WO2023143062A1 - 隔热活塞及制备方法 - Google Patents

隔热活塞及制备方法 Download PDF

Info

Publication number
WO2023143062A1
WO2023143062A1 PCT/CN2023/071630 CN2023071630W WO2023143062A1 WO 2023143062 A1 WO2023143062 A1 WO 2023143062A1 CN 2023071630 W CN2023071630 W CN 2023071630W WO 2023143062 A1 WO2023143062 A1 WO 2023143062A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
piston
heat
layer
alloy
Prior art date
Application number
PCT/CN2023/071630
Other languages
English (en)
French (fr)
Inventor
谭旭光
王志坚
陈文淼
马飞
郭灵燕
庞斌
窦站成
贾春苹
曾笑笑
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023143062A1 publication Critical patent/WO2023143062A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings

Definitions

  • the present application relates to the technical field of internal combustion engine pistons, such as a heat-insulated piston and a preparation method thereof.
  • thermal efficiency is the primary goal of diesel engine improvement and development, and the first thing to consider in reducing energy consumption is also thermal efficiency. Since the current post-treatment emission reduction technology and turbocharging technology have little impact on it, reducing wall heat loss is still the main way to improve the thermal efficiency of internal combustion engines, so it is necessary to prepare thermal insulation coatings on the combustion chamber wall.
  • the present application proposes a method for preparing a heat-insulating piston and the heat-insulating piston prepared by the method, which can reduce the cost and improve the heat-insulation performance of the piston.
  • a method for preparing a heat-insulated piston including:
  • the piston is roughened before the bonding layer is sprayed:
  • the blasting abrasive is corundum sand or quartz sand, the abrasive particle size is 80-120 mesh, the blasting pressure is 0.4-0.6 MPa, and the blasting distance is 100 -120mm, the sandblasting time is 10-30s, the sandblasting angle is 75-90°, and the roughness after sandblasting is 2.5-4.5 ⁇ m.
  • the metal/alloy modified bonding layer is a rare earth metal/alloy modified NiCoCrAlY layer, a rare earth metal/alloy modified NiCrAlY layer or a rare earth metal/alloy modified NiAlY layer;
  • the rare earth metal/alloy is one or more of Ce, Y, Re, Nd, La and Sm.
  • the coating method in step S1 is plasma spraying, the thickness of the coating layer is 50-150 ⁇ m; the particle size of the powder is 50-90 ⁇ m, the oxygen-gas ratio is 4.2-5.6:1, the spraying distance is 80-125 mm, and the powder feeding The amount is 20-35g/min, the voltage is 55-75V, and the current is 550-700A.
  • the rare earth metal/alloy in the metal/alloy modified yttrium oxide coating is one or more of Ce, Y, Re, Nd, La and Sm.
  • the coating method in step S2 is plasma spraying, and the thickness of the coating layer is 100-200 ⁇ m; the particle size of the spraying powder is 10-100 ⁇ m, the powder particle size is 50-90 ⁇ m, and the oxygen-gas ratio is 4.2-5.6: 1.
  • the spraying distance is 80-125mm, the powder feeding volume is controlled at 20-35g/min, the voltage is 55-75V, and the current is 550-700A.
  • the coating method in step S3 is plasma spraying, and the thickness of the coating layer is 400-500 ⁇ m; the particle size of the spraying powder is 10-100 ⁇ m, the powder particle size is 50-90 ⁇ m, and the oxygen-gas ratio is 4.2-5.6: 1.
  • the spraying distance is 80-125mm, the powder feeding rate is 20-35g/min, the voltage is 55-75V, and the current is 550-700A.
  • the sealing treatment in step S4 is as follows: apply the sealing agent evenly on the top coating surface of the piston by wiping, spraying or brushing, and keep the sealing coating at 300-500°C for 1- 3 hours.
  • the thickness of the sealing layer of the sealing treatment is 2-20 ⁇ m; and then curing treatment is performed on the sealed piston at 300-400° C.
  • the sealing material is polysilazane
  • the top coating of the piston is cured at 400° C. for 2 hours after sealing.
  • the present application also provides a heat insulating piston, which is prepared by the above-mentioned preparation method.
  • the preparation method of a heat-insulated piston comprises sequentially coating a metal/alloy modified bonding layer, a metal/alloy modified yttrium oxide coating, a hollow structure yttrium oxide ceramic coating and Sealing layer: adopt plasma spraying technology, adjust the process, spray the coating, increase the porosity, reduce the volume heat capacity of the coating, and realize the heat insulation of the coating.
  • Partial coating technology on the top can change the wall surface temperature according to the gas temperature in the cylinder, reduce cooling loss and prevent intake heating; through yttrium oxide coating and its modification process, a porous structure can be made to reduce the heat capacity 50% or more, and the thermal conductivity is reduced by at least 33% or more; the sealing layer material can prevent gas intrusion due to combustion pressure, and at the same time improve the strength of the coating.
  • the piston prepared by the method of the present application has the characteristics of low heat capacity and low thermal conductivity; furthermore, the intake air volume is increased, the heat loss is reduced, the gas flow in the cylinder is promoted, and the combustion efficiency is increased.
  • Fig. 1 is the influence curve of the temperature that an embodiment provides to the insulating piston temperature
  • Fig. 2 is a curve of the influence of temperature on the thermal conductivity of the heat insulating piston provided by an embodiment.
  • test materials used in the following examples were purchased from conventional biochemical reagent stores.
  • Sandblasting process parameters the particle size of the sandblasting abrasive is 80 mesh, the sandblasting pressure is 0.4MPa, the sandblasting distance is 100mm, the sandblasting time is 10s, the sandblasting angle is 75°, and the roughness after sandblasting is 2.5 ⁇ m.
  • the traditional bonding layer modified by rare earth metal/alloy is sprayed on the top surface of the piston by plasma spraying method: the traditional bonding layer is generally NiCoCrAlY, NiCrAlY and NiAlY, etc., and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm, coating thickness 500 ⁇ m.
