基金属玻璃复合涂层及其制备方法
WO2023143062A1 (zh) 隔热活塞及制备方法
CN107130201A (zh) 一种耐腐蚀非晶‑wc复合涂层的制备方法
CN110453186A (zh) 一种旋转镍铬合金靶材及其制备方法
CN109082624A (zh) 一种钕铁硼磁体表面超音速火焰热喷涂涂层的制备方法
WO2017092065A1 (zh) 一种海洋钻井平台耐腐涂层制备方法
CN105525251A (zh) 烧结主轴风机叶片超音速喷涂工艺
CN110819931B (zh) 一种粉芯焊丝及其制备方法和应用、多孔涂层及其制备方法
CN108950416A (zh) 一种法兰的制备方法
CN104099608B (zh) 一种冷喷涂制备Cu-Ag-Zn可磨耗封严涂层的方法
CN113927495B (zh) 一种自锐性金属结合剂金刚石磨料层制备工艺
CN110484911A (zh) 一种用于激光熔覆的合金粉末及其制备方法
CN115595527A (zh) 含有热喷涂粉末的耐磨层及涂覆其的注塑机螺杆制备方法
CN108950452A (zh) 一种镀铝硅线沉没辊用喷涂涂层及其制备方法
CN110241352B (zh) 一种用于水轮机的耐磨蚀复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962884

Country of ref document: EP

Kind code of ref document: A1