  • Use plasma spraying equipment to spray rare earth metal/alloy modified yttrium oxide coating on the top surface of the piston use yttrium oxide as the raw material for heat-insulating ceramic oxide coating, and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm.
  • the rare earth metal/alloy modified yttrium oxide powder for spraying was prepared by centrifugal spray granulation and plasma arc spheroidization, with a particle size of 10 ⁇ m; the plasma spraying method was used to deposit the powder onto the coated surface after melting and acceleration. Bond layer on piston top surface. The coating thickness is 100 ⁇ m.
  • the suitable powder particle size is 50 ⁇ m, the oxygen-gas ratio is 4.2:1, the spraying distance is 80mm, the powder feeding rate is 20g/min, the voltage is 55V, the current is 550A, that is, the power is 30.25kw.
  • Plasma spraying equipment is used to spray a yttrium oxide coating with a wave superposition structure on the top of the piston: yttrium oxide with a hollow structure is used as a raw material for the heat-insulating ceramic oxide surface layer, and the particle size is 10 ⁇ m; the plasma spraying method is used, after The melted and accelerated powder is deposited onto the top of the piston which is coated with a rare earth modified bonding layer and a rare earth modified yttrium oxide transition layer. The coating thickness is 400 ⁇ m.
  • the suitable powder particle size is 50 ⁇ m, the oxygen-gas ratio is 4.2:1, the spraying distance is 80, the powder feeding rate is 20g/min, the voltage is 55V, and the current is 550A, that is, the power is 30.25kw.
  • the wavy superposition structure can be understood as the formation of curved and staggered arrangement of ceramic particles, rather than a linear or isolated arrangement structure.
  • the sealing agent is selected from one of polysilazane, water glass or polysiloxane One or several kinds; the thickness of the sealing layer is 2 ⁇ m. Then, the sealed piston is cured at 300°C. Apply the sealing agent evenly on the surface of the coating on the top of the piston by spraying or brushing, so that it can fully penetrate into the pores of the coating, and keep the sealing coating at 300°C for 1 hour.
  • polysilazane is selected as the sealing material, and the polysilazane is dispersed through benzene. After sealing, the coating on the top of the piston is cured at 400°C for 2 hours.
  • Sandblasting process parameters the particle size of the sandblasting abrasive is 100 mesh, the sandblasting pressure is 0.5MPa, the sandblasting distance is 110mm, the sandblasting time is 20s, the sandblasting angle is 80°, and the roughness after sandblasting is 3.5 ⁇ m.
  • the traditional bonding layer modified by rare earth metal/alloy is sprayed on the top surface of the piston by plasma spraying method: the traditional bonding layer is generally NiCoCrAlY, NiCrAlY and NiAlY, etc., and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm, coating thickness 100 ⁇ m.
  • Use plasma spraying equipment to spray rare earth metal/alloy modified yttrium oxide coating on the top surface of the piston use yttrium oxide as the raw material for heat-insulating ceramic oxide coating, and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm.
  • the rare earth metal/alloy modified yttrium oxide powder for spraying is prepared by centrifugal spray granulation and plasma arc spheroidization, with a particle size of 50 ⁇ m; the plasma spraying method is used to deposit the powder onto the coated surface after melting and acceleration. Bond layer on piston top surface.
  • the coating thickness is 150 ⁇ m.
  • Plasma spraying equipment is used to spray a yttrium oxide coating with a wave superposition structure on the top of the piston: yttrium oxide with a hollow structure is used as a raw material for the heat-insulating ceramic oxide surface layer, and the particle size is 50 ⁇ m; the plasma spraying method is used, after The melted and accelerated powder is deposited onto the top of the piston which is coated with a rare earth modified bonding layer and a rare earth modified yttrium oxide transition layer. The coating thickness is 450 ⁇ m.
  • Process parameters The suitable powder particle size is 70 ⁇ m, the oxygen-gas ratio is 5:1, the spraying distance is 100mm, the powder feeding rate is 30g/min, the voltage is 65V, the current is 600A, that is, the power is 39kw.
  • the wavy superposition structure can be understood as the formation of curved and staggered arrangement of ceramic particles, rather than a linear or isolated arrangement structure.
  • the sealing agent is selected from one of polysilazane, water glass or polysiloxane One or several kinds; the thickness of the sealing layer is 10 ⁇ m. Then, the sealed piston is cured at 350°C. Apply the sealing agent evenly on the coating surface of the top of the piston by spraying/brushing to make it fully penetrate into the pores of the coating, and keep the sealing coating at 400°C for 2 hours.
  • polysilazane is selected as the sealing material, and the polysilazane is dispersed through benzene. After sealing, the coating on the top of the piston is cured at 400°C for 2 hours.
  • Sandblasting process parameters the particle size of the sandblasting abrasive is 120 mesh, the sandblasting pressure is 0.6MPa, the sandblasting distance is 120mm, the sandblasting time is 30s, the sandblasting angle is 90°, and the roughness after sandblasting is 4.5 ⁇ m.
  • the traditional bonding layer modified by rare earth metal/alloy is sprayed on the top surface of the piston by plasma spraying method: the traditional bonding layer is generally NiCoCrAlY, NiCrAlY and NiAlY, etc., and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm, coating thickness 150 ⁇ m.
  • Use plasma spraying equipment to spray rare earth metal/alloy modified yttrium oxide coating on the top surface of the piston use yttrium oxide as the raw material for heat-insulating ceramic oxide coating, and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm.
  • the rare earth metal/alloy modified yttrium oxide powder for spraying was prepared by centrifugal spray granulation and plasma arc spheroidization, with a particle size of 100 ⁇ m; the plasma spraying method was used to deposit the powder onto the coated surface after melting and acceleration. Bond layer on piston top surface. The coating thickness is 200 ⁇ m.
  • the suitable powder particle size is 90 ⁇ m, the oxygen-gas ratio is 5.6:1, the spraying distance is 125mm, the powder feeding rate is 35g/min, the voltage is 75V, the current is 700A, that is, the power is 52.50kw.
  • Plasma spraying equipment is used to spray a yttrium oxide coating with a wave superimposed structure on the top of the piston: yttrium oxide with a hollow structure is used as a raw material for the heat-insulating ceramic oxide surface layer, and the particle size is 100 ⁇ m; the plasma spraying method is used, after The melted and accelerated powder is deposited onto the top of the piston which is coated with a rare earth modified bonding layer and a rare earth modified yttrium oxide transition layer. The coating thickness is 500 ⁇ m.
  • the suitable powder particle size is 90 ⁇ m, the oxygen-gas ratio is 5.6:1, the spraying distance is 80-125mm, the powder feeding rate is 35g/min, the voltage is 75V, and the current is 700A, that is, the power is 52.50kw.
  • the wavy superposition structure can be understood as the formation of curved and staggered arrangement of ceramic particles, rather than a linear or isolated arrangement structure.
  • the sealing agent is selected from one of polysilazane, water glass or polysiloxane One or several kinds; the thickness of the sealing layer is 20 ⁇ m. Then, the sealed piston is cured at 400°C. Apply the sealing agent evenly on the coating surface of the top of the piston by spraying/brushing to make it fully penetrate into the pores of the coating, and keep the sealing coating at 500°C for 3 hours.
  • polysilazane is selected as the sealing material, and the polysilazane is dispersed through benzene. After sealing, the coating on the top of the piston is cured at 400°C for 2 hours.
  • the metal/alloy modified bonding layer refers to making powder after alloying the metal or alloy with the bonding material, wherein the metal is one of Ce, Y, Re, Nd, La and Sm One or more metal materials; the alloy is an alloy containing one or more of Ce, Y, Re, Nd, La and Sm elements.
  • metal/alloy modified yttrium oxide refers to alloying metal or alloy with yttrium oxide to make powder, wherein the metal is one of Ce, Y, Re, Nd, La and Sm or A variety of metal materials; the alloy is an alloy containing one or more of Ce, Y, Re, Nd, La and Sm elements.
  • alloying is to prepare pre-alloyed powder by atomizing powder after mixing and smelting raw materials.
  • the coating method can also be supersonic flame spraying, laser cladding, and arc cladding.
  • Sandblasting process parameters the particle size of the sandblasting abrasive is 100 mesh, the sandblasting pressure is 0.5MPa, the sandblasting distance is 110mm, the sandblasting time is 20s, the sandblasting angle is 80°, and the roughness after sandblasting is 3.5 ⁇ m.
  • the traditional bonding layer modified by rare earth metal/alloy is sprayed on the top surface of the piston by plasma spraying method: the traditional bonding layer is generally NiCoCrAlY, NiCrAlY and NiAlY, etc., and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm, coating thickness 100 ⁇ m.
  • zirconia is used as the raw material for heat-insulating ceramic oxide coating, and the rare earth metal/alloy can be Ce, Y, Re, One or more of Nd, La, Sm.
  • the rare earth metal/alloy modified zirconia powder for spraying is prepared by centrifugal spray granulation and plasma arc spheroidization, with a particle size of 50 ⁇ m; the plasma spraying method is used to deposit the powder onto the coated surface after melting and acceleration. Bond layer on piston top surface.
  • the coating thickness is 150 ⁇ m.
  • Process parameters The suitable powder particle size is 70 ⁇ m, the oxygen-gas ratio is 5:1, the spraying distance is 100mm, the powder feeding rate is 30g/min, the voltage is 65V, the current is 600A, that is, the power is 39kw.
  • Plasma spraying equipment is used to spray a yttrium oxide coating with a wave superposition structure on the top of the piston: yttrium oxide with a hollow structure is used as a raw material for the heat-insulating ceramic oxide surface layer, and the particle size is 50 ⁇ m; the plasma spraying method is used, after The melted and accelerated powder is deposited onto the top of the piston which is coated with a rare earth modified bonding layer and a rare earth modified yttrium oxide transition layer. The coating thickness is 450 ⁇ m.
  • Process parameters The suitable powder particle size is 70 ⁇ m, the oxygen-gas ratio is 5:1, the spraying distance is 100mm, the powder feeding rate is 30g/min, the voltage is 65V, the current is 600A, that is, the power is 39kw.
  • the wavy superposition structure can be understood as the formation of curved and staggered arrangement of ceramic particles, rather than a linear or isolated arrangement structure.
  • the sealing agent is selected from one of polysilazane, water glass or polysiloxane One or several kinds; the thickness of the sealing layer is 10 ⁇ m. Then, the sealed piston is cured at 350°C. Apply the sealing agent evenly on the coating surface of the top of the piston by spraying/brushing to make it fully penetrate into the pores of the coating, and keep the sealing coating at 400°C for 2 hours.
  • polysilazane is selected as the sealing material, and the polysilazane is dispersed through benzene. After sealing, the coating on the top of the piston is cured at 400°C for 2 hours.
  • Figure 1 is the curve of the influence of temperature on the temperature of the heat-insulating piston
  • Figure 2 is the curve of the influence of temperature on the thermal conductivity of the heat-insulating piston.
  • Traditional zirconia coatings have high thermal conductivity and poor thermal insulation performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种隔热活塞及制备方法,该制备方法包括:在活塞顶部边缘部位依次涂覆金属/合金改性粘结层;在涂覆有粘结层的活塞表面涂覆金属/合金改性氧化钇涂层;在涂覆有粘结层和氧化钇涂层的活塞表面涂覆具有空心结构的氧化钇陶瓷涂层;对涂覆上述涂层的活塞表面进行封孔处理。隔热活塞采用上述制备方法制备。本申请的制备方法制备的活塞具有低热容、低热导率的特点。

Description

隔热活塞及制备方法
本申请要求于2022年01月27日提交中国专利局、申请号为2022100977590、发明名称为“一种隔热活塞及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及内燃机活塞技术领域,例如一种隔热活塞及制备方法。
背景技术
目前,提高热效率是目前柴油机改进和发展的首要目标,降低能源消耗首先要考虑的也是热效率问题。由于当前的后处理减排技术和涡轮增压技术对其影响较小,减少壁热损失仍然是主要的提高内燃机热效率的途径,因此需要在燃烧室壁面制备隔热涂层。
现有活塞进行隔热涂层处理,喷涂粉材多是氧化锆、氧化钇稳定氧化锆,其热容较高。另外,在活塞顶面全部涂覆,成本高,工艺难以控制,涂层厚度不均匀,难以加工,影响活塞燃烧室型线,影响燃烧效率,进一步影响发动机热效率。
发明内容
本申请提出一种隔热活塞的制备方法及采用该制备方法所制备的隔热活塞,能够降低成本,改善活塞的隔热性能。
一实施例中提供一种隔热活塞的制备方法,包括:
S1、在活塞顶部边缘部位涂覆金属/合金改性粘结层;
S2、在涂覆有粘结层活塞表面涂覆金属/合金改性氧化钇涂层;
S3、在涂覆有粘结层和氧化钇涂层的活塞表面涂覆具有空心结构的氧化钇陶瓷涂层;
S4、涂覆上述涂层的活塞表面进行封孔处理。
进一步地,所述活塞在喷涂粘结层之前进行粗化处理:喷砂磨料为刚 玉砂或石英砂,磨料粒径为80-120目,喷砂压力为0.4-0.6MPa,吹砂距离为100-120mm,喷砂时间为10-30s,喷砂角度为75-90°,喷砂后粗糙度为2.5-4.5μm。
可选地,所述金属/合金改性粘结层为稀土金属/合金改性NiCoCrAlY层、稀土金属/合金改性NiCrAlY层或稀土金属/合金改性NiAlY层;
其中,稀土金属/合金为Ce、Y、Re、Nd、La和Sm中的一种或多种。
可选地,步骤S1中涂覆方式为等离子喷涂,涂覆层厚度为50-150μm;粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量为20-35g/min,电压为55-75V,电流为550-700A。
可选地,所述金属/合金改性氧化钇涂层中稀土金属/合金为Ce、Y、Re、Nd、La和Sm中的一种或多种。
可选地,步骤S2中涂覆方式为等离子喷涂,涂覆层厚度为100-200μm;喷涂粉料的粒径为10-100μm,粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量控制为20-35g/min,电压为55-75V,电流为550-700A。
可选地,步骤S3中涂覆方式为等离子喷涂,涂覆层厚度为400-500μm;喷涂粉料的粒径为10-100μm,粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量为20-35g/min,电压为55-75V,电流为550-700A。
可选地,步骤S4中封孔处理具体为:采用抹涂、喷涂或刷漆将封孔剂均匀涂敷于活塞顶部涂层表,将封孔涂层放在300-500℃下保温1-3小时。
可选地,所述封孔处理的封孔层厚度为2-20μm;然后对封孔处理后的活塞在300-400℃进行固化处理。
可选地,封孔的材料为聚硅氮烷,封孔后活塞顶部涂层在400℃进行固化保温2小时。
本申请还提供一种隔热活塞,该隔热活塞采用上述的制备方法制备。
本申请提供的一种隔热活塞的制备方法,在活塞顶部边缘部位依次涂覆金属/合金改性粘结层、金属/合金改性氧化钇涂层、具有空心结构的氧化钇陶瓷涂层和封孔层;采用等离子喷涂技术,调整工艺,喷涂涂层,提高孔隙率,降低涂层体积热容,实现涂层隔热。通过在顶部局部涂层技术可 以根据缸内气体温度来改变壁面温度,减少冷却损失和防止进气加热;通过氧化钇涂层及对其的改性工艺,制得多孔结构,可降低热容度50%以上,热导率降低至少33%以上;通过封孔层材料能够防止因燃烧压力作用产生的气体侵入,同时还能提高涂层的强度。通过本申请的方法制备的活塞具有低热容、低热导率的特点;进而增大进气量,减少热量损失,促进缸内气体流动,加大燃烧效率。
附图说明
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容能涵盖的范围内。
图1为一实施例提供的温度对隔热活塞温度的影响曲线;
图2为一实施例提供的温度对隔热活塞热导率的影响曲线。
具体实施方式
下述实施例中的实验方法,如无特殊说明,均为常规方法。
下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。
以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。
实施例1:
(1)采用刚玉粉或石英砂对钢质活塞顶部表面进行喷砂粗化处理,增加粘结层与基体粘合强度。喷砂工艺参数:喷砂磨料的粒径为80目,喷砂压力为0.4MPa,吹砂距离为100mm,喷砂时间为10s,喷砂角度为75°,喷砂后粗糙度为2.5μm。
(2)采用等离子体喷涂方法在活塞顶部表面喷涂稀土金属/合金改性的传统粘结层:传统粘结层一般为NiCoCrAlY、NiCrAlY和NiAlY等,稀 土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种,涂层厚度500μm。工艺参数:适宜粉末粒度为50μm,氧-燃气比例为4.2:1,喷涂距离为80mm,送粉量为20g/min,电压为55V,电流为550A,即功率为30.25kw。
(3)采用等离子体喷涂设备在活塞顶部表面喷涂稀土金属/合金改性的氧化钇涂层:以氧化钇作为隔热陶瓷氧化物涂层原料,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种。通过离心喷雾造粒,等离子弧球化制备出用于喷涂的稀土金属/合金改性的氧化钇粉料,粒径为10μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有粘结层的活塞顶部表面。其中涂层厚度为100μm。工艺参数:适宜粉末粒度为50μm,氧-燃气比例为4.2:1,喷涂距离为80mm,送粉量为20g/min,电压为55V,电流为550A,即功率为30.25kw。
(4)采用等离子体喷涂设备在活塞顶部喷涂波浪叠加结构的氧化钇涂层:以具有空心结构的氧化钇作为隔热陶瓷氧化物面层原料,粒径为10μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有稀土改性粘结层和稀土金属改性氧化钇过渡层的活塞顶部。其中涂层厚度为400μm。工艺参数:适宜粉末粒度为50μm,氧-燃气比例为4.2:1,喷涂距离为80,送粉量为20g/min,电压为55V,电流为550A,即功率为30.25kw。
其中,波浪式叠加结构可理解为形成的陶瓷颗粒弯曲交错排列,并非成直线型或孤立的排列结构。
(5)采用抹涂、喷涂或刷漆方法对涂覆有隔热氧化钇陶瓷涂层4的活塞表面进行封孔处理,其中密封剂选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种;其中封孔层厚度为2μm。然后对封孔处理后的活塞在300℃进行固化处理。采用喷涂/刷涂方法将封孔剂均匀涂敷于活塞顶部涂层表面,使其充分渗入到涂层孔隙中,将封孔涂层放在300℃下保温1小时。对于活塞顶部喷涂涂层封孔处理,封孔材料选择聚硅氮烷,其中聚硅氮烷通过苯分散处理,封孔后活塞顶部涂层在400℃进行固化保温2小时。
实施例2
(1)采用刚玉粉或石英砂对钢质活塞顶部表面进行喷砂粗化处理,增加粘结层与基体粘合强度。喷砂工艺参数:喷砂磨料的粒径为100目,喷砂压力为0.5MPa,吹砂距离为110mm,喷砂时间为20s,喷砂角度为80°, 喷砂后粗糙度为3.5μm。
(2)采用等离子体喷涂方法在活塞顶部表面喷涂稀土金属/合金改性的传统粘结层:传统粘结层一般为NiCoCrAlY、NiCrAlY和NiAlY等,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种,涂层厚度100μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
(3)采用等离子体喷涂设备在活塞顶部表面喷涂稀土金属/合金改性的氧化钇涂层:以氧化钇作为隔热陶瓷氧化物涂层原料,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种。通过离心喷雾造粒,等离子弧球化制备出用于喷涂的稀土金属/合金改性的氧化钇粉料,粒径为50μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有粘结层的活塞顶部表面。其中涂层厚度为150μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
(4)采用等离子体喷涂设备在活塞顶部喷涂波浪叠加结构的氧化钇涂层:以具有空心结构的氧化钇作为隔热陶瓷氧化物面层原料,粒径为50μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有稀土改性粘结层和稀土金属改性氧化钇过渡层的活塞顶部。其中涂层厚度为450μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
其中,波浪式叠加结构可理解为形成的陶瓷颗粒弯曲交错排列,并非成直线型或孤立的排列结构。
(5)采用抹涂、喷涂或刷漆方法对涂覆有隔热氧化钇陶瓷涂层4的活塞表面进行封孔处理,其中密封剂选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种;其中封孔层厚度为10μm。然后对封孔处理后的活塞在350℃进行固化处理。采用喷涂/刷涂方法将封孔剂均匀涂敷于活塞顶部涂层表面,使其充分渗入到涂层孔隙中,将封孔涂层放在400℃下保温2小时。对于活塞顶部喷涂涂层封孔处理,封孔材料选择聚硅氮烷,其中聚硅氮烷通过苯分散处理,封孔后活塞顶部涂层在400℃进行固化保温2小时。
实施例3
(1)采用刚玉粉或石英砂对钢质活塞顶部表面进行喷砂粗化处理,增加粘结层与基体粘合强度。喷砂工艺参数:喷砂磨料的粒径为120目,喷砂压力为0.6MPa,吹砂距离为120mm,喷砂时间为30s,喷砂角度为90°,喷砂后粗糙度为4.5μm。
(2)采用等离子体喷涂方法在活塞顶部表面喷涂稀土金属/合金改性的传统粘结层:传统粘结层一般为NiCoCrAlY、NiCrAlY和NiAlY等,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种,涂层厚度150μm。工艺参数:适宜粉末粒度为90μm,氧-燃气比例为5.6:1,喷涂距离为125mm,送粉量为35g/min,电压为75V,电流为700A,即功率为52.50kw。
(3)采用等离子体喷涂设备在活塞顶部表面喷涂稀土金属/合金改性的氧化钇涂层:以氧化钇作为隔热陶瓷氧化物涂层原料,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种。通过离心喷雾造粒,等离子弧球化制备出用于喷涂的稀土金属/合金改性的氧化钇粉料,粒径为100μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有粘结层的活塞顶部表面。其中涂层厚度为200μm。工艺参数:适宜粉末粒度为90μm,氧-燃气比例为5.6:1,喷涂距离为125mm,送粉量为35g/min,电压为75V,电流为700A,即功率为52.50kw。
(4)采用等离子体喷涂设备在活塞顶部喷涂波浪叠加结构的氧化钇涂层:以具有空心结构的氧化钇作为隔热陶瓷氧化物面层原料,粒径为100μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有稀土改性粘结层和稀土金属改性氧化钇过渡层的活塞顶部。其中涂层厚度为500μm。工艺参数:适宜粉末粒度为90μm,氧-燃气比例为5.6:1,喷涂距离为80-125mm,送粉量为35g/min,电压为75V,电流为700A,即功率为52.50kw。
其中,波浪式叠加结构可理解为形成的陶瓷颗粒弯曲交错排列,并非成直线型或孤立的排列结构。
(5)采用抹涂、喷涂或刷漆方法对涂覆有隔热氧化钇陶瓷涂层4的活塞表面进行封孔处理,其中密封剂选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种;其中封孔层厚度为20μm。然后对封孔处理后的活塞在400℃进行固化处理。采用喷涂/刷涂方法将封孔剂均匀涂敷于活塞顶部涂层表 面,使其充分渗入到涂层孔隙中,将封孔涂层放在500℃下保温3小时。对于活塞顶部喷涂涂层封孔处理,封孔材料选择聚硅氮烷,其中聚硅氮烷通过苯分散处理,封孔后活塞顶部涂层在400℃进行固化保温2小时。
在本申请的实施例中,金属/合金改性粘结层是指将金属或合金与粘结材料合金化后制成粉末,其中金属为Ce、Y、Re、Nd、La和Sm中的一种或多种的金属材料;合金为含有Ce、Y、Re、Nd、La和Sm元素中的一种或多种的合金。
在本申请的实施例中,金属/合金改性氧化钇是指将金属或合金与氧化钇合金化后制成粉末,其中金属为Ce、Y、Re、Nd、La和Sm中的一种或多种的金属材料;合金为含有Ce、Y、Re、Nd、La和Sm元素中的一种或多种的合金。
在上述实施例的基础上,合金化为将原料混合熔炼后通过雾化制粉法制备预合金化粉。
在上述实施例的基础上,涂覆方式还可以是超音速火焰喷涂、激光熔覆、电弧熔覆。
在本申请实的描述中,“多”的含义是两个或两个以上。
对比例1
(1)采用刚玉粉或石英砂对钢质活塞顶部表面进行喷砂粗化处理,增加粘结层与基体粘合强度。喷砂工艺参数:喷砂磨料的粒径为100目,喷砂压力为0.5MPa,吹砂距离为110mm,喷砂时间为20s,喷砂角度为80°,喷砂后粗糙度为3.5μm。
(2)采用等离子体喷涂方法在活塞顶部表面喷涂稀土金属/合金改性的传统粘结层:传统粘结层一般为NiCoCrAlY、NiCrAlY和NiAlY等,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种,涂层厚度100μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
(3)采用等离子体喷涂设备在活塞顶部表面喷涂稀土金属/合金改性的氧化锆涂层:以氧化锆作为隔热陶瓷氧化物涂层原料,稀土金属/合金可为Ce、Y、Re、Nd、La、Sm一种或多种。通过离心喷雾造粒,等离子弧球化制备出用于喷涂的稀土金属/合金改性的氧化锆粉料,粒径为50μm; 采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有粘结层的活塞顶部表面。其中涂层厚度为150μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
(4)采用等离子体喷涂设备在活塞顶部喷涂波浪叠加结构的氧化钇涂层:以具有空心结构的氧化钇作为隔热陶瓷氧化物面层原料,粒径为50μm;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有稀土改性粘结层和稀土金属改性氧化钇过渡层的活塞顶部。其中涂层厚度为450μm。工艺参数:适宜粉末粒度为70μm,氧-燃气比例为5:1,喷涂距离为100mm,送粉量为30g/min,电压为65V,电流为600A,即功率为39kw。
其中,波浪式叠加结构可理解为形成的陶瓷颗粒弯曲交错排列,并非成直线型或孤立的排列结构。
(5)采用抹涂、喷涂或刷漆方法对涂覆有隔热氧化钇陶瓷涂层4的活塞表面进行封孔处理,其中密封剂选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种;其中封孔层厚度为10μm。然后对封孔处理后的活塞在350℃进行固化处理。采用喷涂/刷涂方法将封孔剂均匀涂敷于活塞顶部涂层表面,使其充分渗入到涂层孔隙中,将封孔涂层放在400℃下保温2小时。对于活塞顶部喷涂涂层封孔处理,封孔材料选择聚硅氮烷,其中聚硅氮烷通过苯分散处理,封孔后活塞顶部涂层在400℃进行固化保温2小时。
图1为温度对隔热活塞温度的影响曲线;图2为温度对隔热活塞热导率的影响曲线。传统氧化锆涂层热导率高,隔热性能差。

Claims (8)

  1. 一种隔热活塞的制备方法,包括:
    S1、在活塞顶部边缘部位涂覆金属/合金改性粘结层;
    S2、在涂覆有粘结层的活塞表面涂覆金属/合金改性氧化钇涂层;
    S3、在涂覆有粘结层和氧化钇涂层的活塞表面涂覆具有空心结构的氧化钇陶瓷涂层;
    S4、对涂覆上述涂层的活塞表面进行封孔处理;
    步骤S2中涂覆方式为等离子喷涂,涂覆层厚度为100-200μm;喷涂粉料的粒径为10-100μm,粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量控制为20-35g/min,电压为55-75V,电流为550-700A;
    步骤S3中涂覆方式为等离子喷涂,涂覆层厚度为400-500μm;喷涂粉料的粒径为10-100μm,粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量为20-35g/min,电压为55-75V,电流为550-700A。
  2. 根据权利要求1所述的隔热活塞的制备方法,其中,所述活塞在喷涂粘结层之前进行粗化处理:喷砂磨料为刚玉砂或石英砂,磨料粒径为80-120目,喷砂压力为0.4-0.6MPa,吹砂距离为100-120mm,喷砂时间为10-30s,喷砂角度为75-90°,喷砂后粗糙度为2.5-4.5μm。
  3. 根据权利要求1所述的隔热活塞的制备方法,其中,所述金属/合金改性粘结层为稀土金属/合金改性NiCoCrAlY层、稀土金属/合金改性NiCrAlY层或稀土金属/合金改性NiAlY层;
    其中,稀土金属/合金为Ce、Y、Re、Nd、La和Sm中的一种或多种。
  4. 根据权利要求1所述的隔热活塞的制备方法,其中,步骤S1中涂覆方式为等离子喷涂,涂覆层厚度为50-150μm;粉末粒度为50-90μm,氧-燃气比例为4.2-5.6:1,喷涂距离为80-125mm,送粉量为20-35g/min,电压为55-75V,电流为550-700A。
  5. 根据权利要求1所述的隔热活塞的制备方法,其中,金属/合金改性氧化钇涂层中金属/合金为Ce、Y、Re、Nd、La和Sm中的一种或多种。
  6. 根据权利要求1所述的隔热活塞的制备方法,其中,步骤S4中封孔处理设置为:采用抹涂、喷涂或刷漆将封孔剂均匀涂敷于活塞顶部涂层表,将封孔涂层放在300-500℃下保温1-3小时;所述封孔处理的封孔层厚度为2-20μm。
  7. 根据权利要求1所述的隔热活塞的制备方法,其中,封孔的材料为聚硅氮烷,封孔后活塞顶部涂层在400℃进行固化保温2小时。
  8. 一种隔热活塞,采用如权利要求1-7任一项所述的制备方法制备。
PCT/CN2023/071630 2022-01-27 2023-01-10 隔热活塞及制备方法 WO2023143062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210097759.0 2022-01-27
CN202210097759.0A CN114107874A (zh) 2022-01-27 2022-01-27 一种隔热活塞及制备方法

Publications (1)

Publication Number Publication Date
WO2023143062A1 true WO2023143062A1 (zh) 2023-08-03

Family

ID=80361340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071630 WO2023143062A1 (zh) 2022-01-27 2023-01-10 隔热活塞及制备方法

Country Status (2)

Country Link
CN (1) CN114107874A (zh)
WO (1) WO2023143062A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107874A (zh) * 2022-01-27 2022-03-01 潍柴动力股份有限公司 一种隔热活塞及制备方法
CN115772637A (zh) * 2023-02-14 2023-03-10 潍柴动力股份有限公司 一种隔热涂层及其应用
CN116751473A (zh) * 2023-06-20 2023-09-15 重庆大学 一种耐高温远红外涂料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080131711A1 (en) * 2006-12-01 2008-06-05 Siemens Power Generation, Inc. Bond coat compositions and arrangements of same capable of self healing
CN102762836A (zh) * 2010-02-15 2012-10-31 丰田自动车株式会社 内燃机的活塞
CN102925844A (zh) * 2012-11-05 2013-02-13 天津大学 一种提高内燃机热效率的方法
JP2013185200A (ja) * 2012-03-07 2013-09-19 Mazda Motor Corp 断熱皮膜構造及びその製造方法
WO2019084373A1 (en) * 2017-10-27 2019-05-02 Tenneco Inc. STEEL PISTON CAP AND / OR COMBUSTION ENGINE PARTS WITH DYNAMIC THERMAL INSULATION COATING AND METHOD FOR MANUFACTURING AND USING SUCH COATING
CN113088859A (zh) * 2021-03-30 2021-07-09 潍柴动力股份有限公司 复合涂层、活塞、发动机和车辆
CN114107874A (zh) * 2022-01-27 2022-03-01 潍柴动力股份有限公司 一种隔热活塞及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850778B2 (en) * 2013-11-18 2017-12-26 Siemens Energy, Inc. Thermal barrier coating with controlled defect architecture
CN109072397B (zh) * 2016-04-08 2021-08-31 沃尔沃卡车集团 用于内燃发动机的气缸的活塞
CN113444996A (zh) * 2021-06-29 2021-09-28 潍柴动力股份有限公司 热障涂层的制备方法、热障涂层和发动机活塞

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080131711A1 (en) * 2006-12-01 2008-06-05 Siemens Power Generation, Inc. Bond coat compositions and arrangements of same capable of self healing
CN102762836A (zh) * 2010-02-15 2012-10-31 丰田自动车株式会社 内燃机的活塞
JP2013185200A (ja) * 2012-03-07 2013-09-19 Mazda Motor Corp 断熱皮膜構造及びその製造方法
CN102925844A (zh) * 2012-11-05 2013-02-13 天津大学 一种提高内燃机热效率的方法
WO2019084373A1 (en) * 2017-10-27 2019-05-02 Tenneco Inc. STEEL PISTON CAP AND / OR COMBUSTION ENGINE PARTS WITH DYNAMIC THERMAL INSULATION COATING AND METHOD FOR MANUFACTURING AND USING SUCH COATING
CN113088859A (zh) * 2021-03-30 2021-07-09 潍柴动力股份有限公司 复合涂层、活塞、发动机和车辆
CN114107874A (zh) * 2022-01-27 2022-03-01 潍柴动力股份有限公司 一种隔热活塞及制备方法

Also Published As

Publication number Publication date
CN114107874A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023143062A1 (zh) 隔热活塞及制备方法
US10995661B2 (en) Thermally insulated engine components using a ceramic coating
US3911891A (en) Coating for metal surfaces and method for application
WO2006085995A2 (en) Method of producing metal article having internal passage coated with a ceramic coating
US3976809A (en) Coating for metal surfaces and method for application
CN105132908A (zh) 燃气轮机叶片热障涂层粘结层及其制备方法
US9759154B2 (en) Method for coating a bore and cylinder block of an internal combustion engine
CN103009704A (zh) 一种纳米/类柱状晶混合结构热障涂层及其制备方法
US20240026837A1 (en) Composite coating, piston, engine and vehicle
CN112553564B (zh) 一种进一步提高高熵合金涂层耐磨性的方法
CN113151772A (zh) 一种新型高温耐蚀的双陶瓷层结构热障涂层及其制备方法
WO2021174375A1 (zh) 一种大型复杂腔道钛合金铸件精密成形方法
CN110983277A (zh) 一种用于钕铁硼永磁材料的旋转稀土靶材及制备方法和修复方法
CN110144541A (zh) 一种高温钛合金热障涂层材料及其制备方法
CN107419213B (zh) 一种金属基体的表面防腐方法
CN111962028A (zh) 一种eb-pvd/aps复合结构双陶瓷层热障涂层及其制备方法
CN106746666A (zh) 玻璃陶瓷复合热障涂层设计模型及涂层制备方法
CN109023203B (zh) 稳定结晶态六铝酸盐热障涂层的制备方法
CN107630184A (zh) 一种在铌或铌合金表面制备硅化铌涂层的方法
CN114231906A (zh) 一种船用燃气轮机高压涡轮叶片的热障涂层及其制备方法
CN114000090A (zh) 一种氧化物/氧化物复合材料表面环境障涂层的制备方法
CN111804907A (zh) 一种改性陶瓷颗粒增强铁基复合材料及其制备方法
US20240066589A1 (en) Transplanted thermal barrier coating system
CN105063541A (zh) 一种具有吸音隔热功能的热障涂层及其制作方法
CN114703440A (zh) 一种纳米氧化物分散强化高熵合金粘结层及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745945

Country of ref document: EP

Kind code of ref document: A1